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Abstract
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce 
broken detailed balance at the molecular scale. This molecular scale breaking of detailed 
balance is crucial to achieve biological functions such as high-fidelity transcription and 
translation, sensing, adaptation, biochemical patterning, and force generation. While biological 
systems such as motor enzymes violate detailed balance at the molecular scale, it remains 
unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven 
through the collective activity of many motors. Indeed, in several cellular systems the presence 
of non-equilibrium dynamics is not always evident at large scales. For example, in the 
cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear 
at first glance thermally driven. This raises the question how non-equilibrium fluctuations can 
be discerned from thermal noise. We discuss approaches that have recently been developed to 
address this question, including methods based on measuring the extent to which the system 
violates the fluctuation-dissipation theorem. We also review applications of this approach 
to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. 
Furthermore, we discuss a more recent approach to detect actively driven dynamics, which 
is based on inferring broken detailed balance. This constitutes a non-invasive method that 
uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and 
tissue. We discuss the ideas underlying this method and its application to several examples 
including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent 
developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which 
offer new perspectives to understand the physics of living systems.

Keywords: non-equilibrium, fluctuations, active living matter, fluctuation-dissipation theorem, 
detailed balance, cellular biophysics
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1.  Introduction

Living organisms are inherently out of equilibrium. A con-
stant consumption and dissipation of energy results in non-
equilibrium activity, which lies at the heart of biological 
functionality: internal activity enables cells to accurately 
sense and adapt in noisy environments [1, 2], and it is crucial 
for high-fidelity DNA transcription and for replication [3, 4]. 
Non-equilibrium processes also enable subcellular systems to 
generate forces for internal transport, structural organization 
and directional motion [5–9]. Moreover, active dynamics can 
also guide spatial organization, for instance, through nonlin-
ear reaction-diffusion patterning systems [10–12]. Thus, non-
equilibrium dynamics is essential to maintain life in cells [13].

Physically, cells and tissue constitute a class of non-
equilibrium many-body systems termed active living matter. 
Importantly, cellular systems are not driven out of equilib-
rium by external forces, as in conventional active condensed 
matter, but rather internally by enzymatic processes. While 

much progress has been made to understand active behavior 
in individual cases, the common physical principles underly-
ing emergent active behavior in living systems remain unclear. 
In this review, we primarily focus on research efforts that 
combine recent developments in non-equilibrium statistical 
mechanics and stochastic thermodynamics [14–16] (see sec-
tion 3) together with techniques for detecting and quantifying 
non-equilibrium behavior [17] (see sections 2 and 4). For phe-
nomenological and hydrodynamic approaches to active mat-
ter, we refer the reader to several excellent reviews [18–21].

A characteristic feature of living systems is that they are 
driven out of equilibrium at the molecular scale. For instance, 
metabolic processes, such as the citric acid cycle in animals 
and the Calvin cycle for carbon fixation in plants, generally 
involve driven molecular reaction cycles. Such closed-loop 
fluxes break detailed balance, and are thus forbidden in ther-
modynamic equilibrium (figures 1(A) and (B) [23]. Similar 
directed chemical cycles also power reaction-diffusion pat-
terning systems in cells [11] and molecular motors, includ-
ing myosins or kinesins [24]. Indeed, such molecular motors 
can generate mechanical force by coupling the hydrolysis of 
adenosine triphosphate (ATP) to conformational changes in 
a mechano-chemical cycle [24, 25]. The dissipation of this 
chemical energy drives unidirectional transitions between 
molecular states in this cycle. Such unbalanced transitions 
break detailed balance and result in directional motion of an 
individual motor.

One of the central theoretical challenges in the field of 
active living matter is to understand how the non-equilibrium 
dynamics of individual molecular components act in concert 
to drive collective non-equilibrium behavior in large interact-
ing systems, which in general is made of both active and pas-
sive constitutents. Motor activity may drive sub-components 
of cells and tissue [17, 26, 27], but it remains unclear to what 
extent this activity manifests in the dynamics at large scales. 
Interestingly, even for systems out of equilibrium, broken 
detailed balance, for instance, does not need to be apparent 
at the supramolecular scale. In fact, at large scales, specific 
driven systems may even effectively regain thermodynamic 
equilibrium and obey detailed balance [28, 29].

There are, of course, ample examples where the dynam-
ics of a living system is manifestly out of equilibrium, such 
as cell division or cell migration. In many cellular systems, 
however, one can observe stationary stochastic processes 
that appear at first glance thermally driven. Indeed, for many 
macromolecular assemblies in cells such as chromosomes 
[30], the nucleus [31], the cytoplasm [32–34], membranes 
[35–39], primary cilia [22, 40], and tissue [41] it has been 
debated to what extent non-equilibrium processes dominate 
their dynamics. Such observations raise the fundamental and 
practical question how one can distinguish non-equilibrium 
dynamics from dynamics at thermal equilibrium. To address 
this question, a variety of methods and approaches have 
been developed to detect and quantify non-equilibrium in 
biological systems. When active and passive microrheology 
are combined, one can compare spontaneous fluctuations to 
linear response functions, which are related to each other 
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through the Fluctuation-Dissipation theorem (FDT) when the 
system is at thermal equilibrium [42–45]. Thus, the extent 
to which a system violates the FDT can provide insight into 
the non-equilibrium activity in a system. We will discuss 
this approach in detail in section 2. Other methods employ 
temperature or chemical perturbations to test the extent to 
which thermal or enzymatic activities primarily drive the 
behavior of a system, but such experiments are invasive and 
are often difficult to interpret. More recently, a non-invasive 
method to discriminate active and thermal fluctuations based 
on detecting broken detailed balance was proposed to study 
the dynamics of mesoscopic systems. This new approach has 
been demonstrated for isolated flagella (see figure 1(C)) and 
primary cilia on membranes of living cells [22]. The ideas 
underlying this method will be detailed in section  4 after 
briefly reviewing related work in stochastic thermodynamics 
in section 3.

Additional important insights on the collective effects of 
internal activity came from studies on a host of simple recon-
stituted biological systems. Prominent examples include a 
variety of filamentous actin assemblies, which are driven inter-
nally by myosin molecular motors. 2D actin-myosin assays 
have been employed to study emergent phenomena, such as 
self-organization and pattern formation [46, 47]. Moreover, 
actin-myosin gels have been used as model systems to study 
the influence of microscopic forces on macroscopic network 

properties in cellular components [43, 48–51]. Microrheology 
experiments in such reconstituted actin cytoskeletal networks 
have revealed that motor activity can drastically alter the 
rigidity of actin networks [52–54] and significantly enhance 
fluctuations [43, 55]. Importantly, effects of motor forces 
observed in vitro, have now also been recovered in their native 
context, the cytoplasm [34, 45, 55] and membranes [35, 36]. 
Further experimental and theoretical developments have 
employed fluorescent filaments as multiscale tracers, which 
offer a spectrum of simultaneously observable variables: their 
bending modes [56–58]. The stochastic dynamics of these 
bending modes can be exploited to study non-equilibrium 
behavior by looking for breaking of detailed balance or break-
ing of Onsager symmetry of the corresponding correlations 
functions [59, 60]. This approach will be discussed further in 
section 4.3.

2.  Non-equilibrium activity in biological systems 
and the fluctuation-dissipation theorem

Over the last decades, a broad variety of microrheological 
methods have been developed to study the stochastic dynam-
ics and mechanical response of soft systems. Examples of 
such systems include synthetic soft matter [61–65], reconsti-
tuted biological networks [26, 66–73], as well as cells, tissue, 
cilia and flagella [21, 22, 43, 71, 74–77]. In this section, we 
discuss how the combination of passive and active microrhe-
ology can be used to probe non-equilibrium activity in soft 
living matter. After briefly introducing the basic framework 
and the most commonly used microrheological techniques, 
we will discuss a selection of recent studies employing these 
approaches in conjunction with the fluctuation-dissipation 
theorem to quantify non-equilibrium dynamics.

2.1. The violation of the FDT as a non-equilibrium measure

Microscopic probes embedded in soft viscoelastic environ
ments can not only be used to retrieve data about the sponta-
neous fluctuations of the surrounding medium, but can also be 
employed to measure the mechanical response of this medium 
to a weak external force. In the absence of an applied force, 
the average power spectrum Sx(ω) = 〈|∆x2(ω)|〉 of fluc-
tuations in the bead position x(t) can be directly measured. 
The brackets here indicate an ensemble average. The same 
bead can, in principle, be used to extract the linear response 
function χx(ω) = 〈∆x(ω)〉/f (ω) by measuring the average 
displacement induced by a small applied force f (ω). In sys-
tems at thermal equilibrium, these two quantities are related 
through the Fluctuation-Dissipation theorem (FDT), derived 
in the context of linear response theory [78, 79] (see figure 2). 
In frequency space, the FDT relates the autocorrelation func-
tion of position fluctuations of an embedded probe particle 
in the absence of external forces, to the imaginary part of the 
associated response function:

Sx(ω) =
2kBT
ω

χ′′
x (ω).� (1)

Figure 1.  (A) In thermodynamic equilibrium, transitions between 
microscopic states are pairwise-balanced, precluding net flux among 
states. (B) Non-equilibrium steady states can break detailed balance 
and exhibit flux loops. (C) Snapshots of an isolated Chlamydomonas 
flagellum’s beat cycle together with the 3D probability flux map of 
flagellar dynamics in a coarse grained phase space spanned by the 
first three modes. From [22]. Reprinted with permission from AAAS.
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Importantly, a system that is actively driven into a 
non-equilibrium steady-state will typically not satisfy this 
equality; this fact can be used to our advantage to study activity 
in such a system. Indeed, the violation of the FDT has proven 
to be a useful method to assess the stochastic non-equilibrium 
nature of biological systems, for instance, by providing direct 
access to the active force spectrum in cells [45].

One of the first efforts to investigate deviations from the 
FDT in a biological system was performed on hair bundles 
present in the aural canal of a frog [80]. Hair bundles are 
thought to be primarily responsible for the capability of the 
ear to actively filter external inputs and emit sound [80, 81]. 
To trace the dynamics of the hair bundle, a flexible glass fiber 
was attached to the bundle’s tip to measure both the position 
autocorrelation function and the associated response to peri-
odic external stimuli. Interestingly, the magnitude of position 
fluctuations was observed to largely exceed the linear-reponse-
based levels for a purely thermal system. This violation of the 
FDT indicates the presence of an internal energy source driv-
ing the system out of equilibrium.

A suggested measure of the degree of violation of the FDT 
is a frequency-dependent ‘effective temperature’ Teff(ω) [80, 
82–86], defined as the ratio between fluctuations and dissipa-
tion: Teff(ω) ≡ ω Sx(ω)/2kBχ

′′
x (ω). For a system at thermal 

equilibrium Teff = T . However, this quantity can be drasti-
cally modified for an actively driven bundle: Close to its spon-
taneous oscillation frequency ω0, the imaginary part of the 
response function of the hair bundle becomes negative. This 
implies that Teff is frequency dependent and can also assume 
negative values.

Even though this example illustrates how the dimen-
sionless quantity Teff/T  provides a simple metric for 
non-equilibrium, the concept of an effective temperature in 
this context remains a topic of debate [36, 37, 80, 87, 88]. 
Note, the existence of an effective temperature should not be 
mistaken for the existence of a physical mapping between 
an active system and an equilibrium system at a temperature 
Teff. While there certainly are examples where such a map-
ping exists, this will not be the case in general. Furthermore, 
although it is not obvious how to interpret negative or fre-
quency dependent effective temperatures, an interesting per-
spective is offered by Cugliandolo et al [82]. These authors 
demonstrated for a class of systems that the effective temper
ature can indicate the direction of heat flow and that this 
quantity can act as a criterion for thermalization [82]. In a 
more recent study, conditions were derived for systems in 
non-equilibrium steady states to be governed by a quasi-
FDT: a relation similar to the equilibrium FDT, but with the 
temperature replaced by a constant Teff > T  [89]. These con-
ditions entail that the intrinsic relaxation time of the system 
is much longer than the characteristic time scale of the active 
forces. However, these conditions may become more com-
plicated in systems with a viscoelastic response governed by 
a spectrum of timescales for which the thermal force spec-
trum is colored [90]. Beyond being a simple way of meas-
uring deviations from the FDT, the concept of an effective 
temperature may thus provide insight into active systems, 
but this certainly requires further investigation. Alternative 
measures for non-equilibrium have been the subject of more 
recent developments based on phase spaces currents and 
entropy productions rates, which are discussed in sections 3 
and 4.

2.2.  Active and passive microrheology

The successful application of the FDT in an active unidi-
mensional context, as in the case of the hair bundle described 
above, paved the road for new approaches: microscopic probes 
were embedded into increasingly more complex biological 
environments to study the mechanics and to detect activity 
inside reconstituted cytoskeletal systems [26, 42, 43, 70] and 
living cells [42, 75, 91].

Probing violations of the FDT in such soft biological sys-
tems relies on high-precision microrheological approaches. 
Conventional single particle microrheology is divided into 
two categories: passive microrheology (PMR) [92] and active 
microrheology (AMR) [93–95]. PMR depends on the basic 
assumption that both the FDT and the generalized Stokes 
relationship apply. This assumption ensures that a measure-
ment of the position fluctuation spectrum directly yields the 
rheological properties of the medium. Indeed, the generalized 
Stokes relation connects the force-response function to the 
viscoelastic response of the medium [92],

χx(ω) =
1

6πaG(ω)
,� (2)

where a is the radius of the bead. This equation is valid in 
the limit of Stokes’ assumptions, i.e. overdamped spherical 

Figure 2.  The fluctuation dissipation theorem implies a relation 
between thermal forces exerted by the molecules of the fluid on 
a Brownian bead and drag forces due to the viscosity of the fluid. 
(A) Cartoon of a freely diffusing Brownian particle. (B) Mean 
square displacement of the particle obtained by performing a 
Brownian simulation (black), and comparison with the analytical 
prediction  <(x(t)  −  x(0))2  >  =2Dt (red). (C) Schematic of an 
external force f in the positive x direction applied on the particle 
via an optical tweezer. (D) The average displacement for the driven 
particle (black), obtained from Brownian dynamics simulation, 
increases linearly with time, as < x(t)− x(0) >= µft, where μ is 
the mobility. In this simple cases, the FDT reduces to the Einstein 
relation: D = µkBT .

Rep. Prog. Phys. 81 (2018) 066601
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particle embedded in a homogeneous incompressible con-
tinuum medium with no slip boundary conditions at the par-
ticle’s surface. Here, G(ω) = G′(ω) + iG′′(ω) describes the 
complex shear modulus, where the the real part is the storage 
modulus G′ describing the elastic component of the rheologi-
cal response, and the imaginary part, G′′, is the loss modulus 
accounting for the dissipative contribution. Under equilib-
rium conditions, the imaginary part of the response function 
χ′′

x  is also related to the position power spectral density via 
the FDT (equation (1)). Thus, in PMR, the response function 
and the shear modulus are measured by monitoring the mean 
square displacement (MSD) 〈∆x2〉(t) ≡ 〈(x(t)− 〈x〉)2〉 of 
the embedded beads. By contrast, in AMR the mechanical 
response is directly assessed by applying an external force on 
an embedded probe particle, usually by means of optical traps 
or magnetic tweezers. Within the linear response regime, the 
response function can be measured as χx = 〈∆x(ω)〉/f (ω), 
and the complex shear modulus can then be determined from 
the generalized Stokes relation (equation (2)).

Although one-particle PMR has proven to be a useful tool 
to determine the equilibrium properties of homogeneous sys-
tems, biological environments are typically inhomogeneous. 
Such intrinsic inhomogeneity can strongly affect the local 
mechanical properties [96, 97], posing a challenge to deter-
mine the global mechanical properties using microrheology. 
To circumvent this issue, two-point particle microrheology is 
usually employed [42, 98]. This method is conceptually simi-
lar to one-point microrheology, but it is based on a generalized 
Stokes-Einstein relation for the cross-correlation of two parti-
cles at positions r1 and r2 with a corresponding power spectral 
density Sr1,r2(R,ω) with R = |r2 − r1|. This correlation func-
tion depends only on the distance between the two particles 
and on the macroscopic shear modulus of the medium. Thus, 
Sr1,r2 is expected to be less sensitive to local inhomogeneities 
of the medium [98].

PMR has been extensively employed to assess the rheology 
of thermally driven soft materials in equilibrium, such as poly
mer networks [44, 62, 92, 99–104], membranes and biopoly
mer-membrane complexes [36, 105, 106], as well as foams 
and interfaces [107–109]. However, a PMR approach cannot 
be employed by itself to establish the mechanical properties of 
non-equilibrium systems, for which the FDT generally does 
not apply. If the rheological properties of the active system are 
known, the power spectrum of microscopic stochastic forces 
∆(ω)—with both thermal and active contributions—can be 
extracted directly from PMR data for a single sphere of radius 
a [42, 44, 110]

∆(ω) = 6πa Sx(ω)|G(ω)|2 .� (3)

The expression for the power spectrum of force fluctuations 
was justified theoretically [42, 111], considering the medium 
as a continuous, incompressible, and viscoelastic continuum 
at large length scales. The results discussed above laid out the 
foundations for a variety of studies that employed microrheo-
logical approaches to investigate active dynamics in recon-
stituted cytoskeletal networks and live cells, which will be 
discussed next.

2.3.  Activity in reconstituted gels

The cytoskeleton of a cell is a composite network of semi-
flexible polymers that include microtubules, intermediate fila-
ments, F-actin, as well as associated proteins for cross-linking 
and force generation [6, 26, 112, 113]. The actin filament 
network is constantly deformed by collections of molecular 
motors such as Myosin II. These motors are able to convert 
ATP into directed mechanical motion and play a major role in 
the active dynamics of the cytoskeleton [8, 34, 43, 114, 115].

To develop a systematic and highly controlled platform for 
studying this complex environment, simplified cytoskeletal 
modules with a limited number of components were recon-
stituted in vitro, opening up a new field of study [26, 66, 
116, 117]. Among these reconstituted systems, F-actin net-
works are perhaps the most thoroughly examined [20, 43, 68, 
117–120]. Indeed, in the presence of motor activity, these net-
works display a host of intriguing non-equilibrium behaviors, 
including pattern formation [46–48, 121], active contractiliy 
and nonlinear elasticity [49, 52, 122–125], as well as motor-
induced critical behavior [50, 53].

To study the steady state non-equilibrium dynam-
ics of motor-activated gels, Mizuno et  al constructed a 
three-component in vitro model of a cytoskeleton, includ-
ing filamentous actin, an actin crosslinker, and Myosin II 
molecular motors [43]. The mechanical properties of the net-
work were determined via AMR, while the activity-induced 
motion of an embedded particle was tracked via PMR. The 
measured imaginary component of the mechanical compli-
ance, χ′′

x (ω), was compared to the response predicted via the 
FDT, i.e. ωSx(ω)/2kBT , as shown in figure 3. In the presence 
of myosin, the fluctuations in the low-frequency regime were 

Figure 3.  Violation of the FDT in reconstituted actin-myosin 
networks (inset). At frequencies below 10 Hz the response function 
estimated from spontaneous fluctuations of a probe bead via the 
FDT deviates significantly from the response χ′′ measured directly 
using active microrheology (full circles). From [43]. Reprinted with 
permission from AAAS.
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observed to be considerably larger than expected from the 
the measured response function and the FDT, indicating that 
myosin motors generate non-equilibrium stress fluctuations 
that rise well above thermally generated fluctuations at low 
frequencies.

These observations raise the question why motor-driven 
active fluctuations only dominate at low frequencies. This 
can be understood from a simple physical picture in which 
myosin motor filaments bind to the actin network and steadily 
build up a contractile force during a characteristic processivity 
time τp [126]. After this processivity time, the motor filament 
detaches from the actin polymers to which they are bound, 
producing a sudden drop in the force that is exerted locally 
on the network. Such dynamics generically generate a force 
spectrum ∆(ω) ∼ ω−2  [111, 127], which can dominate over 
thermally driven fluctuations in an elastic network on time 
scales larger than the characteristic relaxation time of the net-
work, but smaller than the processivity time of the motors (see 
section 2.6 for a more detailed discussion).

In addition to the appearance of non-equilibrium fluctua-
tions, the presence of motors in the network led to a substantial 
ATP-dependent stiffening. It is well known that crosslinked 
semiflexible polymer networks stiffen under an external strain 
[67, 128–131]. Motors can effectively crosslink the network 
leading to stiffening, but they can also generate local contractile 
forces, and it is less clear how internal stress generation from 
such motor activity can induce large scale stresses and con-
trol network stiffness [54, 111, 123, 125, 132–136]. In a more 
recent experimental study, it was shown that motor generated 
stresses can induce a dramatic stiffening behavior of semiflexi-
ble networks [52]. This mechanism could be employed by cells 
and tissues to actively regulate their stiffness [132, 137–139].

An ensemble of beads dispersed in an active gel can not 
only be used to obtain fluctuation spectra, but also to infer 
the full probability distribution of the beads’ displacements 
at a time-lag τ [88, 140, 141]. This distribution is typically 
observed to be Gaussian for a thermal systems, while non-
Gaussian tails are often reported for an active system. In 
actin-myosin gels, for example, exponential tails in the par-
ticle position distributions are observed at timescales τ less 
than the processivity time of the motors. By contrast, at larger 
time lags, a Gaussian distributions is observed, in agreement 
with what was previously found for fluctuation spectra in fre-
quency space [43]. Importantly however, non-Gaussianity is 
not a distinctive trait of non-equilibrium activity, since it can 
also appear in thermal systems with anharmonic potentials. 
In some cases, active systems are also governed by Gaussian 
distributions (see section 3.2).

The hallmarks of activity discussed above for actin-myo-
sin gels are also observed in synthesized biomimetic motor-
driven filament assemblies. For example, Betrand et al created 
a DNA-based gel composed of stiff DNA tubes with flexible 
DNA linkers [142]. As an active component, they injected 
FtsK50C, a bacterial motor protein that can exert forces on 
DNA. An important difference with the actin-based networks 
described above, is that here the motors do not directly exert 
forces on the DNA tubes, which constitute the filaments in the 
gel. Instead, the motors attach to long double-stranded DNA 

segments that were designed to act as cross-linkers between 
two stiff DNA tubes. Upon introduction of the motors, the 
MSD of tracer beads that were embedded in the gel was 
strongly reduced, even though the motors act as an additional 
source of fluctuations. This observation suggests a substantial 
stiffening of the gel upon motor activation. Furthermore, the 
power spectrum of bead fluctuations exhibited  ∼ω−2 behav-
ior, similar to results for in vitro actin-myosin systems and 
even for live cells, which we discuss next.

2.4.  Activity in cells

The extensive variety of biological functions performed by 
living cells places daunting demands on their mechanical 
properties. The cellular cytoskeleton needs to be capable of 
resisting external stresses like an elastic system to maintain its 
structural integrity, while still permitting remodelling like a 
fluid-like system to enable internal transport as well as migra-
tion of the cell as a whole [113, 143]. The optimal mechanical 
response clearly depends on the context. An appealing idea is 
that the cell can use active forces and remodelling to dynami-
cally adapt its (nonlinear) viscoelastic properties in response 
to internal and external cues [144–146]. In light of this, it is 
interesting to note that experiments on reconstituted networks 
suggest that activity and stresses can lead to responses varying 
from fluidization to actual stiffening [7, 52, 147]. Currently, 
however, it remains unclear how such a mechanical response 
plays a role in controlling the complex mechanical response 
of living cells [6, 143, 145, 148–151].

Important insights into the mechanical response of cells 
were provided by experiments conducted by Fabry et al via 
beads attached to focal adhesions near the cortex of human 
airway muscle cells. Their data indicate a rheological 
response where the loss and storage moduli are comparable, 
with a magnitude roughly in the range 100–1000 Pa around 
1 Hz; also the moduli depend on frequency as a power law 
|G(ω)| ∼ ωx  with a small exponent 0.1 � x � 0.3 [75], remi-
niscent of soft glassy rheology [84, 152–155].

The studies conducted by Lau et al [42] and Fabry et al 
[75] employed different probes at different cell sites for 
active and passive measurements, and determined a diffusive-
like spectrum 〈∆x2〉 ∼ ω−2. A more recent assessment [74] 
was able to measure the cellular response and the fluctua-
tion spectrum with the same probe and at the same cellular 
location. The rheological measurement of G was found to 
depend critically on the size of the engulfed magnetic beads 
and yielded a power law dependence on the applied torque-
frequency G(ω) ∼ ω0.5−0.6. Furthermore, the conjuncted 
PMR and AMR assessments revealed a clear violation of the 
FDT, with the MSD of the beads increasing super diffusively 
with time. Measurements of the MSD of micron-size beads 
located around the nucleus of a living fibroblast also exhib-
ited super-diffusive spectra, with a ∼ t3/2 dependence [156]. 
Upon depolymerization of the microtubule network, diffusive 
behavior was restored suggesting that the rectifying action 
of microtubule-related molecular motors might be respon-
sible for the super diffusive behavior. Furthermore, when 
the motors were inhibited without perturbing the polymer 
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network, subdiffusive behavior was observed, in accordance 
to what is expected in equilibrium for a Brownian particle dif-
fusing in a viscoelastic environment [110].

A systematic measurement of both active and passive 
cytoplasmic properties was carried out by Guo et al via sub-
micron colloidal beads injected into the cytoplasm of live 
A7 Melanoma cells. The probe beads were conveniently 
employed to perform both PMR and AMR with the use of 
optical tweezers. The active microrheology experiments indi-
cated a response with a shear modulus around 1 Pa, softer than 
measured near the cortex in [75], but with a similar power-
law dependence of the complex shear modulus on frequency 
|G(ω)| ∼ ω0.15 [45]. Passive microrheology was employed 
to measure the mean square displacement (MSD) of posi-
tion fluctuations in the cytoplasm under the same conditions 
(figure 4(A)). At short time-scales, the MSD is almost con-
stant, as expected for a particle embedded in a simple elas-
tic medium. By contrast, at long time scales, the system can 
relax, resulting in a MSD that increases linearly with time, 
as would be expected for simple diffusion-like behavior of a 
probe particle in a viscous liquid [91, 157].

Although these observations are deceptively close to 
the features of simple Brownian motion, this is clearly not 
the correct explanation for this phenomenon, given that the 
mechanical response of the system measured by AMR is 
predominantly elastic at these time scales. Furthermore, by 
treating cells with blebbistatin, an inhibitor of Myosin II, the 
magnitude of fluctuations notably decreased in the long time 
regime. While this suggests an important role for motor gener-
ated activity in driving the fluctuations of the probe particle, 
Myosin inhibition could also affect the mechanical proper-
ties of the cytoplasm, and thereby also the passive, thermally 
driven fluctuations of the probe particle. Nonetheless, by com-
bining AMR and PMR it became clear that the system violates 
the FDT at these long time scales, implying that the system 
is not only out of equilibrium, but also that non-equilibrium 
activity can strongly alter the spectrum of force fluctuations.

The combination of AMR and PMR measurements was 
employed to infer the spectrum of force fluctuations using 
a method called force spectrum microscopy (FSM). This 
method makes use of the relation ∆(ω) = |k(ω)|2〈∆x2〉(ω), 
where the complex spring constant k ≡ 1/χx  is related to G 
by k = 6πGa (see equation (2)). The measured force spectrum 
exhibited two different power-law regimes: at high frequen-
cies ∆(ω) ∼ ω−0.85, while at low frequencies (ω � 10 Hz), 
∆(ω) ∝ ω−2 , in agreement with what is expected for typical 
molecular motor power spectra, as depicted in figure 4(B).

The observed high-frequency behavior is in accord-
ance with predictions for particle fluctuations driven 
by thermal forces in a nearly elastic medium. In fact, if 
G ∼ ωβ, then 〈∆x2〉(ω) ∼ ω−(β+1) at thermal equilib-
rium [42]. This implies that ∆(ω) ∼ ω−0.85, with the 
measured β = 0.15. By contrast, an active model predicts 
〈∆x2〉(t) ∼ t1+2β if ∆(ω) ∼ ω−2 , which is consistent with 
what is observed in reconstituted motorized gels at timescales 
shorter than the processivity time τp [52, 55]. These experi-
ments and others [34, 158] have thus established the active 

nature and the characteristics of force spectra in the cytoplasm 
using embedded beads.

Various experiments employing PMR in live cells have 
been performed using alternative synthetic probes, such as 
nanotubes or embedded intracellular entities, including micro-
tubules, vesicles, and fluorescently labeled chromosomal loci. 
In a recent study, Fakhri et al developed a new technology to 
investigate the stochastic dynamics of motor proteins along 
cytoskeletal tracks [34]. This cutting-edge method consists 
of imaging the near-infrared luminescence of single-walled 
carbon nanotubes (SWNT) targeted to kinesin-1 motors in 
live cells. Although traces of moving SWNT show long and 
relatively straight unidirectional runs, the dependence of the 

Figure 4.  Fluctuations of probe particles inside living cells. (A) The 
MSD, 〈∆x2(τ)〉, of tracer beads rescaled by the particle diameter d, 
for untreated, Myosin inhibited, and ATP depleted cells. For untreated 
cells the MSD shows a plateau at short time scales, after which the 
MSD increases linearly with time. When Myosin is inhibited by 
blebbistatin, the power law does not change but the magnitude of the 
MSD is reduced. By depleting ATP in the cytoplasm, the dependence 
of the MSD on time becomes consistent with thermal motion in a 
viscoelastic environment at short times. A cartoon of AMR and PMR 
performed inside the cytoplasm is shown in the inset. (B) Measured 
force spectrum in the cytoplasm of untreated (red), blebbistatin 
treated (blue) and ATP-depleted (black) A7 cells. Adapted from [45], 
Copyright (2014), with permission from Elsevier.
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tracers MSD on time exhibits several powerlaw regimes with 
an exponent that depends on the time range: At t ≈ 0.1 s the 
exponent transitions from a value around 0.25 at short times 
to a value of 1 at larger times. By decomposing the MSD in 
motion along and perpendicular to the microtubule axis, it was 
shown that the dynamics of SWNT tracers originates from 
two distinct contributions: directed motion along the microtu-
bules together with transverse non-directed fluctuations. The 
transverse fluctuations were attributed to bending fluctuations 
of the stiff microtubules, owing to motor-generated activity in 
the surrounding cytoskeleton, consistent with prior observa-
tions [158]. Indeed, the full time dependence of the MSD of 
traced kinesin motors could be described quantitatively with a 
model that assumes cytoskeletal stress fluctuations with long 
correlation times and sudden jumps. This is in agreement with 
a physical picture in which myosin mini-filaments locally con-
tract the actin network during an attachment time set by the 
processivity time of the motors, followed by a sudden release.

Active bursts generated by Myosin-V are fundamental  
for nuclear positioning in mouse oocytes. In fact, active dif-
fusion is here thought to create pressure gradients and direc-
tional forces strong enough to induce nuclear displacements  
[31, 159, 160]. As in the earlier studies discussed above, the 
FDT is sharply violated at low frequencies, while it is recov-
ered at large ones [161].

To study the steady-state stochastic dynamics of chro-
mosomes in bacteria, novel fluorescence-labelling tech-
niques were employed on chromosomal loci in E.Coli cells. 
These experiments yielded sub-diffusive MSD behavior: 
〈∆x2〉(t) ∼ t0.4 [30, 156, 162, 163]. Although purely ther-
mal forces in a viscoelastic system, such as the cytoplasm 
or a nucleoid, can also generate sub-diffusive motion [164], 
Weber et al demonstrated a clear dependence of the MSD on 
ATP levels: When ATP was depleted from the cell, the MSD 
magnitude was reduced. Surprisingly however, the exponent, 
α = 0.4, was not affected by varying ATP levels. Under the 
assumption that a change in the ATP level does not effect the 
dynamic shear modulus of the cytoplasm, this effect could 
be interpreted as resulting from active forces with a white 
noise spectrum and from a shear modulus that scales with 
frequency as G ∼ ω0.7. While these results provide evidence 
for the existence of active diffusion by chromosomal loci, 
less invasive and more direct approaches are required to con-
firm and further study non-equilibrium behavior in the bacte-
rial cytoplasm [165] and to understand the dynamics of the 
chromosome.

2.5.  ATP-dependent elastic properties and membrane 
fluctuations in red blood cells

The elastic properties of cells play an important role in many 
biological systems. The unusually high deformability of red 
blood cells (RBCs) is a prominent example in this respect, 
lying at the heart of the cardiovascular system. RBCs have 
the astonishing capability to squeeze through micron-sized 
holes, which ensures seamless blood flow through tight capil-
laries. To explore how these astonishing properties emerge, a 
detailed understanding of passive and active behavior of the 

membrane enclosing RBCs and its connection to the underly-
ing cytoskeleton is required.

The bending dynamics of membranes are largely deter-
mined by their curvature and their response to bending forces 
thus depends on their local geometry [166–169]. In flat mem-
branes, the power spectral density of bending fluctuations 
is expected to scale as ω−5/3 for large ω [35, 169, 170]. A 
spectrum close to a  −5/3-decay has indeed been reported in 
measurements of red blood cell membrane fluctuations [35]. 
Interestingly, the same experiments showed decreasing fluc-
tuation amplitudes upon ATP-depletion, possibly indicating 
the role of non-equilibrium processes. The precise origin and 
nature of these processes, however, is difficult to determine 
due to the composite, ATP-dependent structure of erythrocyte 
membranes and cytoskeleton.

In addition, a flickering motion of RBC membranes 
observed in in microscopy experiments has sparked a discus-
sion about the origin of these fluctuations. Indeed, the extent 
to which active processes determine the properties of RBCs is 
subject of intense research activity [35, 37, 171–177].

Although myosin is present in the cytoskeleton of human 
erythrocytes, mechano-chemical motors are not the only 
source of active forces in the cell. In the membrane of RBCs, 
actin forms triangular structures with another filamentous 
protein called spectrin. These structures are linked together 
by a protein known as 4.1R. Phosphorylation of 4.1R, an 
ATP-consuming process, causes the spectrin-actin complex 
to dissociate, which could lead to a softening of the cell. In 
accordance with this model, ATP-depletion was found to 
increase cell stiffness [38], and at the same time reduce mem-
brane fluctuations on the 1−  10 s time scale. This is exempli-
fied by the comparison between the green (ATP-depleted) and 
black (normal conditions) curves in figure 5(C).

In order to relate the magnitude of fluctuations to mem-
brane stiffness κ and tension σ, Betz et al [35] employed a 
classical bending free-energy [178]

F [h(r)] =
∫

d2r
[κ

2
(�h)2

+
σ

2
(∇h)2

]
.� (4)

A mode decomposition of the transverse displacement h(�q), 
evolving under thermal equilibrium dynamics of this energy 
functional leads to the correlator,

〈h(�q, t)h(�q ′, t′)〉 = (2π)2 kBT
κq4 + σq2 δ(�q +�q ′)e−

|t−t′|
τq ,� (5)

which is reminiscent of the correlator derived for semiflex-
ible filaments (see section 4.3). The decorrelation time τq is 
given by τq = 4ηq/(κq4 + σq2). A Fourier transformation of 
the correlator yields the theoretical prediction for the power 
spectral density shown in figure 5. This model was also gen-
eralized to consider membrane fluctuations in the presence of 
active forces [169, 174, 177].

The observed stiffening of the membrane upon ATP-
depletion, presented a dilemma: membrane stiffening at low 
ATP could be the cause of the reduction of thermally driven 
membrane flickering, as apposed to a picture in which mem-
brane flickering is primarily due to stochastic ATP-driven 
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processes. This conundrum was resolved in a subsequent 
study, in which RBC flickering motion was shown to violate 
the equilibrium FDT, providing strong evidence for an active 
origin of the flickering [36]. To demonstrate this, Turlier et al 

[36] attached four beads to live erythrocytes, three of them 
serving as a handle, while the remaining bead can either be 
driven by a force exerted by optical tweezers or the unforced 
bead motion can be observed to monitor spontaneous fluctua-
tions. The complex response χx(ω) is then obtained from the 
ratio of Fourier transformations of the position x(ω) and force 
F(ω). The equilibrium FDT in equation (1) relates these two 
quantities. The measured imaginary response χ′′

x (ω) is plot-
ted together with the response calculated from equation  (1) 
in figure 5(B). While the two curves exhibit stark differences 
at low frequencies, they become comparable for frequencies 
above 10 Hz. Thus, whatever the precise nature of active pro-
cesses in erythocyte membranes is, the intrinsic timescales of 
these processes appear to be on the order of 1–10 Hz.

To explore the contributions to the mechanical properties 
of the membrane that arise specifically due to phosphoryla-
tion of 4.1R (and other molecules) in erythrocytes, the authors 
devised a semi-analytical non-equilibrium model for the elas-
tic response of the membrane. Phosphorylation events are 
here modelled as on-off telegraph processes, which are added 
to an equilibrium description of membrane bending, such as 
in equation (4). The authors then decompose the membrane 
shape into spherical harmonic modes and calculate the single-
mode power spectral density, which reads

Slm
x (ω) =

2kBT
ω

χlm
x (ω)′′ +

2〈na〉 (1 − 〈na〉) τa

1 + ωτa

∣∣Nlm(ω)
∣∣2 ,

� (6)
with τa = (ka + ki)

−1 being the timescale, na = ka/(ka + ki) 
being the phosphorylation activity, and Nlm(ω) capturing the 
effects of tangential active noise on the membrane shape. The 
rate coefficients ka and ki characterize the simplified activate-
inactivate (a-i) telegraph model, that the authors employ. The 
expression in equation (6) bears interesting similarities with 
the power spectrum of filament fluctuations (see section 4.3, 
equations  (50) and (51)). The mode response here in equa-
tion  (6) is also composed of independent thermal and non-
equilibrium contributions. Interestingly, the model shows that 
the curvature of the membrane is crucial for it to sustain active 
flickering motions. Only a curved surface allows fluctuations 
of tangential stress to result in transversal motion. Modes that 
correspond to wavelengths too short to couple to tangential 
stresses also do not seem to be affected by non-equilibrium 
processes. The flickering therefore appears to be caused by 
a coupling of tangential stresses to transversal motion only 
within a certain window of spherical modes 2 � l � l∗.

ATP-dependent fluctuations seem to contribute directly 
to the extraordinary mechanic properties of erythrocytes and 
may even help maintain their characteristic biconcave shape 
[175]. Recently, bending fluctuations of membranes have 
been implicated in general cell-to-cell adhesion [179]. The 
satisfactory agreement of theoretical and experimental fluc-
tuation spectra in the examples discussed above highlights the 
merit of non-equilibrium statistical approaches to model and 
indeed explain properties of living biological matter.

In summary, the violation of the FDT is an elegant tool for 
the detection of activity in biological systems, as illustrated by 
the many examples discussed in the section above. That being 
said, for such a method to be applicable, the simultaneous 

Figure 5.  (A) Cartoon of a red blood cell whose membrane 
conformations and response are tracked via four attached microscopic 
beads. (B) The response and flickering spectrum of a red blood cell 
differ below 10 Hz, indicating a clear violation of the FDT. Adapted 
by permission from Macmillan Publishers Ltd: Nature Physics [36], 
Copyright (2016). (C) Power spectrum of RBC membrane fluctuations 
under normal conditions (black), after ATP-depletion (green) and 
after addition of a PKC (red). PKC stands for protein kinase C, 
which catalyzes the phosphorylation of 4.1R, leading to increased 
dissociation of actin-spectrin structures. Adapted from [35] with 
permission. Copyright © 2009 National Academy of Sciences.
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measurement of fluctuations and response is required. Even 
though this method gives information on the rheological 
properties of the system, its applicability can be challeng-
ing in contexts where the system is particularly delicate or 
poorly accessible such as chromosomes, the cytoskeleton, 
intracellular organelles, and membranes. Thus, in many cases 
a less invasive approach might be desired. These alternative 
approaches are further discussed in section 4.

2.6.  Simple model for ω−2 active force spectra in biological 
systems

As illustrated by the examples discussed above, the mean 
square displacement of a probe particle in the cytoskeleton 
or in a reconstituted motor-activated gel has been widely 
observed to be surprisingly similar to a diffusive spec-
trum in a viscous medium: 〈∆x2〉 ∼ t. In a purely viscous 
environment, with only Brownian thermal forces, the force 
spectrum is well-described by white noise, which has a flat 
power spectrum over the whole frequency range by defini-
tion. The magnitude of the complex shear modulus for such 
a purely viscous fluid is |G|2 ∼ ω2. Such a simple rheological 
response, taken together with a white noise force spectrum, 
yields a displacement spectrum 〈∆x2〉 ∼ ∆/|G|2 ∼ ω−2 at 
all frequencies. This mechanism, however, does not explain 
the effective diffusive behavior measured in cells below 10 
Hz [7, 32, 34, 45, 88, 180]. Below, we illustrate with a sim-
ple model [111, 127, 180–182] that any active force with 
a sufficiently rapid decorrelation time can induce effective 
diffusive behavior of a bead in an elastic medium. The rel-
evant range of time-scales is bound by the characteristic 
relaxation time of the network and by the processivity time 
of the motors.

Consider a particle moving in a simple viscoelastic solid 
with both active forces, fA, and thermal forces, fT. The sto-
chastic motion of such a particle can be described by an over-
damped Langevin equation [37, 42, 44, 65, 182–185]:

γẋ(t) = −kx(t) + fT(t) + fA(t) ,� (7)

where k is the elastic stiffness and γ the friction coefficient of 
the gel, which is modelled as a Kelvin–Voigt medium [186]. 
For such a system, the thermal noise is described by:

〈 fT(t)〉 = 0 ,
〈 fT(t′) fT(t)〉 = 2γkBTδ(t′ − t).

By contrast, the independent active contribution, fA, is model
led as a zero-average random telegraph process of amplitude 
f0 [182, 187], whose autocorrelation function is

〈 fA(t) fA(s)〉 =
f 2
0

4
e−|t−s|/τ .

The inverse time constant τ−1 = τ−1
on + τ−1

off � k/γ  is the 
sum of the switching rates of the motors between on and off 
states.

Suppose we perform a PMR experiment in which we only 
have access to the power spectral density of the position, we 
would measure

Sx(ω) =
〈 f 2

T 〉+ 〈 f 2
A 〉

k2 + γ2ω2 =
2γkBT +

f 2
0
2

τ
(ωτ)2+1

k2 + γ2ω2 .� (8)

If we consider frequencies τ−1 � ω � k/γ  and assume 
that, in this frequency range, the magnitude of thermal fluc-
tuations 2γkBT  is negligible in comparison to the active 
force amplitude, the spectrum reduces to Sx ≈ f 2

0 τ
−1/2(kω)2. 

In other words, to observe the characteristic ω−2 spectrum, 
the frequency needs to be higher than the operational fre-
quency of the motors 1/τ , but smaller than the characteris-
tic frequency of the medium k/γ . Note that the functional 
dependence on frequency in this limit is identical to the case 
of purely Brownian motion in a simple liquid. For frequen-
cies ω � 1/τ , Sx ∼ const., consistent with experiments (see 
figure 6(A) of [45]). Thus, this simple model illustrates how 
active forces with a characteristic correlation time can account 
for the characteristic features of active particle motion in vis-
coelastic solids.

3.  Entropy production and stochastic 
thermodynamics

3.1.  Entropy production as a stochastic non-equilibrium 
measure

Put colloquially, entropy is about disorder and irreversibility: 
transitions that increase the entropy of the universe are asso-
ciated with an exchange of heat and should not be expected 
to spontaneously occur in reverse. Historically, this picture 
was shaped by experiments on the macroscopic scale, where 
temperature and pressure are well-defined variables. However, 
on length scales ranging from nanometers to microns, where 
most cellular processes occur, fluctuations matter. Entropy, 
once thought to increase incessantly, here becomes a stochas-
tic variable with fluctuations around its norm. These ideas 
sparked many new developments in stochastic thermodynam-
ics [14–16].

In this section, we briefly introduce and motivate several 
recent theoretical and experimental advances of this stochastic 
approach, which has extended thermodynamics to the realm 
of small systems. In particular, we will discuss a class of 
results known as ‘fluctuation theorems’ (FTs), together with 
a selection of general developments that highlight the appli-
cations of these results to living systems. In section 3.2 we 
discuss aspects of entropy production that are specific to lin-
ear multidimensional system, and in section 3.3, we review 
a recent study that demonstrates how these concepts can be 
used to understand noisy control systems in cells. Finally, in 
section  3.4, we discuss a recently introduced fundamental 
lower bound for fluctuations around the currents of probabil-
ity, which are associated with out-of-equilibrium systems.

A key idea of stochastic thermodynamics is to extend the 
classical notion of ensembles and define ensemble averages 
of variables, such as heat, work, and entropy over specific 
stochastic time trajectories of the system [188]. These tra-
jectories can be seen as realizations of a common generating 
process, associated with a particular thermodynamic state. 
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The distribution P(δ) of fluctuations δ is often of interest. 
Fluctuation theorems are usually applicable far from equilib-
rium and constrain the shape of this distribution. Most FTs 
derived so far adhere to the following form

P(δ)
P(−δ)

= eδ ,� (9)

which is always fulfilled for Gaussian probability distribu-

tions P(δ) ∝ e−1/2(δ−θ)2/σ2
 with a mean θ that equals the 

variance θ = σ2/2. Other distributions may of course also 
fulfill this theorem. The fluctuation theorem governing the 
amount of entropy produced after a time ∆t , S(∆t) = ±ω, 
P(ω)/P(−ω) = eω has received particular attention. This result 
underlines the statistical nature of the second law of thermo-
dynamics: a spontaneous decrease in the entropy of an iso-
lated system is not prohibited, but becomes exponentially 
unlikely. However, since the entropy is an extensive quantity, 
negative fluctuations only become relevant when dealing with 
small systems, such as molecular machines.

The first fluctuation theorems were derived in a determin-
istic context [189], then extended to finite time transitions 
between two equilibrium states [190], and finally to micro-
scopically reversible stochastic systems [191]. Later, meso-
scopic stochastic approaches based on a Langevin descriptions 
were proposed. These descriptions turn out to be especially 
suitable in an experimental biological context were typically 
only mesoscopic degrees of freedom are tracked [192–195].

Further physical intuition for entropy production can be 
obtained in the description provided by Seifert [195]. Here, 
the 1D overdamped motion of a colloidal particle is treated 
as a model system. The particle moves in a medium at fixed 
temperature T and is subject to an external force F(x,λ) at 
position x, which evolves according to a protocol λ. The 
entropy production associated with individual trajecto-
ries, ∆stot = ∆sm +∆s, is given by the sum of two distinct 
contributions: the change of entropy of the medium ∆sm  
and the change of entropy of the system ∆s. The former is 
related to the amount of heat dissipated into the medium, 
q̇ = F(x,λ)ẋ, as ∆sm =

∫
dt′ q̇/T . The entropy change of the 

system is obtained from a trajectory-dependent entropy:

s(t) = −kB ln(P(x(t), t)).� (10)

where P(x(t), t) is the probability of finding the particle at 
x(t) at time t. Taking the average of s(t) naturally leads to 
the Gibbs entropy, S = −kB〈ln(P(x(t), t))〉. Within this frame-
work, the integral fluctuation theorem (IFT) for ∆stot can be 
derived [195], which reads

〈
e−

∆stot
kB

〉
= 1.� (11)

The IFT expresses a universal property of entropy production, 
which is valid if the process can be captured by a Langevin or 
master equation description. Note, that in this context this the-
orem also implies the second law, since it implies 〈∆stot〉 � 0. 
In steady-state, a similar approach leads to the steady-state 
fluctuation theorem (SSFT)

P(−∆stot)/P(∆stot) = e−
∆stot

kB ,� (12)

which is a stronger relation from which equation (11) follows 
directly. In early studies [192, 196] this theorem was obtained 
only in the long time limit, but it has been now extended to 
shorter timescales [195]. To experimentally validate the fluc-
tuation theorems discussed, Speck et al studied a silica bead 
maintained in a NESS by an optical tweezer. In this study, a 
single silica bead is driven along a circular path by an opti-
cal tweezer [197]. The forces felt by the bead fluctuate fast 
enough to result in an effective force f, which is constant 
along the entire circular path. The entropy production calcu-
lated directly from trajectories indeed adhered to the SSFT 
described above.

The development of fluctuation theorems has given a fresh 
boost to the field of stochastic thermodynamics and has led to 
a number of interesting studies. For example, several condi-
tions for thermodynamic optimal paths have been established  
[198–200]. These optimal paths represent a protocol for an 
external control parameter that minimizes the mean work 
required to drive the system between two equilibrium states in 
a given amount of time. These results could provide insight into 
thermodynamic control of small biological systems. Recently, a 
fundamental trade-off between the amount of entropy produced 
and the degree of uncertainty in probability currents has been 
derived, which was considered in the context of sensory adapta-
tion in bacteria. This trade-off is discussed in section 3.4.

Another important connection between energy dissi-
pation and the spontaneous fluctuations of a system in a 
non-equilibrium steady-state was found by Harada and Sasa 
[201]. When a system is driven out of equilibrium, the fluctua-
tion dissipation theorem (FDT) is violated (see section 2). A 
natural question to ask is what the violation of the FDT teaches 
us about the non-equilibrium state of a system. Starting from 
a Langevin description for a system of colloidal particles in a 
non-equilibrium steady state, a relation was derived between 
the energy dissipation rate and the extent of violation of the 
equilibrium FDT [201],

〈Ẇ〉 =
N−1∑
i=0

γi

{
v2

i +

∫ +∞

−∞

[
S̃v,ii(ω)− 2Tχ̃′

v,ii(ω)
] dω

2π

}

�
(13)

where 〈Ẇ〉 is the average rate of energy dissipation and γi  
denotes the friction coefficient for the ith-coordinate; S̃v,ii(ω) 
and χ̃v,ii(ω) are the Fourier transform of the velocity correla-
tion function and response function respectively. A remark-
able feature of this relation is that it involves experimentally 
measurable quantities such as the correlation function and 
the response function, thereby allowing a direct estimate of 
the rate of energy dissipation. The violation of FDT has been 
measured, for instance, for molecular motors such as F1 ATP-
ase or Kinesin. Using the Harada–Sasa relation, it has been 
possible to infer information on the dissipated energy and effi-
ciencies of such biological engines [202, 203].

Intuitively, any experimental estimate of the entropy 
production rate will be affected by the temporal and spa-
tial resolution of the observation. In [204] a coarse-grained 
description of a system in terms of mesostates was con-
sidered. With this approach, it was shown how the entropy 
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production obtained from the mesoscopic dynamics, gives 
a lower bound on the total rate of entropy production. 
Interestingly, in systems characterized by a large separa-
tion of timescales [205] where only the slow variables are 
monitored, the hidden entropy production arising from the 
coupling between slow and fast degrees of freedom, can be 
recovered using equation (13). Another interesting notion in 
this context is the partial entropy production, which refers 
to the fraction of entropy production that can be recovered 
from a partial observation of the system, i.e. when only a 
subset of degrees of freedom is accessible. This concept is 
illustrated and discussed in [206, 207], and a partitioning of 
the entropy production related to the observed and hidden 
variables with relative FTs is derived in [208].

The entropy production rate appears to be a good way 
of quantifying the breakdown of time reversal symmetry 
and energy dissipation. However, it is still unclear how this 
quantity is affected by the timescales that characterize the sys-
tem. To address this, a system of active Ornstein–Uhlenbeck 
particles was considered [87]. This system can be driven out 
of equilibrium by requiring the self-propulsion velocity of 
each particle to be a persistent Gaussian stochastic variable 
with decorrelation time τ, thereby providing a simple, yet rich 
theoretical framework to study non-equilibrium processes. 
Interestingly, to linear order in τ, an effective equilibrium 
regime can be recovered: This regime is characterized by an 
effective Boltzmann distribution and a generalized FDT, even 
though the system is still being driven out of equilibrium. 
Indeed, the leading order contribution of the entropy produc-
tion rate only sets in at ∼ τ 2.

In complex systems, we may sometimes face limited infor-
mation about local or global thermodynamic forces. In such 
situations, the direction in which processes evolve, that is, the 
direction of time itself may in principle become unclear. Due 
to micro-reversibility, individual backward and forward tra-
jectories are indistinguishable in equilibrium. Thus, it is natu-
ral to ask‘ how much information is needed to tell if a given 
trajectory runs forward or backward in time? 

This question was studied by Roldan et  al [209] using 
decision-theory, a natural bridge between thermodynamic and 
information-theoretic perspectives. Entropy production is here 
defined as ∆stot(t) = kB ln(P(Xt)/P(X̃t)) with Xt and X̃t  denot-
ing a forward trajectory and its time-reversed counterpart . The 
unitless entropy production, ∆s(t)/kB assumes the role of a 
log-likelihood ratio L(t) of the probability associated with the 
forward-hypothesis P(Xt|H→) and the backward-hypothesis 
P(Xt|H←), that is, L(t) = lnP(Xt|H→)/P(Xt|H←). In a 
sequential-probability ratio test, L(t) is required to exceed 
a pre-defined threshold L1 or subceed a lower threshold L0, 
to decide which of the respective hypotheses H1, H0 is to be 
rejected. The log-likelihood ratio L(t) evolves over time as 
more and more information is gathered from the trajectory 
under scrutiny.

Interestingly, for decision-thresholds placed symmetrically 
around the origin L0 = −L, L1 = L, the observation time τdec 
required for L(t) to pass either threshold turns out to be dis-
tributed independently of the sign of L, i.e.

P(τdec| ←) = P(τdec| →).� (14)

From a thermodynamics perspective, this insight, implies 
that the average time it takes for a given process to produce 
a certain amount of entropy, must equal the average time it 
takes the same process to consume this amount of entropy. A 
process that consumes entropy takes up heat from the environ
ment. This can only occur rarely, of course, so that the the 
second law is not violated.

In a related recent study, Neri et al [210] discuss the prop-
erties of ‘stopping times’ of entropy production processes 
using a rigorous mathematical approach. The stopping time 
here is defined as the time a process on average takes to pro-
duce or consume a certain amount of entropy relative to time 
t0. This stopping time equivalence is sketched in figure 6(B). 
Importantly, stopping times are first passage times condi-
tioned on the process actually reaching the threshold. The dis-
tribution of stopping times, therefore does not say anything 
about how probable it is for an observer to witness the process 
of reaching the threshold at all. Only if a trajectory reaches the 

Figure 6.  Entropy as a stochastic variable: illustration of the mean 
infimum inequality and the equivalence of entropy production 
stopping times. (A) The average of the minimum of an ensemble of 
entropy-trajectories (purple, red and blue) 〈∆sinf(t)〉 (cyan) is bound 
from below by kB (thick yellow). (B) For entropy-bounds ±stot  
that are symmetrically placed around 0 (thick red and blue), the 
stopping times T+ and T− share the same probability distribution 
(the figure shows unnormalized histograms). The stopping time T+ 
(T−) here is defined as the first-passage time of the entropy past the 
upper (lower) bound. Reproduced from [210]. CC BY 3.0.
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threshold, the conditional first passage time can be measured. 
Figure 6(A) depicts another property of the entropy ∆s(t): the 
average entropy is bounded from below by kB.

These ideas were further illustrated by a few examples. 
The time a discrete molecular stepper, similar to the one 
illustrated in figure  9, would spend making N steps for-
ward in a row, on average, is the same as it would spend 
making N steps backwards. This results from the way the 
entropy production for this system scales with the position, 
∆stot(t) = −N(t)Fl/(kBT), where F is the driving force and 
l denotes the step length. Related first-passage-time equiva-
lences have been discussed in the context of transport [211], 
enzymes [212], molecular motors [213], and drift-diffusion 
processes [214]. Entropy stopping times, however, provide 
a unifying and fruitful perspective on first passage times of 
thermodynamic processes. Finally, we note that the properties 
of stochastic entropy production discussed above can also be 
derived from an Itô equation of the entropy that was recently 
derived [215].

Living systems form one of the most intriguing candidates 
to apply key concepts of stochastic thermodynamic. Several 
fluctuation relations have been experimentally verified for 
various biological processes[15, 216–222] and a stochastic 
thermodynamic description for chemical reaction networks 
have been developed [223] and applied, for instance, in cata-
lytic enzymatic cycles [216]. A multitude of thermodynamic 
equalities and lower bound inequalities involving the entropy 
production have been used to investigate the efficiency of bio-
logical systems. This provides insight into the energy dissipa-
tion required for a system to perform its biological function at 
some degree of accuracy. Important contributions in this direc-
tion can be found, for instance, in [224] where the efficiency 
of molecular motors in transforming ATP-derived chemical 
energy into mechanical work is discussed. Following this 
line, we could ask how precise cells can sense their environ
ment and use this information for their internal regulation. 
This was addressed in several works [1, 2, 225], highlighting 
a close connection between the amount of entropy produced 
by the cellular reaction network responsible for performing 
the ‘measurement’, and the accuracy of the final measured 
information (see section  3.3). In [226, 227] these concepts 
were further expanded and applied to more complex macro-
scopic systems, such as the self-replication of bacteria, whose 
description is not captured by a simple system of chemical 
reaction networks. Despite the system’s complexity, insightful 
results were obtained by deriving the more general inequality:

∆Sm +∆S � − ln
π(II → I)
π(I → II)

.� (15)

Here, the system’s irreversibility, i.e the ratio of the prob-
ability of transition between two macrostates π(II → I) and 
the transition probability of the reversed process, represents 
a lower bound for the total entropy production: ∆Sm +∆S, 
where ∆S is the internal entropy difference between the two 
macrostates and ∆Sm is the change of entropy of the bath. One 
can now identify the two macrostates I and II with an environ
ment containing one and two bacterial cells respectively. 

Using probabilistic arguments it is then possible to express 
the probability ratio in equation (15) as a function of measur-
able parameters, which characterize the system’s dynamics. 
With this approach, one can make a quantitative comparison 
between the actual heat produced by E.coli bacteria during a 
self-replication event and the physical lower bound imposed 
by thermodynamics constraints. These results may also have 
implications for the adaptation of internally driven systems, 
which are discussed in [227, 228].

3.2.  Coordinate invariance in multivariate stochastic systems

Energy dissipation, variability, unpredictability are traits 
not exclusively found in biological systems. In fact, it was a 
meterologist, Edward Lorenz, who coined the term ‘butter-
fly effect’ to describe an unusually high sensitivity on initial 
conditions in what are now known as ‘chaotic systems’ [229]. 
In a fresh attempt to explain their large variability, stochastic 
models have been applied to periodically recurring meteo-
rological systems. El-Niño, for example, is characterized by 
a slow oscillation of the sea surface temperature, which can 
cause violent weather patterns when the temperature is close 
to its maximum. Such a change in temperature can lead to 
new steady-states, in which the system is permanently driven 
out-of equilibrium under constant dissipation of energy and 
exhibits a rich diversity of weather ‘states’. Out of equilib-
rium, transitions between states are still random, but certain 
transitions clearly unfold in a preferred temporal sequence.

Interestingly, in an effort to model meteorological systems 
stochastically, Weiss uncovered a direct link between energy 
dissipation and variability, which is intimately related to bro-
ken detailed balance [230]. More specifically, he found that 
out-of equilibrium systems can react more violently to per-
turbations than their more well-behaved equilibrium counter-
parts. This finding may be relevant in a much broader context, 
including biology, and we will therefore briefly summarize 
the main points here. Specifically, we will briefly explore 
this phenomenon of noise amplification from a perspective of 
coordinate-invariant properties [230].

In an open thermodynamic system in equilibrium, all state 
variables �x , are subject to the dialectic interplay of random 
forcing (noise) �ξ , relaxation, and dissipation. Consider an 
overdamped two-bead toy system at equilibrium, for example 
(see figure 12(A) and section 4.2.3), where the two beads are 
coupled by springs and are placed in contact with independ-
ent heat baths. Energy stored in the springs is permanently 
released and refuelled by the thermal bath, and flows back and 
forth between the two colloids in a balanced way. A sustained 
difference in temperature between the beads, T1 �= T2, how-
ever, will permanently rectify the flow of energy and break 
this balance. Crucially, this temperature difference is a matter 
of perspective. If we set, for example, T1  =  0, then bead 1 
will not receive any noise any more and energy will flow to 
it from bead number 2. Interestingly, if we look at the nor-
mal coordinates of the beads u1(t) = (x1(t)− x2(t))/2 and 
u2(t) = (x1(t) + x2(t))/2, we find that their respective ther-
mal noise has exactly the same temperature T2/2. However, 
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if we could measure the fluctuations of noise in these coor-
dinates, we would find that both noise terms correlate. Thus, 
in this case, mode 1 and 2 are driven not only by the same 
temperature, but by the very same white noise process.

Correlations amongst noise processes ξ1(t) and ξ2(t) excit-
ing different variables x1(t) and x2(t) can, in principle, break 
detailed balance, even if the overall variance of the noise is 
equal in all directions, i.e. 〈ξ2

1〉 = 〈ξ2
2〉. In other words, cor-

relations in random forces in one coordinate system, result 
in differences in temperature in other coordinates and vice-
versa. The simple temperature criterion T1 = T2 is thus insuf-
ficient to rule out broken detailed balance (see section 4.1); a 
comprehensive coordinate-invariant criterion is required.

Consider variables �x(t) of a generic system, evolving sto-
chastically according to a Langevin equation (16),

d�x
dt
(t) = A�x(t) + F�ξ(t)� (16)

while the dynamics of the associated probability density ρ(�x, t) 
is given by the corresponding Fokker-Planck equation (17).

∂ρ

∂t
(�x, t) = −∇ · (A�xρ (�x, t)− D∇ρ (�x, t)) .� (17)

In the equations above, F denotes the forcing matrix, in which 
any noise variance is absorbed, such that �ξ  here has unit vari-
ance 〈�ξ(t)�ξT(t′)〉 = 1δ(t − t′). The forcing matrix is directly 
related to the diffusion matrix D = 1

2 FTF, and the term A�x  
describes deterministic forces, and the matrix A therefore 
contains all relaxational timescales. Any linear system with 
additive, state-independent white noise �ξ  can be mapped onto 
these generic equations.

In an equilibrium system with independent noise 
processes, D is diagonal and fulfills the standard fluctua-
tion-dissipation theorem D = kBTM, where M denotes the  
mobility matrix. In steady-state, the correlation matrix 
C = 〈�x ·�xT〉 both in and out of equilibrium, obeys the 
Lyanpunov equation  AC + CAT = −2D, which can be 
thought of as a multidimensional FDT. The density ρ can 
therefore always be written as a multivariate Gaussian distri-

bution ρ(�x, t) = 1/
√
|C|e− 1

2�x
T C−1�x .

Apart from systems with temperature gradients, detailed 
balance is also broken in systems with non-conservative forces 
A�x , which have a non-zero rotation ∂i (A�x)j �= ∂j (A�x)i. Within 
our matrix framework, this condition simplifies to Ai,j �= Aj,i  
and thus requires A to be symmetric in equilibrium. In sec-
tion 4.2.3 we give a detailed example for a 2D linear system 
of this framework and the bootstrapping technique discussed 
in section 4.2.2. In our example, A would represent a prod-
uct between a mobility matrix and a stiffness matrix, both of 
which are symmetric resulting in a symmetric A.

Note, this framework only applies to systems with dissi-
pative coupling; reactive currents require a separate analy-
sis. The two ways of breaking detailed balance in our case 
(temperature gradients and non-conservative forces) are 
reflected by a coordinate-independent commutation criterion 
for equilibrium [230]:

AD − DAT = 0.� (18)

It was also argued that a system with broken detailed bal-
ance will sustain a larger variance than a similar system with 
the same level of noise, which is in equilibrium. This effect, 
referred to by Weiss as noise amplification, had previously 
been attributed to non-normality of the matrix A, which is 
only true for diagonal D. This type of noise amplification is 
now understood to be caused by broken detailed balance.

Although this amplification can be captured by different 
metrics, we here focus on the gain matrix G = 1 + ACD−1. 
The gain matrix is a measure of the variance of the system 
normalized by the amplitude of the noise input. To obtain a 
scalar measure, one can take, for example, the determinant of 
G which yields the gain g. It can be shown, that g � g0 when 
detailed balance is broken, where g0 is the gain of the same 
system in equilibrium. Finally, it is interesting to note, that the 
noise amplification matrix G is related to the average produc-
tion of entropy in our generic model system. Let Π denote the 
production of entropy, then

Π = kB tr (AG) ,� (19)

providing a direct link between dissipation and increased vari-
ability in multivariate systems out of equilibrium.

3.3.  Energy-speed-accuracy trade-off in sensory adaption

Energy dissipation is essential to various control circuits found 
in living organisms [231]. Faced with the noise inherent to 
small systems, cells are believed to have evolved strategies to 
increase the accuracy, efficiency, and robustness of their chem-
ical reaction networks [232–234]. Implementing these strate-
gies, however, comes at an energetic price, as is exemplified 
by Lan et al in the case of the energy-speed-accuracy (ESA) 
trade-off in sensory adaption [1, 235, 236]. This particular cir-
cuit is, of course, not the only active control in cell biology. 
The canonical example of molecular ‘quality control’ is the 
kinetic proofreading process, in which chemical energy is used 
to ensure low error rates in gene transcription and translation 
[3]. Furthermore, fast and accurate learning and inference pro-
cesses, which form the basis of sensing and adaptation, require 
some energy due to the inherent cost of information processing 
[2, 237–239]. A similar trade-off occurs in biochemical oscil-
lations, which serve, for instance, as internal biological clocks. 
Here, the number of coherent cycles is linearly related to the 
energetic price that the system pays [240].

Sensory learning and adaptation at the cellular level 
involves chemical feedback circuits that are directly or indi-
rectly driven by ATP hydrolysis, which provides energy input 
to break detailed balance. Examples of adaptation circuits are 
shown schematically in figures 7(B) and (C). These examples 
include the chemotactic adaption mechanism in E. coli (panel 
(B)), a well-established model system for environmental sens-
ing. Common to all circuits is a three-node feedback struc-
ture, as depicted in figure  7(A). Conceptually, this negative 
feedback circuit aims to sustain a given level of activity a0, 
independent of the steady amplitude of an external stimulus s, 
which here is assumed to be inhibitory. This adaptive behav-
ior allows the circuit to respond sensitively to changes to the 
external stimulus over a large dynamic range in s.
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The authors condense the dynamics of such a chemical 
network into a simple model (figure 7(A)) with abstract con-
trol m(t) and activity a(t) variables described by two coupled 
Langevin equations,

ȧ = Fa(a, m, s) + ξa(t)� (20)

ṁ = Fm(a, m, s) + ξm(t)� (21)

with Fa, Fm denoting the coarse-grained biochemical 
response and ξa, ξm being white-noise processes with differ-
ent variances 2∆a and 2∆m, respectively. Importantly, these 
biochemical responses do not fulfil the condition for conser-
vative forces discussed in the previous section (above equa-
tion (18)). To function as an adaptive system with negative 
feedback, ∂mFa and ∂aFm must have different signs, which 
implies a breaking of detailed balance. Indeed, adaptation 
manifests in a sustained probability current j = ( ja, jm) in 
the phase space spanned by a × m; the energetic cost to 
maintain this non-equilibrium steady-state is given by the 
amount of heat exchanged with the environment per unit 
time, which must equal the entropy production rate Π mul-
tiplied by the temperature T of the heatbath to which the 
system is coupled.

In general, a non-equilibrium system at steady-state that 
adheres to a Fokker-Planck equation  produces entropy at a 
rate [14, 241],

Π = kB

∫
d�x

1
ρ(�x, t)

�jT(�x, t)D−1�j(�x, t)� (22)

where ρ(�x, t) is the probability density in phase space and D−1 
is the inverse diffusion matrix. We note, that for linear systems 
equation (22) simplifies to equation (19).

Applying equation  (22) to the model above for 
sensory adaption, yields the heat exchange rate 

Ẇ =
∫ ∫

dmda
[

j2a/(∆aρ) + j2m/(∆mρ)
]
. An assumed 

separation of timescales that govern the fast activity a and 
the slower control m, allows the authors to derive an Energy-
Speed-Accuracy (ESA) relation, which reads

Ẇ ≈ (c0σ
2
a)ωm log

(ε0

ε

)
,� (23)

where, σ2
a  represents the variance of the activity, and ε denotes 

the adaptation error defined as ε ≡ |1 − 〈a〉/a0|, while c0 and 
ε0 are constants that depend on details of the model. Here, ωm 
parametrizes the rate of the control variable m. Therefore, an 
increase in ωm or a reduction in ε requires an increased dissi-
pation Ẇ ; put simply, swift and accurate adaptation can only 
be achieved at high energetic cost.

The authors argue that a dilution of chemical energy in liv-
ing bacteria will mainly affect the adaptation rate, but leave 
the adaptation error unchanged. Starvation should therefore 
lead to lower adaptation rates to uphold the ESA relation. 
This prediction was tested in starving E. coli colonies under 
repeated addition and removal of MeAsp (see figure  8), an 
attractant which stimulates the chemotactic system shown in 
figure 7(B). The cells in this study were engineered to express 
fluorescent markers attached to two proteins involved in adap-
tation. Physical proximity between any of these two molecules 
is an indicator of ongoing chemosensing, and was measured 
using Foerster-resonance-energy transfer (FRET). Since the 
donor-acceptor distance correlates with the acceptor intensity, 
but anticorrelates with the donor intensity, the ratio of YFP 
(acceptor) and CFP (donor) intensities lends itself as a read-
out signal to monitor adaptation. Indeed, after each addition/

A

B C

Figure 7.  Models of adaptive feedback systems. (A) Simplified topology of a feedback circuit. The input s here is chosen to have an 
inhibitory effect. On the right the response of the output a is shown following a step in the input s. (B) Chemotactic circuit in E. coli. 
Ligand binding to a methyl-accepting-protein (MCP) causes further addition (mediated by CheR) or deletion (mediated by CheB) of 
methylgroups to MCP. This methylation counteracts the effects of ligand binding. (C) Osmotic sensing circuit in yeast. A reduction 
of osmolarity results in dephosphorylation of Sln1p→ Sln1, which activates the HOG1 (High osmolarity glycerol) mechanism. This 
mechanism acts to restore the tugor pressure inside the cell and eventually phosphorylates Sln1→Sln1p. Adapted by permission from 
Macmillan Publishers Ltd: Nature Physics [1], Copyright (2012).
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removal cycle of MeAsp, the signal recovers, albeit at a gradu-
ally decreasing pace, as is shown in the inset in figure 8(A). 
The decrease in the speed of adaptation is attributed to the 
progressing depletion of nutrition in the colony. In panels b 
and c, the adaptation half-time and relative accuracy are plot-
ted. The graph in panel c clearly demonstrates the constancy 
of the accuracy of chemotatic system as nutrients are depleted 
over time, which is argued to be close to optimality.

3.4.  Current fluctuations in non-equilibrium systems

Directed and chemically-specific transport of proteins, RNA, 
ions, and other molecules across the various membranes that 
foliate the cell is often achieved by active processes. A library 
of active membrane channel proteins has been described, 
which ‘pump’ ions into and out of cells to control osmolar-
ity, the electrical potential or the pH [242]. Furthermore, in 
eukaryotic cells, a concentration gradient of signalling mol-
ecules across the nuclear envelope causes messenger RNA 
(mRNA) molecules, expressed within the nucleus, to diffuse 
outwards through channels known as nuclear pore complexes 
(NPC) [112]. Outside of the nucleus, the mRNA is translated 
into proteins by the ribosomes, which are too large to traverse 
the NPCs. All these directed transport processes are essential 
to the cell. Thus, this raises the question of reliability of such 
processes [243, 244]. For example, how steady should we 
expect the supply of mRNA to the ribosomes to be [245]? 
Or, more generally, how predictable is the output rate of any 
given non-equilibrium process? Even active processes still 
endure fluctuations: molecular motors, at times, make a step 
backwards, or stall. Polymerizing filaments will undergo brief 
periods of sluggish growth or even shrinkage. Similarly, active 
membrane channels will sometimes transport more, and in 
other times fewer molecules. To illustrate this, an abstract 
example of such current fluctuations is depicted in figure 10, 
which will be further discussed below.

It seems intuitive, that predictability on the microscale 
always comes with an energy-price tag. In recent years, signifi-
cant progress has been made to calculate the level of deviations 
from the average rate of a non-equilibrium process that is to be 

expected over finite times [199, 246–250]. More formally, a 
universal bound for finite-time fluctuations of a probability cur
rent in steady-state has been established. Such an uncertainty 
relation is perhaps best illustrated by the simple motor model 
discussed by Barato et al [247]: A molecular motor moves to 
the right at a rate k+ , and to the left at a rate k−. The move-
ment is biased, i.e. k+ > k−, driven by a free energy gradient 
∆F = kBT log (k+/k−). A few trajectories for various values 
of k+ are depicted in figure 9(A). As can be seen, the walker 
(shown in the inset), on average, moves with a constant drift 
〈x(t)〉 = t(k+ − k−). Associated with this drift is a constant 
rate of entropy production Π = (k+ − k−)∆F/T . Barato et al 
showed that the product of the total entropy produced S(t) = Πt 
and the squared uncertainty ε2 = 〈(x(t)− 〈x(t)〉)2〉/〈x(t)〉2 
always fulfils the bound

TS(t)ε(t)2 � 2kBT .� (24)

For this particular model, the square uncertainty reads 
ε(t)2 = (k+ + k−)/[(k+ − k−)2t], such that the product 
TS(t)ε(t)2 is constant in time. To further illustrate this point, 
we plotted the quantity TS(t)ε(t)2 for each choice of k+ in 
figure 9(A), averaged over an ensemble of a hundred simu-
lated trajectories in figure  9(B). Due to the finite ensemble 
size, the graphs fluctuate, but stay well above the universal 
lower bound of 2kBT  for longer times t. So far, the theory 
underlying uncertainty relations was shown to be valid in the 
long time limit. Only recently, its validity has been extended 
to finite time scales [249, 250].

The bound in equation  (24) can be generalized to any 
Markovian non-equilibrium steady-state [246, 248]. The four-
node system in the inset in figure 10 is an example. Here, the 
integrated current Jt =

∫ t j(t′)dt′ between any two nodes is 
distributed as P(Jt = tj) ∼ e−tI( j), with I( j) denoting the 
large deviation function. This function therefore controls the 
variability of Jt. Interestingly, it can be shown that the large 
deviation function obtained in the linear response regime ILR, 
is never exceeded by I, even far away from equilibrium [246]. 
Thus, an increase in currents is accompanied by an increase in 
the variability of these currents when a system is driven further 

Figure 8.  Experimental evidence for an energy-speed-accuracy (ESA) trade-off in E. coli chemotaxis. (A) Ratio of intensity of 
fluorescent reporters of adaptation. Changes in this signal are indicative of adaptation in the chemotatic circuit to external stimuli 
presented by the addition/removal of MeAsp. The inset illustrates the reduction of the FRET signal at the three different points in time 
indicated by arrows. (B) Half-times inferred from the responses to addition/removal cycles shown in (A). (C) Relative accuracies of 
adaptation. Adapted by permission from Macmillan Publishers Ltd: Nature Physics [1], Copyright (2012).
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away from equilibrium. The relative uncertainty ε generalizes to 
ε2 = var(J)/〈J〉2. The lower bound for this general ε2 is similar in 
form to equation (24) and reads 2kB/(Πt), i.e. Πtε2 � 2kB, where 

Π = kB
∑

m<n j(m,n) log[( p(s)
(m)r(m,n))/( p(s)

(n)r(n,m))] is the 

average entropy production rate in the system in steady-state 
[246]. The steady-state probability distribution is denoted 

here by p(s)
(m). The relation above is a bound for the uncer-

tainty of the entire system. A similar relation also applies 
to any individual edge between two nodes n and m, 
〈( j(m,n) − 〈 j(m,n)〉)2〉/〈 j(m,n)〉2 � 2kB/(Π(m,n)t), where Π(m,n) 
denotes the entropy production associated with the edge (m, n). 
Recently, in an interesting connection to section 3, Gingrich et al 
[251] have found an uncertainty relation of the first-passage 
time T of a cumulative current J. More precisely, the time T it 
takes J to exceed a given threshold Jthr fulfils the relation

var(T)
〈T〉

Π � 2kB.� (25)

While the uncertainty relations discussed above appear 
abstract at first, they may soon prove useful in studying trans-
port or control systems in cellular biology due to their general 
applicability. Reminiscent of Carnot’s efficiency for mac-
roscopic engines, one implication of equation  (24) is that a 
reduction in uncertainty can only be achieved by dissipating 
more energy when the system is close to optimality.

4.  Detecting broken detailed balance in living 
systems

Up to this point we discussed intrinsically invasive methods 
to probe biological systems for non-equilibrium dynamics. 

For instance, to determine violations of the fluctuation-
dissipation theorem a response function is required, which 
can only be measured by performing a perturbation in non-
equilibrium systems (see section 2). Other methods that are 
used to probe for non-equilibrium involve thermal or chemi-
cal perturbations, and are therefore also inherently invasive. 
Such approaches are not ideal for investigating the stochastic 
dynamics of delicate sub-cellular system. Performing a con-
trolled perturbation of such a system might not only be tech-
nically challenging, it may also be undesirable because of 
potential effects on the behavior or function of such a fragile 
system.

Ideally, we would like to avoid the technical and conceptual 
difficulties of invasive protocols to probe for non-equilibrium 
behavior. This raises the question: Could we perhaps measure 
a system’s non-equilibrium behavior simply by looking at it? 
With this purpose in mind, we recently developed a method 
that indeed uses conventional video microscopy data of cel-
lular and subcellular systems [22]. Detecting non-equilibrium 
behavior in the stochastic dynamics of mesoscopic coordi-
nates of such systems can be accomplished by demonstrating 
that these dynamics break detailed balance. In this section, 
we will illustrate these ideas and discuss some recent related 
theoretical developments.

4.1.  Equilibrium, steady state, and detailed balance

Suppose we can describe a system on a mesoscopic level by 
dividing phase space into small cells, such that the state of the 
system can be described by a state variable n. If the system is 
ergodic and irreducible, it will evolve towards a unique sta-

tionary solution p(s)
n , which is constant in time. A necessary 

and sufficient requirement for such steady-state conditions is 
that the rate of transitions into any particular microstate, m, 
is balanced by the total rate of transitions from m to other 
microstates n:

∑
n

Wn,m =
∑

n

Wm,n,� (26)

where Wn,m describes the rate of transitions from state m to 
n. This result must hold for any system, at equilibrium or far 
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Figure 9.  Variability of non-equilibrium steady states: (A) Example 
trajectories to show the spread in the average position 〈x(t)〉 after 
t steps. The inset depicts a simple model for a molecular motor 
in a sawtooth potential. (B) The products TS(t)ε(t)2 calculated 
over an ensemble of trajectories are bounded from below by the 
uncertainty relation. Despite the small size of the ensemble (1 0 0), 
equation (24) is fulfilled.

Figure 10.  Variability of non-equilibrium steady states: Fluctuations 
of the cumulative probability current JT(m, n) =

∫ T jm,n(t)dt  along 
all nodes in the four state system shown in the inset. Fluctuations 
result in perturbations of the currents around their intrinsic rates 
r(m, n). Adapted figure with permission from [246], Copyright 
(2016) by the American Physical Society.
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from equilibrium, that has reached steady state conditions. 
When the system is Markovian, equation (26) reduces to

∑
n

wnmp(s)
m =

∑
n

wmnp(s)
n ,� (27)

where wnm describes the rate of transitions from state m to n, 
given that the system is in state m.

In thermodynamic equilibrium, it can be shown that a sys-
tem must obey an even stronger condition: detailed balance. 
Classical closed ergodic systems are characterized by a time-
independent Hamiltonian, which we will here restrict to be an 
even function of the momenta and independent of magnetic 
fields. The microscopic degrees of freedom of such a system 
obey deterministic dynamics described by Hamilton’s equa-
tions, which are time reversal invariant. This has important 
implications also for the probability distribution of meso-
scopic observables, which characterize the systems states at 
thermodynamic equilibrium. Consider, for instance, a meso-
scopic variable y, which represents a generalized coordinate 
that either does not depend on the microscopic momenta, or 
that is an even functions of the microscopic momenta. Then, 
the transition between states must obey [187]

p(e)
2 (y2, τ ; y1, 0) = p(e)

2 (y1, τ ; y2, 0) .� (28)

Here we indicate with p(e)
2  the two-point joint probability dis-

tribution. This result is referred to as the principle of detailed 
balance. Put simply, it means that the transitions between any 
two mesostates are pairwise balanced, and this result derives 
from the transition rates between any two microstates also 
being pairwise balanced. For Markovian systems we can write 
detailed balance more conveniently as

w(y2|y1) p(e)(y1) = w(y1|y2) p(e)(y2),� (29)

where the w’s indicate the conditional rates between states. 
Finally, we note that if we add observables z, which are odd 
functions of the momenta, equation (28) needs to be general-
ized to

p(e)
2 (y2, z2, τ ; y1, z1, 0) = p(e)

2 (y1,−z1, τ ; y2,−z2, 0) .� (30)

It is important to note that for a system in steady state 
dynamics, broken detailed balance is direct evidence of 
non-equilibrium, but showing that a system obeys detailed 
balance in a subspace of coordinates is insufficient to prove 
equilibrium. Indeed, even for systems out of equilibrium, 
broken detailed balance is not necessarily apparent at the 
supramolecular scale [28, 29, 59, 60]. One can also often 
observe stationary stochastic processes in cells that, at first 
glance, appear to be thermally driven. Examples include 
the fluctuations of cytoskeletal filaments such as microtu-
buli, F-actin filaments or the fluctuations of intracellular 
organelles. These cases should be contrasted with obvious 
examples of mesoscopic non-equilibrium, non-stationary, 
irreversible processes such as cell growth, locomotion and 
mitosis. Thus, in general, it is unclear how and when bro-
ken detailed balance that realized on the molecular level also 
manifests at larger scales.

4.2.  Probability flux analysis

In this section, we describe the basis and methodology that 
can be used to infer broken detailed balance from micros-
copy data. We consider a system, which is assumed to evolve 
according to stationary dynamics. This could, for instance, be 
a primary cilium or a flagellum [22]. In general, these sys-
tems exhibit stochastic dynamics, comprised of both a deter-
ministic and a stochastic component. The dynamics of such 
systems can be captured by conventional video microscopy. 
To quantify this measured stochastic dynamics, we first need 
to parameterize the configuration of the system. The shape of 
a flagellum, for instance, could be conveniently decomposed 
into the dynamic normal modes of an elastic beam. In this 
example, the corresponding mode amplitudes represent time-
dependent generalized coordinates of the system. Note, these 
mode amplitudes can be extracted from a single time frame 
and strictly represent configurational coordinates, which are 
independent of the microscopic momenta.

In general, a video microsocopy experiment can be used 
to extract time traces of D mesoscopic tracked coordinates 
x1, ..., xD, which represent the instantaneous configuration 
of the system. Clearly, this only represents a chosen subset 
of all coordinates that completely specify the whole sys-
tem. Furthermore, only spatial or conformational degrees 
of freedom are considered in this discussion here. Indeed, 
fluctuations in momenta in a typical overdamped biologi-
cal or soft-matter systems relax on very short time-scales, 
which are not resolved in typical video microscopy experi-
ments. However, the basic methodology described below 
can readily be generalized to also include momentum-like 
variables.

We define a probability density, ρ(x1, ..., xD, t), in terms of 
only the tracked degrees of freedom. This probability den-
sity can be obtained from the full joint probability density in 
terms of a complete set of variables, by integrating out all the 
untracked degrees of freedom. In the reduced configurational 
phase space of the tracked degrees of freedom, the dynamics 
of the system still obeys a continuity equation:

∂ρ(x1, ..., xD, t)
∂t

= −∇ ·�j(x1, ..., xD, t)� (31)

where �j(x1, ..., xD, t) is the current density describing the net 
flow of transitions of the system in the D-dimensional con-
figurational phase space. Here, we only consider systems with 
dissipative currents [90]. While at steady state the divergence 
of the current needs to vanish, in equilibrium any dissipative 
current itself must be identically zero.

4.2.1.  Estimating phase space currents  Here we discuss 
one way of estimating currents from a set of time-traces. To 
provide a simple illustration of this approach, we consider a 
system with a 2D configurational phase space, as illustrated 
in figure 11(A). The dynamics of the system is captured by a 
time trace in this configurational phase space. It is convenient 
to analyze these trajectories using a discretized coarse-grained 
representation of the 2D phase space. This coarse-grained 
phase space (CGPS) consists of a collection of equally sized, 
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rectangular boxes, each of which represents a discrete state 
figure  11(B). Such a discrete state in CGPS encompasses 
a continuous set of microstates, each of which belongs to a 
unique, discrete state. The primary reason for using this dis-
cretized representation of phase space is to be able to obtain 
informative results on experimental data with limited statistics.

In this 2D CGPS, a discrete state α has two neighboring 
states, respectively α+ (larger xi) and α− (smaller xi), along 
each direction xi, resulting in four possible transitions. The 
dynamics of the system indeed satisfies the discrete continuity 
equation

dpα

dt
= −W̃(x1)

α−,α + W̃(x1)
α,α+ − W̃(x2)

α−,α + W̃(x2)
α,α+ ,� (32)

where W̃α,β = Wα,β − Wβ,α is the net rate of transitions from 
state β to α and pα is the probability to be in discrete state α, 
which will become time independent when the system reaches 
steady-state conditions.

This probability pα is related to the probability density 
ρ(x1, ..., x2, t) defined above, and equation (32) can be obtained 
by integrating equation  (31) on both sides over the volume 
of state α in CGPS. We can estimate this probability from a 
measured trajectory by using

pα = tα/ttotal,� (33)

where tα is the accumulated time that the system spends in 
state α and ttotal is the total duration of the experiment.

The net rates W̃  in CGPS can be estimated from the meas-
ured trajectories simply by counting the net number of trans
itions per unit time:

W̃(xi)
α,β =

N(xi)
α,β − N(xi)

β,α

ttotal
.� (34)

Here N(xi)
α,β  is the number of transitions from state β to state α 

along the direction xi. In a mechanical system, the trajectories 
through phase space are continuous such that there can be only 
transitions between neighboring states. However, due to the 
discreteness in a measured time trajectory, it is possible that a 
transition between neighboring states is ‘skipped’, resulting in 
an apparent transition between non-neighboring states. In these 
cases, it is convenient to perform an interpolation of the time 
trace to estimate the intermediate transitions. It is important 
that this interpolation is performed in a time-symmetric way, 
so that the interpolation filter preserves time-reversal symme-
try. In fact, this should be taken into account with any kind of 
filtering that is performed on measured time traces.

The currents in CGPS that describes back-and-forth trans
itions through all four boundaries of the box associated with a 
discrete state (figure 11(C)), can be defined by:

�J(�xα) =
1
2

(
W̃(x1)

α−,α + W̃(x1)
α,α+ , W̃(x2)

α−,α + W̃(x2)
α,α+

)
.� (35)

Here, �xα is the center position of the box associated with state 
α.

With this approach, prominent examples such as an iso-
lated beating flagella of Chlamydomonas reinhardtii were 
examined [22] (see figure  1). Dynein motors drive relative 
axial sliding of microtubules inside the axoneme of the flagel-
lum [77, 252, 253]. To quantify the non-equilibrium dynamics 
of this system, we decomposed the axoneme shapes measured 
using time-lapse microscopy into the dynamic normal modes 
of an elastic filament freely suspended in a liquid. Using this 
approach, we obtained the amplitudes of the projections coef-
ficients for the first 3 modes. These amplitude time series were 
used to construct a trajectory in a phase space spanned by the 
three lowest-order modes, which were analyzed using PFA, 
as shown in figure 1(C). Here, the vector fields indicate the 
fluxes for the first three modes. Thus, this method can be used 
to quantify the non-equilibrium dynamics of the flagellum in a 
phase space of configurational degrees of freedom.

In addition, we considered primary cilia of Madin-Darby 
Canine Kidney (MDCK II) epithelial. Primary cilia are hair-
like mechano and chemosensive organelles that grow from the 
periphery of certain eukaryotic cells [40, 254, 255]. At first 
glance the dynamics of the deflection angle and curvature of 
primary cilia appear to exhibit random fluctuations. Using 
probability flux analysis (PFA), however, it was demonstrated 
that there are significant circulating probability fluxes in a 
configurational phase space of angle and curvature, providing 
evidence for the non-equilibrium nature of primary cilia [22]. 
This approach is now gaining traction in variety of systems, 
ranging from the post translation Kai circadian clock [256] 
to motility phenotypes [257]. When the mobility of a system 
is known, a related approach can be used to estimate the heat 
dissipation [258]. However, in a non-equilibrium system, the 
mobility must be obtained by a perturbative measurement.

4.2.2.  Bootstrapping.  In practice, the finite length of exper
imental or simulated trajectories limits the accuracy with 
which we can estimate fluxes in phase space. This has an 

Figure 11.  Schematic illustrating the coarse-graining procedure 
for the estimation of phase space currents and corresponding 
error bars. (A) Trajectory in continuous phase space. (B) Grid 
illustrating the discretization of the continuous phase space. (C) 
By counting transitions between first neighbour discrete states it is 
possible to estimate the currents (indicated by the arrows) across the 
boundaries. (D) Current error bars representation obtained through 
the bootstrapping procedure. From [22]. Reprinted with permission 
from AAAS.
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important implication: even when considering a system at 
thermodynamic equilibrium, a measurement from finite data 
will typically result in apparent non-zero currents. In such a 
case we can not statistically distinguish the measured apparent 
current from a zero current. Therefore, it is important to asses 
if the estimated currents are statistically significant. Moreover, 
these current fluctuations may also be interesting to study in 
and of themselves (see section 3.4). In this section we briefly 
describe ‘bootstrapping’, a method that can be used to associ-
ate error bars to the measured currents.

The error bars on the probability flux can be determined 
by counting statistics of the number of transitions in equa-
tion  (34). In general, however, there may be correlations 
between in-and-outward transitions for a given state, which 
renders it difficult to perform a simple estimate of the error-
bar. A possible way around this, which naturally takes cor-
relations into account, is to bootstrap trajectories from the 
experimentally measured or simulated trajectories.

To perform this bootstrapping procedure, we first deter-
mine all the transitions between discrete states in the CGPS 
from the measured trajectories. From this data, we construct a 
set A of n events, describing specific transitions of the system 
between two states, including the transition time. Given A, we 
can generate a new set of transitions, A′, by randomly sam-
pling n single events (with replacements) from A. This pro-
cedure, however, ignores possible correlations. To capture the 
effects of correlations on the accuracy of our current estima-
tor, we bootstrap trajectories by randomly sampling a group of 
m consecutive events from A to construct a new set of trans
itions A’i(m) [259].

For each bootstrapped trajectory we calculate the current 
field and by averaging over all the realizations, we estimate 
the covariance matrix. To visualize the error bars (standard 
error of the mean) on the estimated currents, we depict an 
ellipse aligned with the principle components of this covari-
ance matrix. The short and long axes of these error-ellipses 
are defined by the square roots of the small and large eigen-
values, respectively, of the covariance matrix, figure  11(D). 
Empirically, we found that the estimated error bars reduce 
substantially by including pairwise correlations, i.e. in going 
from m  =  1 to m  =  2, after which the error bars became 
largely insensitive to m. Such correlations can arise because 
of the coarse graining of phase space, which can introduce a 
degree of non-Markovianity.

4.2.3. Toy model: two stochastically driven coupled 
beads.  To provide some basic intuition for stochastic non-
equilibrium systems we next discuss a simple model, which 
can easily be solved both analytically and numerically. With 
this model, which was also studied in [260, 261], we illustrate 
how probability flux analysis (PFA) can be used on simulated 
data to obtain current densities in coarse grained phase space. 
The results are shown to be consistent with analytical calcul
ations within error bars.

Consider a system consisting of two microscopic over-
damped beads in a liquid connected to each other and to a 
rigid boundary by springs with elastic constant k, as depicted 
in figure 12(A). The two beads are assumed to be in contact 

with two independent heat baths, respectively at temperatures 
T1 and T2. The stochastic dynamics of this system is described 
by the overdamped equation of motion

d�x
dt

= A�x + F�ξ,
�

(36)

where �x = (x1, x2)
T represents the beads positions. The deter-

ministic dynamics is captured by the matrix

A =
k
γ

(
−2 1
1 −2

)
.� (37)

The drag coefficient γ, characterizing the viscous interactions 
between the beads and the liquid, is assumed to be identical 
for the two beads. The stochastic contribution, ξi, in the equa-
tion of motion is defined by

〈�ξ〉 = 0, 〈�ξ(t)⊗ �ξ(t′)〉 = Iδ(t − t′),� (38)

and the amplitude of the noise is captured by the matrix

F =

√
2kB

γ

(√
T1 0
0

√
T2

)
.� (39)

We can generate simulated trajectories for this system 
by numerically integrating equation  (36). We will con-
sider two exemplificative cases: (i) thermal equilibrium 
with T1 = T2, and (ii) non-equilibrium with T2 = 5T1. An 
example of the two simulated trajectories for this last case 
is shown in figure 12(A), where we note that the dynam-
ics of individual trajectories appears to be, at first glance, 
indistinguishable from equilibrium dynamics. Interestingly 
however, the non-equilibrium nature of this system is 
revealed by applying PFA to these data, which gives coher-
ently circulating probability fluxes in the phase space  
(figure 12(C)). By contrast, in the case of thermal equilib-
rium (T1 = T2) we find, as expected, that the flux vanishes, 
as shown in figure 12(B).

To compare these results of the estimated fluxes from 
simulations with analytical calculations, we next consider the 
time evolution for the probability density function ρ(�x, t) of 
the system, which is described by the Fokker Planck equation:

∂ρ(�x, t)
∂t

= −∇ · [A�xρ(�x, t)] +∇ · D∇ρ(�x, t),� (40)

where D = 1
2 FFT is the diffusion matrix. The steady-state 

solution of this equation  is a Gaussian distribution, with a 
covariance matrix, C, which is found by solving the Lyapunov 
equation

AC + CAT = −2D.� (41)

The steady state probability flux density is given by 
�j = Ω�xρ(�x), where

Ω =
k(T1 − T2)

γc

(
2(T1 + T2) −(7T1 + T2)

(T1 + 7T2) −2(T1 + T2)

)
� (42)

with c = (T2
1 + 14T1T2 + T2

2 ). As expected, the flux vanishes 
at thermal equilibrium when T1 = T2. In the near equilibrium 
regime, we can consider T1  =  T and T2 = T + ε with ε small. 
Within this limit, the current field can be written as
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�j ∝ ε

T2 e−
k(x2

1−x1x2+x2
2)

kBT

(
x1 − 2x2

−2x1 + x2

)
+O(ε)2� (43)

where we note how the amplitude and the direction of the flux 
are set by the ratio εT2 , which vanishes at equilibrium. To gain 
some intuition on how the current decays with the distance 
in phase space, we can for example constrain equation  (43) 
along the vertical direction (x1  =  0),

�j ∝ ε

T2 e−
kx2

2
kBT

(
−2x2

x2

)
+O(ε)2.� (44)

From equation (44) we can notice two opposite contributions 
to the amplitude, the linear dependence, dominant for small x2 
and the exponential dependence, dominant for larger x2. This 
indicates an optimal distance from the origin at which the flux 
is maximum.

To compare the analytical expectation for the flux �j  with 
the results obtained using PFA on simulated trajectories, we 
calculate the compatibility cij,l between the estimated ĵ and 
the theoretical j values of the flux field in cell i, j, and in direc-
tion xl:

cij,l =
|̂jij,xl − jij,xl |

σ
,� (45)

where σ is the error obtained from the bootstrapping analysis 
in PFA. The results for the second component of �j  yield an 
average compatibility of 〈cij〉 � 1.02 (figure 12(E)), indicat-
ing a good quantitative agreement between our estimation and 
the exact currents. A similar result is obtained in the equilib-
rium case (T1 = T2), for which the average compatibility is 

〈cij〉 � 0.95. This concludes our analysis of probability fluxes 
in phase space for stochastic trajectories. These results illus-
trate how PFA can be used to infer accurate currents in coarse 
grained phase space from stochastic trajectories.

4.3.  Probe filaments to study broken detailed balance across 
scales in motor-activated gels

While mesoscopic objects, such as cilia or flagella, can often 
be directly imaged, detecting non-equilibrium dynamics inside 
live cells on the microscale and below is more challenging. 
The cellular cytoskeleton, discussed in section 2, is a promi-
nent example of active matter, which can best be described as 
a viscoelastic meshwork of biopolymers, activated by myosin 
motors [17, 21]. Random contractions of these myosin pro-
teins fuelled by ATP hydrolysis can drive vigorous steady-
state fluctuations in this polymer network. Such fluctuations 
can be quantified experimentally by embedding fluorescent 
probe particles. This technique has revealed multiple scal-
ing regimes of the time dependence of the mean-squared 
displacement [32], which were attributed to a combination 
of the viscoelastic behavior of the network and the temporal 
dynamics of motor activity. In particular, endogenous embed-
ded filaments such as microtubules, or added filaments such as 
single-walled carbon nanotubes have proved to be convenient 
probes [34, 55].

These experiments and others [45, 140, 262] have sparked 
a host of theoretical efforts [111, 185, 263–269] to elucidate 
the stochastic dynamics of probe particles and filaments in an 
active motorized gel. More recently, it has been suggested that 

Figure 12.  (A) Schematic of the two coupled beads system and simulated time series of the beads positions for T2 = 5T1. ((B) and (C)) 
Probability distribution (color) and flux map (white arrows) obtained by Brownian dynamics simulations at equilibrium (T1 = T2) (B) and 
non-equilibrium (T2 = 5T1) (C). Translucent discs represent a 2σ confidence interval for fluxes. (D) Analytical result for the probability 
distribution (color) and flux map (white arrows) obtained for a non-equilibrium case, (T2 = 5T1). From [22]. Reprinted with permission 
from AAAS. (E) Compatibility estimated from equation (45) between the estimated and theoretical second components of the currents.
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probe filaments can be also used as a multi-variable probe to 
discriminate active from thermal fluctuations using detailed 
balance [59, 60], and could be used to detect correlations in 
the profile of active forces along its backbone [58].

In the following, we lay out a framework to describe fluc-
tuations of a semiflexible probe filament [56, 270–272], which 
is embedded in a motor-activated network [111, 127, 181]. We 
assume the probe filament to be weakly-bending, such that 
we can focus on the transverse coordinate r⊥(s, t), where the 
arclength 0  <  s  <  L parametrizes the backbone, as shown in 
figure 13. The overdamped dynamics of such a probe filament 
is governed by a balance of (i) viscous and elastic forces of 
the surrounding viscoelastic medium, (ii) bending forces, (iii) 
thermal agitation, and (iv) motor-induced fluctuations, which 
read in this order as

t∫

−∞

dt′ α(t − t′)r⊥(s, t′) + κ
∂4r⊥
∂t4 (s, t) = ξ(s, t) + fM(s, t).

� (46)

Terms on the left describe relaxation, while terms on the 
right contain stochastic contributions. For a predominantly 
elastic network, we can use the generalized Stokes equation, 
α̂(ω) = k0Ĝ(ω) to approximate the viscoelastic kernel on the 
left hand side as Ĝ = G0 + iηω, i.e. as a Kelvin–Voigt-type 
viscoelastic solid. The factor k0 has a geometrical origin, and 
is given by k0 ≈ 4π/ ln(L/d) for an infinitesimal rod seg-
ment of diameter d [126]. In a crosslinked actin network this 
approximation is reasonable for low frequencies typically 
below roughly 100 Hz, beyond which the network modulus 
exhibits a characteristic stiffening with frequency [45, 273, 
274]. When the network is described as such a simple visco-
elastic solid, the thermal noise is given by a Gaussian white-
noise process ξ(s, t), to which we add independent actively 
induced forces fM(s, t), specified in detail further below.

Bending forces can be conveniently studied from the per-
spective of bending modes of the probe filament. Following 
the approach in [59, 60], a description in terms of bend-
ing modes can be obtained from a decomposition of the 
backbone coordinates into orthogonal dynamic modes 
r⊥(s, t) = L

∑
q aq(t)yq(s) [56–58]. In this coordinate sys-

tem, the multiscale character of probe filaments becomes 
apparent: each bending mode amplitude aq(t) is sensitive to 
a lengthscale corresponding to its wavelength. The precise 
form of bending modes, however, depends on the boundary 
conditions of the filament. The simplest case is a filament 
with zero transverse deflections at its end, where classical 
sine-modes yqm(s) =

√
2/L sin(qms) form an orthonormal 

set. Importantly, these modes are independent in equilib-
rium, due to their orthogonality. For fixed-end modes, mode 
number m ∈ {1, 2, 3, ...} and wave-vector q are related via 
q(m) = mπ/L. The relaxational timescale of each mode is set 
by a balance between both elastic and viscous forces of the 
network and the bending rigidity of the filament. For inexten-
sible filaments in purely viscous environments, this results in 
a strongly length-dependent decay

τq =
η

κq4/k0 + G0
.� (47)

In the linear-response regime, we obtain the mode-response 
function to transverse deflections, χq(t), in fourier space 
χ̂q(ω) = (α̂(ω) + κq4)−1. This response function is related 
to mode variances in equilibrium via the mode fluctuation-
dissipation theorem

〈|âq(ω)|2〉 =
2kBT
L2ω

χ̂′′
q (ω).� (48)

Bending modes are thus ideally suited to not only detect motor 
activity, but also to measure their spatial and temporal charac-
teristics. Perhaps for these reasons, bending mode fluctuations 
have been the subject of a number of studies in biological non-
equilibrium systems.

In a study by Brangwynne et al [55], fluorescently labelled 
microtubuli were used to probe the active fluctuations in actin-
myosin gels. The persistence lengths of microtubuli is on the 
order of millimeters [57], such that these filaments can be 
treated effectively as rigid on microscopic lengthscales under 
thermal conditions. By contrast, in actin-myosin gels, micro-
tubuli exhibit significant fluctuations, caused by contractions 
of myosin, which deform the network in which the micro-
tubules are embedded. A quantitative analysis of thermal 
bending mode fluctuations reveals a q−4-decay in actin net-
works (without myosin). By contrast, adding myosin not only 
increases the amplitudes of fluctuations, but also results in a 
breakdown of the standard mode decay (see equation  (47). 
The spatial extent of individual indentations in motor-agitated 
microtubuli can be used to extract forces induced by myosing. 
These force range between 0−30 pN, in accord with more 
recent studies in live cells [34, 45]. Importantly, the results 
also suggest a very narrow profile of the force exerted on the 
microtubules. Furthermore, in the cell cortex, microtubules 
often appear considerably more curved, despite their rigid-
ity. Indeed, this curved microtubule structure is not due to 

Figure 13.  Fluctuations of a probe filament (blue) embedded in 
a viscoelastic actin (grey) network, driven out of equilibrium by 
random contractions of myosin (red, red arrows). Adapted figure 
with permission from [60], Copyright (2017) by the American 
Physical Society.
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temporal bending fluctuations of the microtubule, but rather 
results from geometrical constraints that randomly deflect the 
microtubule tip during polymerization [158].

Motivated by these experimental observations, we can 
model the motor-induced force, exerted on the probe at the 
points where it is coupled elastically to the network, as a 
superposition of all active forces in the environment:

fM(s, t) =
∑

n

fn(s, t),� (49)

where each fn(s, t) denotes the force contribution from active 
motors, which affect the filament at the nth entanglement 
point. Active forces have a characteristic spatial decay, since 
myosin motors exert forces in dipoles rather than in single 
directions [275]. The model in equation (49) does not account 
for such details; its main purpose is to provide a non-uniform 
force background f (s) along the backbone s.

Measurements of myosin dynamics have revealed a 
Lorentzian power spectrum [111, 274]. A simple on-off 
telegraph process T (t) is in accord with these observa-
tions and appears to be adequate to model the stochastic 
force dynamics of individual motors. Taking furthermore 
into account the narrow profile of motor forces inferred 
from experiments [55], we arrive at a model for motor-
induced forces, which reads fn(s, t) = fnδ(s − sn)Tn(t). Here 
Tn(t) is a telegraph process with exponential decorrelation 
〈T (t)T (t′)〉 = C2 exp(−|t − t′|/τM).

Using this simple description for the stochastic behav-
ior of motor-generated forces together with equation  (48), 
we compute the mode correlator, which decomposes 
into active and thermal contributions: 〈aq(t)aw(t′)〉 =  
〈aq(t)aw(t′)〉Th + 〈aq(t)aw(t′)〉M, given by

〈aq(t)aw(t′)〉Th =
kBTτq

L2γ
δq,we−

|t−t′|
τq� (50)

〈aq(t)aw(t′)〉M =
1

L2γ2 Fq,wC2Cq,w (t − t′) .� (51)

Fq,w specifies the geometry of motor-induced forces in mode 
space and is defined by Fq,w =

∑
n f 2

n yq (sn) yw (sn), where the 
sum runs over the filament-network contacts. The function 
Cq,w(∆t) denotes the temporal decorrelation of active mode 
fluctuations. In contrast to thermal equilibrium, active fluctua-
tions decay as a double exponential

Cq,w(t − t′) = τqτw

(
e−

|t−t′|
τM(

1 − τq

τM

)(
1 + τw

τM

) .

− 2
τq

τM

e−
|t′−t|
τq(

1 −
(

τq

τM

)2
)(

1 + τw
τq

)
)

,

�

(52)

which indicates a competition between two decorrelating pro-
cesses: mode relaxation and the internal decorrelation of the 
motor state. The correlator is not symmetric in the indices q 
and w as can be seen from equation (52), which results in a 
breaking of Onsager’s time-reversal symmetry [60].

This double exponential in equation (52) is the footprint of 
colour of the noise process, which we use to describe motor-
induced forces. The q−4-decay of mode amplitudes relaxation 
times, τq, levels off around τM as shown in figure 14(C). This 
saturation occurs because modes cannot decorrelate faster 
than the force that is driving them. Under coloured noise, 
the relaxation times cannot be directly inferred from decor-
relation. This is indeed confirmed in Brownian dynamics 
simulations of filaments subject to active fluctuations [59]. To 
further illustrate these results, simulations of mode variances 
over mode vector in passive (figure 14(A)) and active (figure 
14(B)) networks are shown together with theoretical predic-
tions from equations  (50) and (51). For comparison, exper
imentally obtained mode variances [55] are plotted over q in 
figure 15. As one would expect, in both cases mode variances 
are elevated in active environments.

In the long time regime t � τM, motor forces effec-
tively appear as sources of white-noise. In this ‘white-
noise limit’, the motor correlator converges to a δ-function, 
〈∆T (t)∆T (t′)〉 → C2/2τMδ(t − t′) with a factor τM, which 
remains only as a scale of the variance of the motor process. 
The mode correlation function in the white-noise limit can be 
derived by a series expansion of Cq,w(t), which yields

〈aq(t)aw(t′)〉M =
C2τM

L2γ2 Fq,w
τqτw

τq + τW
δ(t − t′).� (53)

We can now contract the thermal and motor-white noise 
processes into a single process ψ(t), with a correlator 

〈ψq(t)ψw(t′)〉 = (4kBTγδq,w + C2τMFq,w)
δ(t−t′)

2L2 .
It is useful at this stage to compare this scenario with 

that described in section 3.2: Here, mode variables are inde-
pendent, but are subject to noise with a cross-mode correla-
tions, such that different modes are simultanously excited 
by a motor event. By constrast, thermal noise is uniform in 
amplitude and uncorrelated throughout the system, giving 
rise to independent stochastic forces in mode-space. As we 
discussed in section  3.2, a correlation in the external noise 
in one coordinate system, may appear as a ‘temperature’ 

Figure 14.  Mode fluctuations under (A) purely thermal agitated 
and (B) under additional influence of motor-induced forces. C) 
Convergence of mode decorrelation times onto the motor timescale. 
Different colors correspond to the different times ∆t  shown in the 
legend in panel (A). Adapted figure with permission from [55], 
Copyright (2008) by the American Physical Society.
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gradient in different coordinates. It is this mechanism, 
which gives rise to a probability flux in mode space, which 
breaks detailed balance in the fluctuations of the probe fila-
ment. In other words, a motor-induced force background 

〈 fM(s, t)〉temporal = limt1→∞
∫ t1

t0
dtfM(s, t) (see lower panel 

in figure 13), which varies along the filament, will lead to a 
breaking of detailed balance in a hyperplane spanned by the 
affected modes.

The magnitude and structure of this probability current, is 
given as a solution of the multivariate Fokker-Planck equa-
tion  ∂tρ(�a, t) = −�∇ ·�j(�a, t) in mode space. The probability 
current, �j(�a), can be written in steady-state as

�j(�a) = (K + DC−1)�aρ(�a) ≡ Ω�aρ(�a),� (54)

where Kq,w = −1/τqδq,w is the deterministic matrix which 
defines the linear force field, and D and C represent respec-
tively the diffusion and covariance matrices. Within this lin-
ear description, Ω is the matrix that captures the structure 
of the current [230, 276]. A rotational probability current in 
the Fokker-Planck picture is associated with a net rotation 
of variables in the Langevin description: On average, mode 
amplitudes cycle around the origin, when detailed balance is 
broken in steady-state, as illustrated in figure 16.

The circular character of the current is reflected mathemat-
ically by the skew-symmetry of ΩT = −Ω in the coordinate 
system where C̃ = 1 (‘correlation-identity coordinates’). 
This can be seen from equation  (41), which dictates that 

K̃ + K̃T = −2D̃ in this system, such that Ω̃ = 1
2

(
K̃ − K̃T

)
. 

The eigenvalues of any skew-symmetric matrix R  are either 
zero or purely imaginary, with the latter leading to rotational 
currents in a hypothetical dynamical system described by 
�̇x = R�x . Moreover, since Tr (Ω) = 0, in two dimensions, this 
implies that the eigenvalues can be rewritten as λ1,2 = ±iω. 
In a steady-state, the probability current �j  (in any dimension) 
has to be orthogonal to the gradient of the density ρ(�a, t), since 
�∇ ·�j(�a) = ρ(�a)�∇ · (Ω�a) + (Ω�a) · �∇�ρ(�a) = ∂tρ = 0. The 
first term must be zero, since it is proportional to Tr (Ω)�a, 
so that the second term has to vanish as well. This, how-
ever, implies that �∇ρ ⊥ Ω�a : the gradient of the density must 
be perpendicular to the flow field. In a linear system, the 
probability density is always Gaussian ρ ∝ e−

1
2�a

T C−1�a , such 
that the flow field must have an ellipsoidal structure [230]. 
In correlation-identity coordinates, where the density has a 

radial symmetry, the profile of �̃j  would thus be purely azi-

muthal, and its magnitude would represent an angular veloc-
ity. An average over the angular movements 〈ϕ̇〉 of the mode 
vector �a(t) in the plane will yield the cycling frequency. The 
imaginary part of the positive eigenvalue of Ω must there-
fore represent the average cycling frequency of the mode 
vector in the plane.

In a reduced 2D system consisting only of aq(t) and aw(t), 
the cycling frequency can be calculated analytically and reads

Figure 16.  Steady-state probability currents in mode space. (A) 
Projection of the multidimensional current on the mode amplitude 
pair a1 and a3. (B) The same current in three dimensions a1, a3, 
and a5. Due to the geometry of probe-network interactions in this 
example, only modes of similar number parity (e.g. odd–odd) 
couple. Adapted figure with permission from [59], Copyright (2016) 
by the American Physical Society.

Figure 15.  Mode amplitude variations in fluctuating microtubules 
embedded in actin-myosin gels over mode number q. (A) In ATP-
depleted gels (purely thermal noise), mode variances follow a 
power law decay. (B) Active fluctuations result in enhanced mode 
variances in accord with the theory In figure 14. At high q-values 
measurement noise leads to an increase in mode variances. 
Adapted figure with permission from [59], Copyright (2016) by the 
American Physical Society.
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ω2D
q,w =

(τq − τw)Fq,w√
τqτw

(
(τq + τw)

2
β − 4τqτwF2

q,w

)� (55)

where β = ( 2kBTγ
C2τM

)2 + 2kBTγ
C2τM

(Fq,q + Fw,w) + Fw,wFq,q.

Interestingly, equation (55) shows that in the case of equal 
relaxation times τq = τw, the cycling frequency would be zero 
and thus, detailed balance would be restored, regardless of 
differences between the modes in motor-induced fluctuations. 
This hints at an important role of relaxation times in deter-
mining the shape of the current in multidimensional systems. 
Furthermore, the denominator of equation (55) shows how an 
increase in overall temperature T could mask broken detailed 
balance by reducing the cycling frequency.

In summary, filaments as multi-scale and multi-variable 
probes offer a novel perspective on non-equilibrium phe-
nomena in active matter and could be used in the future as 
‘non-equilibrium antennae’. As we illustrated in this section, 
a heterogeneous force background fM(s, t) created by motor-
induced fluctuations leads to a breaking of detailed balance in 
mode space of embedded filaments. The intricate structure of 
the probability current in steady-state may contain a wealth of 
information about the geometric and, perhaps, temporal struc-
ture of impinging active forces.

The theory laid out in this section  can be generalized to 
other objects, such as membranes [35, 36, 167, 172]. In prin-
ciple, the membrane mode decomposition described in sec-
tion 2 could be used to detect a breaking of detailed balance, 
since active processes in the cortex of red blood cells might 
result in noise input that correlates over different membrane 
modes.

5.  Outlook

The examples discussed in this review illustrate how exper
imental measurements of non-equilibrium activity and irre-
versibility can provide a deeper conceptual understanding of 
active biological assemblies and non-equilibrium processes 
in cells. In many cases, non-equilibrium fluctuations have 
successfully been identified and quantified using the com-
bination of active and passive microrheology techniques to 
study the violation of the fluctuation-dissipation theorem,  
[36, 43]. Such studies can for instance reveal the force spec-
trum inside cells, [45]. However, these approaches require 
invasive micromechanical manipulation. Furthermore, a com-
plete generalization of the fluctuation-dissipation theorem for 
non-equilibrium system is still lacking, such that the response 
of a non-equilibrium system can not be inferred from its spon-
taneous fluctuations. However, this does not mean that the 
fluctuations of a non-equilibrium steady state do not contain 
valuable information about the nature of the system. Indeed, 
non-invasive approaches to measure broken detailed balance 
from stochastic dynamics have now been establishes to reveal 
phase space currents in mesoscopic degrees of freedom of 
biological systems, [22]. It remains an open question what 
information can be inferred about the underlying system from 
such phase space currents, [59, 60]. However, recently derived 

theoretical relations for energy dissipation and entropy pro-
duction to characterize non-equilibrium activity are find-
ing traction in various biological systems such as molecular 
motors and chemical control systems [1, 2, 225, 247].

Taken together, the research discussed in this review illus-
trate that the gap between fundamental approaches in sto-
chastic thermodynamics and its application to real biological 
system is slowly closing. Indeed, studies of biological active 
matter are not only yielding insights in non-equilibrium phys-
ics, they have also suggested conceptually novel mechanisms 
in cell biology. For instance, the collective effect of forces 
exerted by molecular motors has been implicated in intracel-
lular transport and positioning of the nucleus [31, 32, 34, 45, 
110]. This novel mode of transport, known as active diffusion, 
is thought to complement thermal diffusion and directed, 
motor-driven modes of transport in cells. Another intriguing 
example is the role of DNA-binding ATPases, which have 
been suggested to be capable of generating forces on the 
chromosomes through a DNA-relay mechanism [277] or loop 
extrusion [278, 279]. ATP- or GTPases can also interact with 
membranes or DNA to play a role in pattern forming systems 
[10–12], for instance in the Min system in E. coli and CDC42 
in yeast. In these systems, certain proteins can switch irrevers-
ibly between different conformational states, affecting their 
affinity to be in the cytosol or the membrane. This, together 
with nonlinear interactions between these different proteins, 
can result in non-equilibrium dynamic pattern formation.

Another important example in this respect is how cells 
break symmetry to form a polarity axes. Intracellular myosin 
activity has been implicated in establishing a sense of direc-
tion (‘polarity’) in cells. In order to divide, cells must ‘decide’ 
on the axis of the mytotic spindle, which is a crucial part of 
the cell division apparatus [280–283]. Cortical flows result-
ing from asymmetries in myosin activity have been shown to 
effectively polarize C. elegans cells and break the initial cel-
lular symmetry [284].

Non-equilibrium phenomena also emerge at the multicel-
lular scale: Groups of motile cells exhibit collective active 
dynamics, such as flocking, swarming, non-equilibrium 
phase transitions or the coordinated movements of cells 
during embryonic developments [285, 286]. More broadly, 
non-equilibrium physics is emerging as a guiding framework 
to understand phenomena related to self-replication and adap-
tation [226–228], the origin of life (see for example [287, 
288]), as well as synthetic life-like systems (See [289] and 
references therein).
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