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Abstract 

Managers of exploited species too often assume that populations can be maintained at equilibrium abundances 

that will provide maximum yield.  Most evidence to date suggests that populations seldom adhere to equilibria, 

but rather fluctuate stochastically between bounds. The last decade has revealed the consequences of not 

incorporating uncertainty around point estimates of equilibria, which has led to the decline of several fisheries.  

We used the sample importance re-sampling (SIR) algorithm to exhibit the uncertainties in point estimates 

generated by models for management of two Chinook salmon Oncorhynchus tshawytscha stocks and a 

bowhead whale Balaena mysticetus population. We then incorporated the cumulative uncertainties of each 

system into a simulation technique similar to population viability analyses (PVA) to provide decision support 

for establishing threshold abundances of each exploited population.  The simulation presented was based upon 

the resilience (time to recover from perturbations to abundance) of each population, which was found to be 

relatively high for the Chinook stocks and low for bowhead whale. Various thresholds could be chosen 

depending on: (1) how much time should be allowed for the population to recover from a perturbation, (2) 

when should the stock be considered recovered (i.e., within 1%, 5%, 10%, and so on of what abundance would 

be had there been no perturbation), and (3) the maximum allowable risk that a threshold is too low.  

Reasonable thresholds for the Chinook stocks were 60% to 80% of abundances that provide maximum 

sustained yield (SMSY).  Due to their low productivity, no clear threshold below the biomass point estimate was 

apparent for bowhead whale. 

 

Keywords population; threshold; exploitation Chinook; resilience; disturbance; simulation; stochastic; salmon; 

bowhead whale; recovery; risk. 

 

 

1 Introduction 

There remains a conceptual commitment (sensu Khun, 1996) among some fisheries and wildlife managers to 

the idea that nature is in balance even though ecologists have been questioning this perception for several 

decades (Egerton, 1973; DeAngelis and Waterhouse, 1987). Balance or stability has been defined in many 

ways following a disturbing force including presence/absence of species (persistence), distance from which 

populations or communities can recover to equilibria (amplitude), and time for this recovery to take place 

(resilience) (Connell and Sousa, 1983; Grimm and Wissel, 1997). Stability has been searched for in metrics 

ranging from the collective biomass of communities to species densities or relative abundances.  Individual 
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populations seldom adhere to or even cycle regularly around equilibrium abundances (Connell and Sousa, 

1983; Tilman, 1996). Although, population stability may increase when ample resources are available to 

younger life stages but are limited to adults (in theory; Mueller and Huynh, 1994), persistence of species may 

stabilize at large spatial scales due to several hypothesized steadying mechanisms (DeAngelis and Waterhouse, 

1987), and in some studies the collective biomass of the community was shown to be more or less constant 

(Rodriguez, 1994; Tilman, 1996; Doak et al., 1998).  Regardless, most research suggests that it may be more 

reasonable to conceptualize individual populations as fluctuating stochastically within bounds (Connell and 

Sousa, 1983).  The density-dependence we observe with respect to mortality and natality in some species (e.g., 

Beverton and Holt, 1957; Ricker, 1975) implies there is a carrying capacity, which defines the upper bound.  

Researchers studying exploited populations have recently shifted their attention to identifying the lower bound 

or threshold abundance below which a population cannot return within a reasonable amount of time. Setting 

thresholds too low limits future production and yield and can expose populations to greater risk of extinction; 

setting thresholds too high unduly limits harvest. Understanding how long it takes for populations to recover 

from low abundances and that recovery cannot be defined as adherence to equilibrium will help managers and 

resource stakeholders set limits on the extent to which populations can be exploited. 

Since the early 1920’s when innovative technologies were developed to harvest natural resources at 

unsustainable levels, numerous species of fish and other aquatic resources vanished altogether or were reduced 

dramatically (Smith, 1994). As these natural resources were exploited at high rates, a wealth of harvest and 

abundance data became available, and population parameters for management were estimated based on 

population growth and density-dependent models (Schaefer, 1954; Beverton and Holt, 1957; Ricker, 1975).  

However, most managers have ignored the underlying noise and uncertainty in parameter estimates. The last 

decade has pointed out the flaws with point estimates for sustainable management of aquatic, terrestrial, and 

avian populations (Hilborn and Mangel, 1997). The New England cod-fishery for example shows how target 

biomass estimates were misleading due to uncertainty as the biomass remained constant, but year class 

strength was mostly from younger fish in the population (Myers and Cadigan, 1994).  The consequence of not 

acknowledging this uncertainty was a complete stock collapse in the late 1980’s and early 1990’s. Even for 

populations with short life cycles (such as salmon), which should allow greater resilience to stochastic 

abundance reductions (see Discussion), the lack of attention to parameter uncertainty in management models 

has caused severe stock declines (e.g., Snake River Chinook salmon (Emlen, 1995)). 

Management based on point estimates invokes the implicit assumption that if exploited at optimum rates, a 

population will settle upon an equilibrium that will yield maximum production. Most all evidence from field 

surveys and experiments are either equivocal or do not support the presence of equilibria with respect to 

population abundances, but rather stochastic boundedness (Connell and Sousa, 1983). Not surprisingly, 

managers often fall short of point estimate benchmarks because of stochastic population fluctuations that are 

beyond their control. A better approach is to establish a lower bound that represents the threshold abundance 

above which recovery occurs during an acceptable length of time. Managers would then have a broader target 

between this threshold and optimum abundance.   

Establishing this threshold can be determined based on the resilience of the population. The key question 

becomes how to observe the recovery of a population from abundance reductions in the presence of substantial 

random fluctuation.  Time to recovery could be observed directly if the same population with the same random 

fluctuations could be observed over the same time period once with the perturbation and once without.  An 

impossibility of course, but then simulation-based approaches are not limited to real world logistics. We offer 

such an approach that compares the modeled responses of populations that have been perturbed (reduced 

abundances) to an undisturbed control; resilience was measured as the rate of convergence between the two.  

190



 

 

Computational Ecology and Software, 2011, 1(4):189-207 

IAEES                                                                                                                                                                         www.iaees.org

We examined threshold points below which time to recovery was protracted. First, the uncertainty in the 

parameter estimates generated by the models for management purposes was examined using Rubin’s (1988) 

sample importance resample (SIR) algorithm. Then, using these uncertainties in model parameters and 

incorporating natural variation, we illustrated the degree to which several exploited populations were resilient 

to reductions in abundance. We used measurements of resilience to decide upon a lower threshold abundance 

based on probabilities obtained from our simulations. Our approach is similar to population viability analyses 

(PVA’s) used in conservation biology for determining risk of extinction (e.g., Ellner and Fieberg (2003)); we 

illustrate the broader utility of PVA type analyses in establishing optimum abundances for sustained harvest of 

exploited populations.  

These modeled populations included two stocks of Chinook salmon, Oncorhynchus tshawytscha and one 

population of bowhead whale, Balaena mysticetus. Among exploited vertebrate populations in the ocean, 

Chinook salmon and bowhead represent taxa with disparate life history strategies (opposite ends of the r-K 

spectrum) and serve as good test populations with respect to the versatility of our approach in finding threshold 

population sizes. 

   

2 Methods 

2.1 Data sources 

We used stock-recruitment data from Chinook salmon stocks found in the Queets, Stikine, Siletz, and Siuslaw 

Rivers on the west coast of North America (Table 1). Stocks were partitioned into escapement (spawners) and 

the mature adults (recruits) they produced. Data for the Queets stock was collected by the Quinault Indian 

Nation and for the Siletz and Siuslaw stocks by the Oregon Department of Fish and Wildlife via area under the 

curve methods described by Hilborn et al. (1999). Stikine data was collected by Alaska Department of Fish 

and Game using mark-recapture methods as per Seber (1982). The Queets and Stikine stocks were used during 

the modeling exercises; the Siletz and Siuslaw stocks were used to pseudo-validate predictions from the 

Chinook models. Census data for bowhead whales were taken from Raftery et al. (1995), but were collected by 

Breiwick et al. (1984) and Zeh et al. (1995).   

2.2 Population dynamics models 

Chinook salmon tend to exhibit over-compensatory mechanisms of recruitment; thus, we modeled these 

recruitment processes using the log-normal form of the Ricker curve (Hilborn and Walters, 1992): 
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where S in year i is a function of R from the previous 6 year classes (excluding jacks [year i-1]), and ̂  is the 

proportion harvested. 

Optimum escapement, SMSY, was estimated as a function of  and  using the Hilborn and Walters (1992) 

approximation: 
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For the bowhead population, we used a logistic model of population growth as per Hilborn and Walters 

(1992): 
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
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where N = population size at a particular time t, r = intrinsic growth rate of the population, K = carrying 
capacity or population size at virgin biomass, and   = harvest rate during a particular year. 

 

 
Table 1  Abundance data for 4 Chinook salmon stocks in rivers emptying into the Pacific coast of North America. Stocks are 
partitioned into escapement (spawners—S) and the mature adults (recruits—R) they produced.   

 

 

2.3 Sample importance resampling   

Sample importance resampling techniques (Rubin, 1988) were used to estimate distributions around the model 

and management parameters. We ran simulations that picked 100,000 pairs of randomly selected values of  

and  or r and K from non-informative prior distributions to estimate posteriors. The prior distributions were 

uniformly distributed as ~U[0,15], ~U[0,250000], r~U[0,0.05], and K~[1000,31000]. For simulation 

purposes, we estimated joint probability distributions to generate stochastic values for sets of parameters ( 

and  or r and K) and their associated error. 

 Siuslaw Siletz Queets Stikine 

Year S R S R S R S R 

1965 3,816 19,758       

1966 9,497 15,044       

1967 5,395 11,374 2,712 6,366     

1968 3,151 9,544 1,233 6,653     

1969 7,337 7,734 780 5,855     

1970 13,028 10,116 3,810 5,956     

1971 3,141 11,452 2,547 4,388     

1972 3,539 18,577 2,464 6,702     

1973 879 18,551 3,019 10,694     

1974 6,015 19,243 2,564 16,777     

1975 4,427 18,965 2,062 13,635     

1976 7,999 17,474 1,326 14,132 1,200 14,043   

1977 9,492 25,555 3,314 12,233 3,600 13,852 11,445 15,223 

1978 5,872 26,301 2,062 14,066 2,200 6,396 6,835 7,520 

1979 8,040 22,031 7,217 11,231 3,799 11,481 12,610 35,107 

1980 10,630 30,249 3,680 15,439 3,126 9,965 30,573 19,438 

1981 8,724 41,320 4,435 16,584 4,256 18,215 36,057 29,245 

1982 10,870 17,250 3,415 12,714 4,160 11,391 40,488 51,568 

1983 4,186 53,599 2,136 13,860 2,487 20,602 6,424 20,575 

1984 11,168 75,928 3,461 17,109 3,927 29,154 13,995 38,284 

1985 14,822 41,966 6,628 7,110 4,220 14,410 16,037 20,000 

1986 14,844 68,924 6,748 14,822 7,902 10,912 14,889 47,132 

1987 17,603 51,937 4,577 18,739 6,392 12,654 24,632 71,951 

1988 41,746 51,888 7,805 12,906 9,386 6,220 37,554 39,733 

1989 28,279 27,557 4,401 26,206 9,259 18,086 24,282 17,947 

1990 26,799 65,712 4,313 18,411 10,504 6,604 22,619 14,659 

1991 26,100 26,649 5,633 19,235 4,786 3,438 23,206 54,824 
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2.4 Simulating perturbations 

Chinook salmon.—Simulations were used to estimate the probabilities of various return outcomes given 

different perturbations to escapements. These perturbations involved spawning escapements ranging from 0% 

to 90% (10% increments) of SMSY for 1 to 4 consecutive years (total scenarios=40). Two simulations were 

performed simultaneously for each scenario—a simulation with spawning escapements perturbed and a 

standard simulation without perturbations (Fig. 1). The figure represents a scenario with (or without 

perturbations). A similar structure is followed for bowhead whales, though the model formulation used is a 

little different.  

 

Fig. 1 Schematic of the simulation process for Chinook salmon, showing model uncertainty through parameter uncertainty and 
environmental uncertainty as the forcing function for escapements, and recruitment. Process error is modeled as random variable, 
N(0,σ2) and μ is the harvest rate on the population of concern.  
 

 

There were 1,000 iterations per scenario. For each iteration, we projected spawning escapements for 50 

years beyond the last perturbed year (yri) based on randomly selected parameters and error rates (simulated 

from the joint distributions described above).  For yri-6 to yri-4 escapements were held constant at SMSY.  During 

yri-3 to yri escapements were assigned according to each scenario for the perturbed simulation, but were held 

constant at SMSY for the standard simulation. From yri+1 to yri+50 escapements were allowed to fluctuate 

between iterations by using the Ricker model to predict recruits based on randomly selected values of the 

parameters α, , and 1̂ generated from their joint distribution (Equations 5 and 6 below).   
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We used randomly selected return rates (selected by bootstrapping values observed in the data set) and 

exploitation rates μ (which fluctuated uniformly between 50% and 150% of the mean annual exploitation rate) 

to estimate calendar year returns of ages-1.2-1.5 (Equation 2). 

The same randomly selected parameters and error rates were used for the standard simulation as were used 

for the perturbed simulation during each iteration. The response variable was a set of values recorded for the 

projected 50 years. For each projected year, we observed the difference between the perturbed simulation’s 

escapement and the standard simulation’s escapement and recorded this difference as the percent below 

standard escapement. In other words, we recorded the percent below the escapements that would have 

occurred had there been no perturbation.   

Bowhead—A similar methodology as shown in equations 5 and 6 was used for the Bowhead simulations 

(Equations 7 and 8 below). 
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
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

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)ˆ,0(~ 2
22  N           (8) 

Perturbations for bowhead were 0-90% of the biomass estimate in 1988 (total scenarios=10). Population 

biomass was projected (Equation 7) for 100 years beyond the 1988 population based on randomly selected 

values of the parameters r, K and 2 generated from their joint distribution; μ was again allowed to fluctuate 

uniformly between 50% and 150% of the mean annual exploitation rate. The same simulation technique was 

applied to bowhead as for Chinook salmon, and we recorded the percent below the standard biomass estimate 

in each of the 100 years.   

2.5 Probabilities of unlikely fluctuations 

For us to rely upon the predictions of the simulations described above we must assume that distributions for 

model parameters are stationary; in other words, past relationships between abundance and recruitment are 

indicative of the future. However, if productivity parameters (α or r) are declining over time for whatever 

reason (e.g., habitat destruction), our simulations will yield overly optimistic predictions about population 

resilience. Given no perturbations, population abundance will still vary over time, and the range of this varying 

will depend upon stochastic events coupled with biological limitations of the system. We must be able to 

distinguish between low abundances that are not unreasonable given the cumulative uncertainties in the system 

from low abundances that result from unknown forces attenuating productivity. We assigned probabilities to 

the scenarios described above by allowing the populations to fluctuate randomly (within the bounds of the 

distributions for model parameters) over the course of 10,000 years and observing the frequency with which 

the scenarios occurred. We allowed 100 years of burn in before recording frequency (i.e., frequencies of 

scenarios were recorded from year 100 to year 10,100).  If the probability of a scenario was less than 0.05, then 

we would use caution when relying on our models to predict resilience under this scenario because there would 

be an increased chance that the low abundances were due to productivity declining.  During such events 

harvest may need to be further restricted. 

 

3 Results 

3.1 Model fits and parameter uncertainty 

Parameter estimates for the Ricker spawner-recruit models are given in Table 2 and describe model fits that 

had the greatest probability of being true (Fig. 2). The Queets stock exhibited greater productivity per spawner, 

while the Stikine stock maintained greater carrying capacity. Alternate model fits resulted in a range of 
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possible values for SMSY with upper estimates of approximately 1.5 to 2 times the modal values for each stock 

(Fig. 3); thus, true spawning abundances may deviate substantially from what point estimates indicated.  The 

bowhead data yielded low estimates of r, which ranged about 0.5 to 2 times the modal estimate (Fig. 4). 

 

 
Table 2  Life history information for 4 Chinook salmon stocks in rivers emptying into the Pacific coast of North America.  
Parameter estimates describe models having the highest probability of being true.  Life history type refers to the number of years 
spent in the stream after hatching and before migrating to the ocean—ocean=0 and stream=1. 

  Queets Stikine Siletz Siuslaw 

Life history type ocean stream ocean Ocean 

Ricker curve parameter     

ln̂  2.22 0.96 2.5 1.57 

̂  4,048 37,370 3,633 22,727 

̂  0.51 0.51 0.49 0.62 

MSYŜ  3,095 15,515 2,944 12,925 

MSYÛ  0.77 0.42 0.8 0.57 

Average return rates after X  
number of years spent in the ocean (%) 

    

2 12 6 14 10 

3 26 27 30 33 

4 51 63 47 49 

5 11 4 9 8 

 

 

 

 

Fig. 2  Parameter uncertainty in Ricker models describing spawner-recruit data for Chinook salmon in the Queets and Stikine 
Rivers. 
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Fig. 3  Posterior distributions on target management goals (SMSY) for Chinook salmon in the Queets and Stikine Rivers. 

 

 

3.2 Resilience 

Our modeling indicated that Chinook salmon should be resilient to random abundance perturbations (Figures 5 

and 6).  Even if no spawning occurred in a single year due to some random catastrophe, the stocks included in 

this study recovered within 30 to 50 years. When harvest was suspended, recovery occurred after 6 years (Fig. 

5).  Reduced percentages of SMSY spawned resulted in longer time to recovery.  Because most Chinook salmon 

return to spawn after spending 4 years in the ocean (Table 2), the effects of perturbations to spawning 

abundances were most pronounced 6 years later and then subsequently diminished.  Recovery took longer 

when perturbations occurred in two or more consecutive years (Fig. 6). 

Bowhead whales were not resilient to population perturbations (Fig. 7). When the population was reduced to 

only 90% of the 1988 abundance estimate, bowhead did not recover completely within 100 years (Fig. 7).  

Suspending harvest, which was already low ( ̂ 　= 0.015), did little to improve resilience.   
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Fig. 4  Posterior distributions on r (inset a) and K (inset b) for the bowhead whale data. 
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Fig. 5 Population resilience of Chinook salmon from the Queets and Stikine Rivers with and without harvest.  Various 
perturbations (% of SMSY) are modeled to have occurred in only one year (the graph begins with the first year after the 
perturbation). Values reported are from the 75th quartile (i.e., there is a 25% risk that recovery will take longer than what is 
depicted).  The Z axis represents the percent below the escapements that would have occurred had there been no perturbation (i.e., 
if 100% of SMSY had been spawned). 
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Fig. 6  Population resilience of Chinook salmon from the Stikine River.  Various perturbations (% of SMSY) are modeled for one, 
two, three and four consecutive years (the graph begins with the first year after the last perturbation). Values reported are from 
the 75th quartile (i.e., there is a 25% risk that recovery will take longer than what is depicted).  The Z axis represents the percent 
below the escapements that would have occurred had there been no perturbation (i.e., if 100% of SMSY had been spawned). 
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Fig. 7  Population resilience of bowhead whales in the Pacific Ocean with and without harvest.  Various perturbations (% of 1988 
abundance estimate) are modeled to have occurred in only one year (the graph begins with the first year after the perturbation).  
Values reported are from the 75th quartile (i.e., there is a 25% risk that recovery will take longer than what is depicted). The Z 
axis represents the percent below the abundances that would have occurred had there been no perturbation (i.e., if 100% of 1988 
abundance estimate began each iteration). 
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Fig. 8  Probability of Chinook salmon escapements from the Queets and Stikine Rivers being below various levels of SMSY for 1-
4 consecutive years.  The dotted line indicates 0.05 probability. 

 

 

3.3 Probabilities of perturbations 

We estimated the probabilities of abundance fluctuations given the cumulative variability of the system to help 

identify situations where abundances were below the normal range. There was at least a 0.05 probability that 

the Queets stock could fall to 10% of SMSY in any one year (Fig. 8). However, the probability of the Stikine 

stock falling to 10% of SMSY was less than 0.05. The probability that perturbations of abundance below SMSY 

could occur in two, three, and four consecutive years diminished with each additional year.  There was less 

than a 0.05 probability that bowhead could decline to ≤ 80% of the 1988 population estimate (Fig. 9).   
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4 Discussion 

4.1 Scale and model validation 

Resilience defines the rate at which a population or community metric responds to a disturbing force. An 

assessment of resilience is useless without understanding the severity and frequency of disturbance, as well as 

the temporal and spatial scale of observation (Grimm and Wissell, 1997; Syms and Jones, 1999). The objective 

of our analysis was to determine the threshold disturbance (maximum allowable frequency and severity of 

reductions in abundance) that a population could recover from within a reasonable amount of time while 

allowing sustainable harvest. Connell and Sousa (1983) reasoned that the minimum temporal scale for 

observing population responses to disturbances was one complete turnover of all individuals in the population.  

Estimates of escapement spanned 2-4 turnovers for the Chinook stocks included in this study (Table 1), and we 

projected escapements for seven turnovers beyond the simulated perturbations.  Minimum spatial scale for 

measuring population responses depends upon the life history of the species, and finding the minimum area 

that allows for population stability should be the focus of studies seeking to find equilibria (Connell and Sousa, 

1983). Our goal was not to document equilibria, but rather to identify thresholds given inherent random 

fluctuations in abundance. Also, our estimates of escapements represented Chinook abundances for entire river 

systems; thus, we captured the dynamics of the total population for each stock (as opposed to indexing 

abundance for only a segment of each river). Overall, we feel the scale of measurement for Chinook salmon 

was adequate for assessing resilience. Our approach allowed for the measurement of resilience (recovery to 

what would have happened in absence of perturbation) in the context of stochastic boundedness. However, 

without prescience or time travel our approach cannot be validated in an absolute sense.  Predictions about the 

resilience of the two modeled stocks may be supported by following the pattern of escapements for other 

stocks not used during simulation construction. Modeling indicated there was a 75% chance that recovery to 

within 10% of unperturbed conditions from being reduced to half of SMSY would take about 12 years or two  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9  Probability of bowhead whales in the North Pacific Ocean being below various percentages of the 1988 abundance 
estimate.  The dotted line indicates 0.05 probability. 
 
 

generations (Fig. 5).  Having population parameters similar to the modeled stocks (Table 2), we would expect 

the Siuslaw and Siletz stocks to have similar responses to low abundances as well.  That is, following a 

perturbation, abundance levels will begin to fluctuate around SMSY after the necessary time for recovery.  The 

Siletz stock was reduced to 50% of SMSY in 1976, but recovered to 100% of SMSY 6 years later (Fig. 10). The 
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effects of protracted perturbations (<50% SMSY) to the Siuslaw stock from 1971 to 1975 were mitigated within 

12 years. The high potential for resilience in both the Siletz and Siuslaw is evident as we would expect given 

our simulated results from the modeled stocks.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10  Escapement estimates (relative to SMSY) for Chinook salmon from the Siletz and Siuslaw Rivers.  The solid line indicates 
100% of SMSY.  Dark bars represent escapements projected to have occurred had harvest been constant at the optimum rate.  
 

 

Logistic problems arise when measuring aspects of resilience among long lived species (Connell and Sousa, 

1983) such as bowhead, which are also difficult to census.  Admittedly, the data were limited with respect to 

accurately judging the resilience of bowhead.  We relied on two estimates (1978 and 1988) of abundance and 

141 years (from 1848 to 1988) of harvest data to build our model.  The average age to maturity of bowhead is 

between 18-20 years (Schell et al., 1989), and though our projections covered 5 generations of mature adults, 

the empirical data afforded us limited resolution with respect to temporal scale of observation. Nevertheless, 

managers must often make do with available data and our approach is more useful in deciding between 

management decisions than in predicting population dynamics of bowhead (as is the case with PVA analyses; 

Ellner and Fieberg, 2003).   

4.2 Reasons for resilience 

Factors contributing to the resilience we find in Chinook salmon include short generation time, high individual 

productivity, and multiple brood years comprising escapements. Short generation time and high individual 

productivity have long been recognized as life history characteristics of species adapted to environments with 

increased frequency of disturbance (i.e., r selected species). Complete turnover of individuals occurs every 7 

years for Chinook salmon and most reproduce after 6 years. Productivity is relatively high for Chinook salmon, 
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and was probably the single greatest determinant of resilience. The Stikine stock possessed the least potential 

for resilience and also exhibited the lowest α. If recruitment depensation (reduced productivity at low 

spawning abundances) is not important for Chinook salmon, then the potential for high recruitment from low 

escapements will promote resilience. Myers et al. (1995) found only 3 of 128 fish stocks exhibited evidence 

for depensatory mechanisms, which suggests that depensation is of little concern for most fish stocks.  

Chinook salmon are semelparous species, but rely on multiple broodyears comprising annual escapements to 

mitigate the risk of low or failed reproductive effort in any one year. Chinook salmon return to natal streams 

after spending 2 to 5 years in the ocean, but most returns occur after 3 and 4 years (Table 2). Strong 

escapements in years adjacent to poor escapements provide buffers against population decline. If perturbations 

occur in two or more consecutive years, this buffering is lost and recovery can be substantially prolonged (Fig. 

6; but note the Siuslaw stock in Fig. 10). Failed reproductive effort would have to occur for 7 consecutive 

years for local extirpation of a stock.   

Bowhead are K-selected species having a prolonged generation time and low intrinsic rate of growth, which 

renders them less able to respond to perturbations. In the event that abundance is reduced, recovery will take 

longer, as was observed from our simulations.   

4.3 Estimating thresholds 

Efforts in the past have been made to estimate critical thresholds for different fish species, but uncertainty 

around those estimates has too often been ignored (Myers et. al., 1994). In recent years, more focus has shifted 

to ideas of risk and the uncertainties associated with management parameters (Punt and Butterworth, 1993; 

Hilborn, 2001; Walters and Korman, 2001). Simulation techniques are routinely used to estimate critical 

population thresholds and extinction probabilities (Bessinger and Westphal, 1998; Fieberg and Ellner, 2000; 

Ellner and Fieberg, 2003). A thorough investigation of the model and parameter choices is recommended 

(Gerber and VanBlaricom, 2001), but is not always implemented in all species. Furthermore, most approaches 

that incorporate uncertainty in the parameter estimates fail to consider how much fluctuation can be attributed 

to natural variation and not just measurement error (Hilborn and Walters, 1992; Hilborn, 2001). 

Spawner-recruit or biomass assessment data are often messy, and ambiguous answers to specific 

management questions are often the best science has to offer. By estimating probabilities to various outcomes, 

we offer an approach to establishing abundance thresholds in the face of uncertainty. When low abundances 

occur that are below that which can be expected under normal random fluctuation and harvest, researchers 

must question whether these occurrences were due to one-time-only perturbations or declining system 

productivity. Declining productivity can be guarded against by recognizing unreasonably low abundances 

using Figures 8 and 9, and when they occur, suspending or scaling back harvest below the previously 

estimated optimum rate in order to expedite recovery.   

Once managers are aware of which critical abundance levels may indicate problems with productivity, 

higher thresholds can be established based on the resilience of the population. Managers and stakeholders must 

then agree upon the answers to three questions concerning recovery and allowable risk.  First, how much time 

should be allowed for the stock to recover from a perturbation?  The answer to this question can be given in 

years or number of generations. Second, when is a stock considered to be recovered?  In other words, do 

abundances have to be within 1%, 5%, 10%, and so on of what they would be had there been no perturbation?  

Third, what is the maximum allowable risk that a threshold is too low?  Answering this question necessitates 

an understanding of how much chance there is that recovery will take longer than predicted—something that 

management decisions based on point estimates do not do.   

Possible thresholds given varying levels of risk can be presented in a decision table (Table 3).  Thresholds 

were modeled in 10% increments, but greater resolution could be added as desired. A conservative approach 
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would seek to achieve recovery to within 1% of unperturbed conditions after 1 generation with no more than a 

5% risk that recovery will take longer than what was projected.  Neither of the Chinook populations modeled 

in this study were resilient enough to achieve these specifications; therefore, the lowest threshold under these 

conditions would have to be 100% of SMSY. For Chinook salmon, a more reasonable approach might be 

recovery to within 5% after 2 generations with 10% risk of longer recovery; these criteria yield thresholds of 

80% of SMSY for the Stikine stock and 60% for the Queets stock. Due to their low productivity, no clear 

threshold below the point estimate was apparent for bowhead, and harvest may need to be suspended to 

maintain the population at the observed levels of abundance.   

 

 
Table 3  Decision table for estimating the lower threshold abundances for various Chinook salmon stocks and bowhead whales 
of the North Pacific Ocean. Table values represent percentages of SMSY for Chinook and the 1988 abundance estimate for 
bowhead.  One generation represents 6 years for Chinook and 20 years for bowhead.  For each generation increment, thresholds 
necessary for recovery to within 1, 5, and 10% of unperturbed conditions are reported.  Shaded values represent thresholds 
defining abundances that have less than a 5% chance of occurring from random fluctuations alone (Figures 7 and 8); hence, if 
such abundances occur then productivity may be declining and recovery time may be overly optimistic. 

Recovery (within 1, 5, and 10%) after 

1 generation 2 generations 3 generations 

Stock 

% risk of 
longer 
recovery 1% 5% 10% 1% 5% 10% 1% 5% 10% 

5 100 90 90 100 90 70 90 60 40 

10 100 90 90 100 80 70 90 50 30 

Stikine River Chinook 

25 100 90 80 100 80 60 80 40 10 

5 100 90 70 90 70 50 60 20 0 

10 100 80 70 90 60 50 50 10 0 

Queets River Chinook 

25 100 80 70 80 50 30 20 0 0 

5 100 100 90 100 100 90 100 100 90 

10 100 100 90 100 100 90 100 100 90 

Bowhead 

25 100 100 80 100 100 70 100 100 70 

 

 

The relatively short recovery time observed for Chinook salmon has the potential to be misleading. The 

shaded areas in Table 3 indicate abundance levels that have little chance of occurring under normal 

circumstances (Fig. 8). The estimates of recovery from these abundances should not be trusted for reasons 

discussed above. For example, the most liberal approach presented—recovery to within 10% after 3 

generations and a 25% risk of longer recovery—yielded unreasonably low thresholds according to Fig. 8.  

Thus, shaded thresholds are obviously too low, but are reported for purpose of illustration.   

Management of exploited populations should be based on the most sound and up to date ecological theory.  

Techniques used in fisheries management to establish abundance thresholds have lagged behind peer reviewed 

literature on population ecology and conservation. Management decisions based on point estimates are 

antiquated and should be based on new analytical techniques that allow for the inclusion of uncertainty and the 

assessment of risk. The approach presented in this paper incorporates the cumulative uncertainties in the data, 

provides stakeholders with more options, and necessitates that they understand the risk involved with each.  

Using this approach, managers would be better able to maintain abundance levels necessary to achieve 

maximum sustainable yield, and stakeholders may be more satisfied with the management of their resources. 
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