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EXISTENCE OF SOLUTIONS
OF SOME QUADRATIC INTEGRAL EQUATIONS

Abstract. In this paper we study the existence of continuous solutions of quadratic inte-
gral equations. The theory of quadratic integral equations has many useful applications in
mathematical physics, economics, biology, as well as in describing real world problems. The
main tool used in our investigations is a fixed point result for the multivalued solution’s map
with acyclic values.
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1. INTRODUCTION AND NOTATIONS

In this paper, we are going to study, in an abstract setting, the solvability of a
nonlinear quadratic integral equation of the type

x(t) = h(t) + (Tx)(t)
∫ t

0

k(t, s)u(t, s, x(s))ds.

We will look for solutions of that equation in the Banach space of real functions
being defined and continuous on a bounded and closed interval. The main tools used
in our investigations are the measure of noncompactness and a fixed point result for
acyclic (multivalued) maps. Let us mention that the theory of integral equations
has many useful applications in describing numerous events and problems of the real
world. It is caused by the fact that this theory is frequently applicable in other
branches of mathematics and in mathematical physics, economics, biology as well as
in describing real world problems.

Moreover, in the theory in question, several types of integral operators, both
of linear and nonlinear types are investigated. Let us mention, for instance, the
classical linear integral operators of Fredholm or Volterra type and the nonlinear
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operators of Hammerstein or Urysohn type. These operators and integral equations
associated with them were considered in numerous papers and monographs (see [3,5,
6, 11,19], etc.).

The oldest research in this field includes (see, for instance, [1,2]) the study of the
existence of continuous solutions of the following nonlinear Urysohn integral equation,

x(t) = h(t) +
∫ t

0

g(t, s, x(s))ds, t ∈ R (1)

or of Volterra integral equations like:{
x(t) = h(t) +

∫ t

0
k(t, s)g(s, x(s))ds, t ∈ R,

x(0) = x0.
(2)

Equations of the type we are dealing with are widely considered for instance in
[4, 7, 9, 10]. In [4], the nonlinear integral equation of the type

x(t) = 1 + tx(t)
∫ 1

0

ψ(t)x(t)
x+ t

dt,

where ψ(t) is a given function on [0, 1] and x(·) is the unknown function, is studied.
Such equations arise in theories of radiative transfer, neutron transport and in the
kinetic theory of gases.

In this paper, following certain generalizations of the previous integral equation,
we will consider (instead of the term tx(t)) a general operator T as a continuous
operator from suitable Banach spaces.

In [14], the following equation is considered

u
dI(t, u, φ)

dt
= I(t, u, φ)− 1

4π
σs

σs + σa

∫ 2π

0

∫ 1

−1

p(u′, φ′;uφ)I(t, u′, φ′)du′dφ′,

where I(t, u, φ) is the unknown intensity (of radiative transfer) at optical depth t con-
sidered as non-interacting beams of radiation in all directions. The coefficients σs and
σa denote the scattering and absorption coefficients of the medium; the phase function
p specifies the probability distribution of scattering from incident direction (u′, φ′),
to direction (u, φ), where u is the cosine of polar angle and φ is azimuthal angle.

In the engineering setting, a quadratic integral equation of this kind can for in-
stance arise in the design of bandlimited signals for binary communication using simple
memoryless correlation detection, when the signals are disturbed by additive white
Gaussian noise. It is shown that a bandlimited signal can be designed which eliminates
intersymbol interference for signalling at Nyquist rate: this signal is a solution to a
quadratic integral equation (for some suitable references, see [4, 7, 9, 10,16,18]).

Equations of this type and some of their generalizations were considered in several
papers (see [4, 5, 8]). In those papers the authors proved existence results for more
general equations. For instance, in [6] the classic Hammerstein equation is considered
(i.e. T (x(t)) = 1) and the existence of a solution in the space of all bounded and
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continuous functions over R+ is achieved. More recently, in [8] a quadratic integral
equation with linear modification of the argument is studied by means of a technique
associated with measures of noncompactness, in order to prove the existence of non-
decreasing solutions in the space C[0, 1]. The conditions imposed in these papers
are a bit heavier than ours even if, in the proof of the result, the same tool (i.e.,
the measure of noncompactness) is used. Some other properties, such as uniqueness,
location of solutions, and convergence of successive approximations, were also studied
in the papers mentioned.

2. PRELIMINARIES

In what follows, Br(x0) will denote an r− ball (in a metric space (N , d)) i.e., the set
{x ∈ N : d(x, x0) < r}, centered at x0, where x0 is any point in N .

We will denote by B(I,R) the Banach space of all continuous functions (from I
to R) equipped with the sup-norm, where I = [0, L].

Definition 1. Let X be a topological space and let H̆p(X,Z) denote the reduced Čech
cohomology group of X in dimension p with coefficients in Z. Then by an acyclic we
mean a (non empty) topological space X such that H̆p(X,Z) = 0 for every p ≥ 0.

Remark 1. Cohomology can be viewed as a method of assigning algebraic invariants
to a topological space. The reduced Čech cohomology is a minor modification made to
homology theory designed to make a point have all its homology groups zero.

In the 1930s, Brouwer proved that any non constant selfmapping from a connected
and acyclic polyhedron has a fixed point: since then, many generalizations in the field
of fixed point theory have been made (see, for instance , Proposition 1 below).

Contractible (and hence convex) sets are examples of acyclics. As for topological
properties of acyclics it is known that they are connected and even simply connected.
Moreover it is known (see, for instance [11–13]) that an Rδ−set is an acyclic set (in
the Čech homology). There are many papers dealing with the research of conditions
in such a way that the lack of convexity can be overcome. There are also cases in
which the set of solutions is not convex neither acyclic as, for instance, in the case in
which a finite number of solutions arises.

The following results will be very useful in achieving our purpose:
Proposition 1. (see [15]) Let B be a Banach space and let S : Br(0) ⊂ B −→ Br(0)
be a multivalued upper semicontinuous compact operator with acyclic values. Then S
admits a fixed point.
Proposition 2. (see [1] and related references). Let (t, x, y) −→ g(t, x, y) be be a
continuous function defined on a compact subset D of the space B = [t1, t2]×BR×Rn

into Rn, for some R > 0; then there exists a sequence of Lipschitzean functions {gk},
leading from B into Rn, such that

lim
k→∞

gk(w) = g(w), for all w = (t, x, y) ∈ D,

‖gk‖ = sup{|gk(w)|, w ∈ D} ≤ ‖g‖ = sup{|g(w)|, w ∈ D}.
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Proposition 3 (see [1] and related references). Let E be a Banach space, V ⊂E be
a (suitable nonempty) open set and S be a non linear compact continuous operator
from the closure of V into E. Then, if there is a sufficiently ε small such that there
exists a compact and continuous operator Sε (from the closure of V into E) satisfying
‖S(x) − Sε(x)‖ < ε, ∀x and such that the equation x − Sε(x) = b, has at most one
solution if ‖b‖ < ε, then the set of fixed points of it is an acyclic set.

The well known Gronwall Lemma, from the standard theory of Ordinary Differ-
ential Equations, will also be used:

If, for t0 ≤ t ≤ t1, φ(t) ≥ 0 and ψ(t) ≥ 0 are continuous functions such that the

inequality φ(t) ≤ K +M

∫ t

t0

ψ(s)φ(s)ds holds on t0 ≤ t ≤ t1, with K and M positive

constants, then φ(t) ≤ K exp
(
M

∫ t

t0

ψ(s)ds
)

on t0 ≤ t ≤ t1 (see, e.g., [12]).

3. MAIN RESULT

Here we want to deal with an integral equation as above in order to establish an
existence result for the initial value problem:

x(t) = h(t) + (Tx)(t)
∫ t

0

u(t, s, x(s))ds, t ∈ I = [0, L]. (3)

The following theorem holds:

Theorem 1. Let us assume that:

1. u : I × I × R −→ R is a continuous function such that |u(t, s, x)| ≤ α + β|x|, for
every (t, s, x) ∈ I × I × R, α, β,∈ R+ = (0,+∞);

2. h : I −→ R is a continuous function;
3. T is a continuous operator from the Banach space B(I,R) into itself such that there

exists a > 0 with |(Tx)(t)| ≤ a|x(t)| for every t ∈ I;
4. aLα < 1.

Then integral equation (3) has at least one solution in the space B(I,R).

Proof. LetM be a suitable ball Bρ(0) in the space B(I,R) and let us consider, ∀q ∈M ,
the map U : M ⊂ B(I,R) −→ B(I,R) defined as follows: x ∈ U(q) if and only if
x(t) = h(t) + (Tq)(t)

∫ t

0
u(t, s, x(s))ds.

Any possible fixed point of the (as usual multivalued) function U will be a solution
of the integral problem (3).

In order to prove the theorem, the following steps in the proof have to be estab-
lished:

i) U is a (relatively) compact operator.
To obtain such a result, we prove (by using Ascoli’s theorem) that U is an equicon-

tinuous and equibounded operator.



Existence of solutions of some quadratic integral equations 437

We take a function t→ q(t) ∈M ⊂ B(I,R); so ‖q‖ ≤ ρ; now, using the Gronwall
Lemma, we obtain:

|x(t)| ≤ |h(t)|+ a‖q‖
∫ t

0

(α+ β|x(s)| ds ≤ (‖h‖+ aραL) exp(aρβL).

Thus we can say that there is some constant ρ0 such that U(q) ⊂ Bρ0(0) for every
q ∈M . So the set U(M) is equibounded.

ii) U is equicontinuous.
Since ‖q‖ ≤ ρ, then ‖Tq‖ ≤ aρ. Let x ∈ U(q) and let us assume that t1, t2 ∈ [0, L]

are such that |t2 − t1| < δ, for a given positive constant δ.
Thus:

|x(t2)− x(t1)| ≤ |(Tq)(t2)
∫ t2

0

u(t2, s, x(s))ds− (Tq)(t1)
∫ t1

0

u(t1, s, x(s))ds| ≤

≤ |(Tq)(t2)||
∫ t2

0

u(t2, s, x(s))ds− (Tq)(t2)
∫ t2

0

u(t1, s, x(s))ds+

+ (Tq)(t2)
∫ t2

0

u(t1, s, x(s))ds− (Tq)(t2)
∫ t1

0

u(t1, s, x(s))ds+

+ (Tq)(t2)
∫ t1

0

u(t1, s, x(s))ds− (Tq)(t1)
∫ t1

0

u(t1, s, x(s))ds| ≤

≤ |(Tq)(t2)|
∫ t2

0

|u(t2, s, x(s))− u(t1, s, x(s))|ds+

+ |(Tq)(t2)|
∫ t2

t1

|u(t1, s, x(s))|ds+

+ |(Tq)(t2)− (Tq)(t1)|
∫ t1

0

|u(t1, s, x(s))|ds ≤

≤ aρLε1 + aρ(α+ βρ)|t2 − t1|+ L(α+ βρ)ε2 ≤ ε

whenever t1, t2 ∈ I are such that |t2 − t1| < δ.
So U is an equicontinuous operator.

iii) U is an upper semicontinuous operator.
Indeed, let qn −→ q0 and let xn ∈ U(qn), xn −→ x0. We need to show that

x0 ∈ U(q0).
From xn(t) = h(t)+(Tqn)(t)

∫ t

0
u(t, s, xn(s))ds, from the continuity of the operator

T and the function u (w.r.t. x), there follows limn→+∞(Tqn)(t) = (Tq0)(t) and
limn→+∞

∫ t

0
u(t, s, xn(s))ds =

∫ t

0
limn→+∞ u(t, s, xn(s))ds, from condition 1. and the

Dominated Lebesgue Convergence Theorem. So we get

lim
n→+∞

xn(t) = h(t) + (Tq0)(t)
∫ t

0

u(t, s, x0(s))ds.

The latter means that limn→+∞ xn(t) = x0(t), or, equivalently, that x0 ∈ U (q0).
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iv) U (q) is acyclic for every q ∈M .
To get that, we want to apply Proposition 3. So, let un(t, s, ◦) −→ u(t, s, ◦) be a se-
quence of Lipschitzean functions (w.t.r. the third variable) such that (see Proposition
2) ‖un‖ ≤ ‖u‖, ∀t ∈ I, x ∈M Now, let us put Un : M −→ B(I,R) and, as before, let
y ∈ Un(q) if y(t) = h(t) + (Tq)(t)

∫ t

0
un(t, s, y(s))ds, ∀t ∈ I.

The operators Un are compact and continuous (by using the same argument as
before).

So, in order to apply Proposition 3, we need to verify that the equation x = Un(q)
admits at most one solution. To this end, let x and y be two solutions such that
x = Un(q) and y = Un(q).

There holds, simultaneously,

x(t) = h(t) + (Tq)(t))
∫ t

0

un(t, s, x(s))ds,

and

y(t) = h(t) + (Tq)(t)
∫ t

0

un(t, s, y(s))ds.

But

|x(t)− y(t)| ≤ |(Tq)(t)
∫ t

0

un(t, s, x(s))ds− (Tq)(t)
∫ t

0

un(t, s, y(s))ds| ≤

≤ |(Tq)(t)|
∫ t

0

k0|x(s)− y(s)|ds

where k0 is the Lipschitz constant of the sequence of the functions un.
So, ∀t ∈ I, there is

|x(t)− y(t)| ≤ aρ

∫ t

0

k0|x(s)− y(s)|ds.

This means that |x(t)− y(t)| = 0 for every t ∈ I.
Moreover, in order to prove that ‖Un − U‖ ≤ ε, it will be enough to observe that if
y(t) and z(t) are solutions of Un(q) and U(q), respectively, then

|y(t)− z(t)| ≤ |(Tq)(t)|
∫ t

0

|un(t, s, x(s))− u(t, s, x(s))|ds ≤ aρLε.

v) There is a ball BR(0) such that U(BR(0)) ⊂ BR(0).
If ‖q‖ ≤ R we get:

‖x‖ ≤ a‖q‖ |
∫ t

0

(α+ β|x(s)|)ds| ≤ a ‖q‖L(α+ β‖x‖) ≤ αRaL+ aRβ L‖x‖.

Thus ‖x‖(1− aRβ L) ≤ αaRL; hence we obtain ‖x‖ ≤ α a R L
1−a R β L .

The last condition of the Theorem allows us to take R ≤ 1−a α L
a β L and so ‖x‖ ≤ R

and, consequently, U (BR(0)) ⊂ BR(0).

Remark: The method used here for the solution set allows us to extend, under a
weaker set of conditions, some previous results regarding the subject (see e.g. [4, 5]).
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