
Research Article
Autonomous Robust Skill Generation Using Reinforcement
Learning with Plant Variation

Kei Senda and Yurika Tani

Department of Aeronautics and Astronautics, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan

Correspondence should be addressed to Kei Senda; senda@kuaero.kyoto-u.ac.jp

Received 1 December 2013; Revised 24 March 2014; Accepted 24 March 2014; Published 24 April 2014

Academic Editor: Amir H. Gandomi

Copyright © 2014 K. Senda and Y. Tani.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper discusses an autonomous space robot for a truss structure assembly using some reinforcement learning. It is difficult for
a space robot to complete contact tasks within a real environment, for example, a peg-in-hole task, because of error between the real
environment and the controller model. In order to solve problems, we propose an autonomous space robot able to obtain proficient
and robust skills by overcoming error to complete a task. The proposed approach develops skills by reinforcement learning that
considers plant variation, that is, modeling error. Numerical simulations and experiments show the proposed method is useful in
real environments.

1. Introduction

This study discusses an unresolved robotics issue: how to
make a robot autonomous. A robot with manipulative skills
capable of flexibly achieving tasks, like a human being, is
desired. Autonomy is defined as “automation to achieve
a task robustly.” Skills can be considered to be solutions
to achieve autonomy. Another aspect of a skill is includ-
ing a solution method. Most human skill proficiency is
acquired by experience. Since how to realize autonomy is not
clear, skill development must include solution methods for
unknown situations. Our problem is how to acquire skills
autonomously, that is, how to robustly and automatically
complete a task when the solution is unknown.

Reinforcement learning [1] is a promising solution,
whereas direct applications of existing methods with rein-
forcement learning do not robustly complete tasks. Rein-
forcement learning is a framework in which a robot learns
a policy or a control that optimizes an evaluation through
trial and error. It is teacherless learning. By means of rein-
forcement learning, a robot develops an appropriate policy as
mapping from state to actionwhen an evaluation is given.The
task objective is prescribed, but no specific action is taught.
Reinforcement learning often needs many samples. The large
number of samples is due to the large number of states and

actions. So, online learning in a real environment is usually
impractical. Most learning algorithms consist of two pro-
cesses [2]: (1) online identification by trial and error sampling
and (2) finding the optimal policy for the identified model.
These two processes are not separated in typical learning
algorithms such as Q-learning [3]. Reinforcement learning is
said to be adaptive because it uses online identification and
on-site optimal control design. Robustness attained using this
adaptability is often impractical. It takes a very long time for
online identification by means of trial and error.

In our approach, by learning a robust policy rather than
by online identification, reinforcement learning is used to
achieve a solution to an unknown task.

Using our approach, this study addresses an autonomous
space robot for a truss structure assembly. It is difficult for
a space robot to achieve a task, for example, peg-in-hole
task, by contact with a real environment, because of the error
between the real environment and the controller model. In
order to solve the problem, a space robot must autonomously
obtain proficiency and robust skills to counter the error
in the model. Using the proposed approach, reinforcement
learning can achieve a policy that is robust in the face of plant
variation, that is, the modeling error. Numerical simulations
and experiments show that a robust policy is effective in a real
environment and the proposed method is used.

Hindawi Publishing Corporation
Advances in Mechanical Engineering
Volume 2014, Article ID 276264, 12 pages
http://dx.doi.org/10.1155/2014/276264

http://dx.doi.org/10.1155/2014/276264

2 Advances in Mechanical Engineering

Figure 1: Photograph of space robot model and truss.

CMG Thruster

Air
table

Vision
computer

Computer
system

CCD cameras

Manipulator
arm

Air compressor

Control computer
I/O board

Truss

Figure 2: Schematic diagram of experimental system.

2. Need for Autonomy and Approach

2.1. Need for Autonomy. Autonomy is needed wherever
robots work. Below, we discuss why and what kind of
autonomy is required [4, 5] for space robots.

Space robots are required to complete tasks in the
place of extra vehicular activity by an astronaut. Studies
of autonomous systems are needed to realize space robots
that can achieve missions under human-operator command.
There aremany applications for the autonomous space robots
[6].

We developed ground experiments to simulate a free-
flying space robot under orbital microgravity conditions
(Figure 1). Using this apparatus, we have studied robot
autonomy. Targeting control-based autonomy, we developed
an automatic truss structure assembly, and so forth. However,
it has been hard to achieve perfect robot automation because
of various factors. To make a robot autonomous in the face of
the following challenges, we must

(a) solve problems in the actual robot environment;

(b) operate robustly in the face of uncertainties and
variations;

(c) overcome the difficulty of comprehensively predict-
ing a wide variety of states;

(d) identify tasks and find unknown solutions to realize
robust robot autonomy.

2.2. Approach to Autonomy Based on Reinforcement Learning.
Human beings achieve tasks regardless of the above com-
plicating factors, but robots cannot. Many discussions have
rationalized the difficulties as originating in the nature of
human skills. We have not established a means by which we
can realize such skills.This study takes the following approach
to this problem.

Section 4 approaches factors (a) and (b) in part by way of
control-based automation taking account of the robustness
of controls. The autonomous level of this approach is low
because only small variations are allowable.

Section 5 considers how to surmount factors (a), (b), and
(c) by learning. Using a predicted model and transferring
the learned results to the actual system [7] is studied. This
model is identified online and relearned. This procedure is
appliedwhere adaptability or policymodification is needed to
thwart variations in the real environment. In some cases, the
robot completes the targeted tasks autonomously. Learning is
completed within an acceptable calculation time.

Section 6 considers factors (a), (b), (c), and (d). A peg-in-
hole task has higher failure rates using the same approach as
used in Section 5. Because of small differences between the
model and the real environment, failure rates are excessive.
The robot thus must gain skills autonomously. Skills similar
to those of human beings must be generated autonomously.
These skills are developed by reinforcement learning and
additional procedures.

Section 7 evaluates approach robustness and control per-
formance of the newly acquired skills. The skills obtained in
Section 6 are better than those in Section 5.

3. Experimental System and Tasks

3.1. Outline of Experimental System. Our experimental sys-
tem (Figures 1 and 2) simulates a free-flying space robot
in orbit. Robot model movement is restricted to a two-
dimensional plane [5].

The robot model consists of a satellite vehicle and dual
three degrees of freedom (3-DOF) rigid SCARA manipula-
tors. The satellite vehicle has CCD cameras for stereovision
and a position/attitude control system. Each joint has a torque
sensor and a servo controller for fine torque control of the
output axis. Applied force and torque at the end-effector
are calculated using measured joint torque. Air pads are
used to support the space robot model on a frictionless
planar table and to simulate the space environment. RTLinux
is installed on a control computer to control the space
robot model in real time. Stereo images from the two CCD
cameras are captured by a video board and sent into an

Advances in Mechanical Engineering 3

image-processing computer with a Windows OS.The image-
processing computer measures the position and orientation
of target objects in the worksite by triangulation. Visual
information is sent to the control computer via Ethernet.

The position and orientation measured by the stereo
vision system involve errors caused by quantized images,
lighting conditions at the worksite, and so forth. Time-
averaged errors are almost constant in each measurement.
Evaluated errors in the peg-in-hole experiments are modeled
as described below. Hole position errors are modeled as a
normal probability distribution, where the mean is 𝑚 =

0 [mm] and standard deviation is 𝜎 = 0.75 [mm]. Hole
orientation errors are modeled as a normal probability
distribution, where the mean is 𝑚 = 0 [rad] and standard
deviation is 𝜎 = 0.5𝜋/180 [rad].

We accomplish a hand-eye calibration to achieve tasks in
the following sections. An end-effector, a manipulator hand,
grasps a marker with a light-emitting diode (LED). The arm
directs the marker to various locations. The robot calculates
the marker location by using sensors mounted at the joints
of the manipulator arm. The vision system also measures the
marker location by using the stereo image by triangulation.
Measurements using these joint-angle sensors have more
precise resolution and accuracy.Hence,we calibrate the visual
measurements based on measurements using the joint angle
sensors.We consider the joint angle sensormeasurement data
to be the true value.

3.2. Tasks

3.2.1. Truss Assembly Task. Figure 3 illustrates the truss
structure assembly sequence. The robot manipulates a truss
component, connects it to a node, and proceeds each assem-
bly step. Later this task is achieved by controls based upon
mechanics understanding [5]. The truss design is robot
friendly for easy assembling.

3.2.2. Peg-in-Hole Task. The peg-in-hole task is an example
that is intrinsic to the nature of assembly. The peg-in-hole
task involves interaction within the environment that is easily
affected by uncertainties and variations, for example, errors in
force applied by the robot, manufacturing accuracy, friction
at contact points, and so forth. The peg easily transits to a
state in which it can no longer move, for example, wedging
or jamming [8]. Such variations cannot be modeled with
required accuracy.

To complete a task in a given environment, a proposed
method analyzes the human working process and applies
the results to a robot [9]. Even if the human skill for a
task can be analyzed, the results are not guaranteed to be
applicable to a robot. Another method uses parameters in
a force control designed by means of a simulation [10]
but was not found to be effective in an environment with
uncertainty. In yet another method [11], the task achievement
ratios evaluated several predesigned paths in an environment
with uncertainty. An optimal path is determined among
the predesigned paths. There was the possibility a feasible
solution did not exist among predesigned paths.

In the peg-in-hole experiment (Figure 4), the position
and orientation of the hole are measured using a stereo
camera. The robot manipulator inserts a square peg into
a similar sized hole. This experiment is a two-dimensional
plane problem (Figure 5). The space robot model coordinate
system is defined as Σ

0
, the end-effector coordinate system

as Σ
𝐸
, and the hole coordinate system as Σ

ℎ𝑙
. While the

space robot completes its task, the robot grasps the struc-
tural site with another manipulator; the relative relation
between Σ

0
and Σ

ℎ𝑙
is fixed. State variables are defined as

[𝑦
𝑥
, 𝑦
𝑦
, 𝑦
𝜃
, 𝑓
𝑥
, 𝑓
𝑦
, 𝑓
𝜃
], where (𝑦

𝑥
, 𝑦
𝑦
) is the position of Σ

𝐸
in

Σ
0
, 𝑦
𝜃
is the orientation about k

0
-axis, (𝑓

𝑥
,𝑓
𝑦
), and 𝑓

𝜃
are

the forces and torque in Σ
0
that end-effector applies to the

environment.
The peg width is 74.0 [mm] and the hole width is

74.25 [mm]. The hole is only 0.25 [mm] wider than the peg.
The positioning error is composed of the measurement error
and the control error. The robot cannot insert the peg in the
hole by position control if the positioning error is beyond
±0.125 [mm]. Just a singlemeasurement error by stereo vision
often moves the peg outside of the acceptable region.

4. Control-Based Automation

4.1. Truss Assembly Task. Automatic truss assembly was
studied via control-based automation withmechanics under-
standing. The robot achieved an automatic truss structure
assembly [5] by developing basic techniques and integrating
them within the experimental system.

The following sensory feedback control [12] is used for
controlling manipulators:

𝜏 = −J𝑇K
𝑃
(y − y

𝑑
) − K
𝐷
q̇, (1)

where 𝜏 is the control input to the manipulator and J is the
Jacobean matrix. The y is the manipulation variable whose
elements are the hand position/orientation [𝑦

𝑥
, 𝑦
𝑦
, 𝑦
𝜃
], y
𝑑
is

the reference value of y, q is the joint angle vector, and K
𝑃

and K
𝐷
are feedback gains. When the end-effector contacts

the environment and manipulation variable y is stationary
under constraint, the end-effector applies force and torque to
the environment:

f = −K
𝑃
(y − y

𝑑
) . (2)

The force and torque can be controlled by y
𝑑
. This is a

compliant control.
Figure 3 is a series of photographs of the experimental

assembly sequence. As shown in panel (i), the robot holds
on to the worksite with its right arm to compensate for any
reaction force during the assembly.The robot installs the first
component, member 1, during panels (ii) and (iii). The robot
installs other members successively and assembles one truss
unit, panels (iv)–(vi).

Control procedures for the assembly sequence are as
follows. There are target markers in the experiment envi-
ronment as shown in Figures 1 and 3. Target markers
are located at the base of the truss structure and at the
storage site for structural parts. Each target marker has three

4 Advances in Mechanical Engineering

(i) (ii)

(iii) (iv)

(v) (vi)

Figure 3: Sequence of truss structure assembly.

LEDs at triangular vertices. The vision system measures the
marker position and orientation simultaneously. The robot
recognizes the position of a part relative to the target marker
before assembly. The robot places the end-effector position
at the pick-up point, which is calculated from the target
marker position as measured by the stereo vision system.
At the pick-up point, the end-effector grasps a handgrip
attached to the targeted part. The position and orientation
of the part to the end-effector are settled uniquely when
the end-effector grasps the handgrip. The robot plans the
path of the arm and part to avoid collision with any other
object in the work environment. It controls the arm to track
along the planned path. The robot plans a path from the
pick-up point to the placement point, avoiding obstacles
by means of an artificial potential method [13]. Objects in
the environment, for example, the truss under assembly,
are regarded as obstacles. The arm is then directed along a
planned trajectory by the sensory feedback control (1). The
end-effector only makes contact with the environment when

it picks up or places the part. Hence, feedback gains in (1) are
chosen to make it a compliant control.

Consequently, the truss assembly task is successfully com-
pleted by control-based automation. However, measurement
error in the vision system sensors, and so forth, prevents
assembly frombeing guaranteed. Irrespective of uncertainties
and variations at the worksite, the space robotmodel requires
autonomy to complete the task goal.

4.2. Peg-in-Hole Task. The positioning control of (1) tries to
complete the peg-in-hole task. The peg first is positioned
at 𝑦
𝜃
= 0 [rad], it transits to the central axis of the hole,

and it moves in a positive direction, toward i
0
. The peg

does not contact the environment during transition from the
initial state to the goal. Insertion is successful if the position
control of the peg relative to the hole is free from error.
Unfortunately, the peg-in-hole task is often unsuccessful
because of the existing error. The robot cannot insert the
peg in the hole by position control if the positioning error

Advances in Mechanical Engineering 5

Figure 4: Photograph of peg-in-hole experiment setup.

y𝜃

(yx, yy)
∑

0

∑
E

∑
hl

Goal position

Center of hole

Action

u1

u3 u4

u2

u5 u6

k0 j0

i0

kE

jE

iE

khl jhl

ihl

Figure 5: Definition of peg-in-hole task.

is greater than ±0.125 [mm]. So, single measurement error
using stereo vision is often beyond the acceptable error. The
manner in which the task fails is almost the same as shown in
Figure 8 in the next section.

5. Existing Method for Autonomy with
Reinforcement Learning

5.1. Outline of Existing Method with Reinforcement Learning.
Reinforcement learning [1] is used to generate autonomous
robot action.

In “standard” learning (Figure 6(a)), controller K
𝑄

is
designed in advance by learning the nominal plant model
P
𝑁
, and it is applied to real plant P. We use a policy called

controllerK
𝑄
, which is designed with reinforcement learning

methods. When variations exist, for example, measurement
error in the vision system, unexpected obstacles appear in the
environment, and so forth, andK

𝑄
cannot complete tasks due

to poor robustness and adaptability.

As shown in Figure 6(b), new plant model P
𝑁

is
reconstructed using visual measurement. Controller K

𝑄
is

designed for the reconstructed model P
𝑁
. Controller K

𝑄
is

then applied to real plant P. Learning converges within a
practical calculation time and the new policy is applicable
to the truss structure assembly [5]. This method works
well because it treats the kinematic problem without force
interaction between the robot and the environment.Theplant
model for learning is reconstructed by visual measurement
within a short time. This method has adaptability only if the
model can be reconstructed accurately within a short time.

If the robot cannot complete the task with the controller
due to error between the model and the real plant, the
robot switches to online learning. Adaptability is realized
by online identification and learning. However, this cannot
be used for peg-in-hole task, because online identification
requires too much time. In the next section, a reinforcement
learning problem for a peg-in-hole task requires several tens
of thousands of state-action pairs. It requires tens of days for
online identification if a hundred samples are selected for
each state-action pair and each sampling takes one second.

5.2. Existing Method with Reinforcement Learning

5.2.1. Problem Definition. Following general dynamic pro-
gramming (DP) formulations, this paper treats a discrete-
time dynamic system in a reinforcement learning problem.
A state 𝑠

𝑖
and an action 𝑢

𝑘
are the discrete variables and

the elements of finite sets S and U, respectively. The state
set S is composed of 𝑁

𝑠
states denoted by 𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑁
𝑠

and an additional termination state 𝑠
0
. The action set U is

composed of 𝐾 actions denoted by 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝐾
. If an agent

is in state 𝑠
𝑖
and chooses action 𝑢

𝑘
, it will move to state 𝑠

𝑗

and incur a one-step cost 𝑔(𝑠
𝑖
, 𝑢
𝑘
, 𝑠
𝑗
) within state transition

probability 𝑝
𝑖𝑗
(𝑢
𝑘
). This transition is denoted by (𝑠

𝑖
, 𝑢
𝑘
, 𝑠
𝑗
).

There is a cost-free termination state 𝑠
0
, where 𝑝

00
(𝑢
𝑘
) = 1,

𝑔(𝑠
0
, 𝑢
𝑘
, 𝑠
0
) = 0, and 𝑄(𝑠

0
, 𝑢
𝑘
) = 0, ∀𝑢

𝑘
. We assume that

the state transition probability 𝑝
𝑖𝑗
(𝑢
𝑘
) is dependent on only

current state 𝑠
𝑖
and action 𝑢

𝑘
. This is called a discrete-time

finite Markov decision process (MDP). The system does not
explicitly depend on time. Stationary policy 𝜇 is a function
mapping states into actions with 𝜇(𝑠

𝑖
) = 𝑢

𝑘
∈ U, and

𝜇 is given by the corresponding time-independent action
selection probability 𝜋(𝑠

𝑖
, 𝑢
𝑘
).

In this study, we deal with an infinite horizon problem
where the cost accumulates indefinitely. The expected total
cost starting from an initial state 𝑠0 = 𝑠

𝑖
at time 𝑡 = 0 and

using a stationary policy 𝜇 is

𝐽
𝜇
(𝑠
𝑖
) = 𝐸

𝑠
1
,𝑠
2
,...

[

∞

∑

𝑡=0

𝑔 (𝑠
𝑡
, 𝜇 (𝑠
𝑡
) , 𝑠
𝑡+1
) | 𝑠
0
= 𝑠
𝑖
] , (3)

where 𝐸
𝑥
[⋅] denotes an expected value, and this cost is

called 𝐽-factor. Because of the Markov property, a 𝐽-factor of

6 Advances in Mechanical Engineering

Nominal model PN

Application KQ to P

PN

KQ KQ

P

(a)

Updated model P
N

by measurement

Application K
Q to P

PP
N

K
Q

K
Q

(b)

Given variation ΔP
to nominal model PN

Application K
Q to P

PN

K
Q K

Q

P

ΔP

(c)

Figure 6: Learning using (a) nominal plant model, (b) updated plant model, and (c) plant model with variation.

a policy 𝜇 satisfies

𝐽
𝜇
(𝑠
𝑖
) =

𝐾

∑

𝑘=1

𝜋 (𝑠
𝑖
, 𝑢
𝑘
)

𝑁
𝑠

∑

𝑗=0

𝑝
𝑖𝑗
(𝑢
𝑘
) {𝑔 (𝑠

𝑖
, 𝑢
𝑘
, 𝑠
𝑗
) + 𝐽
𝜇
(𝑠
𝑗
)} ,

∀𝑠
𝑖
.

(4)

A policy 𝜇 is said to be proper if 𝜇 satisfies 𝐽𝜇(𝑠
𝑖
) < ∞, ∀𝑠

𝑖
.

We regard the 𝐽-factor of every state as an evaluation
value, and the optimal policy 𝜇∗ is defined as the policy that
minimizes the 𝐽-factor:

𝜇
∗
(𝑠
𝑖
) ≡ argmin

𝜇

𝑁
𝑠

∑

𝑖=1

𝐽
𝜇
(𝑠
𝑖
) , ∀𝑠

𝑖
. (5)

The 𝐽-factor of the optimal policy is defined as the optimal
𝐽-factor. It is denoted by 𝐽∗(𝑠

𝑖
).

The optimal policy defined by (5) satisfies Bellman’s
principle of optimality. Then, the optimal policy is stationary
and deterministic. The optimal policy can be solved by
minimizing the 𝐽-factor of each state independently. Hence,

the optimal 𝐽-factors satisfy the following Bellman equation,
and the optimal policy is derived from the optimal 𝐽-factors:

𝐽
∗
(𝑠
𝑖
) = min
𝑢
𝑘

𝑁
𝑠

∑

𝑗=0

𝑝
𝑖𝑗
(𝑢
𝑘
) {𝑔 (𝑠

𝑖
, 𝑢
𝑘
, 𝑠
𝑗
) + 𝐽
∗
(𝑠
𝑗
)} , (6)

𝜇
∗
(𝑠
𝑖
) = argmin

𝑢
𝑘

𝑁
𝑠

∑

𝑗=0

𝑝
𝑖𝑗
(𝑢
𝑘
) {𝑔 (𝑠

𝑖
, 𝑢
𝑘
, 𝑠
𝑗
) + 𝐽
∗
(𝑠
𝑗
)} . (7)

5.2.2. Solutions. The existing type of reinforcement learning
problem is solved as “standard” learning in Figure 6(a). It
obtains the optimal policy 𝜇∗nom, which minimizes the 𝐽-
factors of (7) for the nominal plant. It corresponds to con-
troller K

𝑄
in Figure 6(a). The optimal 𝐽-factor 𝐽∗nom of 𝜇∗nom

can be obtained by the DP-based solutions. The solutions are
mentioned in [1, 2], but they are omitted here.

5.3. Learning Skill for Peg-in-Hole by Existing Method

5.3.1. Problem Definition of Peg-in-Hole. Here, the peg-in-
hole task defined in Section 3.2.2 is redefined as a reinforce-
ment learning problem.

State variables [𝑦
𝑥
, 𝑦
𝑦
, 𝑦
𝜃
, 𝑓
𝑥
, 𝑓
𝑦
, 𝑓
𝜃
] in Section 3.2.2

are continuous but discretized into 1.0 [mm], 1.0 [mm],
0.5𝜋/180 [rad], 2.0 [N], 1.0 [N], and 0.6 [Nm] in the model
for reinforcement learning.The discrete state space has 4,500
discrete states, where the number of each state variable is

Advances in Mechanical Engineering 7

[5, 5, 5, 4, 3, 3]. Robot action at the end-effector is 𝑢
1
, 𝑢
2
, 𝑢
3
,

and 𝑢
4
, at each of the end-effector states transiting by ±1

in the direction of the i
0
-axis or j

0
-axis, and 𝑢

5
and 𝑢

6
, at

each of the end-effector states transiting by ±1 about the k
0
-

axis of rotation. State-action space is described in the space
robot model coordinate system Σ

0
. The hole is 0.25 [mm]

wider than the peg, and (𝑦
𝑥
, 𝑦
𝑦
) are quantized larger than this

difference.
Control in (1) is used to transit from present state 𝑠

𝑖
to

the next state 𝑠
𝑗
by action 𝑢

𝑘
. The reference manipulation

variable to make the transition to 𝑠
𝑗
is y(𝑠𝑗)
𝑑
= y(𝑠𝑖)
𝑑
+ 𝛿y(𝑠𝑖)
𝑑

given by 𝛿y(𝑠𝑖)
𝑑
(𝑢
𝑘
) (𝑘 = 1, 2, . . . , 6), where 𝛿y(𝑠𝑖)

𝑑
is kept

constant during transition. When the end-effector contacts
the environment and manipulation variable y is stationary
under constraint, the end-effector applies force and torque
to the environment f = −K

𝑃
(y − y

𝑑
) as (2), where y

𝑑
is

the reference manipulation variable. Force and torque are
controlled by y

𝑑
, which is changed by an action. This is a

compliant control, a force control. Tasks in which the end-
effector contacts the environment, for example, peg-in-hole,
demand a control with compliance. Therefore, a compliant
control is essential as a basic control.

The robot takes the next action after (1) control settles
and the peg becomes stationary. Regardless of whether the
peg is in contact with the environment, the robot waits for
settling and proceeds to the next action. For this reason, state
variables do not include velocity.

The goal is to achieve states with the largest 𝑦
𝑥
, the peg

position in i
0
-direction, in the state space.The one-step cost is

𝑔(𝑠
𝑖
, 𝑢
𝑘
, 𝑠
𝑗
) = 1 for all states other than the goal state. Hence,

the 𝐽-factor is the expected step number from 𝑠
𝑖
to the goal.

5.3.2. Learning Method. State transition probabilities for the
state-action space in the previous section are calculated with
sample data. Sample data are calculated with a dynamic
simulator in a spatially continuous state space. The dynamic
simulator is constructed with an open-source library, the
open dynamics engine (ODE) developed by Russell Smith.
The numerical model of this simulator has continuous space,
force, and time in contrast to the discretized models for
reinforcement learning in Section 5.2. This discretized state
transition model is regarded as plant P

𝑁
, and the method

in Figure 6(a) is applied. The optimal policy 𝜇∗nom, that is,
controllerK

𝑄
, is derived from the solution in Section 5.2.The

optimal policy 𝜇∗nom is applied to the dynamic simulator with
a continuous state-action space or the hardware experimental
setup, the real plant P in Figure 6(a).This study does not deal
with the online learning.

5.3.3. Learning Result. The result of a numerical simulation
in which controller K

𝑄
is applied to the environment with

no position/orientation error is shown. The peg moves and
arrives at the goal as shown in Figure 7. Peg positioning is
first changed to 𝑦

𝜃
= 0 [rad]. After the peg transits to the hole

central axis, it is moved in a positive direction toward i
0
.Then

the peg is inserted into the hole. During the transition from
the initial state to the goal, the peg does not make contact

Action

Transition

Figure 7: Trajectory of controller K
𝑄
in a simulation without any

hole position error.

Action

Transition

Figure 8: Trajectory of controller K
𝑄
in a simulation with hole

position error −0.5 [mm] in j
0
.

with the environment, and the end-effector applies force and
torque, [𝑓

𝑥
, 𝑓
𝑦
, 𝑓
𝜃
] = [0, 0, 0].

In an environment with the hole position error of
−0.5 [mm] in j

0
direction, the peg does not arrive at the goal

with controller K
𝑄
; see Figure 8. The task is not completed

using K
𝑄
due to small errors caused by visual measurement,

and so forth.

6. Autonomous Acquisition of
Skill by Learning

6.1. Autonomous Acquisition of Skill for Peg-in-Hole. A robot
can achieve peg positioning or movement with contact force,
and it must have basic control functions same as a human
being. Human vision measurement and positioning control
are not accurate enough. However, the rate of a human failure
in the same task is not as high as that of a robot. One reason
for this may be the skills a human being brings to the task.

Ahumanbeing conducting peg-in-hole task uses a typical
sequence of actions (Figure 9). First, the human being puts
a corner of the peg inside the hole. The peg orientation is
inclined. The peg is in contact with the environment. Two
points of the peg, the bottom and a side, are in contact with
the environment, as shown in the close-up in Figure 9. The
human then rotates the peg and pushes it against the hole and
maintains the two contact points. The two corners are then
inserted into the hole. Finally, the human inserts the peg into
the hole and completes the task.

Human vision measurement accuracy and positioning
control accuracy are not high. A human presumably develops
skill while manipulating this situation. We conducted an
experiment to check whether robot learning in the same
situation could achieve the task as well as a human.

This situation conceptually corresponds to Figure 6(c).
Plant P

𝑁
+ ΔP denotes a variation plant with error caused by

visual measurement, and so forth. Variation plant set {P
𝑁
+

8 Advances in Mechanical Engineering

Close-up

Contact points

Figure 9: Human skill.

ΔP} is composed of all the variation plants that can exist.
Real plant P is supposed to be a member of variation plant
set {P

𝑁
+ ΔP}. The learning robot obtains controller K

𝑄
. The

controller is able to complete the task for all of the variation
plants in {P

𝑁
+ ΔP}.

6.2. Problem Definition for Reinforcement Learning with Vari-
ation. We assume there are 𝑁 variation plants around the
estimated plant (the nominal plant). We use a set composed
of𝑁 variation plants for learning.

We consider difference 𝑤
𝑙
between a variation plant and

the nominal plant in each state, which is a discrete variable
and the element of finite set W. Finite set W is composed
of 𝐿 differences denoted by 𝑤

0
, 𝑤
1
, . . . , 𝑤

𝐿−1
. Difference 𝑤

0

indicates no difference. If an agent is in state 𝑠
𝑖
with difference

𝑤
𝑙
and chooses action 𝑢

𝑘
, it will move to 𝑠

𝑗
within a state

transition probability 𝑝
𝑖𝑗
(𝑢
𝑘
; 𝑤
𝑙
) and incur a one-step cost

𝑔(𝑠
𝑖
, 𝑢
𝑘
, 𝑠
𝑗
; 𝑤
𝑙
). This transition is denoted by (𝑠

𝑖
, 𝑢
𝑘
, 𝑠
𝑗
; 𝑤
𝑙
).

Difference𝑤
𝑙
can be considered as the disturbance that causes

state transition probability 𝑝
𝑖𝑗
(𝑢
𝑘
; 𝑤
0
) to vary to 𝑝

𝑖𝑗
(𝑢
𝑘
; 𝑤
𝑙
).

We assume that the 𝑝
𝑖𝑗
(𝑢
𝑘
; 𝑤
𝑙
) and 𝑔(𝑠

𝑖
, 𝑢
𝑘
, 𝑠
𝑗
; 𝑤
𝑙
) are given.

Difference 𝑤
𝑙
at each state is determined by a variation

plant. Variation 𝜂 is a function mapping states into difference
with 𝜂(𝑠

𝑖
) = 𝑤
𝑙
∈W.The nominal plant is defined by 𝜂

0
(𝑠
𝑖
) =

𝑤
0
for all states 𝑠

𝑖
. The plant does not explicitly depend on

time, so variation 𝜂 is time-invariant. We assume that 𝜂(𝑠
𝑖
) =

𝑤
𝑙
is given.
A plant set composed of 𝑁 plants used for learning is

represented by H = {𝜂
0
, 𝜂
1
, . . . , 𝜂

𝑁−1
}. Set H corresponds

to {P
𝑁
+ ΔP}. Let 𝜌(𝜂

𝑛
) denote the probability that the

plant variation is 𝜂
𝑛
. We call this the existing probability of

variation plant 𝜂
𝑛
. We assume that 𝜌(𝜂) is given at time 𝑡 = 0.

For set H, the expected cost of a policy 𝜇 starting from
an initial state 𝑠0 = 𝑠

𝑖
at 𝑡 = 0 is

𝐽

𝜇

(𝑠
𝑖
)

= 𝐸

𝜂,𝑠
1
,𝑠
2
,...

[

∞

∑

𝑡=𝑡
0

𝑔 (𝑠
𝑡
, 𝜇 (𝑠
𝑡
) , 𝑠
𝑡+1
; 𝜂 (𝑠
𝑡
)) | 𝑠
0
= 𝑠
𝑖
, 𝜂 ∈H] ,

(8)

which is the 𝐽-factor of this problem. This 𝐽-factor formula
using the plant existing probability is

𝐽

𝜇

(𝑠
𝑖
) =

𝑁−1

∑

𝑛=0

𝜌 (𝜂
𝑛
) 𝐽
𝜇,𝜂
𝑛

(𝑠
𝑖
) , (9)

where 𝐽𝜇,𝜂𝑛(𝑠
𝑖
) denotes the expected cost using the policy 𝜇

on a plant 𝜂
𝑛
starting from an initial state 𝑠

𝑖
. It satisfies

𝐽
𝜇,𝜂
𝑛

(𝑠
𝑖
) =

𝐾

∑

𝑘=1

𝜋 (𝑠
𝑖
, 𝑢
𝑘
)

𝑁
𝑠

∑

𝑗=0

𝑝
𝑖𝑗
(𝑢
𝑘
; 𝜂
𝑛
(𝑠
𝑖
))

× {𝑔 (𝑠
𝑖
, 𝑢
𝑘
, 𝑠
𝑗
; 𝜂
𝑛
(𝑠
𝑖
)) + 𝐽

𝜇,𝜂
𝑛

(𝑠
𝑗
)} .

(10)

We define the optimal policy as

𝜇
∗
(𝑠
𝑖
) ≡ argmin

𝜇

𝑁
𝑠

∑

𝑖=1

𝐽

𝜇

(𝑠
𝑖
) , ∀𝑠

𝑖
, (11)

which minimizes the 𝐽-factor of every state. The 𝐽-factor
of the optimal policy 𝜇∗ is defined as the optimal 𝐽-factor,
represented by 𝐽∗(𝑠

𝑖
). The objective is to obtain the optimal

policy. We assume that there is at least one policy 𝜇 satisfying
𝐽

𝜇

(𝑠
𝑖
) < ∞, ∀𝑠

𝑖
, in this problem. Henceforth, we will call this

problem the original problem.
The variation plant in the original problem correlates with

differences between any two states. Due to this correlation,
the optimal policy does not satisfy Bellman’s principle of
optimality [14].Therefore, the optimal policy and the optimal
𝐽-factor in this problem do not satisfy (6) and (7). In general,
the optimal policy is not stationary. If policies are limited to
stationary, the optimal policy is stochastic.

Therefore, another problem definition or another solu-
tion method is needed.

6.3. Solutions for a Relaxed Problem of Reinforcement Learning
with Variation. We relax the original problem to recover the
principle of optimality.Then, we can find the optimal 𝐽-factor
efficiently by applying DP algorithms to the relaxed problem.
We treat a reinforcement learning problem based on a two-
player zero-sum game.

We assume that differences, 𝑤
0
, 𝑤
1
, . . . , 𝑤

𝐿
, exist inde-

pendently in each state 𝑠
𝑖
. Then the original problem is

relaxed to a reinforcement learning problem [15–17] based
on a two-player zero-sum game [18] whose objective is to
obtain the optimal policy for the worst variation maximizing
the expected cost. Since the correlations of differences in
a variation plant are ignored, the principle of optimality is
recovered.

The H
2𝑝𝑧𝑠

is defined as the set of variation plants
consisting of all possible combinations of any differences.
Since each state has 𝐿 types of differences, the number of
variation plants inH

2𝑝𝑧𝑠
is 𝐿𝑁𝑠 . We define the optimal policy

𝜇
∗

2𝑝𝑧𝑠
as the policy minimizing the expected cost against the

worst variation 𝜂∗
2𝑝𝑧𝑠

maximizing the expected cost

(𝜇
∗

2𝑝𝑧𝑠
, 𝜂
∗

2𝑝𝑧𝑠
) ≡ argmin

𝜇
max
𝜂∈H
2𝑝𝑧𝑠

𝑁
𝑠

∑

𝑖=1

𝐽
𝜇,𝜂
(𝑠
𝑖
) , (12)

and the optimal 𝐽-factor 𝐽∗
2𝑝𝑧𝑠
(𝑠
𝑖
) is defined as the 𝐽-factor of

the optimal policy and the worst variation.

Advances in Mechanical Engineering 9

Since the principle of optimality is recovered, the optimal
𝐽-factor satisfies the following Bellman equation:

𝐽
∗

2𝑝𝑧𝑠
(𝑠
𝑖
)

= min
𝑢
𝑘

max
𝑤
𝑙

𝑁
𝑠

∑

𝑗=0

𝑝
𝑖𝑗
(𝑢
𝑘
; 𝑤
𝑙
) {𝑔 (𝑠

𝑖
, 𝑢
𝑘
, 𝑠
𝑗
; 𝑤
𝑙
) + 𝐽
∗

2𝑝𝑧𝑠
(𝑠
𝑗
)} .

(13)

Therefore, the optimal 𝐽-factor can be obtained by a DP
algorithm. Using the optimal 𝐽-factor, the optimal policy and
the worst variation are obtained by

(𝜇
∗

2𝑝𝑧𝑠
(𝑠
𝑖
) , 𝜂
∗

2𝑝𝑧𝑠
(𝑠
𝑖
)) = argmin

𝑢
𝑘

max
𝑤
𝑙

𝑁
𝑠

∑

𝑗=0

𝑝
𝑖𝑗
(𝑢
𝑘
; 𝑤
𝑙
)

× {𝑔 (𝑠
𝑖
, 𝑢
𝑘
, 𝑠
𝑗
; 𝑤
𝑙
) + 𝐽
∗

2𝑝𝑧𝑠
(𝑠
𝑗
)} .

(14)

The optimal policy 𝜇∗
2𝑝𝑧𝑠

is applicable to all 𝐿𝑁𝑠 variation
plants in H

2𝑝𝑧𝑠
. The optimal policy 𝜇∗

2𝑝𝑧𝑠
is proper for all

plants in H of Section 6.2 because H ⊆ H
2𝑝𝑧𝑠

holds.
However, the actual number of plants to which the policy
should be applied is only𝑁 and𝑁 ≪ 𝐿𝑁𝑠 . Hence, the optimal
policy of the reinforcement learning problem based on the
two-player zero-sum game is often conservative and yields
poor performance because the problem does not consider the
existence of variation plants. We cannot solve this problem if
there is no policy satisfying 𝐽𝜇,𝜂(𝑠

𝑖
) < ∞, ∀𝑠

𝑖
, ∀𝜂 ∈ H

2𝑝𝑧𝑠
,

even though the policy 𝜇 exists and satisfies ∑
𝑖
𝐽
𝜇,𝜂
𝑛
(𝑠
𝑖
) <

∞, ∀𝜂
𝑛
∈ H. Hence, a solution method to solve the original

problem is desired.

6.4. Learning of Peg-in-Hole Task with Variation

6.4.1. Problem Definition of Peg-in-Hole Task with Variations.
This section uses the same problem definition for peg-in-hole
as Section 5.3.1.The following is added to take variations into
account.

The hole position and orientation are measured by the
stereo vision system. These measurements involve errors
caused by quantized images, lighting conditions at a worksite,
and so forth. Time-averaged errors are almost constant while
the space robot performs the task, unlike white noise whose
time-averaged error is zero. Error evaluations are modeled as
described below. Hole position errors are modeled as normal
probability distributions, where the mean is 𝑚 = 0 [mm]
and standard deviation is 𝜎 = 0.75 [mm]. Hole orientation
errors aremodeled as normal probability distributions, where
the mean is 𝑚 = 0 [rad] and standard deviation is 𝜎 =
0.5𝜋/180 [rad]. If the error’s statistical values gradually vary,
we have to estimate them online. The relative position and
orientation between Σ

0
and Σ

ℎ𝑙
are fixed during the task. The

plant variations are modeled as hole position and orientation
measurement errors.

Consider these errors as variations ΔP added to nominal
model P

𝑁
(Figure 6(c)). We constructed 9 plants 𝜂

0
∼ 𝜂
8

Table 1: Hole position of variation plant 𝜂
𝑛
from the nominal plant.

Plants Variations
Position in j

0
(mm) Rotation about k

0
(rad)

𝜂
0

0.0 0.0

𝜂
1

0.0 −(0.5/180)𝜋

𝜂
2

−1.0 0.0

𝜂
3

−1.0 −(0.5/180)𝜋

𝜂
4

−1.0 (0.5/180)𝜋

𝜂
5

0.0 (0.5/180)𝜋

𝜂
6

1.0 0.0

𝜂
7

1.0 (0.5/180)𝜋

𝜂
8

1.0 −(0.5/180)𝜋

for learning, as listed in Table 1, where each plant has a
combination of errors among [−1.0, 0.0, 1.0] [mm] in j

0
-axis

direction and [−(0.5/180)𝜋, 0.0, (0.5/180)𝜋] [rad] in k
0
-axis

rotation. Plant 𝜂
0
with no error both in j

0
-axis direction

and in k
0
-axis rotation is the nominal plant. The plant

existing probabilities followed the above-mentioned normal
probability distributions.

In the original problem, plant 𝜂
𝑛
determines the state

transition probability as 𝑝
𝑖𝑗
(𝑢
𝑘
; 𝜂
𝑛
) for all state transi-

tions (𝑠
𝑖
, 𝑢
𝑘
, 𝑠
𝑗
) simultaneously. The state transition prob-

ability is represented by 𝑝
𝑖𝑗
(𝑢
𝑘
; 𝑤
𝑛
(𝑠
𝑖
)) where W(𝑠

𝑖
) =

{𝑤
0
(𝑠
𝑖
), . . . , 𝑤

𝑁−1
(𝑠
𝑖
)} and𝑤

𝑛
(𝑠
𝑖
) = 𝜂
𝑛
(𝑠
𝑖
). On the other hand,

the two-player zero-sum game allows difference 𝑤
𝑙
at state

𝑠
𝑖
to be chosen arbitrarily from W(𝑠

𝑖
). The one-step cost is

𝑔(𝑠
𝑖
, 𝑢
𝑘
, 𝑠
𝑗
; 𝑤
𝑙
) = 1.

In the later simulations and experiments to evaluate
the learned results, the hole position and orientation are
derived from the above normal probability distribution. In
the simulations, a variation in the hole position and attitude is
chosen for each episode, but the variation is invariant during
the episode.

6.4.2. Learning Method. Under the conditions of the above
problem definition, a policy is obtained by the solution in
Section 6.3. It is the optimal policy 𝜇∗

2𝑝𝑧𝑠
of the two-player

zero-sum game, that is,K
𝑄
in Figure 6(c).The optimal policy

𝜇
∗

2𝑝𝑧𝑠
is applied to the dynamic simulator with a continuous

state-action space or the experimental hardware setup, which
is a real plant P in Figure 6(c). No online learning is needed.

There is no proper policy for all plants in H
2𝑝𝑧𝑠

if the
variations in Table 1 are too large. In this case, there is no
policy satisfying the reinforcement learning problem based
on the two-player zero-sum game. A typical approach for
this situation is to make the variations smaller, to reconstruct
H
2𝑝𝑧𝑠

, and to solve the two-player zero-sum game again.This
approach is repeated if we cannot obtain any solutions. This
approach reduces the robustness of solutions.

6.4.3. Control Results. In results for numerical simulation
(Figure 10), where the peg arrives at the goal using controller
K
𝑄

in the environment without hole position/orientation
error. Peg positioning is firstly inclined, and the peg moves

10 Advances in Mechanical Engineering

Action

Transition

Figure 10: Trajectory of controller K
𝑄
in a simulation using nominal plant 𝜂

0
without any hole position error.

Action

Transition

Figure 11: Trajectory of controllerK
𝑄
in a simulation using plant 𝜂

1
.

Action

Transition

Figure 12: Trajectory of controller K
𝑄
in a simulation using plant

𝜂
2
.

in the positive direction, toward i
0
. Then, the peg’s corner is

inserted in the hole. The peg makes contact with a corner of
the hole. The peg transits in a positive direction, toward j

0
,

while maintaining contact. Another corner of the peg is put
inside the hole when the action in the direction of i

0
and j
0

is repeated. Peg positioning is changed to 𝑦
𝜃
= 0 [rad], and

the peg slips into the hole.The task is completed.The learned
result is similar to that of human skill for the peg-in-hole task
in Figure 9.

The peg has arrived at the goal using controller K
𝑄
for

variation plants 𝜂
1
–𝜂
8
. The numerical results for 𝜂

1
–𝜂
4
are

shown in Figures 11, 12, 13, and 14. Each transition is similar
to the case of 𝜂

0
, and the peg is inserted into the hole.

The task is achieved with controller K
𝑄

in the same
environment with error, where K

𝑄
previously did not work

at all. This means that the action generated by controller K
𝑄

is robust against variations as well as human skill. We judge
the robot, that is, controller K

𝑄
, to have obtained a skill,

the ability to complete a task when the vision measurement
accuracy is low.

Action

Transition

Figure 13: Trajectory of controller K
𝑄
in a simulation using plant

𝜂
3
.

Action

Transition

Figure 14: Trajectory of controller K
𝑄
in a simulation using plant

𝜂
4
.

7. Evaluation of Obtained Skill

7.1. Results of Hardware Experiments. Example results in the
hardware experiment using controllersK

𝑄
andK

𝑄
are shown

in Figure 15. The following variations are used: +0.3 [mm]
in i
0
, +1.2 [mm] in j

0
, and +0.5𝜋/180 [rad] rotation about

the k
0
-axis. Controller K

𝑄
cannot complete the task due to

environmental variations, but controller K
𝑄
can.

7.2. Evaluation of Robustness and Control Performance.
Robustness and control performance of controllers K

𝑄
and

K
𝑄
are evaluated by simulations and hardware experiments,

the peg-in-hole task.
Variation plants, that is, error in hole position and orien-

tation, are derived from the normal probability distribution
in Section 6.4. The robustness and the control performance
are evaluated, respectively, by the task achievement ratio and
the average step number to the goal. The achievement ratio
equals the number of successes divided by the number of
trials. Table 2 shows the achievement ratios and the average
step number of K

𝑄
and K

𝑄
as evaluated by simulations and

hardware experiments. The simulations and the experiments
are executed 10,000 times and 50 times, respectively. The
achievement ratios ofK

𝑄
are 59% and 64% in simulation and

hardware experiments. Those of K
𝑄
dramatically increase

to 99% in numerical simulation and 96% in hardware
experiments.These results show that the robot autonomously

Advances in Mechanical Engineering 11

0.52

0.54

0.56

0.58

0.6

0.62

0.45 0.5 0.55

yy (m)

y
x

(m
)

(a)

0.45 0.5 0.55

yy (m)

0.52

0.54

0.56

0.58

0.6

0.62

y
x

(m
)

(b)

Figure 15: Experimental trajectories using two controllers in an environment with error (a) controller K
𝑄
and (b) controller K

𝑄
.

Table 2: Achievement ratios and averaged step numbers of peg-in-
hole task with controllers K

𝑄
and K

𝑄
.

Controller Simulation Experiment
Ratio Step number Ratio Step number

K
𝑄

58.7% 19.3 64% 21

K
𝑄

98.7% 9.83 96% 17

generates robust skill using the proposed learning method.
The difference in step numbers between hardware experi-
ments and simulations, an increase in hardware steps, may
be due to variations, for example, irregular friction in the
environment, joint flexibility, and so forth. Such variables are
not considered in the numerical simulation.

Robust skills are thus autonomously generated by learn-
ing in this situation, where variations make task achievement
difficult.

8. Conclusions

We have applied reinforcement learning to obtain successful
completion of a given task when a robot normally cannot
complete the task using controller designed in advance. Peg-
in-hole achievement ratios are usually low when we use con-
ventional learning without consideration of plant variations.
In the proposed method, using variation consideration, the
robot autonomously obtains robust skills which enabled the
robot to achieve the task. Simulation and hardware experi-
ments have confirmed the effectiveness of our proposal. Our
proposal also ensures robust control by conducting learning
stages for a set of plant variations.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, Mass, USA, 1998.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Program-
ming, Athena Scientific, 1996.

[3] S. Fujii, K. Senda, and S. Mano, “Acceleration of reinforcement
learning by estimating state transition probability model,”
Transactions of the Society of Instrument and Control Engineers,
vol. 42, no. 1, pp. 47–53, 2006 (Japanese).

[4] K. Senda, “An approach to autonomous space robots,” Systems,
Control and Information, vol. 45, no. 10, pp. 593–599, 2001
(Japanese).

[5] K. Senda, Y. Murotsu, A. Mitsuya et al., “Hardware experiments
of a truss assembly by an autonomous space learning robot,”
Journal of Spacecraft and Rockets, vol. 39, no. 2, pp. 267–273,
2002.

[6] S. B. Skaar and C. F. Ruoff, Eds., Teleoperation and Robotics in
Space, AIAA, Washington, DC, USA, 1995.

[7] M. Asada, “Issues in applying robot learning and evolutionary
methods to real environments,” Journal of Society of Instru-
ment & Control Engineers, vol. 38, no. 10, pp. 650–653, 1999
(Japanese).

[8] D. E.Whitney, “Quasi-static assembly of compliantly supported
rigid parts,” Journal of Dynamic Systems, Measurement and
Control, vol. 104, no. 1, pp. 65–77, 1982.

[9] D. Sato andM. Uchiyama, “Peg-in-hole task by a robot,” Journal
of the Japan Society of Mechanical Engineers, vol. 110, no. 1066,
pp. 678–679, 2007 (Japanese).

[10] N. Yamanobe, Y. Maeda, T. Arai et al., “Design of force control
parameters considering cycle time,” Journal of the Robotics
Society of Japan, vol. 24, no. 4, pp. 554–562, 2006 (Japanese).

12 Advances in Mechanical Engineering

[11] T. Fukuda, W. Srituravanich, T. Ueyama, and Y. Hasegawa, “A
study on skill acquisition based on environment information
(task path planning for assembly task considering uncertainty),”
Transactions of the Japan Society of Mechanical Engineers C, vol.
66, no. 645, pp. 1597–1604, 2000 (Japanese).

[12] F. Miyazaki and S. Arimoto, “Sensory feedback for robot
manipulators,” Journal of Robotic Systems, vol. 2, no. 1, pp. 53–71,
1985.

[13] C. I. Connolly, J. B. Burns, and R. Weiss, “Path planning using
Laplace’s equation,” in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 2102–2106, May
1990.

[14] K. Senda and Y. Tani, “Optimality principle broken by con-
sidering structured plant variation and relevant robust rein-
forcement learning,” in Proceedings of the IEEE International
Conference on Systems,Man, andCybernetics (SMC ’11), pp. 477–
483, October 2011.

[15] M. L. Littman, “Markov games as a framework for multi-
agent reinforcement learning,” in Proceedings of International
Conference on Machine Learning, pp. 157–163, 1994.

[16] J. Morimoto and K. Doya, “Robust reinforcement learning,”
Neural Computation, vol. 17, no. 2, pp. 335–359, 2005.

[17] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Model-free Q-
learning designs for linear discrete-time zero-sum games with
application to H-infinity control,”Automatica, vol. 43, no. 3, pp.
473–481, 2007.

[18] T. Başar and P. Bernhard, H
∞
-Optimal Control and Related

Minimax Design Problems, Birkhäuser, Boston, Mass, USA,
1995.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

