
EURASIP Journal on Wireless Communications and Networking 2005:3, 333–342
c© 2005 Arnd-Ragnar Rhiemeier

Modular Software-Defined Radio

Arnd-Ragnar Rhiemeier
Institut für Nachrichtentechnik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
Email: rhiemeier@int.uni-karlsruhe.de

Received 1 October 2004; Revised 14 February 2005

In view of the technical and commercial boundary conditions for software-defined radio (SDR), it is suggestive to reconsider the
concept anew from an unconventional point of view. The organizational principles of signal processing (rather than the signal
processing algorithms themselves) are the main focus of this work on modular software-defined radio. Modularity and flexibility
are just two key characteristics of the SDR environment which extend smoothly into the modeling of hardware and software. In
particular, the proposed model of signal processing software includes irregular, connected, directed, acyclic graphs with random
node weights and random edges. Several approaches for mapping such software to a given hardware are discussed. Taking into
account previous findings as well as new results from system simulations presented here, the paper finally concludes with the
utility of pipelining as a general design guideline for modular software-defined radio.

Keywords and phrases: flexible digital baseband signal processing, firmware support for reconfiguration, computing resource
allocation, multiprocessing, modeling of SDR software.

1. INTRODUCTION

Software-defined and hardware reconfigurable radio systems
have attracted more and more attention recently because
they are expected to be among the key techniques to serv-
ing future wireless communication market needs. In con-
trast to the strong convergence tendency in wired networks,
a growing number of standards and communication modes
can be observed in wireless access networks. Presumably, this
trend will prevail, eventually due to the natural diversity in
service requirements and radio environments. The better the
match between the physical channel (the properties of which
are determined in part by the user mobility) and the signal
processing in the transceiver, the easier to achieve the opti-
mal quality of service (QoS) on the physical layer. Further-
more, the ongoing introduction of UMTS in Europe shows
that diversity in standards is not only a technical challenge; if
market response falls short of business expectations (based
on a particular communication standard), or if user’s de-
mand shifts to a different wireless access technology (and
thus to a different sort of underlying signal processing), it
would be beneficial for any manufacturing company to be
able to respond quickly to such situations. Software-defined
and reconfigurable radio systems have the potential to allow
short time-to-market product designs under these commer-
cial conditions.

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The present paper puts an emphasis on the physical-
layer signal processing because its capabilities represent the
fundamental limits for higher layers in delivering their ser-
vices. Therefore, mastering all aspects of physical-layer sig-
nal processing in software-defined and hardware reconfig-
urable radios is vital for delivering best end-to-end service
to the end user, by means of a single communication de-
vice. Modular software-defined radio (Mod-SDR) strives for
casting light on one important aspect which has been largely
neglected hitherto: the design guidelines which govern the
coordinated interplay of signal processing software modules
embedded in logical structures of some arbitrary wireless
communication standards.

1.1. Related work

A great number of important contributions on software-
defined radio [1, 2, 3] and reconfigurability [4, 5, 6, 7, 8] can
be found in the literature. However, many authors narrow
down their research interest to one particular aspect of the
signal processing chain: sample rate adaptation [9, 10, 11],
RF front-end design [12, 13, 14, 15, 16], A/D conversion [17,
18], or channel coding [19, 20, 21], just to name a few exam-
ples. Notably, work related to signal processing in the digital
baseband is centered around algorithms [22, 23]. However,
structural properties of signal processing software (including
an abstract way for representation) and the principles of or-
ganizing the execution of multiple algorithms in a distributed
multiprocessing hardware system have not been studied in-
tensively in the context of software radio. One major contri-
bution of Mitola [24] attempts to reexamine software radio

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Directory of Open Access Journals

https://core.ac.uk/display/26905533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rhiemeier@int.uni-karlsruhe.de


334 EURASIP Journal on Wireless Communications and Networking

from a truly unorthodox point of view, but his findings still
pertain to algorithms and eventually do not reach beyond the
Turing’s theory of computing. Nevertheless, his contribution
hints at the fact that SDR requires an understanding which
is radically different from classical communications and its
BER curves.

1.2. Motivation for modular software-defined radio

The motivation for introducing a novel view of flexible radio
system design is twofold. First, the fact that a radio terminal
accomplishes its signal processing by software or reconfig-
urable hardware rather than by dedicated hardware does not
render the rules of real-time computing obsolete, but so far
this aspect has not been considered systematically in the con-
text of software-defined radio. Second, any BER produced by
some software implementation has to be at least as good as
the BER of its equivalent ASIC implementation. Hence, it ap-
pears to be questionable to present BER curves as a measure
of quality for the design of a software-defined radio.

The goal of modular software-defined radio is to estab-
lish general guidelines for designing and operating flexible
signal processing systems. In order to make these guidelines
general, they need to be independent of particular commu-
nication standards, independent of algorithmic implementa-
tion details, and independent of technological advances in
microelectronics. The model for SDR software will reflect
these important aspects.

1.3. Compatibility with the real world

In the same way as the ideal software radio concept [1, 25]
has evolved into some compromise approaches usually sum-
marized under the term of software-defined radio, the advent
of reconfigurable, distributed signal processing hardware in
radio devices [26, 27] can be seen as another step in this evo-
lution towards implementations which are both technologi-
cally feasible and economically attractive.

Critics generally claim that SDRs will always be noto-
riously power-inefficient and inherently overpriced, hence
never prove competitive against carefully designed ASICs.
This may be true indeed if the flexibility of SDR is uncon-
ditionally passed on to the end user in the form of “future
upgradability.” Therefore, it is more reasonable to predict
that the flexibility of SDR is likely to stay under the imme-
diate control of manufacturers, all the more so to support a
sustainable business model. Actually, time-to-market is the
master argument in favor of software-defined radio tech-
niques. The present paper shares this view suggesting to per-
ceive software-defined and reconfigurable radios as wireless
communications embedded real-time systems which are tun-
able to end-user needs or network operator needs, but not
more. Modular software-defined radio provides those em-
bedded systems with design guidelines and the core of a QoS
manager for the physical layer.

2. MODELING OF HARDWARE AND SOFTWARE

One fundamental assumption is that SDR will become real-
ity soonest in the form of some distributed multiprocessing

hardware architecture, providing sufficient computing power
at a much lower electric power consumption than that of a
single comparable general-purpose processor. Furthermore,
all hardware resources of a Mod-SDR device such as pro-
cessors, buses, memories, and interfaces are administered by
a nonpreemptive operating system. Supplied by the termi-
nal manufacturer, this piece of firmware is protected from
any direct manipulation on the part of the end user. How-
ever, by means of a physical layer API, both user applications
and the network may address transmission mode requests to
the QoS manager which belongs to the core framework ser-
vices/applications running immediately on top of the oper-
ating system (see SCA, [28, Figure 2-1]). A request will cer-
tainly include an abstract representation of the signal pro-
cessing software which needs to be executed to realize the
transmission mode. modular software-defined radio makes
use of directed acyclic graphs to represent signal processing
software.

The main task of the QoS manager consists of the map-
ping of signal processing software to the available hardware
while respecting the real-time requirements which are de-
fined by the air interface of the requested communication
standard [29]. In return for requests, the QoS manager ac-
cepts or rejects transmission modes, based on the availability
of resources and on a decision process which includes parti-
tioning of the graph and scheduling of all software modules.
Partitioning is the process of uniquely assigning each module
to a processor, while scheduling means determining individ-
ual trigger instants for each module.

Throughout this work, a software module is defined to be
the smallest entity of executable machine code, which can-
not be preempted by the operating system. Software mod-
ules are self-contained, independent entities, and there is no
data exchange across module boundaries other than input
data from predecessor modules and output data to successor
modules. In principle, any module may be connected to any
other module, the only requirement being data type compat-
ibility in between all modules.

2.1. Details of the software model

For the Mod-SDR software model to be independent of pro-
cessor types (DSP, FPGA, ASSP, specific coprocessor, and
ASIC) and of technological advances in microelectronics, the
processing runtime of software modules is taken into ac-
count as the main behavioral attribute of signal processing
software. At the same time, algorithmic details are abstracted
away in this manner. Given the framework of directed acyclic
graphs, the nodes of a graph represent software modules car-
rying some signal processing runtime as the node weight.
Due to the vast variety of unpredictable influences on the
processing runtime of software modules in an SDR envi-
ronment [29], node weights are subject to random variation
within a stochastic linear resource runtime model [30]. The
basic assumption of linearity originates from the idea that
the more processing runtime is needed, the more data is to
be produced at the output of a software module:

pm = α · c · rm, ∀ nodes m : 1 ≤ m ≤M, (1)



Modular Software-Defined Radio 335

where pm is the processing runtime of some node m and rm
is m’s output memory resource demand. Formally, α ∈ R+

is the constant of proportionality translating a memory de-
mand into a runtime, hence its unit [α] = (bit/s)−1. It can
be interpreted as the absolute speed of a processor when
executing the signal processing machine code behind node
m. The constant factor c is unitless, and its value is drawn
from a random experiment, for each m anew. The charac-
teristics of the SDR environment as well as all shortcomings
of a strictly linear resource runtime model are modeled by
the real-valued random variable C. A complete description
of this variable is given by its probability density function
(pdf) fC(c). Throughout this paper, all realizations c stem
from independent identically distributed random variables
C for all nodes m. The pdf employed in this work has a
rectangularly windowed Gaussian shape with the parameters
µC = 1.0, σC,eff = E{(C − µC)2} = 0.25, and windowed in-
terval [0.5; 1.5]. The choice of a Gaussian is certainly arbi-
trary, but there are strong hints that the actual shape of the
pdf has much less influence on the performance of the QoS
manager than the effective relative spread σP,eff /µP,eff of pro-
cessing runtimes [31].

The structural properties of Mod-SDR software are cap-
tured in directed edges 〈m,n〉 between a pair of nodes m and
n of a graph. In order to be independent of any particular
communication standard, those graphs are not only random
in their node runtimes, but also in their directed edges.

The random graph generator which is used for computer
simulations produces irregular, connected, directed, acyclic
graphs with a fixed number of nodes M = 40. The gener-
ation process starts out from a chain of two nodes indexed
m = 1 (referred to as the source node) and m = 2 (referred
to as the target node). Subsequently, nodes are added in an
iterative process by placing them somewhere relative to the
existing graph. For every node to be placed, one predeces-
sor and one successor are selected at random and with equal
probability from the existing nodes of the graph. Should a
new node shortcut the edge between adjacent existing nodes,
then that edge is removed with probability of 0.5. Connect-
edness of the graph is enforced in a simple way by exempting
m = 1 from the node selection procedure, whereas the prop-
erty of noncyclicity needs to be verified throughout the en-
tire graph generation process. Finally, some additional graph
properties, which are related to the data input and output
behavior of nodes, need to be determined. First, the output-
to-input data ratio of all nodes be 1.0. Second, all edges out-
going from any demultiplexing node convey the full output
data volume. Third, all edges incoming to any multiplexing
node convey only one Kth of the predecessors’ output data
volumes, where K is the number of incoming edges. These
rules make sure that edge weights remain in the same order
of magnitude throughout the entire graph. Figure 1 shows
one realization of a random graph as an example.

2.2. Details of the hardware model

A symmetric multiprocessor architecture (see Figure 2)
serves as the model of a modular, easy-to-extend multi-
processing hardware system for Mod-SDR. The architecture

8

10 25 20

32
40

3

26
19

35

37

16

1

5

34

24 14

30
12

15
33 17 2

29
39

112138

4

18

7
13

9
28

22

31

23
2736

6

Figure 1: Irregular, connected, directed, acyclic graph.

Shared
memory

i/o
memory

M1

P1

M2

P2

B B

B

· · ·

Figure 2: Symmetric multiprocessor architecture.

generally includes L ∈ N identical processors Pl with associ-
ated (distributed) memory Ml, a shared memory and an in-
put/output (i/o) memory for interfacing of the physical layer
signal processing subsystem to the outside world, that is, to
other processing subsystems or to the analog front end of the
Mod-SDR transceiver.

All of these hardware resources are connected by B ∈ N
separate data buses. It is assumed that processors are actively
involved in bus transfers, that is, no useful signal processing
code of a module can be executed by a processor while this
processor is exchanging data with the shared memory or with
the i/o memory via some bus. This is certainly a conservative
assumption, which can also be interpreted as a worst case on
one hand. On the other hand, however, it is very unlikely
that simultaneous signal processing and bus communica-
tions can be achieved in the general case of Mod-SDR graphs.
Even if a processor architecture supports communication la-
tency hiding behind useful core computations, those mech-
anisms would require coordination on the code program-
ing level across module boundaries. However, this intermod-
ule control flow contradicts the Mod-SDR self-containment
paradigm, where any module may indeed be linked to any
other module (logically, by the directed edge of a graph), in
order to accomplish a useful signal processing task, but with-
out mutual knowledge of their respective machine code in-
ternals.

Naturally, bus access is exclusive. Conflicting access tim-
ings on the part of processors need to be arbitrated by the
scheduler, which is built into the QoS manager. The bus
speed is given relative to the signal processing speed α of the
processors, in the form of a relative bus speed β ∈ R+. The
unitless factor β describes how much faster a processor can
transfer an amount of data over the bus rather than produce



336 EURASIP Journal on Wireless Communications and Networking

the same amount of data as the output of a module (by reg-
ular signal processing). Large values of the relative bus speed
(β � 1) represent fast buses, whereas β < 1 represents slow
buses. Partitioning always entails a cut affecting a certain sub-
set of edges in the graph. The logical data flow along cut edges
then translates into an asynchronous, physical data flow be-
tween processors via the shared memory. How this is orga-
nized using pairs of bus transfer nodes is described in detail
in [32]. The basic idea is that bus transfers require runtime in
the same way as regular signal processing nodes, but paired
for intermediate results to be written to and read from the
shared memory. Therefore, the resulting runtime model for
bus transfer nodes is similar to (1), but includes β in the place
of c:

p〈m,n〉 = α · β−1 · rm, ∀ edges 〈m,n〉 affected by the cut.
(2)

These runtimes do not depend on the SDR environment,
but on the deterministic capabilities of the Mod-SDR device.
Their values p〈m,n〉 reappear later as edge weights that repre-
sent potential link cost for all edges 〈m,n〉. Actual costs are
only incurred by those edges affected by the partitioning cut.

The focus of the present work is on fundamental design
and operating principles in Mod-SDR systems. Before tack-
ling the general case of L ∈ N processors, the case L = 2
should be well understood first. With L = 2 processors, only
B ≤ 2 is reasonable. In this paper, the case of B = 1 bus is
studied.

2.3. Proposed measure of quality

It is the declared goal of Mod-SDR to go beyond designing
for some particular set of standards or transmission modes.
Therefore, concrete real-time requirements such as deadline
periods (which are clearly determined by the air interfaces of
any standard) are missing. Instead, the more general require-
ment for maximum speedup of a multiprocessing hardware
system is considered. The speedup s ∈ R+ is defined as the
factor by which the multiprocessor Mod-SDR implementa-
tion terminates faster than the same software implementa-
tion on a single processor running at the same speed of α.
The advantage of speedup is evident; it is a relative measure
of quality for the design of (and the way of operating) a mul-
tiprocessor computing system. The actual value of α is not of
importance because it cancels out in the speedup s.

3. MAPPING APPROACHES

Although the Mod-SDR software model includes random
graphs, statistics in this approach should not be confused
with any “statistical structure of computational demand”
[24]. The way of building and using a population of SDR ter-
minals involves a random process, but transmission mode re-
quests are realizations of this random process. Therefore, the
QoS manager has to deal with realizations of random graphs.
Per request, the total number of nodes and all associated
node weights are arbitrary, but fixed. Likewise, the logical
structures captured in the set of directed edges remain fixed

over their entire utilization period. Potentially, QoS parame-
ters may be negotiated during connection setup, but once a
transmission mode has been accepted, the (static) scheduling
situation is deterministic, and so is the demand for comput-
ing power [29].

All SDR design techniques related to mapping structured
signal processing software to hardware may be roughly classi-
fied by the number of graph copies involved in the partition-
ing and scheduling process; some approaches use but a sin-
gle copy, while others imply multiple identical copies of the
graph. In principle, techniques of both classes are applicable
to signal processing for circuit-switched services as well as
for packet-switched services. However, ordinary protocol re-
quirements in packet-oriented networks (e.g., stop-and-wait
ARQ) may oftentimes force the QoS manager to operate on
a single copy of the given graph. As a matter of principle,
single-copy variants are less demanding in terms of program
memory and data memory.

The following partitioning approaches are employed in
Mod-SDR system simulations to be discussed in a later sec-
tion of the this paper.

(i) Implicit partitioning by the Hu algorithm [29]—
eventually, a scheduling algorithm.

(ii) Kernighan-Lin (KL) algorithm [30]—a method for
local search of the design space.

(iii) Spectral partitioning [33]—an application of alge-
braic graph theory.

These approaches primarily operate on a single copy of
the graph which is given by some transmission mode request.
The originally implied scheduling idea is that radio signals
are processed on a frame-by-frame basis, only one frame per
real-time period, and all computations relate to a single radio
frame only. An accurate pseudocode of the static scheduler is
given in [34].

However, pipelined scheduling [33, 35] in combination
with these partitioning approaches revokes the memory ad-
vantage of a single graph copy, because pipelining involves
the processing of radio signals related to several different
radio frames within the time of one real-time period. The
number of different radio frames involved in these computa-
tions is called the depth of the pipeline. Indeed, the program
memory remains unaffected by pipelining, but not the data
memory; multiple intermediate computation results from
several different frames must be kept in memory, which re-
sults in a much higher demand than before.

A radical alternative to the above partitioning approaches
is graph duplication; one complete copy of the graph is as-
signed to the first processor, another copy is assigned to the
second processor. No partitioning algorithm is needed, the
workload on both processors is perfectly balanced by con-
struction, and bus access is reduced to the necessary i/o data
transfers. The associated scheduling scheme has been named
graph duplication pipelining (GDP) [35]. Despite its obvi-
ous advantages, GDP suffers from both increased data mem-
ory and program’s memory demand due to the duplication
process. An alternative pipelining approach that returns to
operating on a single copy of the graph is half-frame pipelin-
ing (HFP) [36, 37]. HFP is primarily based on a scheduling



Modular Software-Defined Radio 337

10−1 100 101 102

Relative bus speed β

0.6

0.7

0.8

0.9

1
Fr

ac
ti

on
of

m
ax

sp
ee

du
p

Figure 3: Implicit Hu partitioning, no pipelining.

idea where the QoS manager supports the following kind
of time-interleaved frame processing; while one processor is
still busy processing the second half of some frame indexed
i, the other processor already starts processing its successor
frame indexed (i + 1). In contrast to GDP, this approach re-
quires load-balanced partitioning of the graph under one ad-
ditional side condition, namely maintaining a vertical cut rel-
ative to the source node and the target node. Both the KL al-
gorithm and a modified variant of spectral partitioning have
been tested for this purpose. It can be shown [38] that the
KL algorithm is a simple and efficient partitioning support
for HFP.

In principle, all of these mapping approaches are eligible
for application by the QoS manager of a Mod-SDR, inde-
pendent of the service type. It remains to be shown which
approach achieves a high probability of good speedup in the
highly unpredictable SDR environment.

4. SYSTEM SIMULATIONS OF MOD-SDR

The three partitioning approaches have been discussed ex-
tensively elsewhere, but the comparison of performance was
merely based on one particular sample graph. The node
weights did stem from random experiments, but the struc-
ture of the graph remained fixed throughout all simula-
tion runs. Here, in contrast, the random graph model of
Section 2.1 (also including random edges) is applied to im-
prove the expressiveness of Mod-SDR system simulations.
Those new results are discussed in the following.

All figures show speedup measurements (dots) as a func-
tion of the relative bus speed β. These results are given as
a fraction of the maximum speedup s which is theoreti-
cally achievable [33] by perfect parallelization. Hence, on
one hand, a fractional value of 1.0 represents the upper per-
formance limit for any Mod-SDR realization. On the other
hand, the fractional value of 0.5 represents a reasonable lower
limit, because below s = 0.5, the two-processor system would
effectively work slower than a single-processor system, thus
rendering any distributed processing approach meaningless

in principle. At a sample size of 2000 realizations per β, the
observed measurement range is often so densely populated
by dots that the latter amalgamate into vertical lines. There-
fore, in addition to the individual speedup measurements,
the contour lines of the 5%, the 50% (median), and the 95%
quantile are estimated and overlayed to the figures. A con-
tour line represents the maximum speedup achieved by the
given quantile of Mod-SDR realizations (95%: topmost, 5%:
bottommost, median: in between) as a function of β.

4.1. Circuit-switched services

Figure 3 shows the speedup results for implicit Hu partition-
ing and nonpipelined scheduling. Obviously, the faster the
bus, the better the speedup. Since Hu’s algorithm is eventu-
ally a pure scheduling algorithm, it does not take into ac-
count any link cost while partitioning graphs implicitly. A
naive working assumption could be that speedup approaches
the limit of 1.0, if the bus is somewhat fast enough, be-
cause link cost approaches zero as β → ∞. Figure 3 dis-
proves this assumption. The behavior observed over the en-
tire β range can be explained in part by the occurrence of
PHYSICAL WAIT IDLE and LOGICAL WAIT IDLE condi-
tions [30]. The former arises after the arbitration of concur-
rent bus access requests, whereas the latter originates from
logical interdependencies of nodes in the graph; although the
bus is fully accessible, one processor is forced to remain idle
waiting for some intermediate results to be produced by the
other processor.

Both conditions cause idle times in the processors, and
thus reduce speedup. While concurrent bus access requests
become more and more unlikely as bus speed increases, the
LOGICAL WAIT IDLE condition continues to prevail in all
schedules independent of β. Another reason for speedup loss
against the limit can be identified in a special property of Hu’s
algorithm; the approach strictly aims at maximum paral-
lelization. However, the random graph model produces real-
izations with a degree of inherent parallelism d̃, 0.3 ≤ d̃ ≤ 0.8
[36]. As a consequence, if the graph cannot be parallelized
due to its given structural properties (small d̃ value below
d̃ = 0.5), the Hu algorithm systematically fails to generate
high speedup. Load imbalance between the two processors
(equal to the difference of aggregate runtimes between the
two partitions) is the resulting effect of this failure.

Pipelining eliminates LOGICAL WAIT IDLE conditions
by deliberately constructing a dense schedule in a first step.
All resulting anticausal data dependencies between the parti-
tions are resolved in a second step by rescheduling bus trans-
fers of intermediate results across the boundaries of real-
time processing periods. In this way, a radio frame pipeline
of some depth is created (cf. Section 3). Figure 4 shows the
speedup results for implicit Hu partitioning under pipelin-
ing. Indeed, the overall speedup behavior has improved; all
contour lines indicate higher speedup for the same quantile
of realizations, and the speedup spread for fast buses is re-
duced. Nevertheless, implicit partitioning pursuant to Hu’s
algorithm continues to suffer from its systematic drawbacks
mentioned above: strong dependency on graph structure and
complete insensitivity to link cost.



338 EURASIP Journal on Wireless Communications and Networking

10−1 100 101 102

Relative bus speed β

0.6

0.7

0.8

0.9

1
Fr

ac
ti

on
of

m
ax

sp
ee

du
p

Figure 4: Implicit Hu partitioning, pipelining.

10−1 100 101 102

Relative bus speed β

0.6

0.7

0.8

0.9

1

Fr
ac

ti
on

of
m

ax
sp

ee
du

p

Figure 5: KL partitioning, no pipelining.

The KL algorithm has been introduced to Mod-SDR [30]
as a remedy for this situation. Figure 5 shows its performance
without pipelining. Astonishingly enough at a first glance,
although the approach explicitly considers link cost (and it
is even capable of trading load balance for link cost), the
KL algorithm shows no systematic superiority compared to
Hu’s algorithm under these operating conditions. Speedup
degradation in the low β range is a bit more graceful than
in Figure 3, but at high bus speeds, the KL algorithm is eas-
ily outperformed by an approach as simple as Hu’s. This can
be explained by the fact that the partitioning approach by
Kernighan and Lin indeed considers link cost, but tacitly as-
sumes that bus transfers are nonconflicting at all times. Fur-
thermore, its partitioning cut has an arbitrary orientation
relative to the source node and the target node. As a con-
sequence, a large number of LOGICAL WAIT IDLE condi-
tions still occurs causing a large spread over the [0.7; 0.9]
range of speedup values.

As before, processor idle times associated with LOGI-
CAL WAIT IDLE conditions can be completely eliminated

10−1 100 101 102

Relative bus speed β

0.6

0.7

0.8

0.9

1

Fr
ac

ti
on

of
m

ax
sp

ee
du

p

Figure 6: KL partitioning, pipelining.

by pipelining. Figure 6 shows the resulting performance
of the KL algorithm. The contour lines reveal the highest
speedup and the lowest speedup spread observed so far. Nat-
urally, the speedup increases as the relative bus speed β in-
creases, because link cost tends to be reduced and bus con-
flicts become less and less likely. Nevertheless, the results of
this figure prove that there are better partitions than Hu’s for
all β. It can be concluded that the approach of Kernighan and
Lin successfully effects a good compromise between maxi-
mum load balance and minimum link cost.

Since the KL algorithm is based on a local search of
the design space (taking Hu’s solution as a starting config-
uration), it may terminate in local optimum points. Global
search methods, in contrast, should be able to avoid local
optima and finally produce a better overall speedup. Spec-
tral partitioning is a global search method, because it assesses
the properties of the graph as a whole by operating on the
matrix W of node weights and edge weights [33], and it is
based on eigenvector computation for minimizing the cost
of the partitioning cut [39]. What’s more, W’s diagonal el-
ements wm,m = pm are the nodes’ processing runtimes ac-
cording to (1) and its off-diagonal elements wm,n = 2 · p〈m,n〉
amount to the potential runtimes of bus transfer node pairs,
where p〈m,n〉 is from (2). The weight matrix W is real-valued
and symmetric, and spectral partitioning deliberately ex-
ploits this property [40, 41].

Figure 7 shows the performance results for spectral par-
titioning and nonpipelined scheduling. Unfortunately, these
results are much worse than those of Kernighan and Lin; the
95% contour line just achieves 0.8 at high bus speeds, and
the speedup spread remains large in the [0.5; 0.8] interval.
Clearly, such a behavior is completely unacceptable in prac-
tice; a fractional value of 0.5 means that the SDR implemen-
tation on the two-processor system meets real-time deadlines
in the exact same way as on a single-processor system. Con-
sequently, because the investment into the second processor
does not pay off at all in the form of speedup, it must be con-
cluded that the two-processor system is either ill-designed in
its hardware or ill-conditioned in its operations.



Modular Software-Defined Radio 339

10−1 100 101 102

Relative bus speed β

0.6

0.7

0.8

0.9

1
Fr

ac
ti

on
of

m
ax

sp
ee

du
p

Figure 7: Spectral partitioning, no pipelining.

Previous figures have shown that, as a matter of fact, bet-
ter contour lines and narrower spread are possible using the
same hardware and nonpipelined scheduling. Therefore, the
reason for the inferior speedup behavior of spectral parti-
tioning needs to be identified. Figure 8 shows its speedup re-
sults under partitioning. Obviously, only a small part of all
realizations experience an improvement in speedup due to
the elimination of LOGICAL WAIT IDLE conditions. No-
tably, the 5% contour line remains at the same speedup level
for high bus speeds. These results back previous findings on
spectral partitioning; the approach in its current form [33]
does not generate well-balanced partitions. Load imbalance,
as mentioned before in the context of Hu’s algorithm, is a
genuine feature of partitioning, not of scheduling. Failure
to generate load-balanced partitions cannot be compensated
for by any scheduling technique.

To sum up, the KL algorithm is able to outperform Hu’s
algorithm (but not systematically) in the low-to-midrange β
region (β < 5), if frame-by-frame signal processing is the de-
sired way of operating the software-defined physical layer of
a Mod-SDR. True systematic superiority of the KL algorithm
in speedup can only be observed under pipelining. A big dis-
advantage, however, is the depth of the pipeline; it depends
on the graph structure, its actual value is not predictable, and
it is quite a large integer number. (Histograms not shown
graphically here: mean value around 20 at M = 40 nodes
per graph, spread over a window of [5; 35], independent of
β for implicit Hu and spectral partitioning, depending on β
for KL.) Memory demand increases linearly with the depth
of the pipeline, and therefore pipelined operation in combi-
nation with the above approaches does not lead to workable
Mod-SDR implementations.

In retrospect, frame-by-frame signal processing must be
considered inadequate for circuit-switched services. There is
simply no need to restrict partitioning algorithms to operat-
ing on a single graph copy anyway under these conditions.
If the restriction is dropped, the QoS manager can approach
partitioning and scheduling in a different, much simpler way.
First of all, it turns out [35] that GDP (cf. Section 3) is op-
timal regarding delay; the depth of the pipeline is exactly 2

10−1 100 101 102

Relative bus speed β

0.6

0.7

0.8

0.9

1

Fr
ac

ti
on

of
m

ax
sp

ee
du

p

Figure 8: Spectral partitioning, pipelining.

(or 3, if continuous RF transmission is to be automatically
supported by the physical layer processing subsystem [38]).
Second, GDP is optimal regarding speedup; it reaches the
speedup limit s, or the fractional value of 1.0 in Figures 4, 6,
and 8, independent of β. In view of the previously discussed
difficulties in approaching the limit, GDP is certainly the best
design choice for circuit-switched services. If GDP’s mem-
ory demand is still an issue, the QoS manager could easily
resort to HFP. Its speedup performance for circuit-switched
services (see [38, Figure 2]) is suboptimal, but totally com-
parable to that of the KL algorithm under pipelining (see
Figure 6), however, at a constant pipeline depth of 2 and at
less program and data memory demand than GDP’s.

4.2. Packet-switched services

As mentioned in the beginning of Section 3, packet-oriented
networks may require the QoS manager to operate on a sin-
gle copy of the graph. Then the graph contains the complete
set of computational tasks necessary for processing a single
packet, but subsets of these tasks may be repetitive in nature.
Taking the IEEE 802.11a wireless LAN standard as an exam-
ple, it is easy to identify such tasks, even when looking at a
single packet only: intercarrier/intraconstellation interleav-
ing, constellation mapping, and IFFT [42]. All of these need
to be repeated for every single OFDM symbol alike, just op-
erating on different data within the packet. In contrast, non-
repetitive computations (per single packet) include scram-
bling and channel coding of IEEE 802.11a.

The speedup which could be expected under the con-
ditions of the random graph model and a completely
nonrepetitive task graph would be identical to that of Figures
3, 5, and 7. However, if a dominant subset of tasks were in fact
repetitive, then pipelining approaches such as HFP and GDP
could result in better speedup, when applied to the subset.

The following results of HFP and GDP for packet pro-
cessing are conditional on the assumption that there are ex-
actly NF frames per packet which need to be processed iden-
tically. Furthermore, both processors are considered to be
exclusively reserved for physical layer signal processing as
soon as a packet has arrived. That is to say, one processor



340 EURASIP Journal on Wireless Communications and Networking

NF = 2
NF = 3

NF = 4
NF = 5

NF = 6
NF = 7

10−1 100 101 102

β

0.5

0.6

0.7

0.8

0.9

1
Fr

ac
ti

on
of

m
ax

sp
ee

du
p

Upper bounds

Figure 9: Half-frame pipelining, packet processing. Sample size
2000 per (β,NF).

cannot finish the remainder of some higher-layer computa-
tional task, while the other processor already starts process-
ing the radio signals of a physical layer packet.

Figures 9 and 10 (adopted from [38]) show the speedup
performance of HFP and GDP, respectively. For reasons of
legibility, only the contour line triplets are drawn, parameter-
ized by the number of frames per packet NF : 2 ≤ NF ≤ 7. In
comparison to circuit-switched processing, GDP is no longer
optimal, since the filling and the emptying of the pipeline
cause idle times on the processors. A detailed discussion of
HFP and GDP can be found in [38]. However, the crucial
point in the above figures lies in the dashed lines representing
upper bounds on HFP speedup, but lower bounds on GDP
speedup. Therefore, it can be concluded that GDP systemat-
ically outperforms HFP in packet processing.

Even for reasonable values of β and low numbers of
frames per packet (or task repetitions in parts of a graph),
GDP closely approaches the speedup limit s. So far, only
transmissions with a constant NF have been examined. How-
ever, IP traffic in real WLANs consists of a mix of packet sizes,
and hence physical layer packets contain different numbers
of radio frames. To gain more insight into this matter, packet
size statistics of some tangible system have to be known. For
the example of IEEE 802.11a, it has been shown [37] that
small NF (values of 10 and below) occur in the great majority
of packets, so smart signal processing of small-sized packets
is indeed an important issue in established WLAN standards.
Given its superior speedup performance, GDP should be the
first choice for packet-oriented signal processing.

5. SUMMARY AND CONCLUSION

As a starting point, some technical and commercial bound-
ary conditions of SDR have been briefly reviewed. It follows
from this account that certain design issues, which are related

NF = 3

NF = 5

NF = 7

10−1 100 101 102

β

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

ti
on

of
m

ax
sp

ee
du

p

NF = 6
NF = 4
NF = 2
Lower bounds

Figure 10: Graph duplication pipelining, packet processing. Sam-
ple size 2000 per (β,NF).

to real-time multiprocessing and modularity in flexible sig-
nal processing software, have been neglected at large in the
existing SDR literature. Modular software-defined radio ad-
dresses these issues by looking into the organizational princi-
ples of signal processing rather than into the signal process-
ing itself. Therefore, a novel way of modeling SDR software
had to be introduced. Several techniques for mapping such
software to hardware have been briefly reviewed. Mod-SDR
system simulations presented in Section 4 allow to draw the
following conclusions.

(i) With respect to circuit-switched services, frame-by-
frame signal processing has proven inadequate. Pipelining
methods such as GDP and HFP are to be preferred a priori.
GDP is optimal regarding speedup and delay. HFP is subop-
timal, but requires less memory than GDP. Therefore, HFP
can only prove competitive against GDP if memory is a se-
rious design issue. HFP can merely establish a compromise
between the achievable speedup and dynamic power dissipa-
tion of the bus.

(ii) With respect to packet-switched services, frame-by-
frame signal processing generally retains its right to exist.
Pipelining is a viable alternative only if repetitive signal pro-
cessing tasks can be identified. If so, GDP should be used.
As for the repetitive task in isolation, HFP is systematically
outperformed by GDP. Even frame-by-frame signal process-
ing (which is independent of the number of repetitions) may
show higher speedup than HFP.

Here, pipelining has been employed as a technique for
software execution. However, additional work on Mod-SDR
[34] provides strong hints that hardware subsystem pipelin-
ing also helps reducing dynamic power dissipation in CMOS
hardware, at the same time keeping speedup high. Therefore,
whenever signal processing in wireless communications is
repetitive in nature, the insertion of pipelining is the prefer-
able design guideline for Mod-SDR systems.



Modular Software-Defined Radio 341

Future research directions include the improvement of
spectral partitioning for direct comparison with the (non-
pipelined) KL approach and a more comprehensive study of
terminal behavior in packet-oriented networks. Further on, a
suitable extension of the current hardware model to hetero-
geneous multiprocessor systems and interconnect topologies
other than a bus would advance the design theory of modular
software-defined radio.

REFERENCES

[1] J. Mitola, “The software radio architecture,” IEEE Commun.
Mag., vol. 33, no. 5, pp. 26–38, 1995.

[2] IEEE J. Select. Areas Commun., vol. 17, no. 4, 1999, Special
Issue on Software Radio.

[3] IEEE Commun. Mag., vol. 37, no. 2, 1999, Special Issue on
Software Radio.

[4] A. Ivers and D. Smith, “A practical approach to the imple-
mentation of multiple radio configurations utilizing reconfig-
urable hardware and software building blocks,” in Proc. IEEE
Military Communications Conference (MILCOM ’97), vol. 3,
pp. 1327–1332, IEEE, Monterey, Calif, USA, November 1997.

[5] A. Kountouris, C. Moy, L. Rambaud, and P. Le Corre, “A
reconfigurable radio case study: a software based multi-
standard transceiver for UMTS, GSM, EDGE and Bluetooth,”
in Proc. IEEE Vehicular Technology Conference (VTC ’01),
vol. 2, pp. 1196–1200, Atlantic City, NJ, USA, October 2001.

[6] O. Faust, B. Sputh, D. Nathan, S. Rezgui, A. Weisensee, and
A. Allen, “A single-chip supervised partial self-reconfigurable
architecture for software defined radio,” in Proc. 17th In-
ternational Symposium on Parallel and Distributed Processing
(IPDPS ’03), pp. 191–191, IEEE, Nice, France, April 2003.

[7] H. Miranda, P. Pinto, and S. Silva, “A self-reconfigurable re-
ceiver architecture for software radio systems,” in Proc. IEEE
Radio and Wireless Conference (RAWCON ’03), pp. 241–244,
IEEE, Boston, Mass, USA, August 2003.

[8] A. Pacifici, C. Vendetti, F. Frescura, and S. Cacopardi, “A re-
configurable channel codec coprocessor for software radio
multimedia applications,” in Proc. International Symposium
on Circuits and Systems (ISCAS ’03), vol. 2, pp. II-41–II-44,
IEEE, Bangkok, Thailand, May 2003.

[9] T. Hentschel and G. Fettweis, “Sample rate conversion for
software radio,” IEEE Commun. Mag., vol. 38, no. 8, pp. 142–
150, 2000.

[10] W. Abu-Al-Saud and G. Stuber, “Efficient sample rate conver-
sion for software radio systems,” in Proc. IEEE Global Telecom-
munications Conference (GLOBECOM ’02), vol. 1, pp. 559–
563, IEEE, Taipeh, Taiwan, Republic of China, November
2002.

[11] W. Abu-Al-Saud and G. Stuber, “Modified CIC filter for sam-
ple rate conversion in software radio systems,” IEEE Signal
Processing Lett., vol. 10, no. 5, pp. 152–154, 2003.

[12] J. Ming, H. Y. Weng, and S. Bai, “An efficient IF architecture
for dual-mode GSM/W-CDMA receiver of a software radio,”
in Proc. IEEE International Workshop on Mobile Multimedia
Communications (MoMuC ’99), pp. 21–24, IEEE, San Diego,
Calif, USA, November 1999.

[13] J. Dodley, R. Erving, and C. Rice, “In-building software radio
architecture, design and analysis,” in Proc. IEEE 11th Interna-
tional Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC ’00), vol. 1, pp. 479–483, IEEE, London,
UK, September 2000.

[14] W. Schacherbauer, A. Springer, T. Ostertag, C. Ruppel, and R.
Weigel, “A flexible multiband frontend for software radios us-
ing high IF and active interference cancellation,” in Proc. IEEE

MTT-S International Microwave Symposium Digest (IMS ’01),
vol. 2, pp. 1085–1088, IEEE, Phoenix, Ariz, USA, May 2001.

[15] A. Wiesler, Parametergesteuertes Software Radio für Mobil-
funksysteme, Ph.D. dissertation, Forschungsberichte aus dem
Institut für Nachrichtentechnik, Universität Karlsruhe (TH),
Karlsruhe, Germany, May 2001.

[16] M. Beach, J. MacLeod, and P. Warr, “Radio frequency trans-
lation for software defined radios,” in Software Defined Radio:
Enabling Technologies, W. Tuttlebee, Ed., pp. 25–78, John Wi-
ley & Sons, London, UK, 2002.

[17] P. B. Kennington and L. Astier, “Power consumption of A/D
converters for software radio applications,” IEEE Trans. Veh.
Technol., vol. 49, no. 2, pp. 643–650, 2000.

[18] J. Singh, “High speed analog-to-digital converter for software
radio applications,” in Proc. IEEE 11th International Sympo-
sium on Personal, Indoor, and Mobile Radio Communications
(PIMRC ’00), vol. 1, pp. 39–42, IEEE, London, UK, Septem-
ber 2000.

[19] G. Ahlquist, M. Rice, and B. Nelson, “Error control coding in
software radios: an FPGA approach,” IEEE Personal Commu-
nications, vol. 6, no. 4, pp. 35–39, 1999.

[20] M. Valenti, “An efficient software radio implementation of the
UMTS turbo codec,” in Proc. IEEE 12th International Sympo-
sium on Personal, Indoor, and Mobile Radio Communications
(PIMRC ’01), vol. 2, pp. G108–G113, IEEE, San Diego, Calif,
USA, September 2001.

[21] V. Thara and M. Siddiqi, “Power efficiency of software radio
based turbo codec,” in Proc. IEEE Region 10 Conference on
Computers, Communications, Control, and Power Engineering
(TENCON ’02), vol. 2, pp. 1060–1063, IEEE, Beijing, China,
October 2002.

[22] A. Wiesler and F. K. Jondral, “A software radio for 2nd and 3rd
generation systems,” IEEE Trans. Veh. Technol., vol. 51, no. 4,
pp. 738–748, 2002.

[23] F. K. Jondral, “Parametrization—a technique for SDR imple-
mentation,” in Software Defined Radio: Enabling Technologies,
W. Tuttlebee, Ed., pp. 232–256, John Wiley & Sons, London,
UK, 2002.

[24] J. Mitola, “Software radio architecture: a mathematical per-
spective,” IEEE J. Select. Areas Commun., vol. 17, no. 4,
pp. 514–538, 1999.

[25] J. Mitola, “Software radios—survey, critical evaluation and
future directions,” in Proc. National Telesystems Conference
(NTC ’92), pp. 13/15–13/23, IEEE, Washington, DC, USA,
May 1992.

[26] C. Dick, “Reinventing the signal processor,” Xcell Journal,
vol. 45, pp. 72–75, Spring 2003.

[27] P. Galicki, “FPGAs have the multiprocessing I/O infrastruc-
ture to meet 3G base station design goals,” Xcell Journal,
vol. 45, pp. 80–84, Spring 2003.

[28] “Software communications architecture specification,
jtrs-5000sca v2.2.1,” Joint Tactical Radio System (JTRS)
Joint Program Office, April 2004, [Online] available:
http://jtrs.army.mil.

[29] A.-R. Rhiemeier and F. K. Jondral, “Mathematical modeling
of the software radio design problem,” IEICE Transactions on
Communications, vol. E86-B, no. 12, pp. 3456–3467, 2003,
Special Issue on Software Defined Radio Technology and Its
Applications.

[30] A.-R. Rhiemeier and F. K. Jondral, “A software partitioning al-
gorithm for modular software defined radio,” in Proc. 6th In-
ternational Symposium on Wireless Personal Multimedia Com-
munications (WPMC ’03), pp. 42–46, Yokosuka, Japan, Octo-
ber 2003.

[31] A.-R. Rhiemeier and F. K. Jondral, “On the design of modu-
lar software defined radio systems,” in Proc. IEE Colloquium

http://jtrs.army.mil


342 EURASIP Journal on Wireless Communications and Networking

on DSP Enabled Radio, Institute for System Level Integration
(ISLI), Alba Campus, Livingston, Scotland, UK, September
2003.

[32] A.-R. Rhiemeier and F. K. Jondral, “Enhanced resource uti-
lization in software defined radio terminals,” in Interna-
tionales Wissenschaftliches Kolloquium (IWK ’03), Technische
Universität, Ilmenau, Germany, September 2003.

[33] U. Berthold, A.-R. Rhiemeier, and F. K. Jondral, “Spectral par-
titioning for modular software defined radio,” in IEEE 59th
Vehicular Technology Conference (VTC ’04), vol. 2, pp. 1218–
1222, Milano, Italy, May 2004.

[34] A.-R. Rhiemeier and F. K. Jondral, “Software partitioning and
hardware architecture for modular SDR systems,” in Proc.
Software Defined Radio Technical Conference and Product Ex-
position (SDR ’03), vol. 2, pp. 9–15, SDR Forum, Orlando, Fla,
USA, November 2003.

[35] U. Berthold, A.-R. Rhiemeier, and F. K. Jondral, “A pipelin-
ing approach to operating modular software defined radio,” in
Proc. IEEE/Sarnoff Symposium on Advances in Wired and Wire-
less Communication (SARNOFF ’04), pp. 201–204, Princeton,
NJ, USA, April 2004.

[36] A.-R. Rhiemeier, “A comparison of scheduling approaches in
modular software defined radio,” in Proc. 3rd Karlsruhe Work-
shop on Software Radios (WSR ’04), pp. 33–38, Karlsruhe, Ger-
many, March 2004, also appeared as reprint in: Frequenz: Jour-
nal of Telecommunications, vol. 58, no. 5/6, pp. 115–120, 2004.

[37] A.-R. Rhiemeier, T. Weiss, and F. K. Jondral, “Half-frame
pipelining for modular software defined radio,” in Proc. IEEE
15th International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC ’04), vol. 3, pp. 1664–1668,
IEEE, Barcelona, Spain, September 2004.

[38] A.-R. Rhiemeier, T. Weiss, and F. K. Jondral, “A simple and ef-
ficient solution to half-frame pipelining for modular software
defined radio,” in Proc. Software Defined Radio Technical Con-
ference and Product Exposition (SDR ’04), vol. A, pp. 119–125,
SDR Forum, Phoenix, Ariz, USA, November 2004.

[39] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A
min-max cut algorithm for graph partitioning and data clus-
tering,” in Proc. IEEE International Conference on Data Min-
ing (ICDM ’01), pp. 107–114, San Jose, Calif, USA, November
2001.

[40] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak
Mathematical Journal, vol. 23, no. 98, pp. 298–305, 1973.

[41] M. Fiedler, “A property of eigenvectors of non-negative
symmetric matrices and its application to graph theory,”
Czechoslovak Mathematical Journal, vol. 25, no. 100, pp. 619–
633, 1975.

[42] “ANSI/IEEE Std 802.11, Wireless LAN MAC and PHY speci-
fications,” 1999 Edition, and IEEE 802.11a-1999, High-speed
Physical Layer in the 5 GHz Band.

Arnd-Ragnar Rhiemeier received a first
degree in electrical engineering from the
Ruhr-Universität Bochum, Germany, in
1995, then continued his studies at the
Universität Karlsruhe (TH), Germany. Sup-
ported by a grant from the German Aca-
demic Exchange Service (DAAD), he spent
two terms at the National Institute of Ap-
plied Sciences, Lyon, France, in 1996 and
1997, working in the field of pattern recog-
nition. In 1998, he resumed his graduate studies at the Institut
für Nachrichtentechnik, Universität Karlsruhe (TH). In 1999, he
completed his final project at the Center for Communications and

Signal Processing Research (CCSPR), New Jersey Institute of Tech-
nology, Newark, NJ, USA, and received a Dipl.-Ing. degree in elec-
trical engineering from the Universität Karlsruhe (TH), Germany.
Subsequently, he committed himself to a teaching and research as-
sistantship position at the Institut für Nachrichtentechnik. In 2004,
he received a Ph.D. degree summa cum laude in telecommuni-
cations for his work on software-defined radio architectures and
algorithms. His current professional interests include design flow
methodologies and the productization of advanced concepts in
communications such as MIMO and software-defined radio. He
has been an IEEE Member for 11 years and served as the Chairman
of the IEEE Student Branch Karlsruhe for two years.


