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Abstract: Thermodynamic parameters of configurons – elementary excitations resulting 
from broken bonds in amorphous materials – are found from viscosity-temperature 
relationships. Glass-liquid transition phenomena and most popular models are described 
along with the configuron model of glass transition. The symmetry breaking, which occurs 
as a change of Hausdorff dimension of bonds, is examined at glass-liquid transition. 
Thermal history effects in the glass-liquid transition are interpreted in terms of configuron 
relaxation.  
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1. Introduction 

Both solid state physics and chemistry focus almost entirely on crystalline forms of matter [1-3] 
whereas the physics and chemistry of amorphous state in many aspects remain poorly understood. 
Although numerous experiments and theoretical works have been performed, many of the amorphous 
state features remain unexplained and others are controversial. One of such controversial problems is 
the nature of the glass-liquid transition. The difficulty in treating the glass transition is caused by 
almost undetectable changes in the structure despite of qualitative changes in characteristics and 
extremely large change in the time scale [4]. The translation-rotation symmetry of particles is 
unchanged at the liquid-glass transition, which retains the topological disorder of fluids. Like a liquid a 
glass has a topologically disordered distribution of atoms and molecules but elastic properties of an 
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isotropic solid. The symmetry similarity of both liquid and glassy phases leaves unexplained 
qualitative differences in their behaviour.   

Solids can be either amorphous or crystalline in structure. For solids elementary particles (atoms or 
molecules which form the substance) are in fixed positions which can be arranged in a repeating 
pattern in crystals or in a disordered pattern in amorphous solids. The structures of crystalline solids 
are formed of repeating, regular units e.g. unit cells. Each unit cell of a crystal is defined in terms of 
lattice points, e.g. the points in space about which the particles are free to vibrate. The structure of 
amorphous materials cannot be described in term of repeating unit cells as the unit cell of an 
amorphous material would comprise all atoms due to non-periodicity.  

According to the nature of the bonds which hold particles together materials can be classified as 
metallic, ionic, molecular, or covalent network solids or fluids. One of useful approaches is to consider 
the bond system instead of considering the set of atoms or molecules that form the matter. For each 
state of matter we can define the set of bonds e.g. introduce the bond lattice model which is the 
congruent structure of its chemical bonds. The congruent bond lattice is a regular structure for 
crystalline materials and disordered for amorphous materials. Moreover the bond lattices of glasses 
and liquids have different symmetries in contrast to the symmetry similarity of atoms in liquid and 
glassy phases.   

We examine in this paper the entropies of configurons in disordered oxide materials. A configuron 
is defined as an elementary configurational excitation in an amorphous material which involves 
breaking of a chemical bond and associated strain-releasing local adjustment of centres of atomic 
vibration. The higher the temperature of an amorphous material the higher the configuron 
concentration. Configurons weaken the bond system so that the higher the content of configurons the 
lower the viscosity of an amorphous material. At very high concentrations configurons form 
percolation clusters: this means that the material looses its rigidity as it becomes penetrated by a 
macroscopic (infinite-size) cluster made of broken bonds. The formation of percolation clusters made 
of configurons gives an explanation of glass transition in terms of percolation-type phase transitions 
[5]. Moreover, although no symmetry changes can be revealed in the atomic distribution, there is a 
symmetry change expressed by step-wise variation of Hausdorff dimension of bonds at the glass 
transition. Namely there is a reduction of Hausdorff dimension of bonds from the 3 in the glassy state 
to the fractal 0.052.55 ±=fd  in the liquid state. E.g. there is a bond lattice symmetry breaking at 
glass transition and changes which occur in the bond system of a disordered material characterise the 
glass-liquid transition as a percolation effect in the system of broken bonds [5, 6].  

2. Amorphous materials: glasses and liquids  

Amorphous materials can be either solid (glassy) or liquid (melts). Glasses are most frequently 
produced by a melt cooling below its glass transition temperature sufficiently fast to avoid formation 
of crystalline phases [7]. Figure 1 illustrates the critical cooling rates required to avoid crystallisation 
and to produce glasses from melts of various substances. Glass-forming materials such as dioxides do 
not require very fast cooling whereas quickly crystallizing materials such as metals require a very fast 
cooling (quenching) e.g. the early metallic glasses had to be cooled extremely rapidly ∼106 K/s to 
avoid crystallization [8].  



Entropy 2008, 10                            
 

 

336

Figure 1. Critical cooling rate versus reduced glass transition temperature Trg=Tg/Tm, 
where Tg is the glass transition temperature and Tm is the melting temperature (after [8]).  

 
 
Glasses can be formed by several methods such as melt quenching [7], physical vapour deposition 

[9], solid state reactions (thermochemical [10] and mechanochemical [11] methods), liquid state 
reactions (sol-gel method [12, 13]), irradiation of crystalline solids (radiation amorphisation [14, 15]) 
and under action of high pressures (pressure amorphisation [16, 17]). Glass formation from melts is a 
matter of bypassing crystallization and formation of glass is easier in more complex systems. Oxide 
glasses containing a variety of cations are easier obtained in a glassy state as their complexity 
necessitates longer times for diffusion-controlled redistribution of diverse constituents before 
crystallisation can begin. The vast bulk of glasses used in commerce are oxide glasses. It is assessed 
that better than 95% of the commercial tonnage is oxide glasses, of which ∼95% is silica-based glasses 
[7].  

3. Melting of amorphous solids  

Crystalline materials melt at well defined melting temperatures Tm whereas amorphous materials 
transform from glassy e.g. solid form to liquid state at glass transition temperatures Tg which in this 
sense play the role of melting temperatures for non-crystalline solids. A glass is most commonly 
formed by cooling a viscous liquid fast enough to avoid crystallization. The liquid-glass transition is 
accompanied by spectacular changes in physical properties e.g. glasses are brittle whereas supercooled 
liquids are soft. Rearrangements that occur in an amorphous material at the glass transition 
temperature, Tg, lead to characteristic jumps of derivative thermodynamic parameters such as the 
coefficient of thermal expansion or the specific heat. These discontinuities allow to detect the Tg. 
Although in many aspects similar to a second order transition the glass-liquid transition is a 
kinetically-controlled phenomenon which exhibits a range of Tg depending on the cooling rate with 
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maximal Tg at highest rates of cooling. In practice the liquid-glass transition has features both in 
common with second order thermodynamic phase transitions and of kinetic origin.  

Very often the liquid-glass transition is regarded as a transition for practical purposes rather than a 
thermodynamic phase transition [2, 18]. By general agreement it is considered that a liquid on being 
cooled becomes practically a glass when the viscosity equals 1012 Pa⋅s (1013 poise) or where the 
relaxation time is 102 s [2, 18]. For practical purpose the glass transition temperature is found from the 
viscosity-temperature relationship:  

)(10)( 12
, sPaT relaxg ⋅=η                                                             (1) 

Despite the fact that a glass alike a liquid has a topologically disordered structure, it has elastic 
properties of an isotropic solid. The translation-rotation symmetry in the distribution of atoms is 
broken at crystallisation but remains unchanged at the liquid-glass transition, which retains the 
topological disorder of fluids. What kind of symmetry is changed at glass-liquid transition? Changes 
which occur on liquid-glass transition at the molecular level are difficult to specify. Amorphous 
materials have no elementary cell characterised by a certain symmetry, which can reproduce the 
distribution of atoms by its infinite repetition. Instead the symmetry of a topologically disordered 
system is characterised by the Hausdorff-Besikovitch dimensionality of interconnecting and broken 
bonds. Two types of topological disorder characterised by different symmetries can be revealed in an 
amorphous material based on the analysis of broken bond concentrations [5, 6, 19]: (i) 3-dimensional, 
3D (Euclidean), which occurs at low temperatures when no percolation clusters of configurons are 
formed and the geometrical structures of bonds can be characterised as a 3-D and (ii) df=2.55±0.05-
dimensional (fractal), which occurs at high temperatures when percolation clusters made of broken 
bonds are formed and the geometries of the structures formed can be characterised as fractal objects 
with preferential pathways for configurons. Hence the bonding structure of glasses has the same 
Hausdorff-Besikovitch dimensionality (symmetry signature) as for crystalline materials whereas the 
liquid near the glass transition is fractal. In this paper we will first consider the viscosity of amorphous 
materials and then analyse models of glass-liquid transition emphasising the role of entropy of 
disordered state.  

4. Viscosity of amorphous materials  

Viscous flow occurs due to stress applied. The viscosity coefficient η(T) relates the acting stress ƒ 
to the strain rate ε  via equation:  

εη ⋅= )(Tf                                                                             (2) 

The higher the temperature of an amorphous material the more broken bonds are created by 
temperature fluctuations e.g. the higher the concentration of configurons. Configurons weaken the 
bond system so that the higher the content of configurons the lower the viscosity of an amorphous 
material. This qualitatively explains the decrease of viscosities of amorphous materials with 
temperature. Table 1 gives viscosity coefficients of several amorphous materials at 25 oC.  
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Table 1. Viscosity of some materials.  

Material  Viscosity, Pa•s 

Water  8.94 10-4 

Mercury 1.526 10-3 

Olive oil  8.1 10-2 

Glycerol  9.34 10-1 

Pitch 2.3 108 
 
It is commonly assumed that shear viscosity is a thermally activated process. The viscosity 

coefficient can be expressed in terms of an activation energy Q by  

( ) ( )RTQAT /exp=η                                                                (3) 
where T is temperature in K, R is the molar gas constant and A is approximately a constant [20]. For 
amorphous materials two different regimes of flow have been identified with melts at high temperature 
having a lower activation energy for flow than materials at lower temperatures. Within the low 
temperature or high temperature regime an Arrhenius dependence of viscosity is observed and an 
appropriate activation energy, QH or QL respectively, can be defined. Asymptotically both at low and 
high temperatures the activation energy of viscosity is independent of temperature. This pattern has 
been observed with a range of melts including silicates, fused salts, oxides and organic liquids [21, 
22]. Between the high temperature and the low temperature regimes the activation energy for flow 
changes and the viscosity cannot be described using an Arrhenius approach e.g. the activation energy 
of viscosity varies with temperature. Temperature changes in activation energy of viscosity can be 
explained in terms of configuron formation and motion. Indeed the activation energy of viscosity 
consists of two parts: the first one is due to formation of configurons e.g. bond breaking. At low 
temperatures it will take its full value as the concentration of broken bonds is low. However at high 
temperatures when the concentration of broken bonds is very high it becomes zero. The second 
contribution to activation energy is due to the energy needed to transfer a molecule or, which is 
equivalent, a configuron from its original position to the adjacent vacant site. This part of activation 
energy remains almost unchanged with temperature.  

The more-or-less randomness, the openness, and the varying degree of connectivity allow the glass 
structure to accommodate large variations in composition e.g. glass acts like a solution. Moreover it 
was found that melts and glasses produced from them can be often considered as solutions consisting 
of salt-like products of interactions between the oxide components [23]. These associates are similar to 
the crystalline compounds which exist in the phase diagram of the initial oxide system. Calculations in 
this model are based on solving the set of equations for the law of mass action for the reactions 
possible in the system of oxides, and the equations of mass balance of the components. This approach 
describes well such properties as viscosity, thermal expansion, isothermal compressibility, optical 
parameters [23]. For oxide glasses a small change in glass composition typically causes a smooth 
change in glass properties. The unit addition or substitution of a component can be deemed as a 
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contribution characteristic of that component to the overall property. This notion gives rise to the 
additive relationships with many properties such as densities, refractive indexes obeying additive 
relationships [7]. An additive property P obeys a linear relation of the type:  

∑
=

=
n
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1

, ∑
=

=
n

i
iC

1

%100                                                           (4) 

where pi are additivity factors for a given component i=1, 2, 3, … n, and Ci are the mass% or the mol% 
of that component in the glass. In oxide glasses the density follows additivity primarily because the 
volume of an oxide glass is mostly determined by the volume occupied by the oxygen anions, the 
volume of cations being much smaller [7]. Additivity relations work over a narrow range of 
compositions and additivity coefficients of a given oxide may change from system to system. 
Nonlinearities appear when various constituents interact with each other. Glass properties can be 
calculated through statistical analysis of glass databases such as SciGlass [7, 24]. Linear regression can 
be applied using common polynomial functions up to the 2nd or 3rd degrees. For viscosities of 
amorphous oxide materials (melts and glasses) the statistical analysis of viscosity is based on finding 
temperatures (isokoms) of constant viscosity log[η(Ti)]=consti, typically when viscosity is 1.5, 6.6 and 
12 (point of practical purpose glass transition) [24-26]. A detailed overview on statistical analysis of 
viscosities and individual oxide coefficients Ci in isokom temperatures of oxide materials is given in 
[26].  

The definition of practical purpose Tg (1) was used by Angell to plot the logarithms of viscosity as a 
function of (Tg/T) [27, 28]. In such a plot strong materials, i.e. materials that exhibit only small 
changes in the activation energy for flow with temperature, such as silica, have a nearly linear 
dependence on the inverse of the reduced temperature whereas fragile materials deviate strongly from 
a linear dependence as the activation energies of fragile materials significantly change with 
temperature. However this change is characteristic only for intermediate temperatures and the viscosity 
has an Arrhenius-type behaviour asymptotically both at high and low temperatures. Within the low 
temperature the activation energy of viscosity is high QH whereas at high temperatures the activation 
energy is low QL. Doremus suggested to use the ratio  

LHD QQR /=                                                                        (5) 
as a fragility criterion [21, 22]. The higher the value of RD the more fragile the material. Doremus’ 
fragility ratio ranges from 1.45 for silica to 4.52 for anorthite (Table 2).  

The fragility of amorphous materials numerically characterized by the Doremus’ fragility ratio 
classifies amorphous materials as strong if they have RD<2, and fragile materials if they have RD≥2. 
The implication of strong-fragile classification was that strong materials are strongly and fragile are 
weakly bonded [28]. As pointed out by Doremus [21, 22] these widely and convenient terms are 
misleading e.g. binary silicate glasses are strong although have many non-bridging oxygens. Some 
network melts such as anorthite and diopside have very high activation energies being quite strongly 
bounded but are very fragile. Nevertheless the fragility concept enables classification of materials 
based on their viscosity behaviour: those materials which significantly change the activation energy of 
viscosity are fragile and those which have small changes of activation energy of viscosity are strong.   
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Table 2. Asymptotic Arrhenian activation energies for viscosity and Doremus’ fragility 
ratios.  

Amorphous material  QL, kJ/mol QH, kJ/mol RD 

Silica (SiO2)  522 759 1.45 
Germania (GeO2)  272 401 1.47 
66.7SiO2 33.3PbO 274 471 1.72 
80SiO2 20Na2O 207 362 1.75 
65SiO2 35PbO 257 488 1.9 
59.9SiO2 40.1PbO 258 494 1.91 
75SiO2 25Na2O  203 436 2.15 
75.9SiO2 24.1PbO  234 506 2.16 
SLS: 70SiO2 21CaO 9Na2O  293 634 2.16 
Salol (HOC6H4COOC6H5)  118 263 2.23 
70SiO2 30Na2O  205 463 2.26 
65SiO2 35Na2O 186 486 2.61 
α-Phenyl-o-cresol  
(2-Hydroxydiphenylmethane)  

103 275 2.67 

52SiO2 30Li2O 18B2O3 194 614 3.16 
B2O3  113 371 3.28 
Diopside (CaMgSi2O6)  240 1084 4.51 
Anorthite (CaAl2Si2O8) 251 1135 4.52 

 

5. Viscosity models  

Many different equations to model the viscosity of liquids have been proposed. The first one is the 
Andrade-Frenkel model which assumes that viscosity is a thermally-activated process described by a 
simple exponential equation (2) with a constant activation energy of viscosity [7, 20, 29, 30]. As this 
simple model fails to describe the behaviour of viscosity at intermediate temperatures, many other 
models were developed some of which become popular and are being extensively used. Although well 
known [30] that the best description of viscosity is given by the two-exponential equation derived by 
Douglas [31] the most popular viscosity equation is that of Vogel, Tamman and Fulcher (VTF). It 
gives an excellent description of viscosity behaviour namely at intermediate temperatures very 
important for industry and is also most useful in describing the behaviour of amorphous materials in 
the transition range where solidification of amorphous materials occurs. Adam-Gibbs (AG) and 
Avramov-Milchev (AM) models are also often used to describe the viscosity in the intermediate range 
of temperatures [32, 33]. Out of the intermediate range none of these models correctly describe the 
behaviour of viscosity. At low and high temperatures the best description of viscosity provides the 
Andrade-Frenkel model with high and low activation energies. Figure 2 summarizes the temperature 
behaviour of viscosity within different temperature intervals and gives the best equations to be used 
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including the equation of viscosity valid at all temperatures derived from Doremus’ ideas of the 
mediation role of defects (see below the equation (6)).  

Figure 2. Temperature behaviour of viscosity of amorphous materials.  

 

6. Doremus’ (defect) model of viscous flow  

Doremus analysed data on diffusion and viscosity of silicates and suggested that diffusion of silicon 
and oxygen in these materials takes place by transport of SiO molecules formed on dissociation of 
SiO2, moreover these molecules are stable at high temperatures and typically results from the 
vaporization of SiO2 [21, 22]. He concluded that the extra oxygen atom resulting from dissociation of 
SiO2 leads to five-coordination of oxygen atoms around silicon. The three-dimensional (3D) 
disordered network of silicates is formed by [SiO4] tetrahedra interconnected via bridging oxygens 
≡Si•O•Si≡, where • designates a bond between Si and O, and – designates a bridging oxygen atom 
with two bonds •O•. The breaking out a SiO molecule from the SiO2 network leaves behind three 
oxygen ions and one silicon ion with unpaired electrons. One of these oxygen ions can bond to the 
silicon ion. The two other dangling bonds result in two silicon ions that are five-coordinated to oxygen 
ions. Moreover one of the five oxygen ions around the central silicon ion has an unpaired electron, and 
it is not bonded strongly to the silicon ion [21, 22]. Doremus suggested that this electron hole 
(unpaired electron) should move between the other oxygen ions similar to the resonance behavior in 
aliphatic organic molecules. There is experimental evidence for five-coordination of silicon and 
oxygen at higher pressures in alkali oxide SiO2 melts from NMR, Raman and infrared spectroscopy, 
and evidence for five-coordinated silicon in a K2Si4O9 glass at atmosphere pressure [34]. Doremus 
concluded that in silicates, the defects involved in flow are SiO molecules resulting from broken 
silicon–oxygen bonds and therefore the SiO molecules and five-coordinated silicon atoms involved in 
viscous flow derive from broken bonds. The most important in the Doremus’ ideas on the mediating 
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role of broken bonds was the assumption that the defects can agglomerate to form line defects with the 
fraction of defects molecules in the agglomerates changing with temperature and the relaxation of this 
fraction to an equilibrium value depending on the time which is consistent with experimental 
measurements [22]. Although he failed to reproduce the two-exponential equation of viscosity [22] it 
was later shown [35, 36] that the two exponential equation can be derived using Doremus’ ideas.  

Assuming that viscous flow in amorphous materials is mediated by broken bonds, which can be 
considered as quasi-particles termed configurons [37], one can find the equilibrium concentrations of 
configurons: ( )TfCCd 0=  where ( ) ( )[ ]RTGRTGTf dd /exp1//exp)( −+−= , ddd TSHG −=  is the 

formation Gibbs free energy, Hd is the enthalpy, Sd is the entropy and C0 is the total concentration of 
elementary bond network blocks or the concentration of unbroken bonds at absolute zero. The 
viscosity of an amorphous material can be related to the diffusion coefficient, D, of the configurons 
which mediate the viscous flow, via the Stokes-Einstein equation rDkTT πη 6/)( = , where k is the 

Boltzmann constant and r is the radius of configuron. The probability of a configuron having the 
energy required for a jump is given by the Gibbs distribution ( ) ( )[ ]RTGRTGw mm /exp1//exp −+−= , 
where mmm TSHG −=  is the Gibbs free energy of motion of a jumping configuron, Hm and Sm are the 

enthalpy and entropy of configuron motion. Thus the viscosity of amorphous materials is directly 
related to the thermodynamic parameters of configurons by:  

( ) ( )[ ] ( )[ ]RTDCRTBATAT /exp1/exp1 21 ++=η                                        (6) 

with  

01 6/ rDkA π= , ( )RSA m /exp2 −= , mHB = , ( )RSC d /exp −= , dHD =                (7) 
where 00

2
0 νλ zpfgD = , f is the correlation factor, g is a geometrical factor (~1/6), λ is the average jump 

length, z is the number of nearest neighbours and p0 is a configuration factor.  
Equation (6) can be fitted to practically all available experimental data on viscosities of amorphous 

materials. Moreover equation (6) can be readily approximated within a narrow temperature interval by 
known empirical and theoretical models such as VTF, AG, or a Kohlrausch-type stretched-exponential 
law. In contrast to such approximations equation (6) can be used in wider temperature ranges and gives 
correct Arrhenius-type asymptotes of viscosity at high and low temperatures. Equation (6) also shows 
that at extremely high temperatures when T → ∞ the viscosity of melts changes to a non-activated, e.g. 
non-Arrhenius behaviour, which is characteristic of systems of almost free particles. The five 
coefficients A1, A2, B, C and D in equation (6) can be treated as fitting parameters derived from the 
experimentally known viscosity data. Having obtained these fitting parameters one can evaluate the 
thermodynamic data of configurons (e.g. network breaking defects) [38]. Note that although this model 
involves 5 parameters in the fitting procedure the number of combinations available is very restricted 
by asymptotical behaviour of viscosity at low and high temperature. Hence from known viscosity-
temperature relationships of amorphous materials one can characterise the thermodynamic parameters 
of configurons. As the number of parameters to be found via fitting procedure is high dedicated 
Genetic Algorithm were used to achieve the best fit between equation (6) and experimental viscosity 
data [38]. An example of such evaluation is demonstrated in Figure 3, which shows the best fits for 
viscosity-temperature data of amorphous SiO2-Na2O systems.  
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Figure 3. Viscosity of SiO2-Na2O systems where calculated curves were obtained using 
the equation (6). Note that the VTF equation is also providing a good description of 
viscosity at such “intermediate” temperatures (see Figure. 2).  

 

Using relationships (7) from the numerical data of evaluated parameters A1, A2, B, C and D which 
provide the best fit of theoretical viscosity-temperature relationship (7) to experimental data we can 
find enthalpies of formation and motion and entropies of formation and motion of configurons (bond 
system) of amorphous materials [38]. Evaluated thermodynamic parameters (enthalpies and entropies 
of formation and motion) of configurons in a number of amorphous materials are given in Table 3.  

Equation (6) shows that at low temperatures (T<Tg) the activation energy of viscosity is constant 
and high QH=Hd+Hm whereas at high temperatures (T>Tg) the activation energy of viscosity is 
constant and low QL= Hm. Temperature changes in activation energy of viscosity are thus explained in 
terms of configuron formation and motion. At low temperatures the activation energy of viscosity 
takes the full value QH=Hd+Hm because the concentration of broken bonds is low. In contrast at high 
temperatures the activation energy is completely due to the energy needed to transfer a molecule or a 
configuron from its original position to the adjacent vacant site e.g. QL= Hm. Note that although 
restricted to Newtonian flow the Doremus’ model of viscosity can in principle describe the behaviour 
of non-Newtonian materials which change their structure depending on strain characteristics e.g. 
assuming that both Hd and Hm are strain rate dependent.  

7. Glass-liquid transition  

Amorphous materials can be either solid e.g. glassy (vitreous solids) at low temperatures or liquid 
at high temperatures. The transition from the glassy to the liquid state occurs at glass transition 
temperature. Liquid-glass transition phenomena are observed universally in various types of liquids, 
including molecular liquids, ionic liquids, metallic liquids, oxides, and chalcogenides [7]. There is no 
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long range order in amorphous materials, however at the liquid-glass transition a kind of freezing or 
transition occurs which is similar to that of second-order phase transformations and which it may be 
possible to characterise using an order parameter. Amorphous materials can be most efficiently studied 
by reconstructing structural computer models and analyzing coordination polyhedrons formed by 
constituent atoms [39].  

Table 3. Thermodynamic parameters of configurons. 

Amorphous material 
Hd,  

kJ mol–1 

Hm,  
kJ mol–1 Sd/R Sm/R Sd/Sm

Silica (SiO2) 237  522  17.54  11.37 1.54  
SLS (mass %): 70SiO2 21CaO 9Na2O 331 293 44.03 24.40 1.8 
80SiO2 20Na2O 155 207 17.98  7.79  2.31  
66.7SiO2 33.3PbO 197 274 25.40  7.3  3.48  
65SiO2 35PbO 231 257 30.32  8.53  3.55  
59.9SiO2 40.1PbO 236 258 31.12  6.55  4.6  
B2O3 258 113 44.2 9.21 4.8 
65SiO2 35Na2O 300 186 40.71  7.59  5.36 
70SiO2 30Na2O 258 205 34.84  5.22  5.87 
75.9SiO2 24.1PbO 262 234 36.25  5.44   6.66  
Germania (GeO2) 129 272  17.77  2.49 7.14  
75SiO2 25Na2O 233 203 30.62  4.22  7.26 
Anorthite (CaAl2Si2O8) 884 251 79.55 0.374 213 
52SiO2 30Li2O 18B2O3 420 194 52.06  0.227  229 
Salol (HOC6H4COOC6H5) 145  118 68.13 0.114  598 
α-Phenyl-o-cresol 172 103 83.84  0.134  626 
Diopside (CaMgSi2O6) 834 240 88.71 0.044  2016 

 
The general theoretical description of the topologically disordered glassy state focuses on 

tessellations [40] and is based on partitioning space into a set of Voronoi polyhedrons filling the space 
of a disordered material. A Voronoi polyhedron is a unit cell around each structural unit (atom, defect, 
group of atoms) which contains all the points closer to this unit than to any other and is an analogue of 
the Wigner-Seitz cell in crystals [1-3, 40]. For an amorphous material the topological and metric 
characteristics of the Voronoi polyhedron of a given unit are defined by its nearest neighbours so that 
its structure may be characterised by a distribution of Voronoi polyhedrons. Considerable progress has 
been achieved in investigating the structure and distribution of Voronoi polyhedrons of amorphous 
materials using molecular dynamics (MD) models [39, 41-43]. MD simulations reveal that the 
difference between a liquid and glassy state of an amorphous material is caused by the formation of 
percolation clusters in the Voronoi network: namely in the liquid state low density atomic 
configurations form a percolation cluster whereas such a percolation cluster does not occur in the 
glassy state [41]. The percolation cluster made of low density atomic configurations was called a 
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liquid-like cluster as it occurs only in a liquid and does not occur in the glassy state. Nonetheless, a 
percolation cluster can be envisaged in the glassy state but formed by high density configurations [39, 
41]. Solid-like percolation clusters made of high density configurations seems to exist in all glass 
phase models of spherical atoms and dense spheres [39, 41]. Thus MD simulations demonstrate that 
near Tg the interconnectivity of atoms (e.g. the geometry of bonds) changes due to the formation of 
percolation clusters composed of coordination Voronoi polyhedrons. While these percolation clusters 
made of Voronoi polyhedrons are more mathematical descriptors than physical objects their formation 
results in changes in the derivative properties of materials near the Tg [39]. The liquid-glass transition 
is thus characterised by a fundamental change in the bond geometries so that this change can be used 
to distinguish liquids from glasses although both have amorphous structures [5, 6, 19, 39]. Many 
models were proposed to examine the transition of a liquid to glass at cooling [see overviews 7, 44-
49]. Table 4 outlines several most popular glass transition models.   

Table 4. Glass transition models. 

Model Ordering process Key concept 

Free-volume No Change in free (excess) volume 
Adam-Gibbs No Cooperativity of motion 
Mode-coupling theory No Self-trapping (caging) 

Kinetically constrained No Mobility defects 
Frustration Icosahedral ordering in glassy phase Frustration 
Tanaka’s TOP Crystallization Competing ordering (frustration) 

Configuron percolation 
Percolation cluster of broken bonds 
in liquid phase 

Broken bond (configuron) 
clustering 

7.1. Free-volume model  

The free-volume model assumes that when a molecule moves by diffusion it has a certain free 
volume in its surroundings. The additional (free) volume becomes available above Tg in an amount 
given by: 

)()( gggff TTVTVV −Δ+= α                                                       (8)  

where Vg is the molar volume at Tg, αΔ  is the change in the volume expansion coefficient which 
occur at Tg [50, 51]. The decrease in free volume while approaching the glass transition temperature 
gives an explanation for the increase of viscosity while approaching it. However pressure dependence 
of the viscosity and negative dTg/dP observed for some liquids are rather difficult to explain by this 
model and the validity of this assumption is questioned [22, 45, 52]. Known zero and negative values 
of αΔ  are untenable for free-volume model as the free volume contraction could not explain 
production of relative mobile liquids above Tg. One should also notion that this model cannot properly 
describe the mechanical response of amorphous materials, especially the results obtained during a 
compression test.  
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7.2. Adam and Gibbs model   

The Adam and Gibbs model assumes that the lower the temperature the larger number of particles 
involved in cooperative rearrangements during molecular motion e.g. the dynamic coherence length ξ 
of molecular motion increases with the decrease of temperature [32]. The structural relaxation time 
depends on the configurational entropy Sconf as:  

)/exp(0 confSCβττα =                                                           (9) 
where τ0 and C are constants. It is then assumed that ( ) ( ) TTTCTS Vpconf /−Δ= , where ΔCp is the 

relaxational part of the specific heat, TV is the Vogel temperature, which results in VTF type 
equations. Although limited by its application the concept of cooperativity is well describing many 
aspects of glass transition [45].  

7.3. Mode-coupling model  

The lower the temperature the higher the packing density of an amorphous material. This leads to 
the stronger memory effect via mode couplings, which induces the self-trapping mechanism in the 
mode-coupling theory (MCT). The MCT describes this self-trapping based on a non-linear dynamical 
equation of the density correlator [48, 53, 54]. The glass transition in MCT is a purely dynamic 
transition from an ergodic state which occurs at high tempratures to a non-ergodic state at low 
temperatures. This transition corresponds to a bifurcation point of non-linear equations of motion for 
density fluctuations when an infinite cluster of completely caged particles is formed. The transition 
from an ergodic to a nonergodic state occurs at the so-called mode-coupling temperature Tc, which for 
typical glass formers is Tc ∼ 1.2Tg. For T < Tc the density correlation function develops a non-zero 
value in the long-time limit (a finite value of the Edwards–Anderson order parameter). The MCT 
describes fast β relaxation as resulting from rapid local motion of molecules trapped inside cages, 
while the slow process of the breakup of a cage itself leads to the α relaxation. However analysis 
shows that there are no critical singularities above the glass-transition temperature in contrast to the 
MCT prediction [45] e.g. there is no singular behavior of viscosity at Tc. Moreover there are no 
heterogeneities in MCT whereas these are observed experimentally [45]. Trap models which similarly 
to MCT regard the glass transition as a dynamic transition consider the distribution of the waiting time 
of a particle in a random potential so that particles are either trapped in cages formed by their 
neighbors or jump by thermal activated rearrangements [45].  

7.4. Tanaka’s two-order-parameter (TOP) model  

The two-order-parameter (TOP) model is based on an idea that there are generally two types of 
local structures in liquid: normal-liquid structures (NLS) and locally favored structures (LFS). The 
liquid is an inhomogeneous disordered state which has LFS created and annihilated randomly (in some 
cases, cooperatively) in a sea of random NLS. A supercooled liquid which is a frustrated metastable-
liquid (the Griffiths-phase-like) state is in a dynamically heterogeneous state composed of metastable 
solid-like islands, which exchange with each other dynamically at the rate of the structural (α) 
relaxation time [45, 55, 56] (Figure 4).  
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Figure 4. Schematic figure of a supercooled liquid state below melting temperature. LFS - 
black pentagons, NLS - gray spheres. Shaded region represent metastable islands with 
various degrees of crystal-like order, whose characteristic coherence length is ξ. The 
darker the colour the higher the crystal-like order and the higher the local density [55]. 
Courtesy Hajime Tanaka.  

 
Actual liquids universally have a tendency of spontaneous formation of LFS. The liquid–glass 

transition in TOP model is controlled by the competition between long-range density ordering toward 
crystallization and short-range bond ordering toward the formation of LFS due to the incompatibility 
in their symmetry. Because of this TOP model regards vitrification as phenomena that are intrinsically 
related to crystallization in contrast to previous models, which regarded vitrification as a result of a 
homogeneous increase in the density and the resulting cooperativity in molecular motion or the 
frustration intrinsic to a liquid state itself. TOP model defines the calorimetric glass-transition 
temperature Tg as the temperature where the average lifetime of metastable islands exceeds the 
characteristic observation time. The mechanical and volumetric glass-transition temperature is the 
temperature where metastable islands, which have a long enough lifetime comparable to the 
characteristic observation time, do percolate [55]. The degree of cooperativity in TOP model is equal 
to the fraction of metastable solid-like islands e.g. TOP model operates with two-states: NLS and 
metastable solid-like islands [55]. The metastable solid-like islands in TOP model have characteristic 
nm size ∼ξ and are considered as resulting from random first-order transition. The lifetime of 
metastable islands has a wide distribution with the average lifetime equal to the structural relaxation 
time. The boson peak corresponds to the localized vibrational modes characteristic of the LFS and 
their clusters. The fast β mode results from the motion of molecules inside a cage, while the slow β 
mode from the rotational vibrational motion inside a cage within metastable islands. LFS impede 
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crystallization because their symmetry is not consistent with that of the equilibrium crystal. Due to 
random disorder effects of LFS a liquid enters into the Griffiths-phase-like metastable frustrated state 
below the melting point, Tm, where its free energy has a complex multi-valley structure, which leads to 
the non-Arrhenius behavior of the structural relaxation. The crossover from a non-cooperative to a 
cooperative regime TOP model describes by the fraction of the metastable solid-like islands given by 
the crossover function )](exp[/1)( c

mTTTf −= κ , where κ controls the sharpness of transition. The NLS 
are favoured by density order parameter, ρ, which increases the local density and leads to 
crystallization, while the LFS are favoured by bond order parameter, S , which results from the 
symmetry-selective parts of the interactions and increases the quality of bonds. The average fraction of 
LFS ( S ) is given by  

( ) )(exp[/ υβρ Δ−Δ≅ PEggS S                                                 (10)  

where β=1/kBT, kB is the Boltzmann’s constant, P is the pressure, ΔE and υΔ  are the energy gain and 
the volume change upon the formation of a LFS, gS and gρ are the degrees of degeneracy of the states 
of LFS and NLS, respectively. It is assumed that gS >> gρ and ΔE > 0. υΔ  can be either positive or 
negative depending upon material e.g. 0>Δυ  for liquids with tetrahedral units. NLS have many 
possible configurations as well as various bonding states compared with the unique LFS and there is a 
large loss of entropy upon the formation of a LFS, which is given by  

)/ln( ρσ ggk SB=Δ                                                         (11)  

NLS is a short-lived random structure whereas LFS a long-lived rigid structural element. The 
lifetime of a LFS can be estimated as  

)exp(0
SLFS GΔ= βττ α                                                        (12)  

where 0
ατ  is the structural relaxation time of NLS and SGΔ  is the energy barrier to overcome upon the 

transformation from a LFS to a NLS. TOP model defines fragility by fraction of LFS: the larger S  the 
stronger (less fragile) the liquid. An example of conclusion drawn from TOP model is the increases the 
fragility of SiO2 upon the addition of Na2O, e.g. the higher the Na2O content the higher the fragility 
which conform the experimental data (see Figure 3). Na2O acts as a network modifier breaking the Si-
Si links via bridging oxygens. Tanaka proposed that Na2O destabilizes the LFS, e.g. that Na2O is the 
breaker of LFS, probably, the 6-member ring structures of SiO2. Since Na2O reduces the number 
density of LFS ( S ), it increases the fragility of SiO2 and weaken the boson peak [56]. LFS impede 
crystallization because their symmetry is not consistent with that of the equilibrium crystal. A similar 
idea was exploited by Evteev et. al. to explain vitrification of amorphous metals [39, 57]. In addition 
strong liquids should be more difficult to crystallize than fragile below Tg [58].  

7.5. Frustration models  

Local energetically preferred structures over simple crystalline packing impede crystallization 
because their symmetry is not consistent with that of the equilibrium crystal, e.g. frustrated over large 
distance. Frustration models assume that the glass transition is a consequence of the geometric 
frustration [59-62]. Typically icosahedron is the most compact and stable from the energy point of 
view among all coordination polyhedrons encountered in both ordered and disordered densely packed 
structures such as amorphous metals. E.g. Kivelson et al. [61, 62] considered frustration of an 
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icosahedral structure which is the low-symmetry reference state, into which a liquid tends to be 
ordered, and ascribed the glass transition to an avoided critical point of a transition between a liquid 
and an ideal icosahedral structure. The Hamiltonian used e.g. in [61, 62] was similar to that of 
Steinhardt et al. [60]  

∑∑
≠

−⋅+⋅−=
ji

jijiSj
ji

iS RRSSKSSJH /
,

                                              (13)  

where JS and KS are both positive. The first term which is a short-range ferromagnetic interaction 
favours long-range order of the locally preferred structure, while the second term which is a long-
range antiferromagnetic interaction is responsible for the frustration effects. The ordering is thus 
prevented by internal frustration of the order parameter itself as in other frustration models.  

Using MD simulations Evteev et. al. [39] showed that in the process of fast cooling of melt iron the 
fraction of atoms for which the coordination polyhedron is an icosahedron (the Voronoy polyhedron is 
a dodecahedron) increases most intensely. Moreover formation of a percolation cluster from mutually 
penetrating and contacting icosahedrons with atoms at vertices and centres provides stabilization of the 
amorphous phase and impedes crystallization during fast cooling of Fe from melt [39, 57]. Evteev et. 
al. showed that glassy phase forms at the glass transition temperature based on a percolation cluster of 
mutually penetrating icosahedrons contacting one another, which contain atoms at the vertices and at 
the centres (Figure 5). A fractal cluster of icosahedrons incompatible with translational symmetry 
plays the role of binding carcass hampering crystallization and serves as the fundamental basis of 
structural organization of the glassy (solid amorphous state) of iron, which basically distinguishes it 
from the melt. Note that the results obtained in [39, 57] have generic implications and are not restricted 
to Fe.  

7.6. Kinetically constrained models  

Kinetically constrained models consider slow dynamics as of a purely kinetic origin [45, 63] where 
dynamical constraints appear below a crossover temperature To, or above a corresponding packing 
fraction so that above To the dynamics is liquid-like whereas below To the dynamics becomes 
heterogeneous. Hunt for example defined the glass as a supercooled liquid, whose time scale required 
for equilibration is a percolation relaxation time and derived the glass transition temperature from 
equalizing the relaxation time τc to the experimental time taken arbitrary as texp=100 s [64]. Hunt’s 
equation  

Bmg kET 18/≅                                                                     (14) 

relates the glass transition temperature Tg with the peak energy in the distribution of hoping barrier 
heights Eij of individual relaxation processes  

)/exp(1 TkE Bijphij
−=ντ                                                              (15) 

where phν  is a typical vibrational frequency roughly 1012 Hz. Using the Coulomb attraction between 

opposite charges and Lennard-Jones repulsive interaction Hunt obtained an estimation for Em: 

004/ rqqEm επε′≈                                                              (16)  
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where q and q’ are ionic charges, r0 is the equilibrium interionic distance minimizing the interaction 
potential, and ε is the macroscopic dielectric constant. Accounting that on pressure application the 
internal pressure changes to  

)()/)(48/(4/ 3
0

312
0000 rrPrrrqqrqqU −+′+′−= επεεπε                                  (17)  

where P is pressure, Hunt obtained an excellent description of pressure dependence of the glass 
transition temperature Tg(P) in ionic liquids [52, 65]. Moreover this approach gave an explanation of 
reduced glass transition temperature by confinement in small pores [66]:  

)/()()( LlaLTT gg =−∞                                                         (18)  

where a is a constant, l is a typical hopping length and L is the pore size. In addition Hunts explained 
application of Ehrenfest theorems to the glass transition [67].  

Figure 5. The structure of amorphous iron resulting from molecular dynamics simulations 
[39]. A) The size of the largest cluster formed by clustered icosahedrons with the 
temperature Ti. B) Projections of the largest cluster formed by clustered icosahedrons onto 
one of the faces of the computational cell at temperatures 1200 K (2) and 1180 K (5). 
Courtesy Alexander Evteev. 
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8. Configuron percolation model  

The transition of a liquid to a glass has many features of second-order phase transition. Second 
order phase transformations are characterised by symmetry change. The translation-rotation symmetry 
in the distribution of atoms and molecules remains unchanged at the liquid-glass transition, which 
retains the topological disorder of fluids. What kind of symmetry is changed at glass-liquid transition? 
To answer to this question is expedient to consider the distribution of bonds instead of atoms and to 
focus the attention on topology of broken bonds at glass-liquid transition [5, 6, 19, 38].  

Consider an ideal disordered network representing an oxide system such as amorphous SiO2 or 
GeO2. Using Angell’s bond lattice model [37] we can represent condensed phases by their bond 
network structures. Thus we can focus the attention on temperature changes that occur in the system of 
interconnecting bonds of a disordered material rather than of atoms. In this approach the initial set of 
N strongly interacting cations such as Si+4 or Ge+4 is replaced by a congruent set of weakly interacting 
bonds of the system. The number of bonds will be Nb=NZ where Z is the coordination number of 
cations e.g. Z=4 for SiO2 and GeO2. For amorphous materials which have no bridging atoms such as 
amorphous Fe, Si or Ge, Nb = NZ/2. Figure 6a and 6b illustrate schematically the replacement of a 
disordered atomic structure by the congruent bond structure.  

At absolute zero temperature T=0 there are no broken bonds (Figure 6b), however at any finite 
temperature T there are thermally-activated broken bonds e.g. configurons (Figure 6c). Compared with 
a crystal lattice of the same material the disordered network typically contains significantly more point 
defects such as broken bonds or vacancies. For example, the relative concentration of vacancies in 
crystalline metals just below the melting point is only 10-3 – 10-4 [2, 68]. The energetics of the 
disordered net are weaker and point defects can be formed more easily than in crystals of the same 
chemical composition. The difference appears from the thermodynamic parameters of disordered 
networks. The formation of configurons is governed by the formation Gibbs free energy Gd. 
Temperature-induced formation of configurons in a disordered network can be represented by a 
reaction involving the breaking of a joining bond, e.g. in amorphous silica 

≡•≡⎯→⎯≡••≡ SiOSiSiOSi T  The higher the temperature the higher the concentration of 
thermally-created configurons. Because the system of bonds has two states, namely the ground state 
corresponding to unbroken bonds and the excited state corresponding to broken bonds, it can be 
described by the statistics of two-level systems and the two states of the equivalent system are 
separated by the energy interval Gd [36]. The statistics of two level systems leads to the well-known 
relationship for equilibrium concentrations of configurons Cd and unbroken bonds Cu [36, 69].  

)(0 TfCCd = , )](1[0 TfCCu −= , )]/exp(1/[)/exp()( RTGRTGTf dd −+−=               (19) 

At absolute zero temperature Cu(0)=C0. At temperatures close to absolute zero the concentration of 
configurons is very small 0)( →Tf . These are homogeneously distributed in the form of single 
configurons in the disordered bond network. Configurons motion in the bond network occurs in the 
form of thermally-activated jumps from site to site and in this case all jump sites are equivalent in the 
network. The network thus can be characterised as an ideal 3-D disordered structure which is 
described by a Euclidean 3-D geometry. As the temperature increases the concentration of configurons 
increases. The higher the temperature the higher the concentration of configurons and hence some of 
them inevitably will be in the vicinity of others. Two and more nearby configurons form clusters of 
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configurons and the higher the concentration of configurons the higher the probability of their 
clustering (Fig 6d). The higher the temperature the larger are clusters made of configurons in the 
disordered bond network. As known from the percolation theory when the concentration of 
configurons exceeds the threshold level they form a macroscopic so-called percolation cluster, which 
penetrates the whole volume of the disordered network [70, 71]. The percolation cluster made of 
broken bonds forms at glass transition temperature (Figure 7) and grows in size with the increase of 
temperature.  

Figure 6. Schematic of disordered bond lattice model of an amorphous material: (a) 
distribution of atoms in amorphous phase at T=0; (b) distribution of bonds in amorphous 
phase at T=0; (c) distribution of bonds in amorphous phase at T1>0; (d) distribution of 
bonds in amorphous phase at higher temperatures T2>T1 when configuron clustering 
occurs.  

 
As configurons are moving in the disordered network the percolation cluster made of broken bonds 

is a dynamic structure which changes its configuration remaining however an infinite percolation 
cluster. The percolation cluster is made entirely of broken bonds and hence is readily available for a 
more percolative than a site-to-site diffusive motion of configurons. Hence above the percolation level 
the motion of configurons in the bond network occurs via preferred pathways through the percolation 
cluster. As the percolation cluster is fractal in dimension the bond system of an amorphous material 
changes its Hausdorff - Besikovitch dimensionality from Euclidian 3 below Tg (where the amorphous 
material is solid), to fractal 2.55±0.05 above Tg, where the amorphous material is liquid [5, 6, 19]. As 
the bond network of an amorphous material is disordered the concentration of configurons at which the 
percolation threshold is achieved can be found using the universal critical percolation density cf , 

which remains the same for both ordered and disordered lattices [70, 71]. The relative concentration of 
broken bonds is given by 0/)( CCTf d=  which shows that the higher the temperature the higher is 

)(Tf . Assuming that at 1/ 0 =CCd  the space is completely filled by configurons one can designate 
)(Tf  as the volume fraction of space occupied by configurons. Thus the critical (glass-transition) 

temperature Tg at which the percolation level is achieved can be found assuming that the configurons 
achieve the universal critical density given by the percolation theory  

cg fTf =)(                                                                      (20)  
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Figure 7. Schematic of disordered bond lattice model of an amorphous material below (A) 
and above (B) the glass transition temperature. PC – percolation cluster made of broken 
bonds.  

A    B 
 
For SiO2 and GeO2 it was supposed that ccf ϑ=  where cϑ is the Scher-Zallen critical density in the 

3-D space 01.015.0 ±=cϑ  [70-72]. For many percolating systems the value of cf  can be significantly 

lower [71]. At temperatures above Tg the space is filled by configurons at concentrations which exceed 
the critical density cf  therefore they form the percolation cluster with fractal geometry changing the 

state of material from solid-like (glass) to liquid-like. This leads to the following equation of glass 
transition temperature [5, 6, 19]:  

[ ]]/)1ln[(/ ccddg ffRSHT −+=                                                 (21) 

Note that because Sd>>R this equation can be simplified to Tg ≈ TgD =Hd/Sd, which is an analogue 
of Diennes ratio used to assess the melting temperatures of crystalline solids. Below Tg the 
configurons are uniformly distributed in space and formation of clusters is improbable. The geometry 
of network defects in this area can be characterised as Euclidean. With increase of temperature at 
T=Tg, the concentration of defects achieves the critical concentration for formation of a percolation 
cluster. Above Tg a percolation cluster made of configurons is formed and the geometry of the network 
becomes fractal. Equation (21) gives excellent data for glass transition temperatures [5, 6, 19, 38]. 
Note that the glass transition temperature (21) adiabatically depends on thermal history for several 
reasons: (i) during cooling a part of material is inevitable crystallised, (ii) configurons need a certain 
time to relax to their equilibrium sizes and (iii) the enthalpy of configuron formation depends on 
overall structural state of amorphous material including its quenched density which can be assessed 
from equation [36]: NdeqqH ad ε/2

21≈ , where qz is the valence of the cation-anion pair, e is the 
standard unit of charge, da is the average bond distance, N is the coordination number, and ε is the 
dielectric constant of the glass which depends on the thermal history. This estimation is similar to 
Hunt’s assessment (14) [65].  

The characteristic linear scale which describes the branch sizes of clusters formed by configurons is 
the correlation length ξ(T). Below the Tg the correlation length gives characteristic sizes of clusters 
made of confugurons whereas above the Tg it shows characteristic sizes of clusters made of unbroken 
bonds e.g. atoms. ξ(T) gives the linear dimension above which the material is homogeneous e.g. a 
material which has on average uniformly distributed configurons or atoms. At sizes smaller compared 
ξ(T) the amorphous material is inhomogeneous e.g. has a fractal geometry [70, 71]. Because of 
formation of percolation cluster the material has a fractal geometry at lengths smaller than ξ(T).  
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The fractal dimension of percolation clusters is df=2.55±0.05. At temperatures far from Tg the 
correlation length is small whereas at temperatures approaching Tg it diverges:  

ν

ξξ cfTfT −= )(/)( 0                                                         (22) 

where the critical exponent ν=0.88 [70, 71]. Finite size effects in the glass transition are described as a 
drift to lower values of Tg when sample sizes L decrease [6]:  

136.1
0 )/)(/(1275.0)()( LHRTTLTT dgggg ξ=−∞                                 (23) 

One can see that this expression conforms well with eq. (18) e.g. Hunt’s results [66]. The heat 
capacity per mole of configurons involved in the percolation cluster near Tg: was found as [6, 19]  
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βββ gddconfp TTTHHPTfTfRTHRC                   (24) 

where dccg HRTT )1(/2
1 θθ −= , P0 is a numerical coefficient close to unity e.g. for strong liquids 

P0=1.0695, and ΔH<<Hd is the enthalpy of bonding of configurons in the percolation cluster. The 
configuron model of glass transition shows that the linear expansion coefficient near the Tg behaves as 
[6]: 
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where ΔVo/V is the relative change of volume per one broken bond. One can observe hence that both 
thermal expansion coefficient and heat capacity show divergences near Tg proportional to 

59.0
/1 gTT −∝  [6, 19].  

Complex oxide systems are typically fragile. These are described by a modified random network 
model comprising network modifying cations distributed in channels and the value of cf  in these 

systems is significantly lower compared strong materials as can be seen from Table 5 [38].  

Table 5. Glass transition temperatures of amorphous materials. 

Amorphous material  RD  Tg/K cf  

Silica (SiO2)  1.45 1475 0.15 
Germania (GeO2)  1.47 786 0.15 
SLS (mass%): 70SiO2 21CaO 9Na2O  2.16 870 1.58 × 10–3 
B2O3  3.28 580 9.14 × 10–5 
Diopside (CaMgSi2O6)  4.51 978 6.35 × 10–7 
Anorthite (CaAl2Si2O8) 4.52 1126 3.38 × 10–7 

 
Data from Table 5 show that the higher fragility ratio, the lower the threshold for the formation of 

percolation clusters of configurons in the material. There is a direct anti-correlation between the 
fragility ratio and configuron percolation threshold which determines the glass transition temperature. 
Networks that exhibit only small changes in the activation energy for flow with temperature form 
percolation clusters of configurons at the classical Scher-Zallen critical density. In contrast fragile 
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liquids, which are characterised by a higher density of configurational states, have a very low 
percolation threshold which decreases with increasing fragility. 

Angell interpreted strong and fragile behaviour of liquids in term of differences in topology of the 
configuration space potential energy hypersurfaces [27]: e.g. fragile materials have a higher density of 
configurational states and hence a higher degeneracy leading to rapid thermal excitations. In the bond 
lattice model of amorphous materials the system of strongly interacting ions is replaced by a congruent 
set of weakly interacting bonds. The glass transition is related in this model with formation of 
percolation clusters made of configurons and change of bond Hausdorff-Besikovitch dimension [5, 6]. 
The diminishing values of configuron percolation thresholds can be interpreted in term of configuron 
size or delocalisation. It is deemed that in fragile materials the configurons are larger e.g. delocalised, 
moreover the higher the fragility ratio the larger the effective configuron radius and its delocalisation. 
Due to configuron delocalisation the liquid-glass transition, which is associated with the increase of 
bond Hausdorff-Besikovitch dimension from 0.052.55 ±=fd  to 3, occurs in fragile materials at 
lower percolation threshold compared strong liquids. The effective configuron radius, cr , can be 

assessed from equation:  
3/1)/( ccdc frr ϑ=                                                               (26) 

where dr  is the bond radius (half of bond length). E.g. the effective volume of a configuron is 

ccdc fVV /ϑ= , where Vd is the volume of an instantaneous or non-relaxed configuron, cϑ  is the 
universal critical density in the 3-D space (Scher-Zallen invariant) and cf  is found by comparing the 
actual glass transition temperature with that given by Eq. (21). For strong materials ccf ϑ=  and thus 

the configuron radii are equal to bond radii. Strong materials such as silica have small radii 
configurons localised on broken bonds and because of that they should show a smaller dependence on 
thermal history which conforms to experimental findings [73]. In fragile materials the effective 
configuron radii considerable exceed bond radii, dc rr >> . For example B2O3 with fragility ratio 
RD=3.28 has dc rr 79.11=  which is due to its specific structure. Both crystalline and vitreous boron 
oxide consists of planar oxygen triangles centred by boron most of which accordingly to X-ray 
diffraction data are arranged in boroxol rings (see [7]). The two dimensional nature of the B2O3 
network means that the third direction is added by crumbling of the planar structures in a three-
dimensional amorphous boric oxide which result in effective large size configuron compared bond 
length. Another example is for polymers where the mobile entities are much mole complex compared 
oxides. This results in percolation thresholds cf  dependent on the geometry of involved entities and 
relative large radii configurons, which are considered spherically symmetric. Note that in this paper 
consideration is restricted to simple and fairly isotropic entities.  

9. Order parameter and symmetry changes at glass transition  

The percolation cluster is also called an infinite cluster as it penetrates the whole volume of material 
which as a result drastically changes its physical properties from solid-like below to fluid-like above 
the percolation threshold. The geometry of a percolation cluster at least near the percolation threshold 
is fractal with the Hausdorff-Besikovitch dimension νβ /−= dd f , where β and ν are critical 

exponents (indexes) and d=3 is the dimension of the space occupied by the initial disordered network, 
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so that 0.052.55 ±=fd . The formation of percolation cluster changes the topology of bonds network 
from the 3-D Euclidean below to the fractal fd -dimensional above the percolation threshold. An 

amorphous material is represented by a disordered bond network at all temperatures, however it has a 
uniform 3-D distribution of network breaking defects at low concentrations in a glassy state and a 
fractal fd -dimensional distribution at high enough temperatures when their concentration exceeds the 

percolation threshold in the liquid state.  
Changes that occur in the geometries of amorphous material at Tg affect their mechanical 

properties. Above Tg as the geometry is fractal as in liquids [43] the mechanical properties are similar 
to those of liquids. The structure of material remains disordered at all temperatures although the space 
distribution of configurons as seen above is different below and above the percolation threshold 
changing the geometry from the Euclidean to fractal. Although to a certain extent being disordered at 
all temperatures the bond structure above the percolation threshold becomes more ordered as a 
significant fraction of broken bonds e.g. configurons belong to the percolation cluster. Such a 
behaviour conform the notion of joint consideration of the whole system to characterise properly the 
ordering [74]. The density of the percolation cluster of configurons, ϕ, can serve as the order 
parameter [6, 75] and for the liquid phase it has non-zero values whereas for the glassy phase ϕ=0 
(Figure 8).  
Second-order phase transitions in ordered substances are typically associated with a change in the 
crystal lattice symmetry, and the symmetry is lower in the ordered phase than in the less ordered phase 
[76]. In the spirit of Landau’s ideas, the transition from a liquid to a glass spontaneously breaks the 
symmetry of bonds. The description of a second-order phase transition as a consequence of a change in 
symmetry is given by the Landau–Ginzburg theory [76]. The order parameter ϕ, which equals zero in 
the disordered phase and has a finite value in the ordered phase, plays an important role in the theory 
of second-order phase transitions. For a glass–liquid transition, which is similar to second order phase 
transformations, the density of the percolation cluster of configurons is an order parameter [6].  

Figure 8. Temperature dependence of the order parameter of configurons ϕ(T) in 
amorphous GeO2 [6].  
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Crystalline materials are characterised by 3-D Euclidean geometries below their melting point Tm. 
Thus both glasses below Tg and crystals below Tm are characterised by the same 3-D geometry. 
Glasses behave like isotropic solids and are brittle. Because of the 3-D bond geometry glasses break 
abruptly and the fracture surfaces of glasses typically appear flat in the ‘‘mirror’’ zone. Glasses change 
their bond geometry at Tg. When melting occurs the geometry of crystalline materials also changes, as 
revealed by MD experiments to fractal structure with df≈2.6 [43]. It is also known that emulsion 
particles have homogeneous fractal distribution in liquids and the fractal dimension of emulsions is 
df=2.5±0.1 [77]. With the increase of temperature the clusters of configurons grow in size whereas 
clusters of atoms decrease their sizes. Finally when no unbroken bonds remain in the system the 
material is transformed to a gaseous state. Therefore for the system of bonds the phase changes can be 
represented by the consequence of changes of Hausdorff dimension D=3 (solid) → df=2.55±0.05 
(liquid) → d = 0 (gas). Figure 9 illustrates symmetry changes at phase transitions of water.  

Figure 9. Changes of Hausdorff dimension of the system of bonds at the water phase 
changes.  

  

10. Relaxation effects and thermal history dependence of glass-liquid transition  

Formation of a configuron involves breaking of a bond followed by strain relaxation effects in the 
lattice near the broken bond. The instantaneous breakage of a bond introduces a non-equilibrated 
configuron of initial volume Vd which will evolve with time typically becoming more extended in 
space than the initial bond in the random bond lattice. The nature of this relaxation is governed by 
structural changes and its characteristic timescale is governed by Maxwell relaxation time ∞= GM /ητ , 
where η is the viscosity and G∞ is the shear modulus. At the glass-liquid transition Maxwell relaxation 
time has the order of 102 – 103 s [18, 44]. Depending on cooling conditions the configuron can achieve 
its equilibrium radius rc or retain the radius rc(t) which corresponds to the actual structure frozen. E.g. 
in systems cooled rapidly compared to τM we can be at conditions where a fictive temperature should 
be used in order to characterise correctly the processes occurring [44, 78]. 
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Consider how structure relaxation near broken bonds can affect the configuron effective volumes 
(radii) and then the glass transition temperature. Bond breaking or formation processes induce in the 
bond lattice instantaneous stresses and strains which relax with time. Relaxation of the structure near a 
broken bond involves adjusting the motions of atoms in its vicinity. These effects can be described 
using either a multi-body approach or in a continuous medium approximation. In the latter case they 
are similar to processes such as formation and collapse of a bubble or a pore [79-81]. The dynamic 
(formation and collapse) of a bubble in a liquid is described by the Rayleigh-Plesset equation for the 
bubble radius [79, 80]. The Rayleigh-Plesset equation however has no analytical solutions in viscous 
media but is analytically integrable in the case of void bubbles when the ambient hydrostatic pressure 
is absent [82]. In low viscosity liquids bubble volume (radius) follows the Rayleigh solution V ∼ t6/5 (r 
∼ t2/5) [79] whereas for very viscous liquids viscous damping follows a smooth (viscous damping) 
decrease of bubble radius [82], which can be expressed as V ∼ tm , where as the viscosity increases the 
exponent m becomes smaller m<1. Numerical study of bubble growth in liquids has also shown that 
the bubble growth proceeds much slower if the viscosity is higher [81]. Based on solutions of Navier-
Stokes equations we can assume that for times t ≤ τM, e.g. at cooling rates q > q0 = ΔT/τM, where ΔT is 
the temperature drop, the configuron volume changes with time from its instantaneous volume Vd to 
the relaxed one Vc, approximately as:  

( )mMdc tVVtV τ/)( Δ+=                                                    (27) 
with m < 1 near the glass transition. Here )( dc VVV −=Δ .  

Configuron formation and particularly their relaxation resemble in some aspects the Adam-Gibbs 
picture of cooperative rearrangements during molecular motion [32]. However both non-relaxed and 
relaxed configurons are quasiparticles associated with bond breakages and occur both below and above 
the glass transition temperature whereas Adam-Gibbs cooperative regions are statistically distributed 
entities whose volumes strongly depend on temperature. Moreover the liquid-glass transition in the 
configuron percolation model is associated with the threshold concentration of configurons rather than 
relaxation effects connected with equilibration of strains induced by bond breakages.  

The temperature of glass-liquid transition in the configuron percolation model of glass transition 
(Eq (21)) is affected by melt thermal history for several reasons: (i) configuron volumes depend on 
cooling rate when there is not enough time for configurons to relax to equilibrium; (ii) configuron 
formation parameters depend on structural relaxation; (iii) crystallisation processes at low cooling 
rates intervene to induce size-dependent effects [19].  

Consider the effect of configuron relaxation on thermal history dependence of glass-liquid 
transition which is caused by dependence of actual percolation threshold on configuron volume. The 
higher the viscosity of an amorphous material the slower the stresses relax and consequently longer 
times are required for equilibrium configurons to be formed. At high viscosities, which are 
characteristic for temperatures near and below Tg, configurons could require very long times to 
equilibrate. Hence for a melt cooled with an infinitely high cooling rate q →∞ there is not enough time 
for equilibrium configurons to be formed, and the system of non-relaxed configurons with smaller than 
equlibrium radii is frozen much before relaxation can occur to form equilibrium configurons. Because 
non-equilibrium configuron radii are smaller than equilibrium ones, higher configuron concentrations 
are required to form a macroscopic percolation cluster at higher cooling rates. Therefore at higher 
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cooling rates the glass transition temperature observed will be higher. At slower cooling rates more 
time is available for equilibration of configurons and configuron radii are larger. Smaller 
concentrations of configurons are consequently required to form a configuron percolation cluster and 
hence the glass transition temperature will be lower at lower cooling rates. Moreover hysteresis effects 
on heating inevitably derive from the fact that upon reheating the configuron radii increase further 
toward their equilibrium value rc. Finally at very slow cooling rates equilibrium configurons are 
formed as a result of stress relaxation processes near the broken bonds. Hence the glass transition 
temperature asymptotically achieves its lowest possible magnitude on decreasing of melt cooling rate 
(Figure 10).  

Note that we neglect here crystallisation processes which could affect the effective glass transition 
temperature [19].  

The second logarithmic term in the equation of glass transition temperature (21) depends on the 
actual percolation threshold cf  which is a function of configuron radius or volume (see Eq. (26)). As 

1<<cf  the glass transition temperature depends on configuron volume approximately as:   

( ) ( )[ ]dccdgDg VtVHRTT /)(ln/1ln)/(/1/1 ++≅ ϑ                                         (28) 

Figure 10. The effective decrease of configuron percolation threshold with decrease of 
cooling rate causes a decrease of glass transition temperature.  

 

 
where TgD =Hd/Sd and t is the cooling time t=ΔT/q. The resulting expression (28) can be used to 
numerically assess the glass transition temperature at arbitrary cooling rates. At q →∞ there is 
insufficient time for equilibrium configurons to be formed and Vc → Vd, so the maximum Tg is 
achieved ( )cdgDg HRTT ϑ/1ln)/(/1/1 max +≅ . In the opposite case at q → 0 equilibrium configurons are 

formed and Vc(t) → Vc, thus the glass transition temperature asymptotically achieves its minimum 
( )dcdgg VVHRTT /ln)/(/1/1 maxmin +≅ . At finite cooling rates such that m

dc VVqqq /1
00 )1/( −<< , where 
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q0 = ΔT/τM with typical q0 of the order of 0.1 -1 K/s for oxide glasses, we have a generic expression 
for the cooling rate dependence:  

( )00 /ln)/(/1/1 qqHmRTT dgg −=−                                            (29) 
Here ( ) ( )[ ]dcdgDg VVHRTT /ln/1ln)/(/1/1 0 Δ++= ϑ , and we assumed that Vc >> Vd. Expression (29) 

is in excellent agreement with experimental data on glass transition dependence on cooling rate 
demonstrating the logarithmic dependence of glass transition temperature with cooling rate [49, 78, 
83]. Though approximate our results do agree with Moynihan et. al.’s expression of the reciprocal of 
the fictive temperature linearity in respect to the logarithm of the cooling rate [78]  

( ) ( )gTEq /1ln ∂−=∂                                                          (30) 

where the activation energy is found from (29) 

mRHE d /=                                                              (31)  
Accounting that m < 1 we can see for example that amorphous B2O3 has an excellent description of 

glass transition cooling rate dependence at m=2/3 [78].  
Although the glass transition temperature (21) is a thermodynamic parameter it depends on the cooling rate 

of a supercooled liquid as the formation of glass is a kinetically-controlled process. The glass transition 
temperatures of amorphous materials achieve their maximum values at infinitely high cooling rates.  

11. Conclusions  

We focused our attention in this paper to disordered oxide materials. Amorphous materials occur 
either as liquids or glasses. The transition from the liquid to the glassy state evidences characteristic 
discontinuities of derivative thermodynamic parameters such as the coefficient of thermal expansion or 
the specific heat. The analysis of bonding system of glassy and crystalline materials shows that they 
both hold the same symmetry signature in form of 3D Hausdorff dimension of bonds. The similarity in 
bonding (the same symmetry signature) of both glassy and crystalline states means the similarity of 
their behaviour. Amorphous materials become liquid above the glass transition temperature. The 
configuron model of glass transition shows that the transition of amorphous materials from glassy to 
liquid state is a percolation-type phase transition. The bonding system of an amorphous material 
changes its geometry from 3D in the glassy state to fractal one (df=2.55±0.05) in the liquid state due to 
formation of infinite size percolation clusters made of broken bonds - configurons. Thus the transition 
from a glassy to a liquid state can be treated as a change in the symmetry of topological disorder. The 
configuron model of glass transition gives an explicit equation of glass transition temperature (21) and 
demonstrates characteristic jumps in specific heat and thermal expansion. The higher the concentration 
of broken bonds the lower the viscosity, which is a continuous function of temperature both for glassy 
and liquid amorphous materials and has no discontinuities at glass transition. The configuron model of 
viscosity results in an universal viscosity equation (6) valid at all temperatures.  
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