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It is known that force exchanges between a robotic assistive device and the end-user have a direct impact on the quality and
performance of a particular movement task. This knowledge finds a special reflective importance in prosthetic industry due to
the close human-robot collaboration. Although lower-extremity prostheses are currently better able to provide assistance as their
upper-extremity counterparts, specific locomotion problems still remain. In a framework of this contribution the authors introduce
the multibody dynamic modelling approach of the transtibial prosthesis wearing on a human body model.The obtained results are
based on multibody dynamic simulations against the real experimental data using AMP-Foot 2.0, an energy efficient powered
transtibial prosthesis for actively assisted walking of amputees.

1. Introduction

A definition of the functionalities/duties between a human
and a robotic device, also the organization of their interac-
tion, basically, includes a number of different criteria that
influence the effectiveness of the “human-robot” system.
The hierarchy of criteria importance depends on a general
approach in a certain domain application. Generally, the
requirements in a robotic device design should assure the
maximum economical effectiveness of the system in combi-
nation with a personal security of the end-user.

Robots for physical assistance to humans are meant
to reduce fatigue and stress, increase human capabilities
in terms of force, speed, and precision, and improve in
general the quality of life. In other words, the crucial goal
of a robot for physical human-robot interactions (pHRI) is
a generation of supplementary forces to overcome human
physical limits. Moreover, the human can bring experience,
global knowledge, and understanding for a correct execution
of movements [1]. In case of assistive devices, an improved
analysis of the problems related to the physical interaction
with robots becomes mandatory. Also, in a special perspec-
tive for the interaction with humans should be considered

the design of themechanism, sensors selection, actuators, and
control architecture [2].

Compared with healthy persons, walking amputees
require 10–60% more metabolic energy depending on walk-
ing speed, physical individual properties, cause of amputa-
tion, amputation level, and prosthetic intervention charac-
teristics. Furthermore, amputees walk at 11–40% slower self-
selected gait speed than do persons with intact limbs [3, 4].
To date, commercially available prostheses comprise spring
structures that store and release elastic energy throughout
each walking stance period [5]. Due to their passive nature,
such prostheses are unable to generate more mechanical
energy than what is stored during each walking step. Also,
experiences in clinical environment indicate that transtibial
(TT) amputees suffer from a nonsymmetrical gait while
wearing a completely passive prosthesis [6]. In distinction,
the human ankle performs positive net work and has a greater
peak power over the stance period, especially at moderate to
fast walking speeds [7, 8].

In literature several engineering challenges still slowing
down the further development of a powered ankle-foot
prosthesis [9, 10] are discussed. In the field of prosthetic leg
design, a critical objective is to progress a powered ankle
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prosthesis capable of mimicking the dynamics of the human
ankle. A study of TT prosthetics research contributions
shows that none of the commercially available devices are
skillful of mimicking an human ankle-foot complex. With
current actuator technology, it is challenging to build an
ankle-foot prosthesis that matches the size and weight of
the human ankle-foot structure but still provides sufficient
stance-period work and instantaneous power output to drive
an amputee. In 1998, Klute and colleagues [11] were the
first to build a powered ankle-foot prosthesis efficient in
performing net positive work. Their device employed a
pneumatic actuation strategywith an off-board power supply.
More recent work has focused on the design of energetically
autonomous powered systems [12–14]. In the growing field
of rehabilitation robotics, the use of compliant actuators is
becoming a standardwhere accurate trajectory tracking is not
required.The advantages of such actuators are represented by
safely interaction with the patient and large forces absorption
during gait. In the particular case of trans-tibial prostheses,
compliance of the actuation provides even more advantages.
Besides shock absorption in case of collision with objects
duringwalking, energy provided by the actuator (e.g., electric
motor) can be stored into its elastic element (e.g., spring in
series). The current state-of-the-art in powered ankle-foot
prostheses with focus on devices using compliant actuators
has been presented in [15].

In the next sections, the authors are focused on the
influences on normal human gait of the forces that are
generated by a motor and forces that are stored in and then
released by springs, also the reaction of the mechanism as a
whole in interactionwith user.Then, the comparison between
the real “human-robot” setup and virtual model is discussed.

2. The Ankle Mimicking Prosthetic- (AMP-)
Foot 2.0: Background

This section is dedicated to a summary description of the
prosthesis used in the study. The section includes presenta-
tion of the AMP-Foot 2.0 mechanical design and validation
part in the framework of real experiments, with an amputee
subject participation.

2.1. Design of the AMP-Foot 2.0. The AMP-Foot 2.0, see
Figure 1, claims a new energy concept, based on a principle
of optimal power distribution which is elaborated in [16].
Basically, the working principle is similar to existing powered
assistive devices, except that the actuator is working during
the complete stance phase. Gravitational potential energy is
gradually stored into a series elastic element, in time which
the drive still has to provide the same torque and power
output. But there is approximately 3 timesmore time available
to generate the power by the electricmotor. As a consequence,
the overall power rating of the actuator can be divided by
approximately the same amount, reducing theweight and size
of the drive power considerably.

The functional principle of the AMP-Foot 2.0 uses a
“plantar flexion (PF)” spring, which stores energy from the
controlled dorsiflexion phase of stance. An electric actuator is
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Figure 1: Design representation of AMP-Foot 2.0.

loading a “push-off (PO)” spring during the complete stance
phase. The prosthesis includes a locking mechanism which
provides the energy implementation into the PO spring and
can be delayed and released at push-off. This way, full torque
and power required for locomotion can be obtained with less
power from the actuator.

Structurally, the device consists of three bodies: a leg, a
foot, and a lever arm, pivoting around the ankle axis; see
Figure 2. Asmentioned before, the system comprises 2 spring
sets: a PF and a PO spring set. The PF spring is placed
between a fixed point 𝑝 on the foot and a cable that runs
over a pulley 𝑎 to the lever arm at point 𝑏 and is attached
to the lever arm at point c, while the PO spring is placed
between the motor-ballscrew assembly and a fixed point 𝑑
on the lever arm. A critical part of this device is the locking
mechanism, that is meant to bear high forces while being as
compact and lightweight as possible and is represented by a
four bar linkage moving in and out of its singular position.
The working principle of such a system has been proposed in
[17].

The locking mechanism which provides a rigid connec-
tion between the leg and the lever armwhen energy is injected
into the system is not represented in Figure 2.

In order to illustrate the behaviour of the AMP-Foot 2.0
prosthesis, the gait cycle is divided in 5 phases starting with
a controlled plantar flexion from heel strike (HS) to foot flat
(FF); see Figure 3. A step is initiated by touching the ground
with the heel. During this phase the foot rotates with respect
to the leg, until 𝜃 (= 𝜙) reaches approximately −5∘. This is
followed by a controlled dorsiflexion phase ending in push-
off at heel off (HO), during which a generation of propulsive
forces by Soleus and Gastrocnemius muscle groups will have
place. In the late stance phase, the torque produced by the
ankle decreases until the leg enters the swing phase at toe off
(TO). Once the leg is engaged in the swing phase, the foot
resets the locking mechanism.
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Figure 2: Schematic representation of AMP-Foot 2.0.

The more detailed description of AMP-Foot 2.0 dynamic
behaviour during a complete gait cycle can be found under
contribution [16].

2.2. Validation of the AMP-Foot 2.0 Device. The experiments
with participation of one disabled patient were effectuated
by the research group of Vrije Universiteit Brussel [18]
and, in present paper, the authors are referring to results
obtained from those experiments. Briefly, in the performed
experiments one transfemoral amputee subject of 75 kg was
considered and the experiment was divided in three trials: (1)
walking at a self-selected speed on a treadmill; (2) walking
speed raised to a faster cadence; (3) an overground walking
at self-selected speed; see Figure 4 [19].

Conform analysed data acquired during the experiments,
and compared to existing powered prosthetic devices, it was
observed that the AMP-Foot 2.0 prosthesis can improve an
amputee gait, in conditions when little power is required
for the actuation. Since the present contribution is focused
on modelling and simulation approach of human-robot
system, all additional details regarding the real experiment
design, prosthesis behaviour, power consumption, and torque
characteristics are given in [18].

3. Modelling and Simulations in
Virtual Environment

In this section, the authors present modelling methods of
the AMP-Foot 2.0 device. Then, modelling and simulation
results of an amputee walking using the assistive device
are described. Further, the comparison of a normal walking
(healthy person) and the same person wearing the AMP-Foot
2.0 is effectuated.The section is concluded with discussion on
obtained results from simulations and the real experiments,
referred in Section 2.2.

Computational dynamics has grown in last year’s along
the need to develop simulations and analysis for mechanical
systems that consist of interconnected bodies. Simulation
is meant to describe and analyze the behaviour of various
system configurations, ask what-if questions about the real
system, and optimize the structural design.

Due to the high complexity of modern robotic systems,
almost any research conducted in the area of robotics
can benefit from a simulation of the system behaviour
before experiments on a real platform take place [20]. The
computational modelling including anatomic, physiologic,
and engineering analyses serve to study various activities
in a normal and pathological condition of humans. Com-
puter simulations represent an effective, faster, and cheap-
est approach than experiments, which necessarily consume
physical resources. Computer modelling is considered the
most effective, when employed in combination with real
experiments.

3.1. Modelling Approach for AMP-Foot 2.0. A 3D model was
developed in conformity with the real mechanical properties
of AMP-Foot 2.0 device. In other words, all material and
structural characteristics are preserved relative to the existing
prototype. In order to model and simulate the AMP-Foot
2.0 prosthesis, MSCAdams 3Dmultibody dynamics software
was used [21]. The geometries of the AMP-Foot 2.0 compo-
nent parts were exported from Autodesk Inventor software
in MSC Adams environment and were converted into a set
of Adams/View geometry elements.This importing approach
reduces the need to recreate geometry primitives within
Adams software and enhances the ability to realistically
view the behavior of complicated mechanical systems. After
importing, the co-rrelated constraints between all geometry
parts were defined and applied to the model. Two spring
sets (PF and PO), which play a critical role in AMP-Foot
2.0 dynamic behaviour, have been modelled according to
the real design stiffness and damping characteristics. The
stiffness of the PF spring is about 300N/mmand for every PO
spring the value of stiffness ismodeled as 60N/mm.Damping
values were determined experimentally, and were found to
be 10Ns/mm for PF spring set and 1.2Ns/mm for each PO
spring respectively. The FF phase is considered as the initial
position of the model. In the beginning stage of this study the
model dynamic behaviour, see Figure 5, was analysedwithout
human body model and was elaborated in [22]. The AMP-
Foot 2.0 model complexity can be appreciated and visualised
in Figure 5, where moving parts and constraints of the model
are presented. There are 11 degrees of freedom (DoF) in the
AMP-Foot 2.0 system.

The model includes 2 actuation forces: one represents
the motor actuator, which is constantly pulling up the PO
springs from HS to TO period of the gait cycle; the second
force is responsible for triggering the locking mechanism.
The control of the force actuation period is based on timing
approach, implemented in the model in form of a STEP
function.

The STEP function approximates theHeaviside step func-
tion with a cubic polynomial and has the following format:
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Figure 3: Working principle of AMP-Foot 2.0 during a complete gait cycle.
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Figure 4: Overground walking at self-selected speed (∼2.9 km/h).

Figure 5: The AMP-Foot 2.0 model composition and DoF.
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The arrows, that can be observed in Figure 6, are repre-
senting the actuation and tension forces during the simula-
tion.

Due to cables nonlinear geometric properties and a
complex static and dynamic behaviour, the challenge was to
model the cable segments which play an important role in
a force transmission system of the AMP-Foot 2.0. The cable
transmission systemwasmodelled usingTKC toolbox feature
and the tension forces inside of the systemwere obtained [22].

The cable properties, such as density, Young’s modulus,
axial stiffness, and strain value, are defined with respect to
the ones used in realmechanical system andwere determined
experimentally. These properties are presented in Figure 6(c)
and can be easily modified for further experimental purposes
within the framework of Graphical User Interface (GUI),
developed in MSC Adams software; see Figure 6(c); the mass
of the cable elements is assumed to be negligible.

3.2. Modelling and Simulation of Human Walking during
Wearing the AMP-Foot 2.0 Prosthesis. There are specialized
commercially available simulation tools that can be used for
analysis of human walking, such as AnyBody [23], OpenSim
[24], SIMM [25], and LifeMod [26]. However, these tools
cannot be used for analyzing human-robot interactions,
which is becoming an essential requirement formodeling and
simulation of robotic systems as their physical interaction
with humans becomes more complex. In general, the model-
ing and simulation phase of the development of such systems
is becoming demanding. Since the robot and robot-human
interactions increase in complexity, the simulation with a
single simulation tool is not effective anymore. Therefore,
in this research work the combination of MSC Adams with
LifeMode plug-in was used as the most appropriate.

3.2.1. Methods. The creation of human models begins by
generating a base human segment set, followed by joints,
soft tissues, and contact elements between the model and the
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Figure 6: (a, b) Simulation of AMP-Foot 2.0 behaviour. (c) Cable properties GUI.
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Figure 7: Joints representation and definition.

environment. In order to study the influences of AMP-Foot
2.0 device on normal overground walking the mechanical
model of the human body was built using the Lifemodeler
plug-in in framework of MSC Adams environment. This
combination of tools supports the analysis of the “human-
robot system” effectiveness and mutual interaction. The
considered model, see Figure 8, includes a model of human’s

lower body (two legs and pelvis) which is rigidly attached
to the right extremity AMP-Foot 2.0 prosthesis. Once the
segments of the lower body are established, joints are created
between the segments. Along an inverse-dynamics simu-
lation, joints learn angulation patterns while the model is
being driven by the motion capture data. The nominal joints
stiffness for both legs at the hip, knee, and the ankle is
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Figure 8:Model of human lower limbs cosimulated with AMP-Foot
2.0.

assumed to be 1e5Ns/mm and the damping to be 1e4Ns/mm.
The joint consists of a triaxis hinge and passive or active
forces acting on each of the three degrees of freedom. They
are implemented as an assembly of two “virtual” bodies
of negligible mass and inertia and three revolute joints;
see Figure 7. For every joint there are three axes: sagittal,
transverse, and frontal. The Lifemode software offers the
possibility to define every axis in a way suitable to certain
application. The axes of lower limb joints in present human
model are defined as in the table in Figure 7.

The settings specified for every joint axis in the model are
interpreted as follows.

Driven. Kinematically driven using data from a driv-
ing spline.
Passive. A torsional spring force with user-specified
stiffness, damping, angular limits, and limit stiffness
values. These joints are used in an inverse dynamics
analysis to record the joint angulations while the
model is being manipulated with motion agents.
Hybrid III. The Hybrid III strength model is created
for the individual joint axis with a user-specified scale
value. The Hybrid III strength model is based on
physical measurements of an actual crash dummy.
The strength model consists of nonlinear stiffness,
damping, and frictional values and also includes joint
limit stop stiffness with hysteresis.
Servo. This selection creates a trained PD-servo type
controller on the joint axis. The joint is commanded
to track an angular history splinewith a user-specified
gain on the error between the actual angle and the
commanded error. A user-specified derivative gain is
specified to control the derivative of the error.

It is important to notice that themass (75 kg) of the whole
human body is considered in simulation, although just the
lower part is represented. The human body model generated
by the LifeMod plug-in stores the joint motion trajectories in
MSCAdams.These trajectories are used during simulation as
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Figure 9: Ankle angle during normal walking of the same subject:
red graph with AMP-Foot 2.0; blue line using the healthy foot.

reference inputs for the joints’ PD controllers which are also
implemented in MSC Adams.

For simulation, driving of the human body is based
on captured motion data obtained through marker-based
motion capture system. Motion capture (MOCAP) systems
track the trajectories of markers attached at various locations
on the body. The marker trajectories are then used to train
the human model. During the training, the response of the
body is recorded and later used for a forward dynamics
simulation. Marker trajectory data is used to drive elements
called “motion agents,” which are massless parts fixed to the
body segments using spring elements.

The right foot part was removed and replaced by the
AMP-Foot 2.0 model and connected to the right lower leg
by a fixed joint; see Figure 8. Then, contact forces between
prosthesis toe, heel parts, and the ground were defined as an
IMPACT function model. The IMPACT function represents
a simple model for contacts. It evaluates a force that turns
on when a distance falls below a nominal free length (when
two parts collide). The force has two components: a spring
or stiffness component and a damping or viscous compo-
nent. The stiffness component opposes the penetration. The
damping component of the force is a function of the speed of
penetration and opposes the direction of relative motion.

3.2.2. Results. The obtained simulation data were filtered
by low pass filter and processed accordingly. In Figure 9
the ankle angle data of the human body model with the
same physical properties as in real experiment are illustrated
(weight 75 kg, height 175 cm, male) during normal over-
ground walking. In the first simulation the human was
walking without AMP-Foot 2.0 prosthesis, using a normal
human foot model (see Figure 9, blue dot-line).

Afterwards, the normal foot was removed and replaced by
the AMP-Foot 2.0 model and, therefore, we can follow from
the graph (see red line representation) the consequences for
this change in gait kinematics. Please notice that in the first
slot of time the AMP-Foot 2.0 prosthesis is passive; there is
no force acting on the motor part and pulling the spring sets.
The single actuation is coming from the human leg during
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Figure 11: Knee angle: red line, with AMP-Foot 2.0model; grey line,
with human foot model.

walking only. In the grey zone, see Figure 9, theAMP-Foot 2.0
becomes actuated and, as a result, we can observe an increase
of the ankle angle, due to the provided push off propulsion
force of the prosthetic device.

In Figure 10 are illustrated the obtained torque values
of the right lower limb with the AMP-Foot 2.0 prosthesis
attached.

Also, a slight difference was observed at the knee level
joint. In case the AMP-Foot 2.0 is attached to the human
leg model, the authors noticed a small knee angle increase;
see Figure 11. This occurrence can be explained by the lower
compliancy in the TOmoment.Then the lockingmechanism
opens, providing the additional propulsion force to the leg.

As was discussed before, the authors were interested to
make a comparison between data from simulations with the
data, based on real experiments; see Figure 12.

Conform Figure 12, the time-based data on level ground
walking, one can observe the similarities between the angle
ankle data of the human model wearing the AMP-Foot 2.0
device and the walking pattern of real amputee subject with
attached prosthesis. It can be noticed for the human model
with the AMP-Foot 2.0 that there is an increase of the ankle
angle around HO moment. This fact can be the result of the
influence of contact forces between the heel and the ground
part. In other words, when the heel is touching the ground the
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Figure 12: Ankle angle comparison: red line: simulation of human
model during wearing the AMP-Foot 2.0; blue line: simulation of
human model without AMP-Foot 2.0; green line: real experiment
data of subject during wearing the AMP-Foot 2.0 device.

reaction forces are pushing up the AMP-Foot 2.0 prosthesis,
by this way creating an additional torque motion.

4. Discussion

It is crucial for design and control developing of assistive
devices to have a model of the robotic system interacting
with the human before the actual physical system is ready
for the use. Sometimes, performing the real experiments is
too exhausting, expensive, or almost impossible and in this
case modeling and simulation approach is considered very
effective. In the framework of this paper the authors have
researched in virtual environment the differences between
human walking during wearing an assistive device and
normal walking of the healthy person. In both simulation and
real-life testing the same human model was considered. This
experiment is impossible to be repeated in real life. It was
expected to have some differences in the ankle angle data,
but the main conclusion is that the human walking is not
affected in negative waywhile wearing theAMP-Foot 2.0.The
powered device is providing the human leg with additional
propulsion force that helps locomotion.

If we will refer to real experiments, performed with
an amputee person with comparison to results obtained
from simulations with human model during wearing the
AMP-Foot 2.0, we can notice many common similarities in
walking pattern. Even, if the gait kinematics of people is
individual, (in simulations a similar subject with the same
physical characteristics was considered) the obtained results
remain valid and can be interpreted. If one will do the
comparison between the normal walking simulation and
both experiments which uses the AMP-Foot 2.0 prosthesis
(Figure 12), one will observe some difference in TOmoment.
In case of normal walking without the device the transaction
of the foot from TO to a swingmoment is more compliant. In
case of simulations there can be other external factors that can
slightly influence obtained data results, such as the simplified
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contact definition (which is not so complex as in case of real
foot-ground contact).

5. Conclusions

The main focus in the framework of the presented study
was to inspect how the attached trans-tibial prosthesis will
influence normal healthy human walking kinematics and
how close the AMP-Foot 2.0 working behaviour comes to
a real human foot subsystem. The effectiveness of human-
robot interaction was analyzed during the tests with a real
subject and in virtual environment. The authors admit that it
is difficult to compare individuals having a different walking
pattern, even if for simulation a subjectwith the samephysical
parameters as the one tested in real experiment was consid-
ered. Moreover, the simulation comparison (subject walking
with and without AMP-Foot 2.0) is almost impossible to
arrange in real life. This fact that the simulation results more
interesting and significant.

Thanks to the built human-prosthesis model further
improvements on prototype design parameters can be
achieved and the prototype can be adapted to certain subject’s
individual properties.The result data demonstrate that AMP-
Foot 2.0 prosthesis can successfully replace the human ankle-
foot subsystem, provided some individual adjustments are
made.
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