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3‘Henri Poincaŕe’ Chair of Complex Systems, University of La Havana, Cuba
4Department Human and Artificial Intelligent Systems, Fukui University, Japan

Received: 30 September 2003 – Revised: 5 April 2004 – Accepted: 1 June 2004 – Published: 10 June 2004

Abstract.
Earthquake prediction is a main topic in Seismology.

Here, the goal is to know the correlation between the seis-
micity at a certain place at a given time with the seismicity
at the same place, but at a following interval of time. There
are no ways for exact predictions, but one can wonder about
the causality relations between the seismic characteristics at
a given time interval and another in a region. In this paper,
a new approach to this kind of studies is presented. Tools
which include cellular automata theory and Shannon’s en-
tropy are used. First, the catalogue is divided into time in-
tervals, and the region into cells. The activity or inactivity of
each cell at a certain time is described using an energy crite-
rion; thus a pattern which evolves over time is given. The aim
is to find the rules of the stochastic cellular automaton which
best fits the evolution of the pattern. The neighborhood uti-
lized is the cross template (CT). A grid search is made to
choose the best model, being the mutual information between
the different times the function to be maximized. This func-
tion depends on the size of the cellsβ on and the interval of
timeτ which is considered for studying the activity of a cell.
With theseβ andτ , a set of probabilities which character-
izes the evolution rules is calculated, giving a probabilistic
approach to the spatiotemporal evolution of the region. The
sample catalogue for the Iberian Peninsula covers since 1970
till 2001. The results point out that the seismic activity must
be deduced not only from the past activity at the same region
but also from its surrounding activity. The time and spatial
highest interaction for the catalogue used are of around 3.3
years and 290×165 km2, respectively; if a cell is inactive, it
will continue inactive with a high probability; an active cell
has around the 60% probability of continuing active in the fu-
ture. The Probabilistic Seismic Hazard Map obtained marks
the main seismic active areas (northwestern Africa) were the
real seismicity has been occurred after the date of the data
set studied. Also, the Hurst exponent has been studied. The
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value calculated is 0.48±0.02, which means that the process
is inherently unpredictable. This result can be related to the
incapacity of the cellular automaton obtained of predicting
sudden changes.

1 Introduction

Perhaps, a first true physical understanding on prediction was
advanced by Darwin (1913): “the foreshocks ’must mark
out’ the place of next large event”. Some years later (1964),
C. F. Richter said that ”Claims to predict usually come from
cranks, publicity seekers, or people who pretend to foresee
the future in general”. Although earthquakes can not be pre-
dicted systematically, some scientific successful predictions
have been made (Sykes and Nishenko, 1984; Scholz, 1985;
Nishenko, 1989; Nishenko et al., 1996; Wyss and Burford,
1985; Purcaru, 1996; Kossobokov et al., 1997). Other stud-
ies attempt to determine the characteristics of the next earth-
quake in a region. For example, Varnes and Bufe (1996)
and Torcal et al. (1999) show how the time periods of the
next event can be determined in a seismic series by using
geostatistical methods; Agostinelli and Rotondi (2003) used
Bayesian belief networks to analyze the stochastic depen-
dence between inter-event time and size of earthquakes; Ka-
gan and Jackson (2000) made use of statistical models for
short time prediction.

Earthquake forecasting is a high aim but, instead of pre-
dicting the occurrence of an earthquake, one can estimate the
seismic hazard of a certain region in a dynamical way. The
seismic hazard of a region is defined as the probability that
an earthquake of a certain magnitude occurs in an interval of
time, and its quantitative determination comes from calcula-
tions over the values of the acceleration, speed and displace-
ment generated by an earthquake. There are two methods
for this purpose: the deterministic and the probabilistic one.
Deterministic methods assume that the future seismicity of a
region is related to the past events; in such a case, the func-
tion includes no noise term. The expected maximum values
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of acceleration, speed and displacement are determined from
earthquakes which occurred in the past. When the seismic
history of the region is not well-known, these values are ex-
trapolated by a relationship frequency-intensity. Probabilis-
tic methods assume that the knowledge of the seismic activity
allows to establish statistical laws for the occurrence of cer-
tain events. The present approach is the probabilistic one and
it is based on the ideas contained in the Theory of the Infor-
mation described (for the first time) by Shannon (1948) and
Shannon and Weaver (1949). This formalism was used by
Shaw (1984) to study the temporal series produced by a drop
of water that falls from a faucet not properly turned off. He
established an alternative way to deal with complex problems
by using recurrence plots in the phase space. The behavior
and evolution of a system in which a series of states is known,
states occurred at T1, T2, . . . , Tn, can be characterized by a
recurrence map; that is, by representing the state at Ti in the
x-axis, and the one at Ti+1 in the y-axis, and the process goes
on until the adequate dimension is obtained. Shaw used these
plots and the concept of information based on Shannon’s en-
tropy in order to study the evolution of the system, the knowl-
edge of the future states from the present and the past states.
A spatiotemporal occurrence model of earthquakes based on
the information theory and cellular automata was presented
by Posadas et al. (2000) and by Posadas et al. (2002); in the
present paper their methodology is used to develop a map
where the level of the future seismic activity is predicted and
we assign a probabilistic value to such a level. We call this
kind of representation a Probabilistic Seismic Hazard Map.
In this paper the method is discussed by means of several
tests, which show that the future activity of the different parts
of a region is better described, in terms of the automata cellu-
lar proposed, by taking into account not only their activity but
also their neighboring activities than by supposing that the
activity is propagated from a place to its neighboring sites.
This kind of discussions is interesting, because in finite, real
fault systems – such as the authors study – the interaction
plays the crucial role in governing the seismicity dynamics.

2 Information theory

It has long been understood that physics and the notion of in-
formation are intimately related. In a very real sense, the dif-
ferential equations of physics are simply algorithms for pro-
cessing the information contained in the initial conditions.
Data obtained by experiment and observation either are, or
contain information forming the basis of our understanding
of nature (Grandy, 1997). But the concept of information
is too broad to be embraced completely by a single defini-
tion. However, for any probability distribution, a quantity
called the entropy can be calculated, which has many prop-
erties that agree with the intuitive notion of what a measure
of information should be. The entropyH(X) of a discrete
random variableX, with X={x1, x2, . . . , xN } is defined by:

H(X)=−

∑
x∈X

p(x) logp(x), (1)

where p(x) is the probability distribution function ofX
(Cover and Thomas, 1991). When the logarithm is taken
in the base 2, the unit of entropy is the bit. The interest of
this work is focused on determining whether there is any re-
lationship between the past states of the dynamic system and
its future ones; so it is necessary to establish a measurement
of dependency between the past and the future. To do this,
the Kullback-Leibler’s distanceD(p||p′), also called relative
entropy, can be used; it represents the difference between two
probability distribution functions,p andp′, of the same vari-
able (Cover and Thomas, 1991):

D(p||p′)=
∑

p log2
p

p′
. (2)

The general dependence between two variablesX andY is
measured by the mutual informationµI , which is defined as
the relative entropy between the joint probabilityp(x, y) and
the marginal probabilitiesp(x) andp(y) (Fraser and Swin-
ney, 1986):

µI (X;Y )=

n∑
i=1

m∑
j=1

p(xi, yj ) log2
p(xi, yj )

p(xi)p(yj )
. (3)

If X represents the past states andY the future ones, Eq. (3)
gives an estimation of the dependence between these vari-
ables through the time. Note that whenX and Y are in-
dependent,p(x, y)=p(x) p(y) (definition of independence),
µI (X;Y )=0. This makes sense: if they are independent ran-
dom variables,Y will tell nothing aboutX.

3 The model

Cellular automata are simple mathematical idealizations of
natural systems. They consist of a lattice of discrete identical
sites, each site taking on a finite set of, say, integer values.
The values of the sites evolve in discrete time steps accord-
ing to rules that specify the value of each site in terms of the
values of neighboring sites. Cellular automata may thus be
considered as discrete idealizations of the partial differential
equations often used to describe natural systems (Wolfram,
1983). They have been used in seismology for modeling
the earthquake rupture process (Bak and Tang, 1989), or for
modeling the subduction phenomenon (Leduc, 1997), for ex-
ample. On the other hand, the concept of entropy has been
used as an indicator in earthquake structure or physics with
passage of time, where mutual information provides an infor-
mational content of this structure (Purcaru, 1973; Nicholson
et al., 2000; Sotolongo and Posadas, 2004). Both cellular
automata and information theory will be used in this paper
to establish some models for the dynamical characteristics of
the seismic activity in a probabilistic way.

For simplicity, as a first approximation of the method,
a model (on the discrete space) with only two available
states (active or inactive) is considered. The seismic patterns
are obtained from the catalogue by carrying out a coarse-
graining: the analyzed region is divided intoN×N cells, be-
ing N the number of bins, or number of cells in one spatial
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Fig. 1. Temporal evolution of the patterns.

 

Mode I Mode II

Fig. 2. The two propagation modes.

dimension (longitude or latitude). The accumulated energy
of the events at a time intervalτ determines whether the cell
is active or inactive. If this energy is greater than or equal to
the average of the whole region, the cell is considered active.
It is important to point out that this activation criterion is a
relative one. The activity or inactivity of a cell depends on
the averaged energy released in the whole region, so that an
active cell is an area where the probability of seismic activity
predicted is higher than the average. Other threshold activ-
ity criteria could be tested, but this is not the purpose of the
present paper. The goal is to compare two ways for finding
the transition rules that give the patterns at a timet+τ tak-
ing into account the information contained at timet , (Fig. 1
shows a hypothetical pattern series) and to chose the best one
for a further generalization and improvement of the method.

A simple method based on the mutual information is pre-
sented to establish some models of propagation of the seis-
mic activity in term of probabilities. The simplest cellular au-
tomata model uses a template (Hirata and Imoto, 1997) in the
form of a cross (cross template model or CT model). With
this template, the activity dynamics can be looked at from
two points of view: one can think of a propagation model
where an active cell transmits its activity to its nearest neigh-
borhood with different probabilities, or, on the contrary, to
obtain the activity of a cell from its neighborhood at a previ-
ous time (Fig. 2).

The mutual information contained can be calculated in
both cases with this equation, which depends on the time and
space intervals:

µI=

1∑
i=0

1∑
j=0

5∑
k=0

p(i; j, k) log2
p(i; j, k)

p(i)p(j, k)
(4)

being p(i; j, k) the joint probability of states, and
p(i)p(j, k) a distribution of independent states;(i) stands

 

(I)

(II) 

Fig. 3. Number of final states for each mode.

for the central cell and(j, k) for the central and its nearest
neighboring cells (Posadas et al., 2002).

The time delayed mutual information was suggested by
Fraser and Swinney (1986) as a tool to determine a reason-
able delay. Unlike the autocorrelation function, the mutual
information also takes into account nonlinear correlations.
Maximizing Eq. (4), which depends on the template cho-
sen (CT model), on the time intervalτ , and onN , the best
configuration, which will give the maximum dependence be-
tween consecutive patterns, can be calculated. This is done
by searching in a grid with two variables: the interval of time
τ , obtained by dividing the whole time considered into a cer-
tain number of steps, and the size of the cellsβ, obtained by
dividing the whole area byN×N . With this optimum con-
figuration (τ , β), determined with the information theory, the
dependence between states has to be modeled.

For the Mode I, the model developed by Posadas et
al. (2000) can be used; it is necessary to find the three prob-
abilities, P1, P2 andP3, which determine the seismic pat-
tern evolution, where the Kullback-Leibler’s distance is used
again. The objective is to minimize this distance between
the joint probability of consecutive states and the distribu-
tion given by the productp′

=p(i)p(j ; k/i), beingp(i) the
initial state probability andp(j ; k/i) the conditional proba-
bility, given by the propagation model (Posadas et al., 2000,
2002):

D(p||p′)=

1∑
i=0

1∑
j=0

5∑
k=0

p(i; j, k) log2
p(i; j, k)

p(i)p(j ; k/i)
. (5)

The optimization is made with a simple genetic algorithm,
whose search parameters areP1, P2 and P3. Also, the
seismic pattern evolution can be modeled by means of his-
tograms of occurrences, and assigning the probability of find-
ing a final state given an initial one. In this case, as shown
in Fig. 3, it is easier if there are fewer final states; and that
happens when the neighborhood determines the future state
of the central cell (Mode II).

In the Mode I, there is only one state in the past (active or
inactive), but there will be ten possible states at a future time.
In the Mode II, it can be one out of ten states in the past but,
for each one of them, there will be two possible states in the
future; so, when there is in the pattern a particular past state,
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Fig. 4. Epicentral distribution of the analyzed events (from the Na-
tional Geographic Institute (IGN), Spain).

there will be only two possibilities in the future (active or
inactive), and not ten, which is more difficult to predict.

These two Modes are compared by calculating the opti-
mum values forτ andβ, and by obtaining the transition rules
for each Mode. For Mode I, the model is determined by the
P1, P2 andP3 probabilities, and for Mode II, the model is
obtained from the histograms. To decide which Mode is bet-
ter, some tests have been carried out, explained in the next
section.

4 Simulation and tests

The simulations intend to reproduce the sequence of pat-
terns obtained, by using the past information and the rules
given for each model. Afterwards, the results are checked
by comparing the simulated patterns against the real ones.
To do this, the tests used are the correlation function (Vicsek,
1992), that gives some information about the size of the clus-
ters, and the Hamming distance, that tells how many times
one has failed in predicting a cell. The Hamming distance is
a common way to compare two bit patterns, and it is defined
as the number of bits different in the two patterns (Ryan and
Frater, 2002). More generally, if two ordered lists of items
are compared, the Hamming distance is the number of items
that do not identically agree. This distance is applicable to
encoded information, and is a particularly simple metric of
comparison.

Simulations are made as follows: supposing that the opti-
mum time interval is given by seven steps, the starting point
is the first real pattern corresponding toτ . Following the
rules given byP1, P2 andP3 (Mode I), or, otherwise, by us-
ing the histograms (Mode II), a simulation for the time 2τ is
reproduced. The simulated seismic patterns have to be cal-
culated to compare them with real data. From the transition
rules the probability of activation for each cell is calculated,
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Fig. 5. Mode I. Mutual information in function of steps and bins.
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Fig. 6. Mode II. Mutual information in function of steps and bins.

and it is necessary to decide how to declare a future cell ac-
tive or inactive in term of these probabilities. In the Mode
I, to characterize the seismicity pattern evolution, for each
consecutive stepτ , and for each cell, the probability of being
active is computed. This probability is the sum of the cell ac-
tual probability and the neighboring cells actual probabilities
following the Mode I model. So a normalization is needed.
In the Mode II, this normalization is not necessary, because
the probability of each cell is determined by the neighbor-
hood at the past step, and is given by a normalized distri-
bution. Anyway, in both Modes the final pattern must have
cells with a probability to be active; for example, one cell
must have the probability of 80% to be active. The question
is if this probability can be considered large enough to de-
clare the cell active or not. One possibility for deciding the
value of this threshold probability is to simulate the patterns
for several densities of active cells, and the nearest value to
the real one is chosen as the cutting probability. Since the
real and simulated patterns for each time are available, they
can be compared, through the correlation function and the
Hamming distance. In the previous example there were six
comparisons, because there were seven steps.
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Fig. 7. Mode I. Averaged mutual information along the step and bin
axis.

5 Application to the Iberian Peninsula seismicity

5.1 Data

The analyzed area is the region between 35◦ and 45◦ north
latitude and between 15◦ west and 5◦ east longitude. The
used catalogue is from the National Geographic Institute
(Spain) and it contains all the seismic data in the Iberian
Peninsula and northwestern Africa. Around 10 000 earth-
quakes have been collected in the period 1970–2001 (Fig. 4).
The depths of the earthquakes range from 0 to 146 km, and
the magnitudes are between 2.0 and 6.5 (mb).

The Institute runs the National Seismic Network, with 42
stations, 35 of them of short period connected in real time
with the Reception Centre of Seismic Data in Madrid. The
average errors in the hypocentral localization at the X, Y
and Z directions, are±5 km, ±5 km and±10 km, respec-
tively, for the data recorded until 1985, and±1 km, ±1 km
and±2 km for those acquired since 1985. The Gutenberg-
Richter relationship is satisfied. This is a quality criterion, so
that if this was not the case, the data could not be assumed as
free of slant or abnormal seismicity (González, 2002).

5.2 Application and results

The mutual information values are similar for both modes.
There is a maximum of 0.25–0.26 bits for steps = 6 and bins
= 6, and other one of around 0.20 bits for steps = 9 and bins
= 6 (Figs. 5 and 6). The averaged mutual information has
a maximum at steps = 9 in both cases, and the maximum

 

Fig. 8. Mode II. Averaged mutual information along the step and
bin axis.

 
 
 
 
 
     t              t+τ           t+2τ   

Fig. 9. Real patterns for 6×6 cells and 6 steps. (Active cells are
drawn in black color, and inactive ones in white). Patterns corre-
sponding to t+3τ , t+4τ , t+5τ are the same as t+2τ .

obtained by averaging along the bin axis is always found at
bins = 6 (Figs. 7 and 8).

The patterns evolution are modeled with both Modes (I
and II) for these maxima (Figs. 9 to 14), and, afterwards,
the results are compared to decide the best configuration in
function of the success of the simulations found with each
Mode.

The model, for the Mode I and the first maximum (6
bins, 6 steps), is determined by the following probabilities:
P1=0.4922,P2=0.1177 andP3=0.0265. With this model and
after a timeτ , there is a probability of 50% that the same
cell will continue active, of around 12% that an active cell
propagates its activity to the neighbors, and one of 3% that
an inactive cell becomes active. For the second maximum
(6 bins, 9 steps), the model is:P1=0.6274,P2=0.1499, and
P3=0.0333. The correspondent tests are shown in Figs. 15
and 16. In some cases, although the correlation function is
the same for both simulated and real patterns, the Hamming
distance is different. So the best indicator of differences be-
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     t+τ                t+2τ  t+3τ 

Fig. 10. Simulated patterns for 6×6 cells and 6 steps (Mode I).
Patterns corresponding to t+4τ , t+5τ are the same as t+3τ .

 
 
 
 
 
     t+τ                t+2τ  t+3τ 

Fig. 11. Simulated patterns for 6×6 cells and 6 steps (Mode II).
Patterns corresponding to t+4τ , t+5τ are the same as t+3τ .

tween patterns is this test. Taking into account that, the sec-
ond configuration (6 bins, 9 steps) is chosen, because of its
better accuracy; that is, the averaged number of simulated
cells failed is smaller (for the first maximum is 1.6 bits, and
for the second one is 1.125 bits, as shown in Figs. 13 and 14).

The models for the Mode II are the histograms found in
the data. Tables 1–2 show the transition probabilities for
each maximum, appearing as rules of a stochastic cellular au-
tomaton. There are some transitions that are not catalogued,
because they were not found in the data (they are denoted as
NC). Also, the tests made for the simulations are presented in
Figs. 17 and 18. The averaged Hamming distance for the first
minimum is 0.8, and for the second one is 0.75. As for Mode
I, the second configuration is the best. Moreover, Mode II
fits better than Mode I, either by comparing one to one the
two maxima, or by taking into account both configurations.
The Hamming distance is always lower, and the correlations
functions are closer with Mode II. So, this is the schema pro-
posed for this kind of analysis. And as a result of this study,
the configuration selected for the data used corresponds to a
grid of 6×6 cells and 9 intervals of time.

In Fig. 19, it can be seen that the main activity predicted
(in the sense of having more activity than the average) is
placed in the northwestern Africa. Since the highest mag-
nitude releases have been occurred there, the seismic hazard
must be higher in these places, in agreement with the results
presented. The interesting contribution in this paper is the
quantitative evaluation (in probabilistic terms) of the interac-
tion between the different parts of the region, by providing
the times and sizes that best fit the available data, so that
a spatiotemporal characterization of the seismic behavior is
made.

It is also interesting to know the averaged energy release
necessary for the activation of each zone. For this catalogue

 
 
 
 
 
  t           t+τ        t+2τ      t+3τ 

Fig. 12. Real patterns for 6×6 cells and 9 steps. Patterns corre-
sponding from t+4τ to t+8τ are the same as t+3τ .

 
 
 
 
 
 t+τ           t+2τ        t+3τ     t+4τ 

Fig. 13. Simulated patterns for 6×6 cells and 9 steps (Mode I).
Patterns corresponding from t+5τ to t+8τ are the same as t+4τ .

and the resulting bins and steps, the average needed in each
step is around the correspondent to a magnitude equal to 5.5.
This can be seen as a characteristic magnitude of the region
analyzed. If the events of the Algerian zone and those of
the north of Morocco are eliminated, and then this method is
used, the resultant map might mark the main seismogenetic
zones of the Iberian Peninsula. But, as explained, the objec-
tive of the present study is the comparison between Mode I
and II, and to establish a solid basis for other works. So the
discussion will be leaved for future studies.

Following the analysis, as can be observed in Table 2, if a
cell is inactive, it will continue inactive with a high probabil-
ity; an active cell has around the 60% probability of continu-
ing active in the future. Other important feature of the pattern
evolution is that sudden changes are not well modeled. The
predictions made by this model (Mode II) tend to repeat the
latest patterns. An interesting analysis about this behavior is
carried out by doing a diagram of cumulative seismic energy
(Goltz, 1997). Figure 20 shows such a diagram for the data
set analyzed, with the typical shape of a Devil’s staircase.

Lomnitz (1994) used this kind of plots to study the earth-
quake cycles, and applied to them the Hurst method. He
found that these processes have the behavior of the so-called
“Joseph effect” (Mandelbrot and Wallis, 1968): quiet years
tend to be followed by quiet years, and active years by ac-
tive years. This corresponds to a Hurst exponent,H , greater
than 1/2. However, Ogata and Abe (1991) obtained values
of H of about 0.5, with data from Japan and from the whole
world. This means that successive steps are independent, and
the best prediction is the last measured value.

The Hurst method has been applied to the data, and the
results are shown in Fig. 21. The best fit gives a value of
0.48±0.02, with a correlation coefficient of 0.93. This re-
sult is in agreement with those obtained by Ogata and Abe
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 t+τ           t+2τ        t+3τ     t+4τ 

Fig. 14. Simulated patterns for 6×6 cells and 9 steps (Mode II).
Patterns corresponding from t+5τ to t+8τ are the same as t+4τ .

 

Hamming distance: 5 Hamming distance: 3 

Hamming distance: 0 

Fig. 15. Correlation functions and Hamming distances of the simu-
lations for 6×6 cells and 6 steps (Mode I). After the 4th step there
are no changes.

(1991), and the model obtained before reproduces this be-
havior, namely, to repeat the latest patterns, and with inca-
pacity to predict sudden changes. This would be imposed by
the nature of the phenomenon, because of its inherent unpre-
dictability.

6 Conclusions

A spatiotemporal characterization of the seismic dynamics
can be made by maximizing the mutual information, which
takes into account any kind of correlation. An energy crite-
rion for the activation has been introduced, to give the ad-
equate importance to the areas with less number of events,
but with high magnitudes. A new point of view has been
adopted, where a neighborhood determines the activation of
its central cell at the future (Mode II). It could be interpreted
as the risk of being activated, not only from its previous ac-
tivity, but also from the activity of the nearest neighboring
cells. This model gives rules for the transition probabilities
between past and present states, whose simulations are bet-
ter than those obtained by theP1, P2 andP3 model (Mode
I). This means that the calculations have been simplified, and
the generalization to other neighborhoods and dimensions is
easier than with the old scheme.

 

Hamming distance: 2 Hamming distance: 4 

Hamming distance: 3 Hamming distance: 0 

Fig. 16. Correlation functions and Hamming distances of the simu-
lations for 6×6 cells and 9 steps (Mode I). After the 4th step there
are no changes.

 

Hamming distance: 3 Hamming distance: 1 

Hamming distance: 0 

Fig. 17. Correlation functions and Hamming distances of the simu-
lations for 6×6 cells and 6 steps (Mode II). After the 4th step there
are no changes.

For the data utilized, a time interval corresponding to 9
steps, and a spatial resolution of 6×6 cells has been obtained.
It has been found that an inactive zone has less probability of
becoming active than an active one. This is in agreement
with the clustering observed in the general seismicity behav-
ior (Pẽna et al., 1993). An interesting result is that always the
greatest transmission of information is found with the worst
resolution in bins, namely, 6×6. It could be explained as the
interaction of different seismic activities; it is not the same to
characterize the Betic zone (southeastern Spain) or the Pyre-
nean zone (northeastern Spain), as they have different dy-
namics, and, their characteristic times and interaction radii
are different too. If the mutual information in a large area
is calculated, an averaged exchange of information will be
obtained, which will be higher if there are blocks that could
be accounted as homogeneous, in the sense of having simi-
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Hamming distance: 2 Hamming distance: 3 

Hamming distance: 1 Hamming distance: 0 

Fig. 18. Correlation functions and Hamming distances of the simu-
lations for 6×6 cells and 9 steps (Mode II). After the 5th step there
are no changes.

Fig. 19. Seismic hazard map of the Iberian Peninsula and north-
western Africa. The color bar marks the activation probability of
the zone.

lar seismic behavior. With large areas, an average of rules is
made, to the detriment of having a good resolution or more
success. A similar result was obtained by Lomnitz (1994),
who showed that the Hurst analysis should not be applied to
large complex regions, because the localized effects super-
impose each other in such a way that statistics is destroyed.
To avoid this, smaller areas should be studied; or the model
should be complicated, by choosing a different template or
neighborhood, with a higher number of cells.

Finally, it is remarkable the coincidence between the pre-
diction made with this simple model (with a catalogue from
1970 to 2001) and the seismicity observed since 2001. Ex-
cept for a few earthquakes, the main activity has been pro-
duced in the north of Africa, near the predictions (http://neic.
usgs.gov/neis/epic/epic.html). These results stimulate us to

Fig. 20. Cumulative seismic energy for the Iberian Peninsula and
northwestern Africa.

Fig. 21. Hurst diagram for Iberian Peninsula and northwestern
Africa in the period 1970–2001.N is the size of the time interval
and R/S is the rescaled range (for calculation details, see Gimeno,
2000).

continue our research with this method, by testing other ac-
tivation criteria (mainly, threshold criteria) and other neigh-
borhoods.
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A. Jiménez et al.: Probabilistic seismic hazard maps from seismicity patterns analysis 415

Table 1. Transition probabilities for 6×6 cells and 6 steps (Mode
II). The first and the third columns give the initial and final states
of the central cells, respectively (0 is inactive, and 1 is active). The
second column represents the number of active neighboring cells.

Initial state Neighbors Final state Probability

0 0 0 1.00
0 0 1 0.00
0 1 0 0.96
0 1 1 0.04
0 2 0 0.80
0 2 1 0.20
0 3 0 1.00
0 3 1 0.00
0 4 0 NC
0 4 1 NC
1 0 0 0.50
1 0 1 0.50
1 1 0 0.50
1 1 1 0.50
1 2 0 0.75
1 2 1 0.25
1 3 0 NC
1 3 1 NC
1 4 0 NC
1 4 1 NC

Table 2. Transition probabilities for 6×6 cells and 9 steps (Mode
II). The first and the third columns give the initial and final states
of the central cells, respectively (0 is inactive, and 1 is active). The
second column represents the number of active neighboring cells.

Initial state Neighbors Final state Probability

0 0 0 1.00
0 0 1 0.00
0 1 0 0.97
0 1 1 0.03
0 2 0 0.88
0 2 1 0.13
0 3 0 1.00
0 3 1 0.00
0 4 0 NC
0 4 1 NC
1 0 0 0.36
1 0 1 0.64
1 1 0 0.38
1 1 1 0.63
1 2 0 0.40
1 2 1 0.60
1 3 0 NC
1 3 1 NC
1 4 0 NC
1 4 1 NC

References

Agostinelli, C. and Rotondi, R.: Using Bayesian belief networks to
analyze the stochastic dependence between inter-event time and
size of earthquakes, J. Seism., 7, 281–299, 2003.

Bak, P. and Tang, C.: Earthquakes as a Self-Organized Critical Phe-
nomenon, J. Goephys. Res., 94, 15 635–15 637, 1989.

Cover, T. and Thomas, J.: Elements of information theory, Wiley &
Sons, New York, 1991.

Darwin, C.: The prevision of earthquakes, Gerlands Beitr. Geo-
physik, 12, 9–15, 1913.

Fraser, A. and Swinney, H.: Independent coordinates for strange
attractors from mutual information, Phys. Rev. A, 33, 2, 1134–
1140, 1986.
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Pẽna, J., Vidal, F., Posadas, A. M., Morales, J., Alguacil, G., de
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