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Monoclonal antibodies have been the most successful therapeutics ever brought to cancer treatment by immune technologies. The
use of monoclonal antibodies in B-cell Non-Hodgkin’s lymphomas (NHL) represents the greatest example of these advances, as
the introduction of the anti-CD20 antibody rituximab has had a dramatic impact on how we treat this group of diseases today.
Despite this success, several questions about how to optimize the use of monoclonal antibodies in NHL remain open. The best
administration schedules, as well as the optimal duration of rituximab treatment, have yet to be determined. A deeper knowledge
of the mechanisms underlying resistance to rituximab is also necessary in order to improve the activity of this and of similar
therapeutics. Finally, new antibodies and biological agents are entering the scene and their advantages over rituximab will have to
be assessed. We will discuss these issues and present an overview of the most significant clinical studies with monoclonal antibodies
for NHL treatment carried out to date.

1. Introduction

In 1975, Kohler and Milstein heralded a new era in antibody
research with their discovery of hybridoma technology
[1]. Mouse hybridomas were the first reliable source of
monoclonal antibodies. Subsequently, the introduction of
recombinant technologies, transgenic animals, and phage
display technology has modernized selection, humanization
and production of therapeutic antibodies. The use of mAbs
in cancer treatment stems from the idea that these, because
of their intrinsic specificity, could be used to selectively target
cancer cells based on the expression of one or more antigens.
In such approaches, antibodies could be used alone or be
conjugated to toxins, radioactive moieties, or enzymes in
order to achieve toxic concentrations of these agents in the
cancerous tissues while sparing healthy organs.

Indeed, since their initial discovery, more than 20 mAbs
have been approved by the US Food and Drug Admin-
istration (FDA) for the treatment of several conditions,
including several types of cancers. This success has opened
new therapeutic perspectives and prompted research efforts
aimed to improve their activity, select for those patients who

will most benefit from them, and, potentially, to expand their
therapeutic indications. The anti-CD20 mAb rituximab is
one of the best examples of this new class of therapeutics,
since it has rapidly become a key part of the pharmacological
schemes used to treat Non-Hodgkin’s lymphomas (NHLs).
Moreover, due to its capacity to eliminate B lymphocytes, it
has recently been applied in immune-mediated disorders [2].

Here, we will focus on the use of rituximab in the
treatment of NHL, on the clinical issues associated with this
therapeutic, and on the most recent advances in the field of
lymphoma immunotherapy.

2. Tumor Antigens in NHL

When designing a therapeutic approach for NHL, cancer
immunologists face the issue of selecting the best target
antigen. Tumor antigens are traditionally divided in tumor-
specific antigens (proteins that are uniquely expressed by
cancer cells) and tumor-associated antigens (molecules that
are expressed by cancer cells, although their expression is
also found on normal cells) [3]. Ideally, an immune response

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26905479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Clinical and Developmental Immunology

B cell

CD20

Rituximab

CD20

CD20

CD20

P38 MAPK

ERK 1/2
NF-κB
Akt

Macrophage,
monocyte or

natural killer cell

Cell lysis

Membrane
attack

complex

Cell lysis

Antibody-dependent cell-mediated
cytotoxicity (ADCC)

Complement-dependent
cytotoxicity (CDC)

Apoptosis

Figure 1: Schematic representation of the putative mechanisms mediating rituximab’s anticancer activity in NHL cells. The anti-CD20
monoclonal antibody rituximab has several mechanisms of action, including antibody-dependent cellular cytotoxicity (ADCC), which
involves recruitment of effector cells, mediated by Fcγ receptors; complement-dependent cytotoxicity (CDC); apoptosis induction.

against tumor antigens should destroy tumor cells without
damaging normal cells. Thus, cancer-specific antigens would
be the first choice. Unfortunately, true cancer-specific anti-
gens, such as new proteins resulting from fusion oncogenes,
are not frequent in NHL. Another important issue is to
ensure that the chosen antigen does not mutate in a way
that allows cancer cells to avoid destruction by the immune
system [3].

The cell surface protein CD20 is a 33-kDa protein
expressed by mature B cells and most malignant B cells, but
not by pre-B cells or differentiated plasma cells [4–8]. In
vitro studies have revealed that CD20 acts as a calcium ion
channel [9, 10], and may also activate intracellular signaling
through its ability to associate with the B-cell receptor (BCR)
[11]. Interestingly, CD20’s ability to induce cytosolic Ca2+

flux appears to be BCR dependent. Rituximab (Rituxan,
Mabthera), is the first anti-CD20 monoclonal antibody
approved by the Food and Drug Administration (FDA)
(on November 26, 1994) for the treatment of relapsed or
refractory, CD20+ follicular lymphoma (FL). It is a chimeric
anti-CD20 antibody derived from the mouse mAb 2B8,
targeting CD20 antigens, following replacement of the heavy
and light chain constant regions with the corresponding
regions of a human IgG1 mAb. Importantly, rituximab
depletes both malignant and normal CD20+ B lymphocytes
[4, 12, 13].

3. Rituximab’s Mode of Action in
Lymphoma Cells

Although the exact in vivo mechanisms of action for
rituximab are not fully understood, the mechanisms of B-cell
killing by this mAb have been exhaustively analyzed [14].

Briefly, the major mechanism of rituximab-induced B-
cell depletion involves antibody-dependent cell-mediated
cytotoxicity (ADCC) and complement dependent cytotox-
icity (CDC) [15]. Additionally rituximab was reported to
directly induce apoptosis, inhibit B-cell proliferation, and to
enhance the cytotoxic activity of chemotherapeutic agents
[16] (Figure 1).

Rituximab-induced CDC is triggered upon rituximab
binding to B cells with consequent initiation of the comple-
ment cascade starting from C1 activation. This mechanism
causes osmotic lysis of neoplastic B cells [13, 14]. ADCC is
triggered by the interaction between rituximab and the Fc
receptor of natural killer (NK) cells [13, 14]. Once activated,
NK cells release small proteins, including perforin and
granzymes, which in turn form pores in the malignant B-cell
membrane, and thus induce apoptosis or osmotic cell lysis.
Finally, recent data demonstrate the novel role of rituximab
as a signal-inducing antibody, and as a chemosensitizing
agent, capable of negative regulation of major survival
pathways [16].
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Besides these mechanisms, rituximab’s activity appears
to be linked, at least in part, to its signaling via CD20.
In this field, studies in B-NHL cell lines revealed sev-
eral mechanisms involved in rituximab-mediated chemo/
immunosensitization. Rituximab was shown to inhibit the
p38 mitogen-activated protein kinase, nuclear factor-κB
(NF-κB), extracellular signal-regulated kinase 1/2 (ERK 1/2),
and Akt antiapoptotic survival pathways [17]. All of these
effects result in upregulation of PTEN and of Raf kinase
inhibitor protein (RKIP) [18], in the downregulation of
antiapoptotic gene products, such as Bcl-2, Bcl-xL and Mcl-
1, and, as a result, in chemo/immunosensitization [19].
In addition, treatment with rituximab inhibits the overex-
pressed transcription repressor Yin Yang 1 (YY1) [20]. YY1
downregulates Fas and DR5 expression and its inhibition
leads to sensitization to Fas ligand and tumor necrosis factor-
related apoptosis-inducing ligand- (TRAIL-) induced cell
death [21].

Interestingly, recent studies also show that rituximab
strongly affects BCR signaling [22]. Pretreatment of lym-
phoma cells or healthy B-cells with rituximab results in
a time-dependent inhibition of the BCR-signaling cascade
involving Lyn, Syk, PLCγ2, Akt, ERK, and calcium flux. Such
inhibitory effects by rituximab are associated with a decrease
in raft-associated cholesterol, inhibition of BCR relocaliza-
tion to lipid rafts, and BCR downregulation. Since BCR
signaling appears to be crucial for healthy and malignant B
cell survival and expansion [23–25], this mode of action of
rituximab could actually have an important role in mediating
its anticancer activity.

The relative importance of each mechanism of action of
rituximab is likely to vary with the type of tumor and the
type of treatments that are administered together with this
mAb. CDC and ADCC appear to be important to target
leukemia/lymphoma cells circulating in the bloodstream
[26]. Conversely, an immunological mechanism of action
seems to be less important in the presence of nodal and
extranodal involvement.

4. Rituximab’s Applications in
Hematological Malignancies

We will discuss here the current therapeutic applications of
rituximab in indolent NHL, diffuse large B cell non-Hodgkin
lymphoma (DLBCL), and in B-cell chronic lymphocytic
leukemia (B-CLL). Although trials may have had endpoint
definitions that are not always identical, almost all defined
complete response (CR) as the complete disappearance of the
symptoms and signs of lymphoma (including bone marrow
clearing for >28 days), and partial response (PR) as a >50%
decrease in the size or number of the lymphomas lesions,
without any evidence of progressive disease for >28 days. CR
and PR together represent the objective response (OR) rate
[4, 27].

4.1. Follicular and Low Grade Lymphoma. Until the early
90’s, the first-line therapy in symptomatic low-grade NHL
was chlorambucil and prednisone [42]. Subsequently, several

randomized trials showed the efficacy of rituximab in com-
bination with other chemotherapeutic agents such as flu-
darabine (R-F), fludarabine, and cyclophosphamide (R-FC),
fludarabine, cyclophosphamide and mitoxantrone (FCM-R),
cyclophosphamide, vincristine, and prednisone (R-CVP),
CVP plus mitoxantrone (R-CNOP), fludarabine, dexam-
ethasone, and mitoxantrone (R-FND) as well as CHOP (R-
CHOP) [28, 43–45] (Table 1). The clinical response rates of
rituximab-containing regimens were encouraging, with an
OR rates consistently around 95% and with a CR and PR
rates ranging from 45% to 100%, and from 0% to 52%,
respectively.

Importantly, clinical data on the benefit of rituximab
combined with chemotherapy has also become available in
patients with relapsed or refractory indolent B-cell NHL.
Also here, the results are very encouraging, with OR of 81%
for R-CVP, 97% for R-FC, 88% for R-CHOP, and 95% for
FCM-R respectively [4, 46].

Finally, the efficacy of rituximab monotherapy in patients
with relapsed or refractory CD20-positive low-grade or
follicular lymphoma was examined in noncomparative mul-
ticentre trials [33–35, 47–55]. The overall response rates were
38%–48% after a 4-week therapy with rituximab, and 57%
after 8 weeks of rituximab administration. CR rates ranging
between 3 and 17% were recorded in these studies.

Remarkably, studies show that, in FL, sequential admin-
istration of standard chemotherapy followed by rituximab
induces molecular clearance (as detected by PCR for the
Bcl-2/IgH rearrangement) in more than 70% of the patients
[42, 43, 56]. The actual clinical impact of achieving a
molecular response in FL still has to be determined,
since long-term remissions have been reported also in
patients with persistently detectable Bcl-2/IgH rearrange-
ment [57]. Moreover this rearrangement may occasion-
ally be found in healthy peripheral blood lymphocytes
[58]. In fact, a recent study by van Oers and coworkers
suggests that BCL-2/IgH polymerase chain reaction status
at the end of induction treatment would not be predic-
tive for progression-free survival in relapsed/resistant FL
[59]. Nonetheless, the above-mentioned studies support
the efficacy of rituximab in FL, and indicate its poten-
tial for treating minimal residual disease in this type of
disorder.

In summary, the current guidelines for the treatment
of FL recommend that rituximab is administered in
combination with standard chemotherapy in previously
untreated stage III–IV FL, and at first relapse (at a dosage of
375 mg/m2 on day 1 of each chemotherapy cycle, for up to
eight doses). Rituximab is recommended as a monotherapy
for stage III–IV chemoresistant FL, or at second (or
subsequent) relapse after chemotherapy (375 mg/m2 once
weekly for four doses) (http://www.ema.europa.eu/docs/en
GB/document library/Summary of opinion/human/000165/
WC500097025.pdf).

4.2. DLBCL. After the disappointing results obtained with
third-generation chemotherapy regimens in the United
States, the CHOP regimen was reverted to as the standard of
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Table 1: Principal clinical trials of chemotherapy plus Rituximab versus chemotherapy alone in NHL.

Lymphoma Subtype Treatment
Patients
(no.)

% Overall
response rate
(P value)∗

Median Follow-up
(mo.)

Reference

Follicular
CVP versus

R-CVP
321

57 versus
81 (<.001)

53 Marcus et al. [28]

Follicular
CHOP versus

R-CHOP
428

90 versus
96 (=.011)

18 Hiddemann et al. [29]

Follicular
CHOP versus

R-CHOP
465

72.3 versus
85.1 (<.001)

39,4 van Oers et al. [30]

Follicular
FCM versus

R-FCM
176

71 versus
95 (=.01)

26 Forstpointner et al. [31]

Follicular
MCP versus

R-MCP
201

75 versus
92 (=.009)

47 Herold et al. [32]

relapsed/refractary
low grade

R 37 46 13,4 Maloney et al. [33]

relapsed/refractary
low grade

R 30 47 19 Feuring-Buske et al. [34]

relapsed/refractary
low grade

R 166 48 19,5 McLaughlin et al. [35]

DLBCL
CHOP versus

R-CHOP
399

63 versus
76 (=.005)∗

24 Coiffier et al. [36]

DLBCL
CHOP versus

R-CHOP
824

84 versus
93 (=.0001)∗∗

34 Pfreundschuh et al. [37]

DLBCL
CHOP versus

R-CHOP
632

57 versus
67 (=.05)∗∗

42 Habermann et al. [38]

DLBCL
CHOP versus

R-CHOP
122

75 versus
94 (=.0054)

18 Lenz et al. [39]

B-CLL FC versus R-FC 552
58 versus
69.9 (=.0034)

25 Robak et al. [40]

B-CLL FC versus R-FC 817
82.5 versus
87.2 (=.012)∗∗

37,7
CLL8- German CLL
Study Group∗∗∗ [41]

∗
CR, CR-unconfirmed, partial response.

∗∗CR rate.
∗∗∗3-year OS.

therapy. The efforts to introduce rituximab in the treatment
of this aggressive hematological disease led to two essential
clinical trials: the Mabthera International trial (MinT) [37]
and the Groupe d’Etude des lymphomes de l’Adulte study
(GELA) [36]. The first one involved young, the latter elderly,
DLBCL patients. In the multicenter study conducted by
Coiffier and colleagues, therapy using rituximab combined
with standard CHOP chemotherapy demonstrated a higher
efficacy than CHOP alone, in terms of both event-free
survival at 2 years (57% versus 38%, P < .001), overall
survival at 2 years (70% versus 57%, P < .01), and CR
rate (76% versus 63%, P < .01). Likewise, the MinT
study showed an increased OS of the combined rituximab-
adding regimen, compared to standard therapy, from 84%
to 93%. These results led to FDA approval of rituximab
in combination with CHOP chemotherapy for previously
untreated patients with DLBCL. Whether or not all patients
need rituximab has been questioned. Studies from France
and the American National Cancer Institute suggested that
the benefit of rituximab would be observed in patients with
tumors overexpressing Bcl-2. On the other hand, a recent

report from the French group shows benefit in both Bcl-2-
positive and Bcl-2-negative lymphomas using the method
of competing risks [27, 60, 61]. Therefore, the question of
whether molecular features should or will direct treatment
decisions remains unanswered.

Finally, for recurrent DLBCL, the standard of care is
salvage chemotherapy followed by high-dose chemotherapy
with stem cell transplantation. Also in this setting, rituximab
proved to be effective and has been incorporated into salvage
chemotherapy regimens, since it may improve the overall
response rate with ICE (ifosfamide, carboplatin, and etopo-
side) and DHAP (dexamethasone, high-dose cytarabine, and
cisplatin) [62].

In summary rituximab is approved for previously
untreated DLBCL patients in combination with CHOP
chemotherapy and with salvage chemotherapy regimens in
relapsed/refractory patients. The recommended rituximab
dosage is 375 mg/m2 on day 1 of each chemotherapy cycle,
for up to eight doses (http://www.ema.europa.eu/docs/en
GB/document library/Summary of opinion/human/000165/
WC500097025.pdf).
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4.3. Rituximab and Autologous Stem Cells Transplantation
for Advanced Stage DLBCL. Young high-risk patients with
DLBCL achieving a complete remission after a complete
course of chemotherapy are likely to benefit from autologous
stem cell transplantation (ASCT) [27, 63]. Several studies are
assessing the role of rituximab as part of high-dose regimens
(HDT) pre-ASCT in DLBCL because of its effectiveness,
limited toxicity, and its ability to deplete B cells. In this field,
in a 2-year study by Khouri and colleagues evaluating the
efficacy and safety of high-dose rituximab in combination
with high-dose BEAM and ASCT, the OS was 80% for the
study group compared to 53% for the control group [64].
Superior survival rates have also been reported for patients
who become PCR negative for BCL2/JH rearrangements in
peripheral blood or bone marrow compared with those who
remain positive.

4.4. Rituximab Maintenance Therapy for FL and DLBCL.
Despite the fact that rituximab used in combination with
chemotherapy has been shown to prolong the survival of
patients with NHL, residual lymphoma cells (which then
become responsible for disease relapses) frequently remain
[65]. As a matter of fact, NHL relapses continue to be
an important clinical issue. Therefore, several randomized
trials have been conducted in order to analyze the benefit
of rituximab maintenance treatment in NHL [66–68]. The
studies that were done for FL adopted different schemes for
induction (rituximab 375 mg/m2 weekly × 4 in Ghielmini et
al. and in Hainsworth et al.; CHOP or R-CHOP in van Oers
et al.; fludarabine, cyclophosphamide, and mitoxantrone
with or without rituximab in Forstpointner et al.) as well
as for the maintenance treatment (375 mg/m2 intravenously
weekly for 4 weeks at six-month intervals in Hainsworth
et al.; 375 mg/m2 intravenously weekly for 4 weeks for
Ghielmini et al.; 375 mg/m2 rituximab intravenously once
every 3 months in van Oers et al.; 2 further courses of
4-times-weekly doses of rituximab after 3 and 9 months
in Forstpointner et al.). However, overall, they unequivo-
cally show that rituximab maintenance increases event-free
survival (EFS) and duration of response in indolent NHL.
In Ghielmini et al., at a median followup of 35 months,
the median EFS was 12 months in the no-maintenance
group versus 23 months in the prolonged treatment arm
(P = .02) [69]. The authors reported that the difference
was particularly notable in chemotherapy-naive patients (19
versus 36 months; P = .009) and in patients responding to
induction treatment (16 versus 36 months; P = .004). In the
study by van Oers et al., rituximab maintenance significantly
improved EFS compared with observation (median, 3.7 years
versus 1.3 years; P < .00), both after CHOP induction
(P < .001) and R-CHOP (P = .003) [30]. The 5-year
overall survival (OS) was 74% in the rituximab maintenance
arm, and it was 64% in the observation arm (P = .07).
Finally, also in the trial by Forstpointner and colleagues,
response duration was significantly prolonged by rituximab
maintenance, with the median not being reached in this
evaluation versus an estimated median of 16 months in the
observation group (P = .001) [31]. This beneficial effect was

also observed when analyzing FL (P = .035) and mantle cell
lymphoma (P = .049) separately.

Unlike in indolent NHL, rituximab maintenance therapy
in DLBCL has failed to demonstrate benefit in the published
clinical trials [38].

In conclusion, the current guidelines recommend the
use of rituximab as a maintenance therapy only in relapsed
or refractory follicular lymphoma responding to induction
therapy with chemotherapy with or without rituximab.
The recommended dosage of rituximab is 375 mg/m2

once every 3 months until disease progression or for a
maximum of 2 years (http://www.ema.europa.eu/docs/en
GB/document library/Summary of opinion/human/000165/
WC500097025.pdf).

4.5. B-cell Chronic Lymphocytic Leukemia (B-CLL). B-CLL
is a heterogeneous disorder with a variable course (i.e.,
following diagnosis, survival ranges from months to decades)
and risk factors such as age and performance status should
be considered when selecting the most appropriate treatment
option [70].

Rituximab monotherapy is generally not associated with
sustained responses in B-CLL, possibly reflecting altered
rituximab pharmacokinetics in patients with B-CLL [40, 70–
73]. However, studies show that the addition of rituximab
to fludarabine plus cyclophosphamide (FC) does improve
clinical outcomes in B-CLL patients. The first study, known
as CLL8, was conducted by the German CLL Study Group
on 817 previously untreated B-CLL patients (ClinicalTri-
als.gov number, NCT00281918). The second trial, known as
REACH, enrolled 552 patients with relapsed or refractory
B-CLL following prior systemic therapy [40]. Both studies
showed a benefit in terms of OS rates in the R-FC arm
versus FC arm (86% versus 73 % in the CLL8 trial and 54%
versus 45% in the REACH). In addition, the benefit of adding
rituximab to chemotherapy in B-CLL was shown by several
other trials [40, 74–77].

Interestingly, since rituximab plus FC represents the
standard treatment for B-CLL, clinical studies compared the
conventional regimen to rituximab plus low-dose FC (i.e.,
FCR-Lite) or to sequential FC and rituximab [49], since
these alternative regimens are expected to be associated with
less grade 3 or 4 neutropenia than the conventional R-FC
regimen [5, 50].

The current international guidelines recommend that
chemoimmunotherapy regimens with R-FC are preferred
as the first-line treatment for advanced CLL (stage II–IV)
in patients without del(17p) who are aged <70 years or
aged >70 years without significant comorbidities. Among
patients with relapsed or refractory disease, those with a long
response (i.e., >3 years) can be retreated with one of the
first-line treatment options. Various chemoimmunotherapy
options are suggested for patients with a short response
(i.e., <2 years) (e.g., rituximab may be administered in
combination with FC or with CHOP). The recommended
dosage of rituximab is 375 mg/m2 the day before starting
chemotherapy, followed by 500 mg/m2 on day 1 of cycles
2–6 (National Comprehensive Cancer Network. NCCN
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clinical practice guidelines in oncology: non-Hodgkin’s lym-
phoma).

5. Tolerability

Adverse events were reported in 84% of patients, receiving
rituximab, during therapy or within the first 30 days
following treatment [4, 35]. However, more than 95% of
these events were described as mild to moderate in severity,
of brief duration, and observed during the first infusion.
The most common adverse effects were infusion-related
reactions and lymphopenia. Ten percent of the patients
reported severe fever, chills, infections, or other adverse
effects. Serious adverse effects included severe infusion-
related reactions, tumor lysis syndrome, mucocutaneous
reactions, hypersensitivity reactions, cardiac arrhythmias,
angina, and renal failure [4, 51].

These adverse events were less common during the
subsequent rituximab administrations. One possible hema-
tological adverse event is the reduction in peripheral B-
lymphocyte counts, which can last for up to 6 months with
a recovery period of 9 to 12 months [4, 35]. Nevertheless,
the risk of serious opportunistic infections appears to be
much lower than that reported with conventional therapy
[4]. Interestingly, Bedognetti and coworkers have recently
evaluated the impact of rituximab on the effectiveness of an
antiflu vaccine in patients who had previously been treated
with this mAb [52]. Due to the fact that disease status might
affect immune response, only NHL patients without evi-
dence of disease, who had completed rituximab no less than
6 months before the accrual, were selected for this evaluation.
The study showed that patients who had previously received
rituximab had a significantly lower seroconversion rate in
response to the vaccine. Remarkably, while peripheral CD27-
naı̈ve B cells were present, Bedognetti et al. found a profound
depletion in CD27+B memory cells, which may well explain
the defective induction of antiflu immunity. Thus, concerns
remain that patients who have been treated with the anti-
CD20 mAb may be at risk for infections and that they may
need careful monitoring.

6. Improving Rituximab Efficacy and
Overcoming Resistance

Despite the expression of CD20 on their lymphoma cells,
some patients exhibit primary resistance and do not respond
well to this targeted antibody therapy. Moreover, an initially
responsive lymphoma can subsequently become resistant to
rituximab (secondary/acquired resistance). Several mecha-
nisms have been reported that have the potential to con-
tribute to reductions in rituximab efficacy. The identification
of such mechanisms has allowed for the proposal of strategies
to overcome these issues, and thus achieve better in vivo
activity. Some of these mechanisms have been reviewed
elsewhere [53]. Here, we will summarize some of the
most recent and promising observations, and the related
suggestions for therapeutic interventions.

(i) Interfering with CD20 Downregulation/Shaving. Ini-
tial in vitro observations suggested that CD20 would
not be downregulated in the presence of anti-CD20
antibodies. Namely, the anti-CD20/CD20 complex
was found to remain at the cell surface long enough to
ensure cell killing by specific mechanisms. However,
these observations may not be reproduced in in vivo
settings. A recent report by Beers et al. showed that
rituximab is able to induce CD20 internalization
in a B-CLL mouse model [54]. Interestingly, these
authors demonstrated that the degree of CD20 down-
modulation correlates inversely with some types of
NHL’s susceptibility to rituximab. Namely, CLL and
mantle cell lymphoma showed greater downmod-
ulation of CD20 in response to rituximab than
FL and DLBCL did, and were less responsive to
treatment. Previous reports by Beum et al. described
a “shaving reaction” in which mAb-CD20 complexes
were “shaved” off CLL cells, by phagocytes, as the
malignant cells circulated [78]. Whether the observed
reduction in CD20 levels actually reflects shaving,
or rather antigen masking by rituximab, remains
unclear [79, 80]. Downregulation of CD20 access,
irrespective of the underling cause, appears to be an
important mechanism affecting rituximab efficacy, as
antigen loss by malignant cells will prevent rituximab
activity. New anti-CD20 mAbs (tositumomab-like)
may be able to induce considerably less CD20
down-modulation than rituximab, and thus possibly
be more effective (see below) [54]. It is also of
interest that CD20 expression on lymphoma cells
can be increased with HDAC inhibitors, such as
valproic acid and romidepsin [81]. These were shown
to transactivate the CD20 gene through promoter
hyperacetylation and Sp1 recruitment. In line with
these premises, HDAC inhibitors potentiated the
activity of rituximab both in vitro and in vivo in
murine lymphoma models.

(ii) Targeting CD20 Transcript Variants Associated with
Resistance. Henry and coworkers have recently identi-
fied an alternative CD20 transcript variant (ΔCD20)
associated with resistance to rituximab [82]. This
novel, alternatively spliced CD20 variant encodes for
a truncated 130 amino acid protein lacking large
parts of the four transmembrane domains, suggesting
that ΔCD20 is a nonanchored membrane protein.
ΔCD20 expression was detected in B-cell leukemias,
B-cell lymphomas, and activated B cells, but not in
healthy resting B cells. Finally, the authors went on
to show that ΔCD20 is associated with resistance
to rituximab, although the mechanism whereby this
CD20 splice variant impairs the benefit of rituximab
remains to be determined. The authors suggest that,
given its selective expression in malignant (and
activated) B-cells, ΔCD20 could become a thera-
peutic target, for instance for the development of
antilymphoma vaccines. Whether this approach will
prove effective remains to be assessed.
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(iii) Preventing NK Cell-Mediated ADCC Exhaustion.
NK cell-mediated ADCC can be exhausted. Studies
showed that NK cells can engage and kill 3-4 target
cells in 16 hours. Thereafter, cells become exhausted,
possibly due to a reduction in the available levels of
perforin and granzyme B [83]. Indeed, incubation
of NK cells with rituximab-coated target cells leads
to CD16 (FcγRIIIa) downregulation and to upreg-
ulation of CD107a, a marker for degranulation and
exhaustion [84, 85]. Finally, NK cell-mediated target
cell killing was shown to become less efficient in
the presence of high burdens of rituximab-opsonized
lymphoma cells [86]. Remarkably, IL-2 treatment can
restore NK cell-mediated ADCC. In line with this
concept, Berdeja and coworkers found that systemic
interleukin-2 and adoptive transfer of lymphokine-
activated killer cells improves antibody-dependent
cellular cytotoxicity in patients with relapsed B-
cell lymphoma treated with rituximab [86]. In this
context, recent studies showed that also complement
components, such as C3b, can inhibit NK-cell medi-
ated killing of mAb-opsonized lymphoma cells [55].
Importantly, C3 depletion by cobra venum factor, or
the related drug (HC3-1496), appears to effectively
overcome this mechanism and improve the activity of
rituximab in lymphoma-bearing mice. Thus, overall,
strategies aimed to improve NK cell activity could
help enhance the efficacy of rituximab and should
therefore be further investigated.

(iv) Enhancing CDC. Studies showed that also comple-
ment can be depleted upon rituximab infusion in B-
CLL patients [79]. Kennedy et al. found that fresh
frozen plasma would then restore rituximab efficacy.
More studies on this approach should be performed
in order to confirm its viability. Another approach to
enhance rituximab-induced CDC has recently been
proposed by Wang and colleagues [87]. These authors
observed that many tumors, including lymphomas,
upregulate the expression of CD46, an inhibitory
complement receptor. As a means to overcome
this issue, they identify a recombinant adenovirus
type 35 fiber knop protein (Ad35K++) which, when
incubated with lymphoma cells, leads to CD46
downregulation and cooperates with rituximab in
inducing CDC. In xenograft models with human
lymphoma cells, preinjection of Ad35K++ dramat-
ically increased the efficacy of rituximab, suggest-
ing that the Ad35K++-based approach has potential
implications in mAb therapy of NHL. Finally, Sato
and colleagues have recently reported the identifica-
tion of a novel CDC-enhancing variant of rituximab
(113F) [88]. Compared to rituximab, 113F appeared
to mediate highly enhanced CDC against primary
CD20-expressing lymphoma cells in vitro. Moreover,
these authors were able to establishe a human tumor-
bearing NOD/Shi-scid-IL-2Rγ(null) mouse model,
in which human complement functions as the CDC

mediator. Using this model, the authors demon-
strated that 113F exerted significantly more potent
antitumor effects than rituximab.

(v) Improving Phagocytosis Through CD47 Blockade.
Chao and colleagues have recently shown that
multiple B-cell NHL subtypes, including DLBCL,
FL, and B-CLL, exhibit increased levels of CD47,
a transmembrane protein which activates SIRP1a
in phagocytic cells [89]. This results in initiation
of a signal transduction cascade which leads to
phagocytosis inhibition. These authors demonstrate
that CD47 overexpression correlates with worse
prognosis. Blocking anti-CD47 antibodies promote
phagocytosis of NHL cells and cooperate with rit-
uximab both in vitro and in vivo in murine NHL
xenotransplant models. Again, whether this approach
will prove useful in humans remains to be assessed.

(vi) Topical IFN-α Delivery. Finally, Xuan and colleagues
have proposed an approach to target IFN-αmolecules
to lymphoma sites by constructing a fusion protein
consisting of IFN-α and an anti-CD20 mAb [90].
IFN-α has potent immunostimulatory properties and
antiproliferative effects in some B-cell NHLs, but its
systemic administration is frequently associated to
significant toxicity. The CD20-IFN-α fusion proteins
showed efficient anticancer activity against an aggres-
sive rituximab- resistant human CD20+ murine
lymphoma (38C13-huCD20) and a human B-cell
lymphoma (Daudi). Further experimentation with
this administration method is warranted to assess its
applicability in patients.

(vii) Rituximab Mutants with Proapoptotic Activity. In
order to improve rituximab anticancer activity, Li
and colleagues modulated the binding property of
this mAb by introducing several point mutations
in its complementarity-determining regions [91].
These authors found that the CDC potency of
such CD20 mAbs was independent of the off-rate.
However, they were able to identify a rituximab
triple mutant (H57DE/H102YK/L93NR) with an
extremely potent apoptosis-inducing activity. This
triple mutant efficiently initiated both caspase-
dependent and-independent apoptosis, and exhib-
ited potent in vivo activity even in a rituximab-
resistant lymphoma model. These modified versions
of rituximab hold promise as new therapeutic agents
for B-cell lymphomas, although their efficacy in
patients still has to be assessed.

(viii) Combining Rituximab with Other mAbs. Rituximab
activity in NHL as a single agent is limited, espe-
cially when administered to pretreated patients.
However, combining rituximab with chemotherapy
does achieve significantly better outcomes than
chemotherapy alone. In addition, strategies to use
two mAbs have also been proposed. Combinations
such as anti-CD20 plus anti-CD22, anti-CD20 plus
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anti-HLA-DR, anti-CD20 plus anti-TRAIL-R1, anti-
CD20 plus anti-CD80 have been evaluated preclin-
ically and/or clinically, showing enhanced antitu-
mor activity both in vitro and in vivo [92–94].
An interesting approach to achieve the benefit of
multiple targeting in NHL consists of the genera-
tion of multivalent antibodies using the so-named
Dock-and-Lock (DNL) method, which enables site-
specific self-assembly of two modular components
with each other, resulting in a covalent structure with
retained bioactivity [95]. Using this approach, Rossi
and colleagues generated bispecific anti-CD20/CD22
hexavalent antibodies with promising antilymphoma
activity in vitro and in vivo [96, 97]. Interest-
ingly, in a recent study, these authors were able
to correlate the strong direct cytotoxicity of the
anti-CD20/CD22 hexavalent antibodies, compared
to their bivalent parental antibodies, with their
increased ability to upregulate PTEN, phospho-p38,
and cyclin-dependent kinase inhibitors, such as p21,
p27 and Kip2 [98].

7. Other mAbs for NHL

In addition to the above-mentioned strategies aiming to
improve rituximab activity, numerous research efforts have
led to new mAbs directed against different target antigens
and to the development of radioimmunoconjugates. The
most promising newer therapeutics are listed below.

(i) Epratuzumab: a humanized IgG1 anti-CD22 anti-
body. It induces ADCC and CDC in preclinical
studies. Phase I/II studies demonstrated objective
responses in relapsed/refractory FL (24%) [99], and
in DLBCL (15%) [100], without dose-limiting toxic
effects.

(ii) Galiximab: a primatised anti-CD80 (IgG1λ) mAb
with human constant regions and primate (cynomo-
logus macaque) variable regions [101]. CD80 is a
costimulatory molecule involved in regulating T-cell
activation. It is transiently expressed on the surface of
activated B cells, dendritic cells, and T cells of healthy
individuals [102]. Additionally, a variety of lymphoid
malignancies constitutively express CD80, making
this antigen a suitable target [103]. A phase-I/II
study showed that GALIXIMAB is able to enhance
rituximab antitumor activity in previously untreated
NLH patients, with a response reported in 70% of
patients [104].

(iii) Alemtuzumab (Campath): a humanized monoclonal
antibody against CD52 (an antigen expressed by
normal and malignant B- and T-lymphocytes, mono-
cytes, and NK cells). It is indicated for the treatment
of patients with B-CLL refractory to fludarabine
(ORR of 56%) [105], for advanced-stage mycosis
fungoides/Sezary syndrome [106], and for relapsed
or refractory peripheral T-cell lymphomas [107,
108]. Notably, although clinically effective, this mAb

induces a dramatic decrease in CD4+ and CD8+ T
lymphocytes and thus strongly increases the risk of
infections.

(iv) Apolizumab (Hu1D10): a humanized anti-HLA-DR
antibody that induces CDC, ADCC, and apoptosis.
HLA class II antigens are expressed at the surface
of professional antigen presenting cells, including B
cells. They are involved in antigen presentation and
in promoting cell proliferation. Thus, mAbs against
HLA-DR inhibit B-cell proliferation and induce
apoptosis through activation of the extrinsic apop-
totic pathway. Recently, this type of approach has
shown promising results in B-cell malignances [109].
Single agent therapy APOLIZUMAB in previously
untreated B-CLL patients showed an ORR of 83%
[110]. Moreover, the combination of APOLIZUMAB
and rituximab in relapsed/refractory B-cell lym-
phoma and B-CLL showed an ORR of 42% [111].

(v) Radioimmunotherapy: this type of treatment involves
the administration of an antibody linked to a
radioisotope. This approach permits the targeting
of the radioactive isotopes to cancer tissues and is
especially interesting as it allows for killing neigh-
boring cancer cells that either are inaccessible to
the antibody or express insufficient antigen for the
antibody to bind in adequate quantities. Two anti-
CD20 radioimmunoconjugates are approved for use
in patients with relapsed or refractory follicular or
low-grade lymphoma:

(1) Yttrium-90: labelled ibritumomab tiuxetan
(zevalin),

(2) iodine-131: labelled tositumomab (bexxar).

These therapeutics hold great promise for the treatment
of NHL and their usefulness has recently been confirmed by
several clinical trials [112–122].

About 80% of patients with follicular or low-grade
lymphomas respond to treatment with Zevalin, with 20 to
30% achieving a CR. Interestingly, the duration of response
appears to exceed 3 years in about 25% of patients [123]. The
benefit of adding a radioisotope to the antibody was con-
firmed in a study enrolling patients with indolent NHL that
were refractory to rituximab. In this study, Zevalin showed
a 74% response rate and 15% of CR [115]. Additionally, as
compared to rituximab, Zevalin produces higher response
rates among patients with follicular or low-grade lymphoma
who have not previously received antibody-based treatments
(ORR 80% versus 56%, P = .002; CR 30% versus 16%,
P = .04 [115]). Finally Zevalin also appears to be effective
against some diffuse large B-cell lymphomas, and mantle-
cell lymphomas, when used in sequence with chemotherapy
(ORR of 53% versus 19%; OS 22.4, versus 4.6, resp.) [117].

Similar results are obtained with Bexxar. In particular
in patients with NHL refractory to standard chemotherapy,
treatment with Bexxar resulted in CR in 20% of patients
[124]. Additionally, in one study, 95% of patients with
NHL had responses to 131I-labeled tositumomab used as
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initial treatment, with 75% demonstrating CR [125]. Finally,
the results of a recently completed study (ClinicalTrials.gov
number, NCT00006721), comparing CHOP followed by
131I-labeled tositumomab to rituximab plus CHOP for the
initial treatment of FL, is predicted to redefine standard
therapy for this disorder.

Importantly, there are other radiolabeled immunother-
apeutics for NHL that are currently under evaluation [112,
114, 126–130]. These include

(a) LL2 anti-CD22, conjugated to either 131I or 90Y; Lym-
I;

(b) anti-HLA-DR, conjugated to 90Y or 67Cu;

(c) rituximab, conjugated to 211At, 186Re, or 227Th;

(d) anti-CD19 mAb conjugated to 90Y.

8. Conclusions and Perspectives

Combining rituximab with chemotherapy has proven to be
an effective treatment for both indolent and aggressive forms
of NHL. The same type of treatment can be used in patients
with B-CLL, although its efficacy in this disorder appears
to be lower. In addition, it has also been demonstrated that
using rituximab alone as a maintenance therapy improves the
prognosis and extends disease-free survival in FL. Although a
standard scheme for rituximab maintenance therapy has not
been established yet, it is currently under investigation and
the ongoing studies will establish the most effective regimen.

For patients in which treatment with rituximab has not
given the expected results, autologous stem cell transplan-
tations have shown promise. It has been demonstrated that
using a cycle of rituximab in association with stem cell
transplantations and after it as maintenance therapy, yields
better results than transplant alone.

Radiolabeled antibodies may be effective in rituximab-
resistant and chemotherapy-resistant disease, but their clin-
ical use is still limited when compared to that of unla-
beled mAbs. Recent data suggest that sequential radioim-
munotherapy after chemotherapy may have significant clin-
ical value. Additionally, novel monoclonal antibodies are
under development. If these will prove to be more effective
than rituximab will have to be assessed by randomized
comparative trials.

Overall, the results obtained with antibody-based thera-
peutics in NHL are clearly highly promising. They herald the
advent of therapeutic strategies based on targeted agents that
will likely be more effective and, at the same time, less toxic
than traditional chemotherapy-based treatments.
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