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Focusing on the analog circuit performance evaluation demand of fast time responding online, a novel evaluation strategy based
on adaptive Least Squares Support Vector Regression (LSSVR) which employs multikernel RBF is proposed in this paper. The
superiority of the multi-kernel RBF has more flexibility to the kernel function online such as the bandwidths tuning. And then
the decision parameters of the kernel parameters determine the input signal to map to the feature space deduced that a well plant
model by discarding redundant features. Experiment adopted the typical circuit Sallen-Key low pass filter to prove the proposed
evaluation strategy via the eight performance indexes. Simulation results reveal that the testing speed together with the evaluation
performance, especially the testing speed of the proposed, is superior to that of the traditional LSSVR and 𝜀-SVR, which is suitable
for promotion online.

1. Introduction

Although many analog electronic functions have been
replaced with digital equivalents, there still exists a need to
use analog circuits [1] such as voice signals conversion, sensor
signals microprocession, and conversion. Actually, all of the
electronic circuits are not out of the analog circuits [2].

The presence of performance evaluation or detection
is vital in this age of large electronic equipment that has
swarmed our living. Physical damage, manufacturing tech-
nique, aging, radiation, temperature changes, and power
surges are possible reasons for such performance changing.
Moreover, the further state of the electronic equipment can be
forecasted via performance detection, and some catastrophic
errors can be avoided such as in spacecraft engineering field.
The purpose of analog circuits performance evaluation is to
guarantee the electronic system to be well running states
before they are put into use and/or to realize the fast perfor-
mance detection of the electronic system online to assure the
running status. Some researchers focus on the data-driven
method and lots of pieces of literature [3–6] had attempted
to use it.

To this question, some researchers have focused on
analog circuits fault diagnosis and performance evaluation
[7]. And they are in the early stage of development, but the
technique still developed slowly for complication develop-
ment of electronic equipment complex. Nowadays, the nor-
mal techniques include neural network, fuzzy logic, genetic
algorithm and so forth, which offer enough developed space
for the analog circuit performance evaluation [8–10]. And the
neural network and support vector machine (SVM) were
extensive applied and researched. Aihua and Zhongdang [11]
focused the promise about analog circuit performance evalu-
ation method’s portability and low cost, the support vector
regression (SVR) evaluation strategy was firstly proposed,
and this inherited the evaluation precision simultaneously.
However, the lower convergence rate is the largest defect and
this problem can also be discussed in literature [12, 13].

For taking into consideration the realization issue of
superior convergence rate, Suykens and Vandewalle [14]
addressed norm LSSVR method. The primary advantage of
this approach is that the training process follows the struc-
tural risk minimization principle and takes the equality
constraint instead of inequality constraints, and this hasmade
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the operation speed improved greatly. The LSSVR formula-
tion also involves less tuning parameters. However, a draw-
back is that sparseness is lost in the LSSVR case. Therefore
some researchers has put their eyes on investigating imposing
sparseness by pruning support values from the sorted support
value spectrum which results from the solution to the linear
system. Suykens et al. [14, 15] in their later literature present
sparse approximation strategy for modifying the defect of the
norm LSSVR. Although this method can realize the decre-
mental based ascending sort with the setting threshold con-
straint, the training sample is still difficult to accept or reject
with facing the uniformity of LSSVR spectrum. Wang et al.
[16] employed a novel LSSVR algorithm in the stability space.
And another LSSVR based matrix model on the linear class
problem also was discussed in literature [17]. Furthermore,
Zhao and Sun [18] adopted the recursion algorithm to reduce
the growing data samples of LSSVR, and the sparsity solution
is obtained. Theoretically speaking, the more training sam-
ples will get the higher accuracy machine learning, and this
is rarely practical.

Kernel function design is the most important part of the
component in LSSVR, and it is a nonlinear mapping function
from the input to the feature space [19].Themain function of
the kernel is to convert a linearly nonseparable classification
problem in low dimension to a separable one in high dimen-
sion and hence plays a crucial role in the modeling and con-
trol performance. Kernel functions are generally parametric
and the numerical values of these parameters have significant
effect on both modeling and control performance. Depend-
ing on the initial values of kernel parameters some features
significant for the model may be discarded or redundant or
irrelevant features may also be mapped to the feature space
and better performance may be achieved by discarding some
feature [13, 14]. Owing to such factors, the selection of optimal
kernel parameters is vital in terms of the solution of the
SVR problem. There are lots of optimization methods on
the kernel parameters, such as particle swarm optimization,
pattern search, and grid search [20, 21]. The goal mostly
located in offline calculation kernel parameters. Literature
[22] used gradient optimization method to realize the single
RBF kernel function (SRBF) online adjustment variance.

This work, researched on the literature [15, 23], presents
an analog circuit evaluation strategy based LSSVRwhich also
treats the circuit and signal online but adopts multikernel
RBF to realize the adjustment of kernel width, which not
only contribute the regression of LSSVR, but also improve the
evaluation speed greatly.

Focusing on the analog circuit performance evaluation
demand of fast time responding online, a novel evaluation
strategy based on adaptive Least Squares Support Vector
Regression (LSSVR) which employs multikernel RBF is pro-
posed. The superiority of the multikernel RBF has more flex-
ibility to the kernel function online such as the bandwidths
tuning. And then the decision parameters of the kernel
parameters determine the input signal to map to the feature
space that deduced a well plant model by discarding redun-
dant features.

2. Evaluation Algorithm

2.1. Support Vector Regression. Support vector machine
(SVM) is originally developed by Vapnik [24] for solving
classification problems, and it has also been studied exten-
sively for the solution of regression problems.Meanwhile, the
superior [25] has been revealed via the structural risk mini-
mization principle of SVM which employed by conventional
neural networks. SVM also has a greater ability to generalize,
which is the important task in statistical learning. SVR is the
extension of SVMs to solve regression tominimize the gener-
alized error bound so as to achieve generalized performance.
When using SVM in regression tasks, the SVRmust use a cost
function to measure the empirical risk in order to minimize
the regression error.The brief details about SVR are presented
as follow.

Consider the learning sample for SVR, 𝑆 = {𝑠
𝑖
| 𝑠
𝑖
=

(𝑥
𝑖
, 𝑦
𝑖
)}, where 𝑥

𝑖
∈ 𝑅
𝑛 is a vector representing a set of sample

inputs at a certain instant 𝑖 and 𝑦
𝑖
∈ 𝑅 is a vector representing

the corresponding a set of sample outputs. This purpose is to
find a functionwhich can estimate output data in a better way.

2.1.1. Linear SVR. Consider

𝑦 = 𝜔 ⋅ 𝑥 + 𝑏, (1)

where “⋅” denotes the inner product, 𝜔 and 𝑏 are the parame-
ters of the function, and 𝑥 is the test pattern in a normalized
form. The structural risk minimization principle can be
realized by minimizing the empirical risk 𝑅emp(𝜔, 𝑏) defined
by

𝑅emp (𝜔, 𝑏) =
1

𝑛

𝑛

∑

𝑖=1

𝐿
𝑒
(𝑦
𝑖
, 𝑓 (𝑥)) , (2)

where 𝐿
𝑒
(𝑦
𝑖
, 𝑓(𝑥)) denotes error-insensitive loss function of

the empirical risk, and it can be defined by

𝐿
𝑒
(𝑦
𝑖
, 𝑓 (𝑥)) = {

𝑒, if 󵄨󵄨󵄨
󵄨
𝑦
𝑖
− 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝑒,

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
, 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
− 𝑒, otherwise.

(3)

𝐿
𝑒
(𝑦
𝑖
, 𝑓(𝑥)) is the insensitive loss function; that is to say, it is

the tolerance error between the target output 𝑦
𝑖
and the esti-

mated output values 𝑓(𝑥) in optimization process, and 𝑥
𝑖
is a

training pattern. The problem of finding 𝜔 and 𝑏 to reduce
the empirical risk with respect to an insensitive loss function
is equivalent to the convex optimization problem that mini-
mizes the margin 𝜔 and slack variables (𝑒

𝑖
, 𝑒
𝑖
) as

min 𝐽 (𝜔, 𝑒) =

1

2

𝜔
𝑇
⋅ 𝜔 +

1

2

𝛾

𝑛

∑

𝑖=1

𝑒
2

𝑖

s.t. 𝑦
𝑖
− 𝜔 ⋅ 𝑥

𝑖
− 𝑏 ≤ 𝑒

𝑖
,

𝑖 = 1, . . . , 𝑛,

(4)

where the first term (1/2)𝜔
𝑇
⋅ 𝜔 is the margin; the parameter

𝛾 is a positive constant. To solve the above optimization
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problem, one has to find a saddle point of the Lagrange
function described as [26]

𝐿
𝜀 (
𝜔, 𝑏, 𝑒, 𝑎)

=

1

2

𝜔
𝑇
⋅ 𝜔 +

1

2

𝛾

𝑛

∑

𝑖=1

𝑒
2

𝑖
−

𝑛

∑

𝑖=1

𝛼
𝑖
(𝜔
𝑇
𝑥
𝑖
+ 𝑏 + 𝑒

𝑖
− 𝑦
𝑖
) .

(5)

2.1.2. Nonlinear SVR. In fact, the linear SVR is not for all the
real system because of the problem complex of the real word.
The nonlinear SVR is as an alternative for linear SVR that has
appeared.The input data sample𝑥

𝑖
is transformed into feature

space 𝜑(𝑥
𝑖
) by a nonlinear function [12]. Then, the same

optimization algorithm is applied in the same way as the
linear SVR. Therefore, the nonlinear function of SVR can be
expressed by

𝑦
𝑖
= 𝜔 ⋅ 𝜑 (𝑥

𝑖
) + 𝑏 + 𝑒

𝑖
, (6)

where “⋅” denotes the inner product, 𝜔, 𝑏 are the parameters
of the function, and 𝜑(𝑥

𝑖
) is the mapping function from the

input feature to a higher dimensional feature space.
For the regression problem of the given training set 𝑆 =

{𝑠
1
, . . . , 𝑠

𝑛
}, the classical SVRmodel [15] can be obtained from

the following optimization problem:

min 𝐽 (𝜔, 𝑒) =

1

2

‖𝜔‖
2
+

1

2

𝛾

𝑛

∑

𝑖=1

𝑒
2

𝑖

s.t. 𝑦
𝑖
= 𝜔 ⋅ 𝜑 (𝑥

𝑖
) + 𝑏 + 𝑒

𝑖

𝑖 = 1, . . . , 𝑛,

(7)

where 𝑒 = (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)
𝑇 is the evaluated error of sample.

For the purpose to get the evaluated formulation just like (6)
from the optimization problem (1) to realize the evaluation
and diagnosis for the future samples, then the optimization
problem (7) with the employed Lagrange multipliers and
matrix in variable method can be rewritten as

[
0 1
𝑇

1 𝐴

] [

𝑏

𝑎
] = [

0

𝑦
] , (8)

where Ω
𝑖𝑗
= 𝑘(𝑥

𝑖
, 𝑥
𝑗
), 𝐴 ≡ Ω + (1/𝛾)𝐼 is the correlation

matrix, 1 = [1, . . . , 1]
𝑇 and 𝑎 = [𝑎

1
, . . . , 𝑎

𝑛
]
𝑇 are Lagrange

multipliers, 𝑦 = [𝑦
1
, . . . , 𝑦

𝑛
]
𝑇 is the output vector, and 𝑘(⋅, ⋅)

is RBF kernel function which will be stated alone in the next
section. The key point of solving (8) is to confirm the inverse
matrix 𝐴−1, once a new sample 𝑠

𝑛+1
= (𝑥
𝑛+1
, 𝑦
𝑛+1
) joins in

the training set, we can get the predictor 𝐴, namely, SVR, as
follows:

𝐴
𝑛+1

= [

𝐴
𝑛
𝑏
1

𝑏
2
𝑐
] , (9)

where 𝐴
𝑛
, 𝐴
𝑛+1

are kernel correlation matrixes of training
sets 𝑆 ∪ {𝑠

𝑛+1
}, 𝑏
2
= (Ω
𝑛+1,1

, . . . , Ω
𝑛+1,𝑛

), 𝑏
1
= 𝑏
𝑇

2
, and 𝑐 =

Ω
𝑛+1,𝑛+1

. Once 𝐴−1
𝑛+1

can be obtained via 𝐴−1
𝑛
, the training

mission of incremental SVR is done [27]. As for LSSVR, to

solve𝐴−1
𝑛−1

under the knowing𝐴
𝑛
= (𝑎
𝑖𝑗
),𝐴−1
𝑛
= (𝑎
𝑖𝑗
),𝐴
𝑛−1

=

(𝑎
𝑖𝑗
)
𝑖,𝑗 ̸= 𝑘

, namely, for a given sample set, adopting inverse
training algorithm.Here, we adopt strategy to remove the 𝑘th
line with the 𝑘th list of 𝐴

𝑛
to eliminate part sample to get

𝐴
𝑛−1

. Via the algorithm of reduced order and inversion [28],
cause 𝐴−1

𝑛−1
= (𝑎
𝑖𝑗
)
𝑖,𝑗 ̸= 𝑘

, then the reduced order formulation
can be achieved

𝑎
𝑖,𝑗
= 𝑎
𝑖𝑗
−

1

𝑎
𝑘𝑘

𝑎
𝑖𝑘
𝑎
𝑘𝑗
, 𝑖, 𝑗 ̸= 𝑘. (10)

2.2. Multikernel RBF Adjust Strategy. For realizing the flex-
ibility to the kernel, in this part, we modify the kernel RBF
which utilizes the linear combinations of RBF kernels. The
multikernel RBF is addressed as follows:

ker (𝑥
𝑖
, 𝑥
𝑗
) =

𝑝

∑

𝑚=1

𝑘
𝑚
exp (−𝑑

𝑖,𝑗
/2𝜎
2

𝑚
)

∑
𝑝

𝑧=1
𝑘
𝑧

, (11)

where 𝜎
𝑚
is the bandwidth of the kernel function, 𝑥

𝑖
is the

current state vector of the plant, 𝑥
𝑗
is the test data samples,

and 𝑑
𝑖,𝑗
(𝑛) is the Euclidean distance between current data

which is expressed by

𝑑
𝑖,𝑗
= (𝑥
𝑖
− 𝑥
𝑗
)

𝑇

(𝑥
𝑖
− 𝑥
𝑗
) . (12)

To guarantee the fast responding, such as the computa-
tion speed, we adopt multikernel RBF which is expressed by

Ker (𝑥
𝑖
, 𝑥
𝑗
) =

𝑘
1

𝑘
1
+ 𝑘
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑚

𝐾
1
+

𝑘
2

𝑘
1
+ 𝑘
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑚

𝐾
2

+ ⋅ ⋅ ⋅ +

𝑘
𝑚

𝑘
1
+ 𝑘
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑚2

𝐾
𝑚
,

(13)

where

𝐾
𝑚
= 𝐾 (𝑥

𝑖
, 𝑥
𝑗
, 𝜎
𝑗
) = exp(−

𝑑
𝑖,𝑗

2𝜎
2

𝑗

) . (14)

To verify the superior performance of the multikernel
RBF, we also employ LSSVR with the norm kernel RBF in
this paper. Firstly, the multikernel RBF was fixed bandwidths
which is equivalent to saying that the norm kernel RBF with
varying bandwidth depending on scaling coefficients and
Euclidean distance between features, namely, the multikernel
RBF, has the better flexibility to the unknown problem.Then
the LSSVR function can be rewritten as follows:

𝑦 =

𝑛−1

∑

𝑖=𝑛−𝐿

𝑎
𝑖
ker (𝑥

𝑖
, 𝑥
𝑗
) + 𝑏, (15)

where 𝐿 is Lagrange multiplier expressed by

𝐿 (𝜔, 𝑏, 𝑒, 𝑎) =

1

2

‖𝜔‖
2
+

1

2

𝛾

𝑁

∑

𝑖=1

𝑒
2

𝑖

−

𝑁

∑

𝑖=1

𝑎
𝑖
(𝜔𝜑 (𝑥

𝑖
) + 𝑏 + 𝑒

𝑖
− 𝑦
𝑖
) .

(16)
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Partial derivatives of LSSVR model with respect to
weights and bandwidths of the kernels are obtained as
follows:

𝜕𝑦

𝜕𝑘
𝑚

=

𝑛−1

∑

𝑖=𝑛−𝐿

𝑎
𝑖
[

[

𝑝

∑

𝑧−1

𝑘
𝑧
(𝐾
𝑚
− 𝐾
𝑧
)

[∑
𝑝

𝑧=1
𝑘
𝑧
]

2

]

]

,

𝜕𝑦

𝜕𝜎
𝑗

=

𝑛−1

∑

𝑖=𝑛−𝐿

𝑎
𝑖

𝑘
𝑚

∑
𝑝

𝑧=1
𝑘
𝑝

𝐾
𝑚

𝑑
2

𝑖,𝑗

𝜎
3

𝑗

.

(17)

Then, the objective function to be minimized for improv-
ing the LSSVR model performance is chosen as follows:

𝐽 =

1

2

[𝑦 − 𝑦]
2
=

1

2

[𝑒
2
] . (18)

The kernel width Δ𝜎
𝑗
and scaling coefficients Δ𝑘

𝑗
can be

adjusted via the method proposed in literature [29]:

Δ𝜎
𝑗
= −𝜂

𝜕𝐽
𝑝

𝜕𝑒
𝑝

𝜕𝑒
𝑝

𝜕𝑦

𝜕𝑦

𝜕𝜎
𝑗

= 𝜂𝑒
𝑝

𝜕𝑦

𝜕𝜎
𝑗

,

Δ𝑘
𝑗
= −𝜂

𝜕𝐽
𝑝

𝜕𝑒
𝑝

𝜕𝑒
𝑝

𝜕𝑦

𝜕𝑦

𝜕𝑘
𝑗

= 𝜂𝑒
𝑝

𝜕𝑦

𝜕𝑘
𝑗

,

(19)

where 𝜂 (0 < 𝜂 < 1) is the learning rate obtained by any line
search algorithm. So, the kernel parameters can be adjusted
as

𝜎
𝑗 (
𝑛 + 1) = 𝜎𝑗 (

𝑛) + Δ𝜎𝑗 (
𝑛) ,

𝑘
𝑗 (
𝑛 + 1) = 𝑘𝑗 (

𝑛) + Δ𝑘𝑗 (
𝑛) .

(20)

2.3. Algorithm of the Multikernel Adaptive LSSVR. Aiming
the training set 𝑆 that is given in Section 2.2, then the regres-
sion function is expressed by

𝑓 (𝑥, 𝑎, 𝑏) = ∑

𝑖∈𝑊

𝑎
𝑖
ker (𝑥

𝑖
, 𝑥
𝑗
) + 𝑏 ≡ 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨𝑊̃
, (21)

where 𝑎
𝑖
, 𝑏 are the regression parameters, 𝑊 is training

sample working set, and 𝑊̃ is the regression parameter set
of𝑊.

In this paper, multikernel RBF LSSVR algorithm includes
initialization and adaptive update the design and procedure
as follows [23].

2.3.1. Initialization

Step 1. Make𝑊 = {𝑠
1
, 𝑠
2
}, and 𝐴−1, 𝑊̃ can be confirmed by

set (8).

Step 2. If 𝑘 = 3, . . . , 𝑁, the regression function 𝑓(𝑥)|
𝑊̃

can
be detected by the sample 𝑠

𝑘
; if |𝑓(𝑥

𝑘
) | 𝑊̃ − 𝑦

𝑘
| > 𝜃, then

𝑊 = 𝑊 ∪ {𝑠
𝑘
}, and 𝑊̃ should be recomputed via increment

algorithm, confirming least support vector spectrum |𝑎
∗

𝑖
| =

min
𝑠𝑖∈𝑊

{|𝑎
𝑖
|}, constructing temporary training set 𝑊̂ = 𝑊̃ \

{𝑠
∗

𝑖
}, utilizing inverse training algorithm computing (̃𝑊̂) via

Ui

R1 C1

R2

R3

R4

R5

C2

Uo

+

−

(R1 = 1kΩ, R2 = 3k   Ω, R3 = 2k   Ω, R4 = R5 = 4kΩ,C1 = C2 = 5nF)

Figure 1: Sallen-Key low pass filter.

𝑊̃, and using the regression function 𝑓(𝑥) | (̃𝑊̂) which can
be detected by the sample 𝑠

𝑘+1
. If |𝑓(𝑥

𝑘
) | 𝜔 − 𝑦

𝑘
| ≤ 𝜃, in that

way𝑊 = 𝑊̂, 𝑊̃ = (
̃
𝑊̂).

Step 3. Compute the value 𝐽(𝜔, 𝑒)|
𝑊

of the working set
objective function.

Note 1. The objective function is

min 𝐽 (𝜔, 𝑒) = 1
2

‖𝜔‖
𝑇

𝜔∈𝑊̃
+

1

2

𝛾

𝑁

∑

𝑠𝑖∈𝑊

𝑒
2

𝑖
. (22)

2.3.2. Adaptive Update

Step 1. If 𝑊 = 𝑁, then the output regression function is
exported, otherwise turn to Step 2. If |𝐽

𝐶
− 𝐽
𝐿
|/𝐽
𝐶

> 𝜀,
simultaneously, if 𝑠

𝑘
∉ 𝑊 and 𝑓(𝑥

𝑘
)|
𝑊̃
> 𝜃, then 𝑊 =

𝑊 ∪ {𝑠
𝑘
}, |𝑎∗
𝑖
| = min

𝑠𝑖∈𝑊
{|𝑎
𝑖
|}, 𝑊̂ = 𝑊 \ {𝑠

∗

𝑖
} and 𝑊̃ is

computed again via increment algorithm.

Step 2. Compute the value 𝐽(𝜔, 𝑒)|
𝑊

of the working set
objective function.

Note 2. 𝐽
𝐶
is objective function that has been updated in this

time; 𝐽
𝐿
is the objective function that has been updated in the

last time.

Note 3. The forecast training accuracy and test precision are
set to be 𝜃 and algorithm stop parameter set to be 𝜀.

2.3.3. Termination Judgment. If |𝐽
𝐶
− 𝐽
𝐿
|/𝐽
𝐶
≤ 𝜀, then the

training is stopped.

3. Simulation

3.1. Prepare before Simulation. The CUT in this paper is a
typical circuit Sallen-Key low pass filter as shown in Figure 1
[30].The evaluating indicator for performance includes eight
indexes: gain, transmission band, cutoff frequency, lower
cut-off frequency, maximum undistorted output amplitude,
maximum undistorted power output, input sensitivity, and
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Table 1: Result of data feature and comparative experiment of regression problem on experiment data.

TRSN TESN FN Method Parameter (𝜎, 𝑒, 𝛾) SVN TRMSE TEMSE CPU/s
259 × 100 59 × 100 8 MKALSSVR (200, 0.1, 0.75) 30 1.6982𝑒 − 014 1.7001𝑒 − 028 0.021
259 × 100 59 × 100 8 LSSVR (200, 0.1, /) 1376 4.5544𝑒 − 015 4.2437𝑒 − 012 2.981
259 × 100 59 × 100 8 𝜀-SVR (200, 0.1, /) 1607 5.4003𝑒 − 017 5.3025𝑒 − 004 0.062

noise voltage.Then to confirm training set based on the eight
indexes, we first define sample point (𝑥, 𝑦) and correspond-
ingly obtain training set 𝑆 = {(𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑖
, 𝑦
𝑖
)}.

3.2. Data Selection and Standardized Processing. Experiment
adopted the typical circuit Sallen-Key low pass filter to prove
the proposed evaluation strategy via the eight performance
indexes which obtained by precise instrument evaluation in
two years. The sample number is 259 × 100, record data set
𝑅. Before verifying the proposed method in this paper, the
first thing to be done is to establish data sets of training and
testing. However, the strangeness value in the data set caused
by human record and other noncircuit fault factors will make
great effects to model performance of LSSVR, especially the
data set including the strangeness value that are used for
modeling. Hence, a normalization of the data is required
before presenting the input patterns to any statisticalmachine
learning algorithm. In this experiment, 0-1 normalization
method, denoted by (23), is utilized to preprocess:

𝑥
𝑛

𝑖
=

𝑥
𝑎

𝑖
− 𝑥

min
𝑖

𝑥
max
𝑖

− 𝑥
min
𝑖

, (23)

where 𝑥𝑎
𝑖
and 𝑥𝑛

𝑖
are the 𝑖th components of the input vector

before and after normalization, respectively, and 𝑥max
𝑖

and
𝑥
min
𝑖

are the maximum and minimum values of all the
components of the input vector before the normalization.
Completing data processing via 0-1 normalization method,
the noise has been reduced obviously.

After the above data selection and data normalization,
200 × 100 samples are selected randomly to be the training
samples; the rest data samples are to be a test sample. To
validate the superior evaluation performance of the proposed
MKALSSVR to evaluate the analog circuit performance
online, the different methods such as LSSVR, 𝜀-SVR, and the
precision instrument are also carried out for the comparison
purpose while the analog circuit performance evaluation is
on. Meanwhile several parameters need to be introduced
before applying the three SVR algorithms. First of all, it is
required to denote three parameters, namely, error insensitive
zone (𝜀), penalty factor 𝛾, and kernel specific parameters 𝜎.
Problem regarding the choice of 𝑒, 𝛾, and 𝜎 was studied by
several researchers [31, 32]. The penalty factor 𝛾 controls the
smoothness or flatness of the approximation function. If we
set the value 𝛾 to be large, the objective is only to minimize
the empirical risk, which makes the learning machine more
complex. On the contrary, if we set the value 𝛾 to be small,
the objective is to cause the errors to be excessively tolerated
yielding a learning machine with poor approximation [33].
In this study, SVR models have been constructed with 𝛾 and
𝑒 varied starting from 𝛾 = 10 and 𝑒 = 0.004 which are the
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Figure 2: Time response of the three method comparison.

empirical values given by [33]. Via some testing, the param-
eters 𝛾 and 𝑒 have been varied over a specific corresponding
range in order to obtain better coefficient of correlation value,
and the correlation value, denoted Re, is determined by (24).
The kernel specific parameters 𝜎 are restricted since the value
shown in Table 1 gives the better prediction for these models.
The three values for each model are shown in Table 1. This
study adopts RBF (11), where 𝜎 is width of RBF; this is also
known as kernel function. The adopted 𝛾, 𝑒, and 𝜎 values for
the four models are shown in following Table 1:

Re =
∑
𝑛

𝑖=1
(𝐷
𝑎𝑖
− 𝐷
𝑎
) (𝐷
𝑝𝑖
− 𝐷
𝑝
)

√∑
𝑛

𝑖
(𝐷
𝑎𝑖
− 𝐷
𝑎
)√∑
𝑛

𝑖
(𝐷
𝑝𝑖
− 𝐷
𝑝
)

, (24)

where𝐷
𝑎𝑖
and𝐷

𝑝𝑖
are the actual and predicted values, respec-

tively; 𝐷
𝑎
and 𝐷

𝑝
are mean of actual and predicted 𝐷 values

corresponding to 𝑛 patterns. The number of support vector
(SVN), the number of testing support vector (TESN), the
number of training support vector (TRSN), the number of the
data feature (FN), testing data mean square error (TEMSE),
and training data mean square error (TDMSE) are all shown
in Table 1. AndMSE =MSE = √(1/𝐾)∑𝐾

𝑖=1
(𝑋
𝑖
− 𝑋
𝑖
)
2, where
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Figure 3: Local regression curve of output 𝑈
𝑂
and gain 20 lg|𝐴

𝑢
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Table 2: Result of comparative assessment.

Method 𝐹

20 lg|𝐴
𝑢
| 𝑓BW (KHz) 𝑓

𝐿
(KHz) 𝑓

𝐻
(KHz) 𝑈om (V) 𝑃om (W) 𝑈

𝑆
(mV) 𝑈

𝑁
(mV)

MKALSSVR 40.020 10.000 0.004 10.002 61.541 473.412 61.540 0.855
LVSVR 40.029 9.998 0.004 10.005 61.540 473.413 61.540 0.855
𝜀-SVR 40.027 10.000 0.004 10.004 61.540 473.412 61.540 0.857
Instrument 40.020 10.001 0.004 10.005 61.541 473.412 61.541 0.854

𝑋
𝑖
is the real value,𝑋

𝑖
is the predicted value, and𝐾 is a testing

sample number.

3.3. Simulation Experiment. To validate the superior evalua-
tion performance of the proposedMKALSSVR, the other two
different methods, LSSVR and 𝜀-SVR, are also employed in
this part. The sharp contrast about the time response of the
three methods are presented in Figure 2. We take one period
testing time of LSSVR as comparison and giving the other two
methods testing time, respectively. Via this testing compar-
ing,we can see clearly that the testing speed is superior greater
than the other two methods. In Figure 3, we can see that
the support vector density is closely bound up the curvature.
If the curvature is bigger; the support vector density is also
bigger, on the contrary, while in the position of the relatively
smooth, the support vector density is relatively small.

For the same purpose above, Tables 1 and 2 all give out the
same things to prove the evaluation precision and speed via
the proposed method MKALSSVR. And for the purpose to
prove the well performance of the evaluation, the precise
instrument method is utilized.

4. Conclusion

In this paper, a novel online evaluation strategy MKALSSVR
aimed to analog circuit. Via numerical simulation, we can
draw a conclusion that the proposed MKALSSVR has the
merit as follows: first, the adaptive training strategy can
confirm the training sample number adaptively; second, the
multikernel design has changed the RBF width and having

the more flexible adjust ability. And this makes the evalua-
tion have the online processing ability. Third, this method
avoids the overflow problem of norm LSSVR and support
vector sparsity. Meanwhile, considering the low cost, high
evaluation precision, and high operation rate of the proposed
method MKALSSVR, this strategy is worth to be developed
and implemented. Based on this discussion, we will take the
issue about how to deal with the fault value as the future
research problem.
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