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Abstract. Satellite data can be very useful in applications
where extensive spatial information is needed, but sometimes
missing data due to presence of clouds can affect data qual-
ity. In this study a methodology for pre-processing sea sur-
face temperature (SST) data is proposed. The methodology,
that processes measures in the visible wavelength, is based
on an Artificial Neural Network (ANN) system. The effec-
tiveness of the procedure has been also evaluated compar-
ing results obtained using an interpolation method. After the
methodology has been identified, a validation is performed
on 3 different episodes representative of SST variability in
the Mediterranean sea. The proposed technique can process
SST NOAA/AVHRR data to simulate severe storm episodes
by means of prognostic meteorological models.

1 Introduction

The presence of lacking data is a common problem when
working with environmental data. This problem can arise
due to insufficient sampling, faults in data acquisition, er-
ror in measurements, cloud presence (in the case of satellite
data). These issues are even more important when treating
data varying spatially and temporally. A lot of approaches
have been proposed in literature to process data; by summa-
rizing it is possible to consider the following methodologies:

– regression and interpolation model (Acock, 2000, Igle-
sias et al., 2005, Paatero et al., 2005, Romanowicz et al.,
2005);

– neural network and fuzzy logic (Gardner and Dorling,
1998, Nunnari et al., 2004, Kukkonen et al., 2003);

– self organising map (Junninen et al., 2004);
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– semi-empirical model (Dirks et al., 2002);

– singular spectrum analysis (Kondrashov and Ghil,
2006);

– empirical orthogonal function (Beckers and Rixen,
2003, Houseago-Stokes and Challenor, 2004);

– expectation maximization algorithm (Schneider, 2001).

In recent years Artificial Neural Networks (ANN) have
been widely used, mainly because when correctly trained
can approximate roughly any nonlinear function. Some
atmospheric science applications show that ANN (Bishop,
1995) give better results than statistical linear methods: for
examplePerez et al.(2000), Gardner and Dorling(1999),
Kolehmainen et al.(2001), Sanz and Marques(2004). Some
others (Tangang et al., 1998, Wu et al., 2006) have applied
ANN to process tropical Pacific SST.

In this study an ANN based methodology for treating
missing data in SST satellite images is proposed, in order
to improve the performances of weather forecasting models
in extreme meteorological events (such as torrential rains) in
the Western Mediterranean Basin. In fact, a previous work
(Millan et al., 1995) pointed out that a key factor in the for-
mation of torrential rains in the Spanish East coast is the
sea surface temperature (SST) in the Western Mediterranean
basin. It has also been shown (Pastor et al., 2001) that the
results of mesoscale meteorological models are highly im-
proved when using SST data obtained by satellites in “al-
most real time”. SST can be efficiently measured with satel-
lite sensor (like NOAA/AVHRR, the Advanced Very High
Resolution Radiometer) that builds SST maps from collected
radiances using the split-window technique, but a variety of
problems can arise from using satellite data. In the case of the
SST obtained by NOAA/AVHRR channels 4 and 5, which
use atmospheric window observations, a particularly relevant
problem is the possible presence of clouds in the sensor field
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Fig. 1. Domain analyzed in this study with the 8 zones considered.

of view. This not only prevents the satellite from measur-
ing radiances; it also impedes the automated (real-time) use
of this information in meteorological modeling systems, that
cannot accept lacking data. For this reason it’s necessary to
pre-process SST data.

To perform this study Western Mediterranean basin has
been divided from a phenomenological point of view in 8
zones and an ANN system has been designed, identified
and validated for each zone and season. An application of
the proposed technique will be implemented in the future,
pre-processing SST NOAA/AVHRR data of a severe storm
episode. This dataset will be then ingested in RAMS mete-
orological model, and results compared with a RAMS simu-
lation fed with SST standard dataset.

2 Methodology and data

In this Section the formulation of the ANN is presented.
To apply the proposed technique the selected domain is the
Mediterranean Sea, divided into 8 areas (see Fig.1) char-
acterized by its own and peculiar characteristics, based on
geographical, oceanographical and meteorological criteria.

This division is also useful as it is not possible to design
a single ANN accounting for the whole SST variability. An-
other important variable influencing SST variability is sea-
sonality, and so a temporal division in ANN construction
was introduced. At the end 32 “categories” (and so 32 ANN
structures) are considered, combining 8 spatial and 4 tem-
poral features. In particular the temporal periods considered
are DJF (from December to February), MAM (from March to
May), JJA (from June to August) and SON (from September
to November). To evaluate ANN results, a simple interpola-
tion method is introduced and applied on the same domain.
The following part is structured as follows: Sects.2.1 and
2.2present ANN and Interpolation methodologies, Sect.2.3
describes available data and Sect.2.4shows indexes used to
evaluate the two techniques.
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Fig. 2. Structure of the cascade – forward ANN used.

2.1 Artificial Neural Network

ANN can be used effectively to reconstruct non-linear rela-
tionship learning from training data. An ANN model basi-
cally consists of processing elements (called neurons) and
connections between elements. Every single neuron per-
forms a weighted sum of inputs that receives from neigh-
boring neurons, uses an activation function to manipulate
data and passes results to following neurons. Neurons are
structured in layers, that can be of 3 different typologies: in-
put layer (where input data enter the network), hidden layer
(where intermediate calculations are performed) and output
layer (where final results are produced). Different possible
ANN structures can be used, depending on the architecture of
the network (number of layers, neurons, etc...), the model pa-
rameters, the transfer function used. In this study a cascade-
forward network with 2 layers is chosen. The structure of this
network consists of a) a first layer that has weights coming
from the input, and of b) subsequent layers that have weights
coming from the input and all previous layers. All layers
have biases, while the last layer is the network output. This
structure can be formalized as follows:

f (p)=

S∑
j=1

OWj · aj+

R∑
i=1

wi · pi+c (1)

with

aj=TF

(
R∑

i=1

IW j,i · pi+bj

)
(2)

where:

– p represents the input vector;

– pi represents the input vector element;

– IW and OW are weight matrices of first and second
layer;

– w is the weight vector of second layer coming from first
layer input;

– b and c are network bias weights;
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Fig. 3. Algorithm used to reconstruct SST using ANN in the validation phase.

– S is the number of neuron of the first layer;

– R is the size of input vector;

– TF is the used Transfer Function.

Another way to represent the general formalization of
ANNs, shown in Eqs. (1) and (2), is depicted in Fig.2, where
the structure of the network is graphically displayed.

In the considered case study, the target for ANNs is the
SST for a particular cell of the domain at timet . The two in-
put of ANN are the mean values of SST at timet−1 andt−2;
such values are referred to mean values of the eight pixels
surrounding the missing target data. This input-output struc-
ture is applied for training phase. For the validation phase,
if needed, a preprocess of the input data is performed. In
fact, when SST at timet−1 or t−2 are not available due to
presence of clouds, their values are reproduced in an iterative
way using information at previous time steps. (see Fig.3). In
this way, the ANNs can be more extensively applied over the
study domain. This does not happen in the training phase,
where the cloud days are not considered.

2.2 Interpolation

To evaluate ANN performances an interpolation procedure
is introduced (Seze and Desbois, 1987). Due to the fact that
SST images are very often characterized by massive presence
of clouds, to reconstruct missing data it is necessary to use an
interpolation methodology that mix spatial and temporal in-
formation. The following algorithm has been implemented:

1. if missing value is surrounded by measures, it is calcu-
lated averaging the 8 surrounding pixels;

2. if the previous step can not be applied for all pixels at
time t , an average is performed looking at the surround-
ing pixels not only at timet , but also at timet−1;

3. the second step is repeated looking more and more in
the past till the image is completely reconstructed.

In Fig. 4 a flow-chart of the interpolation algorithm is pre-
sented. It’s interesting to compare Fig.3 (ANN method) and
Fig. 4 (Interpolation method): the main difference is that in
Fig. 4 results of the averaging procedure represents the final
value of reconstructed pixels, while in Fig.3 results of the
same procedure are used to create input to the ANN.
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Fig. 4. Algorithm used to reconstruct SST using interpolation
method.

2.3 Data

Data used in this study are obtained from the NOAA/NASA
AVHRR Oceans Pathfinder dataset, available at PODAAC
website (http://podaac.jpl.nasa.gov/DATAPRODUCT/SST)
and derived from the 5-channel Advanced Very High Reso-
lution Radiometers (AVHRR) on board the NOAA –7, –9,
–11 and –14 polar orbiting satellites.
The available dataset:

– ranges from 1st January 1985 through July 2003, and is
derived from interim versions 4 and 4.1 algorithm de-
veloped by the University of Miami and explained in
Kilpatrick et al.(2001);

– is split in two daily passes (ascending daytime pass and
descending nighttime pass), with three different spatial
resolutions (54, 18 and 9 km), and two different datasets
(“Best pixels” that considers only pixels with high qual-
ity flag1, and “All pixels” that retains values regardless
of their quality flag).

For this study, the descending night-time pass (because not
disturbed by sea reflection) and “All pixels” (choosing for
the training only data with quality flag bigger than 2) dataset
were chosen. The resolution selected is 9 km, that is the best

1The SST Pathfinder data have an associated quality flag, rang-
ing from 0 to 3 depending on its success at some quality tests, with
the 0 value associated to pixels that do not pass any of the tests and
the 3 value associated to pixels that pass all the tests.

Table 1. Considered ANN parameter configuration.

Parameter Configuration

Neuron number in layer 1 4,8
Transfer function of 1st layer Linear, Log-Sigmoid,

Tan-Sigmoid

Neuron number in layer 2 1
Transfer function of layer 2 Linear
Network typology Cascade forward

Network input 2
Training algorithms Batch Gradient Descent,

Batch gradient Descent with Momentum,
Variable Learning, Rate Backpropagation,
Resilient Backpropagation,
Conjugate Gradient, Quasi-newtonian

Table 2. ANN best parameter configuration selected for each pe-
riod.

Month Input Neuron layer 1 Trans. Func. Training

DJF 2 8 tansig trainOSS
MAM 2 4 tansig CGP
JJA 2 8 tansig GDX

SON 2 4 logsig GDX

available resolution at the time this study started. The mean
percentage of data (for the training period) with quality flag
bigger than 2 ranges between 40.2 and 44.8% for the 8 zones.
Data with quality flag of 0 or 1 are not used, because often
characterised by unrealistic values. The available dataset (as
specified spanning from 1985 to 2003) has been divided in
training dataset (the period from 1992 to 2001) and validation
dataset (selecting in total 3 significant episodes before 1992
and after 2001, as stressed in Sect. 4).

2.4 Indexes

To assess performances of the proposed methodologies, sta-
tistical indexes have been used (Legates and McCabe, 1999;
Gardner and Dorling, 2000). In particular, indexes used are
the Mean Bias Error (MBE), the Root Mean-Square Error
(RMSE), the Index of Agreement (IoA) and the Correlation
Index (CORR), as defined in the following equations:

MBE=
1

n

n∑
i=1

(Ŷi−Yi) (3)

RMSE=

√√√√1

n

n∑
i=1

(Ŷi−Yi)2 (4)
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Fig. 5. Comparison of absolute error for the 2 analyzed methodologies (ANN with circles, Interpolation with crosses), for the first episode.
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Fig. 6. Comparison of absolute error for the 2 analyzed methodologies (ANN with circles, Interpolation with crosses), for the second episode.

IoA=1−

[ n∑
i=1

|Yi − Ŷi |
2
]

[ n∑
i=1

(|Ŷi−Yi |+|Yi−Yi |)
2
] (5)

CORR=

n∑
i=1

[
(Yi − Yi) · (Ŷi−Ŷi)

]
√

n∑
i=1

(Yi−Yi)
2
·

n∑
i=1

(Ŷi−Ŷi)
2

(6)

where

– Yi is the observed SST;

– Yi is the mean observed SST;

– Ŷi is the modeled SST;

– Ŷi is the mean modeled SST;

3 Training of Artificial Neural Network

The training of ANN has been performed using parameters
configuration shown in Table1. Considering the training pe-
riod (the period from 1992 to 2001 has been selected for this
task) all the ANNs possible configuration shown in Table1
have been tested. At the end for each temporal period the
best parameter set has been selected, as shown in Table2.
Then the best selected structure (for each temporal period)
has been extended to the whole geographical domain. In Ta-
ble 3 correlation values calculated extending the best struc-
tures to the whole domain are shown. Table3 clearly shows
good performances of the ANN training phase, with better
values in summer time (when more data are available due to
cloud absence).
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Fig. 7. Comparison of absolute error for the 2 analyzed methodologies (ANN with circles, Interpolation with crosses), for the third episode.

Fig. 8. Differences in◦C between ANN method and measured SST (top) and Interpolation method and measured SST (bottom), for the first
episode.

4 Validation of Artificial Neural Network and compari-
son with interpolation method

To validate the ANN methodology, an analysis is performed
considering three different episodes, selected to be represen-
tative of different Spanish East coast SST patterns. It is nec-
essary to choose episodes not used in the ANN training pe-
riod; for this reason periods selected to perform validation
phase are before 1991 and after 2002, more precisely:

– 3–5 July, 2003 (representative of high SST);

– 27–29 August, 1989 (representative of high SST and
close to the 4 September 1989 severe rain episode);

– 11–13 November, 1987 (representative of lower SST
and close to the 1 November 1987 severe rain episode).
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Fig. 9. Differences in◦C between ANN method and measured SST (top) and Interpolation method and measured SST (bottom), for the
second episode.

In the following part of the article each period is analyzed
performing a comparison between the 2 methodologies pre-
viously presented and evaluating statistical indexes. The val-
idation is realized considering only pixels, for the particu-
lar selected episode, where measures were available (to be
able to compare SST measures and reconstructed data), and
for this reason images reconstructed in validation phase (and
presented in the following part of the study) are character-
ized by the presence of “white areas”, that are areas where
SST could not be measured due to presence of clouds (see
Figs.8, 9 and10).

4.1 First episode

The first episode, representative of high SST, was selected
in 2003, and is the last temporal period available at PO-
DAAC website at the time of this study; in fact after July
2003, a new AVHRR SST algorithm was introduced, and so
a comparison with more recent periods is not possible. In
Table4 percentages of no-cloudy pixels (that is to say data
used in the validation phase) are shown, for every zone and
day of episode. In general, it is possible to notice a good
availability of data to perform validation. In Table5, per-
formances of the ANN methodology are shown. Comparing
these performances with the ones obtained with the Interpo-
lation methodology (in the same Table in italic), it is possible
to appreciate how Mean Bias, RMSE, Index of Agreement
and Correlation improve using ANN.

Table 3. Correlation values calculated in the training phase for re-
constructed areal mean values.

Area Corr(DJF) Corr(MAM) Corr(JJA) Corr(SON)

1 0.68 0.97 0.94 0.98
2 0.86 0.98 0.95 0.98
3 0.83 0.97 0.94 0.98
4 0.82 0.98 0.96 0.98
5 0.92 0.98 0.96 0.96
6 0.84 0.93 0.89 0.96
7 0.90 0.97 0.97 0.98
8 0.86 0.97 0.98 0.96

Figure5 shows how absolute error (calculated as absolute
difference of simulated and measured temperature) is bigger
than 2 degrees only for a very little percentage of data in the
ANN case, and that error of ANN methodology drop down
faster than Interpolation one, for the majority of the episode
(in this Figure, as in Figs. 6 and 7, the y-axis represents the
percentage over the total of reconstructed data, for a particu-
lar day).

Previous analysis is performed regardless of pixel areal
membership. To examine spatial behavior in Fig.8 maps of
differences between measured and reconstructed temperature

www.nonlin-processes-geophys.net/15/61/2008/ Nonlin. Processes Geophys., 15, 61–70, 2008
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Fig. 10. Differences in◦C between ANN method and measured SST (top) and Interpolation method and measured SST (bottom), for the
third episode.

are depicted, showing how reconstruction of ANN seems to
perform better in comparison to Interpolation for the whole
domain and period.

4.2 Second episode

Second episode, 27–29 August 1989, is chosen to represent
high SST values and to be close to 4 September 1989 severe
rain episode. This is a more difficult situation, because in this
episode there are a lot of consecutive cloudy days, and so it
is a more challenging case for the 2 methods. In Table4, per-
centages of non-cloudy pixels are shown; in some zones there
is a very small presence of data. Looking at global perfor-
mances in Table5 it is possible to notice that performances
are better for ANN, except for correlation in the first day of
episode, perhaps denoting a difficulty of ANN methodology
to correctly describe the involved nonlinear phenomena.

Even if there are small differences in absolute error in
Fig. 6 between the 2 methods, when spatially analysing re-
sults in Fig.9, ANN overwhelms the Interpolation method
reconstruction.

4.3 Third episode

The third episode is 11–13 November 1987, and is similar
to 1989 episode; in fact it’s a severe rain episode but with

lower (not too high) SST values. In Table4 percentages of
non-cloudy pixels are shown. It must be considered that in
the third day of episode a lot of areas have low percentage of
usable data. Here again, as in the first episode, performances
of ANN overwhelm Interpolation ones (Table5).

In Fig. 7, absolute error shows how in the case of ANN,
80% of reconstructed data shows an error that is inferior to
one temperature degree; this percentage is lower than the one
considering the Interpolation method.

It’s worthwhile to note the bad trend of Interpolation in the
third day of the episode in Fig.7, where a strong percentage
of data has error between one and two degrees, with a strange
gaussian shape. In Fig.10, it is clearly visible how ANN
spatially performs better than Interpolation.

5 Conclusions

This investigation is about the implementation of a method-
ology for pre-processing SST data, to reconstruct missing
data due to presence of clouds. The methodology consists
of an ANN System that has been identified and validated on
a Mediterranean Sea domain. Performances of the method-
ology have been compared with results of an interpolation
method, showing that the ANN system gives better results.
At the moment ANN is overestimating SST reconstruction

Nonlin. Processes Geophys., 15, 61–70, 2008 www.nonlin-processes-geophys.net/15/61/2008/
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Table 4. Percentage of data used for validation phase, for every zone-day of the three considered episode.

3 July 2003 4 July 2003 5 July 2003 27 Aug 1989 28 Aug 1989 29 Aug 1989 11 Nov 1987 12 Nov 1987 13 Nov 1987

1 11.5 62.5 85.2 93.9 55.5 54.7 44.6 10.9 6.6
2 79.5 87.2 90.1 79.8 83.6 92.7 45.8 47.5 3.1
3 53.8 76.8 50.1 74.6 13.3 9.9 95.2 77.9 7.1
4 35.8 95.4 96.0 92.2 38.7 36.5 25.7 36.8 23.3
5 64.8 14.1 84.2 85.0 79.7 55.8 39.5 53.1 31.4
6 91.4 92.3 67.1 2.7 0.0 0.8 64.3 12.4 69.4
7 26.6 61.3 94.1 80.6 61.4 3.9 48.1 68.2 65
8 87.2 74.3 36.9 83.8 94.9 63.8 10.5 9.1 61.7

Table 5. Global performances of the ANN method (normal font) and Interpolation method (italic font) for the three considered episodes.

Index 3 July 2003 4 July 2003 5 July 2003 27 Aug 1989 28 Aug 1989 29 Aug 1989 11 Nov 1987 12 Nov 1987 13 Nov 1987

Mean Bias 0.23 −0.23 −0.35 −0.03 −0.10 −0.69 −0.38 −0.46 −0.49
0.56 0.08 –0.45 –0.27 –0.25 –0.91 -0.80 –1.04 –1.30

RMSE 1.04 0.93 1.10 0.54 0.61 1.12 0.78 0.86 0.89
1.51 1.51 1.51 0.57 0.73 1.43 1.07 1.27 1.52

Agreement 0.91 0.94 0.91 0.90 0.88 0.82 0.93 0.88 0.91
0.79 0.79 0.80 0.89 0.82 0.68 0.87 0.77 0.78

Correlation 0.86 0.90 0.84 0.82 0.85 0.85 0.91 0.85 0.90
0.70 0.67 0.67 0.84 0.80 0.75 0.90 0.84 0.88

values, but performances could be further improved con-
sidering different ANN structures, or i.e. other input to
the networks (radiances instead of SST data, etc. . . . ). A
general conclusion from this study is that ANN can be
efficiently used to reconstruct SST satellite missing data in
the Mediterranean Area, but also that ANN could be a more
general tool to process incomplete satellite missing images.
This methodology will be soon used to pre-process SST
AVHRR/NOAA data, to simulate a severe storm episode
with RAMS meteorological model comparing results with
a simulation performed with RAMS SST standard dataset.
This methodology can also be used in a forecasting modeling
system, in which RAMS uses an improved SST dataset,
being able, in this way, to improve its weather forecasting.

Edited by: H. A. Dijkstra
Reviewed by: Two anonymous referees
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