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Introduction
The wealth of publicly available genomic data can be more 
greatly leveraged if more than one genomic data type is avail-
able per patient. For example, genomic data types like copy 
number variations (CNVs), single nucleotide polymorphisms 
(SNPs), DNA methylation levels, and microRNA (miRNA) 
expression can all inform gene expression or function. Inte-
grating these genomic data types into a single model can bet-
ter inform researchers about the nature of the gene networks, 
functional pathways, and biological interactions involved 
in disease. Each genomic data type used in an integrative 
method gives information on a different aspect of biology, 
such as mutation, regulation, and expression. Integration of 
these data types, which are functionally connected, can form 

a more biologically realistic model and enhance the accuracy 
of integrative models’ predictions. The Cancer Genome Atlas 
(TCGA)1 contains such a set of multiple genomic data types 
for several cancers like serous cystadenocarcinoma (OV)2 and 
colon adenocarcinoma (COAD)3 used in this study. TCGA 
datasets have been the data source of many recent investiga-
tions into how to best leverage the integration of multiple 
genomic data types to discover new biological connections.4–6

Integration of multiple genomic data types has been used 
to build interaction7,8 and coexpression networks9 of genes that 
have biological significance to cancer. Genes in these networks 
were tested for overrepresentation within a biological pathway, 
revealing important cancer mechanisms. Pathway analysis 
integrating genomic data types has previously been performed 
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by testing individual genes to infer pathway activities and 
rank pathways.10 It has also been performed by pathway-based 
analyses on single data types followed by Fisher’s method to 
combine the results into a single P-value.11

The method presented herein is the first to integrate mul-
tiple genomic data types with graph-based learning in a path-
way-based manner, which utilizes the entire pathway instead 
of single genes or the entire set of genes in the dataset. Unlike 
other integrative methods, pathway-based analyses ask not 
only how well these data types perform as a binary classifier 
but also what biological mechanisms underlie the differences 
between the two classes. Pathway-based analyses also have the 
advantage of incorporating prior biological knowledge,12 unlike 
methods whose results are used to find relevant pathways by 
overrepresentation of significant genes. This prior knowl-
edge has been advocated for genomic analyses by Chasman,13  
Peng et al,14 and Ritchie.15 Pathway-based analyses also reduce 
computational burden and increase the interpretability of the 
results.16 To identify significant pathways, previous studies 
evaluated all individual genes either to build a custom pathway 
via their relationships or to evaluate differential expression or 
overrepresentation within known pathways. This is the only 
known study of multi-dimensional genomic data to perform 
graph-based classification at a pathway level.

Unlike Tsuda et  al,17 the integrative pathway analysis 
algorithm uses data from the set of genes in a pathway, not 
from the entire genome. Pathway analysis produces a com-
putational benefit in reducing complexity and makes the 
results more interpretable by incorporating prior biological 
knowledge.16 It uses a Monte Carlo hold-out internal valida-
tion method. It accepts Spearman correlation (not presented) 
and Gaussian kernel distance weight matrices. It also accepts 
patient-level data useful in clinical studies both to classify 
patients and to discover biological mechanisms.

Integrative pathway analysis was conducted on OV and 
COAD datasets to predict stage and determine the biologi-
cal mechanisms underlying advancing stage. The algorithm 
allows these pathways to be ranked based on the predictive 
power of multiple –omics data types. As the first integrative 
genomic study on COAD, pathways not previously described 
as advancing stage are presented.

Materials and Methods
Datasets. The pathway dataset includes 171  KEGG18 

pathways and 347 BioCarta19 pathways. Data from TCGA1 
were at level 3. This means methylation data are a probe’s beta 
value [0,1]; gene expression data are an average of all probes 
covering a gene; and SNP is a mean value of all probes in a 
segmented chromosomal region. Genes within a segmented 
chromosomal region were given that region’s value.

Patients included in the analysis of the OV dataset were 
limited to those with all of the following: Illumina Infinium 
HumanMethylation27 data, Agilent Human Genome CGH 
1 × 1 M CN data, Agilent 8 × 15 K human miRNA-specific data, 

Agilent 244 K Custom Gene Expression Array G4502A-07 
data, and Affymetrix Genome-Wide Human SNP Array 6.0 
data. Patients also had to have known cancer stage. Patients 
who met all these criteria were grouped into advanced (stage IV, 
n = 80) and non-advanced (stages IA–IIIB, n = 70) stages.

Patients included in the analysis of the COAD dataset 
were limited to those with known cancer stage and all of the 
following: Illumina Infinium HumanMethylation27 data, 
Agilent 244 K Custom Gene Expression Array G4502A-07 
data, and Affymetrix Genome-Wide Human SNP Array 6.0 
data. To create two nearly equal size groups, patients who 
met all these criteria were grouped into early (stages IA–IIB, 
n  =  83) versus late (stages III–IVA, n  =  61). Cancer stages 
are often classified or dichotomized as either “advanced” vs 
“non-advanced” stage of disease or “early” versus “late” stage 
of disease. Both allow researchers to better understand the 
disease mechanisms. Here we demonstrate two different ways 
to dichotomize the two diseases of interest.

Algorithm. The algorithm was run with one and three 
data types. The algorithm for single data-type analysis differs 
from the algorithm for integrative analyses in that no weight-
ing of data types is used, as described below.

In graph-based semi-supervised learning, the set of patients 
is denoted as a vector y of size n, where n is the total number 
of patients in the dataset. A patient y in {−1,1} is either −1,  
denoting early stage, or 1, denoting advanced stage. The rest of 
this Materials and Methods section is repeated over 50 seeds, 
sampling without replacement at each iteration, where the 
training set T is 70% of the dataset and the test set V is 30% 
of the dataset.

For the patients in the test set, y = 0. Let there be P path-
ways, denoted by p = 1,…,P. Let WE, WM, and WS denote the 
distance weight matrices of E expression, M methylation, and 
S SNP, respectively. The expression matrix, E, is based solely 
on the Agilent 244 K microarray data and does not include 
expression of miRNA. The matrix is composed of distance 
measures wijp, which describe the strength of the relationship 
between patients i and j in pathway p with weight wijp $0 when 
an edge is present. When wijp = 0, there is no edge between 
patients i and j for pathway p. wijp equals the r value of the 
Pearson correlation between i and j if r $ 0.5; otherwise, the 
value is zero. This means the closer the two patient samples 
are in terms of the feature measures in a pathway, the larger 
the weight edge. The data used to calculate wijp are columns  
i and j in T.

Let the following be n × n matrices: I the identity matrix; 
DE, DM, and DS the diagonal matrices, where D =  diag(di), 
di  =  Σjwijp; and LE, LM, and LS the Laplacian matrices, 
L = D − W. For multiple data-type analysis, use a nonlinear 
optimization program to calculate a vector of optimal α values, 
where α is the set of weights for analyses using multiple  
data types. Optimization is by gradient descent, which requires 
the dual objective function and its derivative. For our question of 
interest, the primal objective function is minα(yT(I + (αEp*LEp  
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+ αMp*LMp + αSp*LSp))−1y) s.t. Σαk # c, k = 1, …, m, where m 
is the number of networks in the algorithm. The dual objec-
tive function is maxα((yTy) − yT*(I + (αEp*LEp + αMp*LMp + αSp
*LSp))−1y) s.t. Σαk # c, k = 1,…,m, where m is the number of 
networks in the algorithm. The solution of the primal objec-
tive function is equivalent to the solution of the dual objective 
function when the solution is fully optimized. The solution of 
the primal objective function is also superior to the solution of 
the dual objective function when finding an approximate solu-
tion.20 Hence, the solution of the primal objective function is 
used herein. In this study, the number of networks is m = 3. 
There is an expression network, a methylation network, and a 
SNP network. c is a constant, determined as below in the ana-
lytical strategy section. k is 1, 2, or 3, the index of the relevant 
network Also, the derivative of the minimization function,  
∂d/∂αj = −yT(I + Σk = 1..m(αkLk))−1Lj(I + α*LEp + αMp*LMp + αSp
*LSp)−1y, is used by the optimization program. The single 
data-type analysis will only use one diagonal matrix and one 
Laplacian matrix, for example DE and LE, without calculation 
of optimal α values.

The algorithm’s output is a vector fp of size n for pathway 
p. fp is determined by all the available information. fip must not 
be too different from fi ′p of adjacent nodes (smoothness), and 
fip must be close to a given label yi in training nodes (loss). For 
three data types, fp = (I + αEp*LEp + αMp*LMp + αSp*LSp)−1y. For 
a single data type, like SNP data, fp = (I + LSp)−1y.

To classify each patient in V as y = 1 or y = −1, first com-
pute the median f for the patients in T where y = −1 and the 
median f for the patients in T where y  =  1. If the patient’s 
f-score is closer to the median f of y = −1 than to the median f 
of y = 1, the patient will be classified as y = −1. Otherwise, the 
patient will be classified as y = 1.

The implementation of this algorithm was written in R 
version 2.14.0 using nonlinear optimization to find the opti-
mal network weights.

Analytical strategy. The value of parameter c, a constant, 
was determined by testing multiple values over multiple path-
ways for the value that maximized area under the ROC curve 
(AUC) and accuracy. Gaussian kernel distance and Pearson 
correlation weight measures were determined for each pair of 
patients, where Gaussian kernel distance width σ2  =  1 and 
Pearson weight equals the correlation coefficient r if r $ 0.5 
or zero otherwise. The cutoff is modeled after the network 
model cutoffs of Tsuda et al17 and Deng et al,21 which were 
not shown to be sensitive to the value of the coefficient cut-
off.21 The cutoff distinguishes related patients from unrelated 
patients. The optimization algorithm for α is a sequential 
quadratic programming (SQP) algorithm for nonlinearly con-
strained gradient-based optimization.

Accuracy of p is the proportion of correct classifications, 
comparing the predictions and the known status from the 
phenotype data. The AUC of p is a cutoff-independent per-
formance measure and is equal to the value of the Wilcoxon—
Mann–Whitney test statistic.22

To select the best distance measure between Pearson cor-
relation and Gaussian kernel distance, two comparisons were 
made between the distances: OV accuracy and OV AUC. Five 
runs of the data were performed using different seeds to deter-
mine the training and validation sets. For the OV dataset, the 
runs consisted of the integrated analysis and individual analy-
ses of gene expression, methylation level, and SNP data. The 
best distance measure for a comparison had both the integra-
tive analysis with the most pathways above the threshold, and 
the integrative analysis with the most pathways both exceed-
ing the threshold and exceeding the accuracy or AUC of all 
the one data-type analyses in at least three of five runs.

Significant pathways were determined over 50 runs. 
For OV and COAD, the integrated analysis and individual 
analyses of gene expression, methylation, and SNP data were 
compared. Significant pathways have two criteria. First, the 
integrative analysis exceeds a mean accuracy of 55% or a mean 
AUC of 0.55. Second, the mean of the integrative analysis 
measure (accuracy or AUC) minus the 97.5% lower confi-
dence interval (LCI) using the standard error of the inte-
grated measure (accuracy or AUC) over 50 runs must exceed 
the mean of each of the one data-type analysis measures. 
Pathways are ranked by the minimum difference between the 
LCI of the integrative measure and the mean of any single 
data-type measure.

Results and Discussion
Initial testing. The value of parameter c was determined 

by testing a glioblastoma multiforme dataset from TCGA. 
c = 25 was chosen as the value for all analyses, because it most 
frequently had the highest accuracy and AUC over five seeds 
in 20 pathways with 15–70 genes (data not shown). The main 
integrated analysis for OV and COAD included SNP, methy-
lation, and gene expression data. Gaussian and Pearson dis-
tance measures were compared over five OV runs, as described 
in the Materials and Methods section. The results are as fol-
lows: 31 versus 9 pathways, respectively, with accuracy greater 
than 60%. Overall, 81 versus 55% of these pathways, respec-
tively, had at least three of five runs where integrative accuracy 
exceeded all single data-type accuracies. The Pearson versus 
Gaussian AUC comparison results are as follows: 184 versus 
95 pathways, respectively, with AUC .0.6. In all, 86 versus 
58% of these pathways had at least three of five runs where 
integrative AUC exceeded all single data-type AUCs. Hence, 
Pearson correlation was a better measure for the OV dataset. 
Additionally, Pearson correlation has previously been success-
fully used in both pathway analyses23 and other methods of 
data integration.7,10 Thus, Pearson correlation was chosen as 
the distance measure for this algorithm.

COAD analyses. Patients were grouped into early 
stage (stages IA–IIB) and advanced stage (stage III to IVA) 
classes for pathway-based prediction. Pathways significantly 
improved by integrative analysis were discovered and ranked 
as described in the Materials and Methods section. There were 
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29  significant pathways found using accuracy and 22 using 
AUC. The biopeptide and Fc epsilon receptor I-mediated sig-
naling pathways were significant in both accuracy and AUC 
measures. Fc epsilon receptor I may affect stage by inhibiting 
colorectal adenocarcinoma cell growth.24 Biopeptide pathway 
genes may affect stage through colon cancer cell growth25 and 
general tumor suppression.26

The remaining top 10 pathways from the accuracy 
(Table 1) and AUC (Table 2) analyses were shown to be bio-
logically relevant to colon cancer stage as follows. The stage 
can be advanced through metastases spread by migration or 
motility, tumor growth by cell proliferation, failure of apopto-
sis, failure of cell cycle arrest, and other mechanisms.

In Table 1, cell-to-cell pathway function is related to stage 
and its genes individually are related to stage through their 
expression and their mediators.27,28 The P38 MAPK signaling 
pathway regulates increase in stage through cell migration, 
apoptosis, and extravasation.29–31 Growth hormone signaling 
pathway genes are correlated with stage through apoptosis and 
cell cycle arrest.32,33 Toll-like receptor signaling pathway gene 
mutations are associated with stage through cancer growth 
and neoplastic progression.34

High concentrations of cholesterol are associated with 
more advanced stage;35 thus, the cholesterol-lowering statin 
pathway could inhibit progression by inhibiting the growth of 
cancer cells36 and decreasing polyp number and size.37

In Table  2, the differentiation pathway drives stage 
through its MAPK genes and cell cycle regulators.29–31,38 The 
apoptosis and death pathways, which have many of the same 
genes, are related to stage through their roles in progression.39 
The transendothelial migration, integrin-mediated cell adhe-
sion, and cell adhesion molecule pathways are interrelated by 
common genes and/or functions. They affect stage through 
metastasis, migration, and apoptosis.40–42 Angiotensin II 
increases stage through its influence on tumor growth, inva-
sion, and metastasis.43,44

Table 1. Top COAD accuracy improvements by combining three data types.

Pathway Mean Gene Mean Methylation Mean SNP Mean 3 types (97.5% LCI)

Cell-to-Cell 54.0 53.9 53.0 63.3 (61.5)

Biopeptides 52.8 53.0 51.8 59.5 (57.5)

Thrombopoietin 54.1 51.8 54.6 58.6 (57.1)

Cholesterol biosynthesis 57.7 58.0 57.1 62.3 (57.5)

Statin 59.1 56.7 60.5 64.7 (60.8)

Nucleotide metabolism 55.1 57.9 57.5 61.5 (58.5)

Fc epsilon receptor I-mediated signaling 57.0 55.2 50.2 61.1 (57.1)

Growth hormone signaling 58.3 53.0 53.1 62.0 (58.5)

Toll-like receptor signaling 58.0 57.3 49.0 61.4 (58.2)

P38 MAPK signaling 54.1 57.0 43.5 60.2 (57.2)

Notes: The top 10 ranked pathways using the accuracy measure in the COAD dataset. “Mean” denotes the mean accuracy of the pathway’s classification of early 
versus advanced stage over 50 iterations. LCI is calculated as defined in the Materials and Methods section.

Serous cystadenocarcinoma (OV) analyses. Patients 
were grouped into early stage (stages IA—IIIB) and advanced 
stage (stage IV) classes for pathway-based prediction. Pathways 
significantly improved by integrative analysis were discovered 
and ranked as described in the Materials and Methods section.

There were 63 significant pathways found using accuracy, 
and there were 192 significant pathways using AUC. The cas-
pase and maturity onset diabetes of the young pathways are 
common to the top 10 pathways in both accuracy (Table 3) 
and AUC (Table 4). Caspases affect stage through apoptosis.45 
Ovarian cancer patients with diabetes are more likely to be 
diagnosed at a higher stage and have shorter survival time.46 
Estradiol synthesis47 and overexpression in the glycolysis 
pathway48 are underlying factors. The insulin receptor tyrosine 
kinase called anaplastic lymphoma kinase (Table 3) controls 
proliferation and apoptosis in ovarian cancer.49,50

In Table 3, the G12α and Gsα pathways are connected to 
stage by G-protein regulation of gonadotropin-induced ovar-
ian cancer cell proliferation and protein kinase C regulation 
of angiogenesis.51 The ACE2 pathway is involved in tumor 
growth, angiogenesis, and metastasis.52 Regulatory T cells 
in advanced stage ovarian cancer lead to significant immune 
suppression.53

Alzheimer’s disease pathway genes are linked to previ-
ously described roles in ovarian cancer, such as insulin metab-
olism, caspases, and immune response. More than 60% of the 
genes in this pathway and 87% in the neurodegenerative dis-
ease pathway (Table 4) are apoptosis related.54

Figure 1 is an example of the network graph of a test set 
V in the OV dataset. This network graph was used to predict 
each patient’s stage (early or advanced) in V.

In Table  4, the leukocyte transendothelial migration 
pathway is associated with the survival phenotype in multiple 
tests and studies.55 Colony stimulating factors in the stem 
cell pathway give a poor prognostic outlook regarding stage 
and survival.56 Interleukins regulate anchorage-independent 
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growth, proliferation, and invasion.57 The cytokine–cytokine 
receptor interaction pathway is enriched in patients with long 
survival time.58 Ovarian cancer proliferation is stimulated 
by calcium signaling.59 A great majority of colorectal cancer 
pathway genes drive stage, as they are Wnt,54 caspase,45 and 
diabetes related. In all,46 55% of top-ranked OV pathways 
advance cancer stage by apoptosis and 44% by cell prolifera-
tion. The top pathways in Tables  2 and 4 have the greatest 
difference between the larger AUC of the integrative analysis 
and the smaller AUC of the single data-type analyses.

Figure 2 demonstrates this fact for “maturity onset diabe-
tes of the young” (Table 4). This pathway is a clear example of 
the relationship between exemplary prediction and underlying 
biology with regard to cancer stage. This top pathway in AUC 
and accuracy is known to advance ovarian cancer stage.46

We may observe that there may not be a high number 
of pathways that overlap between top pathways within each 
disease dataset. Accuracy measure is based on a single cutoff 

while AUC looks at the area under the ROC curve across 
multiple cutoffs. If the researcher is interested in how accurate 
a future sample can classify at a particular cutoff, the accuracy 
measure would be a better table to refer to. On the other hand, 
if researcher is interested in the overall performance of a test, 
eg, a diagnostic one, using a pathway, the AUC measure would 
be more suitable.

The aim of this study was to use a graph-based learning 
algorithm for multiple networks to find biological pathways 
that accurately classify disease stage. Each network is a genomic 
data type, like gene expression or miRNA expression. Integra-
tion of genomic networks increases the proportion of true clas-
sifications of stage in pathways critical to disease progression or 
status. Primarily, this method can be used to give insights into 
disease biology and progression. Pathway-based analysis can 
help researchers identify more biologically meaningful genom-
ics markers than single-gene-based approaches. Finding these 
important pathways allows researchers to focus on smaller sets 

Table 2. Top COAD AUC improvements by combining three data types.

Pathway Mean Gene Mean Methylation Mean SNP Mean 3 types (97.5% LCI)

Differentiation in PC12 cells 0.52 0.53 0.55 0.66 (0.64)

Leukocyte transendothelial migration 0.60 0.60 0.53 0.68 (0.65)

Cell adhesion molecules 0.60 0.61 0.59 0.68 (0.66)

BCR 0.53 0.48 0.53 0.61 (0.59)

Apoptosis 0.62 0.56 0.53 0.69 (0.67)

Biopeptides 0.57 0.51 0.57 0.64 (0.62)

Integrin mediated cell adhesion 0.55 0.55 0.50 0.62 (0.59)

Angiotensin II mediated activation of JNK 0.55 0.51 0.57 0.63 (0.61)

Death 0.68 0.60 0.63 0.73 (0.71)

Fc epsilon receptor I-mediated signaling 0.55 0.49 0.57 0.62 (0.60)

Notes: The top 10 ranked pathways using the AUC measure in the COAD dataset. “Mean” denotes the mean accuracy of the pathway’s classification of early versus 
advanced stage over 50 iterations. LCI is calculated as defined in the Materials and Methods section.

Table 3. Top OV accuracy improvements by combining three data types.

Pathway Mean Gene Mean Methylation Mean SNP Mean 3 types (97.5% LCI)

Caspase 53.2 53.5 54.7 60.4 (58.8)

Alzheimer’s disease 56.3 52.9 56.9 62.0 (60.4)

Glycolysis and gluconeogenesis 61.4 54.9 55.0 65.6 (64.0)

ACE2 57.8 54.9 52.5 61.8 (60.4)

Maturity onset diabetes 56.6 54.1 58.0 62.1 (60.5)

Anaplastic lymphoma kinase 55.3 58.1 55.5 62.1 (60.5)

G alpha 12 54.6 46.8 51.5 58.2 (56.8)

T-cell receptor 52.6 54.2 54.0 58.5 (56.3)

Glycosphingolipid biosynthesis 58.5 51.5 58.4 62.2 (60.6)

G Alpha S 59.7 50.4 58.1 63.4 (61.7)

Notes: The top 10 ranked pathways using the accuracy measure in the OV dataset. “Mean” denotes the mean accuracy of the pathway’s classification of early 
versus advanced stage over 50 iterations. LCI is calculated as defined in the Materials and Methods section.

http://www.la-press.com


Dellinger et al

6 Cancer Informatics 2014:13(S4)

p66

p87

p23 p42 p63

p99 p144

p142

p85

p116

p94

p36

p139
p138p40p38

p35

p69

p127

p78

p126

p58

p111
p25

p37

p145

p121

p15

p122

p75

p149

p100
p118

p27

p21

p131

p70

p110
p29

p33
p106

p51
p132

p14
p3

Figure 1. Caspase pathway validation network in OV. This figure represents the network of patients discovered in testing the caspase pathway in ovarian 
cancer. Nodes represent patients. The top 200 weighted edges are shown. Weights were determined using α and Pearson correlation coefficients of the 
integrated data types. Light gray nodes are incorrect integrative method predictions. Medium gray nodes are correct predictions by all data types. Dark 
gray nodes are correct integrative method predictions and at least one incorrect single data-type prediction.

Table 4. Top OV AUC improvements by combining three data types.

Pathway Mean Gene Mean Methylation Mean SNP Mean 3 types (97.5% LCI)

Maturity onset diabetes of the young 0.57 0.57 0.59 0.69 (0.67)

Stem Cell 0.63 0.56 0.56 0.72 (0.70)

Cytokine-cytokine receptor interaction 0.65 0.60 0.57 0.73 (0.71)

Caspase 0.56 0.53 0.55 0.63 (0.62)

Alanine and aspartate metabolism 0.64 0.58 0.63 0.72 (0.70)

Neurodegenerative diseases 0.60 0.68 0.62 0.75 (0.73)

Histidine metabolism 0.61 0.60 0.50 0.69 (0.67)

Leukocyte transendothelial migration 0.64 0.63 0.63 0.71 (0.69)

Colorectal cancer 0.62 0.58 0.61 0.68 (0.67)

Calcium signaling 0.64 0.62 0.57 0.70 (0.68)

Note: The top 10 ranked pathways using the AUC measure in the OV dataset. “Mean” denotes the mean accuracy of the pathway’s classification of early versus 
advanced stage over 50 iterations. LCI is calculated as defined in the Materials and Methods section.

of genes that explain the response of interest. We demonstrated 
the use of our tool with colon and ovarian TCGA datasets. It is 
well known that genes work together in groups. A graph-based 
classification algorithm takes into account the correlations 
among biomarkers in pathways and is an ideal algorithm to use 
for performing integrative pathway analysis.

The methodology of this study is similar to that of  
Kim et al58 in that it is a graph-based classification algorithm 

using multiple networks, although there are significant 
differences across the two methodologies. In this study, the 
sets of data types were not preselected as in Kim et al but were 
the best three of five available data types. Pearson correlation 
coefficients performed better in the OV dataset as a measure of 
edge weight than the Gaussian function of Euclidean distance 
used in the OV dataset of Kim et al.57 Instead of one testing–
training set with an unknown number of samples withheld for 
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testing, this study used a more robust method of running 50 
analyses with unique testing–training sets where 30% of sam-
ples were withheld for testing. This study had more even divi-
sions between the two classes of OV and COAD stages (53% 
advanced-stage OV and 42% advanced-stage COAD) than 
that of Kim et al (92% advanced-stage OV). This may give a 
more unbiased prediction and more power to predict. Finally, 
this study classified patients using only the data related to the 
genes in a single pathway, whereas Kim et al classified patients 
using the entire dataset.58

Pathways that were significantly improved in stage pre-
diction using integrative analysis were biologically relevant to 
their respective cancers. This demonstrates the success of the 
method in finding pathways that accurately classify stage in 
ovarian and colon cancers.

Difficulties presented by previous methods of path-
way analysis, as described by Wang et al,60 included genetic 
architecture, multiple testing, and replication of results. 
Other difficulties did not apply to the way the integrated 
analysis was conducted. A replicate dataset is not avail-
able; however, validation sets were run for each of the 50 
iterations of the datasets. They determined accuracy and 
AUC of each pathway. Apart from a classification problem, 
another approach taken could be testing based, in which 
P-values will be provided instead. Moreover, a separate and 
independent dataset would be needed if these results were to 
be used in a clinical setting.

Wang et al described the difficulty presented by genetic 
architecture as one gene driving the entire pathway.60 It is 

more likely that the opposite is true. Integrative analysis is 
likely to drown out the signal of one good gene with the noise 
of the other genes in the pathway, which are non-informative. 
Integrative analysis should be used in conjunction with 
a single-gene-based approach so that no information is over-
looked. One gene that classifies patients very well is unlikely 
to do so significantly more in the integrative analysis than in 
single data-type analysis, which is the requirement for a sig-
nificant pathway. This is so because, in the example of this 
study, a well-classified pathway in the integrated analysis 
driven by SNP association, gene expression, and/or methyla-
tion level would be compared to data types containing these 
driving factors, and the improvement should be small to none. 
Only if a combination of these driving factors increases the 
AUC or accuracy significantly more than a single data type 
would a gene drive the pathway, and then it would only hap-
pen if the other genes in the pathway did not drown out the 
signal. Integrative pathway-based analysis was an effective 
way to determine the mechanisms underlying advancing stage 
in serous cystadenocarcinoma and COAD. The graph-based 
semi-supervised learning algorithm, which determined these 
mechanisms also, significantly improved prediction of stage 
in these cancers compared to analysis of single–omics stud-
ies, including gene expression, methylation, and SNP studies. 
This algorithm can be extended to classify patient status and 
detect relevant biological mechanisms underlying any dis-
ease according to the chosen dichotomous clinical variable, if 
multiple sets of–omics data per patient are available. As more 
resources like TCGA1 become available and expand their 
datasets, the utility of this algorithm will increase.

Conclusions
Integration of multiple genomic datasets resulted in a signifi-
cant improvement over the single dataset analyses. Integration 
of multiple genomic datasets gave a maximum of 70% accu-
racy and 0.79 AUC. The pathways with these maxima are not 
in the tables, because the one dataset gene expression analysis  
for these pathways gives a similar level of accuracy or AUC. The 
top 10 OV and COAD pathways were all biologically relevant to  
their diseases, and some were known to be directly related to 
stage, as described above. Therefore, this algorithm is an effec-
tive method of classification and biological discovery.

To date, causes of complex genetic diseases, including 
cancers, have had small effect size and/or low frequency. Most 
studies have sought single point sources like a gene or a SNP 
with a single data type. They have failed to yield the expected 
result of an association that explains the cause of a disease 
in a large percentage of patients. The sources of a complex 
genetic disease can be found in multiple data types like SNPs 
and methylation level changes. These sources can spread their 
effects on other data types like methylation level changes to 
gene expression. Therefore, networking these sources using 
multiple types of–omics data over a pathway with a function 
relevant to the disease is an effective way to incorporate these 
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truths over multiple potential disease-associated markers into 
a single model with the power to determine which biologi-
cal mechanisms, or pathways, have significant contribution to 
disease. The contribution discovered will relate to the dichot-
omous clinical variable used in the model. For example, if  
the variable is cancer stage, the mechanisms will describe the 
pathways differing between early and advanced stages. The 
network generated by the integrative pathway-based analysis 
for each significant pathway can become a hypothesis-generating 
tool in the discovery of the precise elements of the pathway 
contributing to the disease.

Future work with regard to this algorithm should include 
a decrease in computational time to make it feasible to work 
with more than three data types. A potential method may be 
to increase the sparsity of the distance matrix, if it does not 
impair the algorithm’s ability to detect biologically relevant 
pathways. The algorithm could also be improved by adding 
a method to automatically calibrate the optimal c value and 
distance matrix. Testing of additional dichotomous variables, 
additional datasets, and replicate datasets will yield more 
information about this algorithm, when they become avail-
able. Furthermore, our methodology may be modified to eval-
uate the contribution from multiple pathways.61
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