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Abstract

An O(n) invariant nonnegative rank 1 convex function of
linear growth is given that is not polyconvex. This answers a
recent question [8, p. 182] and [5]. The polyconvex hull of the
function is calculated explicitly if n = 2.

1 Introduction

Consider the energy functional of the calculus of variations and non-
linear elasticity

I(u) =

∫

Ω

f(Du) dx (1)

where Ω ⊂ R
n is an open bounded set, u : Ω → R

m is in W 1,p(Ω,Rm),
Du : Ω → M

m×n is its gradient and f : M
m×n → R∪{∞} is the energy

defined on the set M
m×n of all m× n matrices. In nonlinear elasticity

one usually sets m = n = 3, Ω is the reference configuration of the
body, the elements x ∈ Ω are material points, u is the placement of the
body, and A = Du the deformation gradient; moreover, f(A) = ∞ on
the set of all matrices with nonpositive determinant. The minimizers
of (1) under appropriate boundary conditions, if they exist, correspond
to elastic equilibrium.
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The recent interest in the general mathematical properties of the
functional I is motivated by the fact that they seem to reflect faith-
fully the real behavior of the body as given by experiments. Thus, for
example, the energies used to model rubber–like materials lead to I
which possesses states of minimum energy, while, on the other hand,
the energy of solids near the temperature of phase transformation in
general does not posses minimizers. In this situation the solid exhibits
microstructures of alternating phases.

Basic properties of (1) are related to the semiconvexity properties
of f : the classical convexity and its weakened modes, rank 1 convexity,
quasiconvexity and polyconvexity. See Section 2 for definitions. The
quasiconvexity of f is a necessary (and under additional hypotheses also
sufficient) condition for the functional I to be sequentially weakly lower
semicontinuous onW 1,p(Ω), and is thus directly related to the existence
of minimizers. The quasiconvexity is hard to verify; for finite–valued
functions there is a simpler necessary condition, the rank 1 convexity,
and a simpler sufficient condition, the polyconvexity. As mentioned,
for finite-valued functions,

convexity ⇒ polyconvexity ⇒ quasiconvexity ⇒ rank 1 convexity.

As this paper deals with the relationship between these concepts, it is
worth mentioning that the convexity is not appropriate in nonlinear
elasticity because it leads to undesirable features, such as unqualified
uniqueness of equilibrium, etc. More importantly, it is incapable of dis-
tinguishing between the energies leading to the existence of equilibrium
from those which do not have it. The remaining three semiconvex-
ity concepts, the polyconvexity, quasiconvexity and rank 1 convexity,
serve the purpose much better. The quasiconvexity has been discussed
above. The rank 1 convexity leads to Maxwell’s relation expressing
the thermodynamic equilibrium on the interface between solid phases.
This in turn leads to Eshelby’s tensor and Eshelby’s conservation law
(see, e.g., [11, Section 17.4]). The polyconvexity hypothesis seems to
be necessary to obtain the existence of equilibrium under the realistic
constraint f(A) → ∞ as detA→ 0 and f(A) = ∞ if detA ≤ 0, [3].

All the four semiconvexity notions coincide if m = 1 or n = 1; if
m ≥ 2, n ≥ 2, the convexity is different from each of the remaining
three notions while the detailed relationships among these three are
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intricate. It is well-known that if m ≥ 2, n ≥ 2, the polyconvexity
and rank 1 convexity are distinct and if m ≥ 3, n ≥ 2, also the rank 1
convexity and quasiconvexity are distinct, [13]. The case m = n = 2 is
open and also the full understanding is still missing.

Depending on the interpretation of (1), the energy f may have
symmetry properties. A function f : M

n×n → R ∪ {∞} is said to be
SO(n) invariant if

f(QAR) = f(A) (2)

for each A ∈ M
n×n, Q,R ∈ SO(n). The energies of isotropic solids

are SO(n) invariant. f is said to be O(n) invariant if (2) holds for
each A ∈ M

n×n, Q,R ∈ O(n); each O(n) invariant function is SO(n)
invariant.

Of particular importance is the case n = 2. It is known that in
the class of SO(2) invariant functions the convexity, polyconvexity,
and quasiconvexity are distinct, while the relationship between the
quasiconvexity and rank 1 convexity is an open problem. An example
of an SO(2) invariant rank 1 convex function that is not polyconvex is
due to Aubert [2] (for further examples see [7], [1]) while an example of
an SO(2) invariant quasiconvex function that is not polyconvex is due
to Alibert & Dacorogna [1]. None of these examples is O(2) invariant.
Thus they leave open the possibility that the rank 1 convexity and
polyconvexity are equivalent within the narrower class of O(2) invariant
functions, cf. [5] and [8, p. 182]. This note shows that this is not the
case. The function f : M

2×2 → R given by (3) below is rank 1 convex,
O(2) invariant, but not polyconvex. Here

f(A) =

{

v1v2 if v1 ≤ 1,

v1 + v2 − 1 if v1 ≥ 1,
(3)

for all A ∈ M
n×n, where v1 ≥ v2 are the singular values of A (eigen-

values of
√
AAT ). The function is tailored from two simple polyconvex

functions and the proof takes a somewhat different course. First, the
verification of the Legendre–Hadamard condition drops because of the
polyconvexity of the two pieces of the function; one has only to verify
the “rank 1” monotonicity of the subgradient at the surface where the
two functions meet. An elementary assertion, Lemma 4, is proved to
delineate situations when this is the case for the construction. (The
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same construction with convex functions results in a convex function,
but (3) shows that it may fail to result in a polyconvex function even if
the starting functions were polyconvex.) Secondly, the nonpolyconvex-
ity of (3) is based on a result [12] that the polyconvexity is inconsistent
with the subquadratic growth unless it reduces to convexity. In [12] it
will be shown that there are many O(n) invariant quasiconvex func-
tions that are not polyconvex. Namely, the quasiconvex hull of the
distance from any quasiconvex, nonconvex, compact, O(n) invariant
set is not polyconvex.

The nonequivalence of the rank 1 convexity and polyconvexity for
O(2) invariant functions should be compared with a recent result of [5]
establishing the equivalence of rank 1 convexity and polyconvexity for
O(2) invariant compact sets.

The above example generalizes to any dimension n ≥ 2 : if f :
M

n×n → R is given by (3) for all A ∈ M
n×n, where v1 ≥ v2 are the two

largest singular values of A, then f is rank 1 convex but not polyconvex.
However, the proofs are given below only for n = 2 for simplicity.

2 Semiconvexity concepts

This section reviews briefly the semiconvexity concepts and recapitu-
lates the interpretation. The reader is referred to [9], [3], [6], [8], [11],
[10] for more details and further references.

Definitions 1. A function f : M
m×n → R ∪ {∞} is said to be

(i) convex if

f((1 − t)A+ tB) ≤ (1 − t)f(A) + tf(B), (4)

for each A,B ∈ M
m×n and each t ∈ [0, 1];

(ii) polyconvex if there exists a convex function g such that

f(A) = g(MinA), A ∈ M
m×n,

where MinA = (A(1), . . . , A(q)), q := min{m,n}, denotes the col-
lection of all minors A(r) of order r of A;
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(iii) quasiconvex if

|E|f(A) ≤
∫

E

f(A+Dv(x)) dx (5)

for each A ∈ M
m×n, each open bounded E ⊂ R

n with |∂E| = 0
and each v ∈ W 1,∞

0 (E,Rm) for which the right-hand side of (5)
makes sense as a Lebesgue integral; here | · | denotes the Lebesgue
measure;

(iv) f is said to be rank 1 convex if (4) holds for each A,B ∈ M
m×n

with rank(A−B) ≤ 1 and each t ∈ [0, 1].

If m = n = 2 then there are four minors of order 1 of A : the elements
of the matrix A, and one minor of order 2, detA. Thus a function
f : M

2×2 → R is polyconvex if and only if there exists a convex function
g : M

2×2 × R → R such that

f(A) = g(A, detA) (6)

for each A ∈ M
2×2.

As mentioned in the introduction, if f is quasiconvex, then the body
behaves in the most regular way. If f is not quasiconvex, one can pass
to the quasiconvex hull of f, the largest quasiconvex function below
f. The relaxation theorem says, roughly, that the energy integral with
the relaxed function gives the same infima as the original functional.
In a parallel way, one can define also the other semiconvex hulls.

Theorem 2. Let f : M
m×n → R be a finite valued function that is

bounded from below. Then there exists the largest convex, polyconvex,
quasiconvex and rank 1 convex minorants of f.

These minorants are denoted by Cf, Pf,Qf,Rf : M
m×n → R and

called the convex, polyconvex, quasiconvex, and rank 1 convex hulls of
f. The value Qf(A) is the minimum energy among all microstructures
of mean deformation gradient A. Similarly, Rf is the minimum energy
among all laminates consistent with the mean deformation gradient
A. In contrast, Cf and Pf do not have any immediate mechanical
significance.

The following observation, a special case of [12], shows that poly-
convexity is inconsistent with a subquadratic growth unless it reduces
to convexity.
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Lemma 3. Let f : M
2×2 → R be bounded from below and let

f(A) ≤ c1|A|p + c2 (7)

for some constants c1, c2, some p, 1 ≤ p < 2, and all A ∈ M
n×n. Then

(i) if f is polyconvex then it is convex;

(ii) Pf = Cf.

Proof (i): If f is polyconvex then there exists a convex function
g as in (6). The function g has a subgradient at (A, detA) for each
A ∈ M

2×2. This implies that there exists a matrix S = S(A) ∈ M
2×2

and a c = c(A) ∈ R such that

f(B) ≥ f(A) + S · (B − A) + c(detB − detA) (8)

for each B ∈ M
2×2. A combination with (7) provides

c1|B|p + c2 ≥ f(A) + S · (B − A) + c(detB − detA).

Replacing B by tB, t > 0, dividing by t2, and letting t→ ∞ results in

c detB ≤ 0.

As B ∈ M
2×2 is arbitrary, it follows that c = 0 and (8) reduces to

f(B) ≥ f(A) + S · (B − A)

and hence f is convex. (ii): This follows immediately from (i). ut

3 Tailoring two rank 1 convex functions

The construction in Lemma 4 will be used to establish the rank 1
convexity or convexity of a function obtained by tailoring two rank 1
convex (convex) functions. To motivate it, note that the maximum
of two semiconvex functions has the same type of semiconvexity. The
following lemma deals with a somewhat different situation.
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Lemma 4. Let g, h : M
m×n → R be two functions such that

g ≥ h on G and g = h on G ∩H (9)

where G,H ⊂ M
m×n are closed sets with G ∪ H = M

m×n and with
G \H open. Let furthermore f : M

m×n → R be given by

f(A) =

{

g(A) if A ∈ G,

h(A) if A ∈ H

Then

(i) if g, h are convex then f is convex;

(ii) if g, h are rank 1 convex then f is rank 1 convex;

(iii) it may happen that g, h are polyconvex but f is not polyconvex.

The intersection G∩H is typically a surface in M
m×n. The function f

is not a maximum of g, h since it is not assumed that h ≥ g on H. Yet
the convexity and rank 1 convexity are preserved under the operation,
but not so polyconvexity in general. The above assertion isolates a
general property which differentiates between the rank 1 convexity and
polyconvexity. Lemma 4 is not the only possible result of this type,
only one most convenient for the applications below.

Proof The proof of (iii) follows from the results to be given in
Section 4. Furthermore, only (ii) will be proved, (i) is similar. Let
A,B ∈ M

m×n be any matrices with rank(A − B) ≤ 1 and set Ct =
(1− t)A+ tB, t ∈ R. Our goal is to prove that the function ϕ : R → R

given by ϕ(t) = f(Ct) is convex. Let P,Q ⊂ R be defined by

P = {t : Ct ∈ G \H}, Q = {t : Ct ∈ H}

so that

ϕ(t) =

{

ψ(t) if t ∈ P,

ω(t) if t ∈ Q,

where ψ, ω : R → R are defined by ψ(t) = g(Ct), ω(t) = h(Ct). Note
that ψ, ω are convex because g, h are rank 1 convex. We shall prove the
convexity of ϕ by showing that ϕ has a subgradient s at every t ∈ R.
Namely we shall prove that if t ∈ P then any subgradient of ψ at t is a
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subgradient of ϕ at t while if t ∈ Q then the same purpose serves any
subgradient of ω at t. Let first t ∈ Q and let s be a subgradient of ω
at t. To prove that s is a subgradient of ϕ at t, i.e.,

ϕ(τ) ≥ ϕ(t) + s(τ − t) (10)

for all τ ∈ R, it suffices to note that the subgradient inequality

ω(τ) ≥ ω(t) + s(τ − t)

implies directly (10) because ϕ(t) = ω(t) and ϕ(τ) ≥ ω(τ) by the
hypothesis (9)1. Let now t ∈ P and note that P is an open subset of
R since G \H is open. Let s be any subgradient of ψ at t, i.e.,

ψ(τ) ≥ ψ(t) + s(τ − t)

for all τ ∈ R, and prove that s is a subgradient of ϕ at t, i.e., (10) holds
for all τ ∈ R. If τ ∈ P then ϕ(τ) = ψ(τ) and (10) follows immediately.
Prove now (10) for τ ∈ Q. Assume that τ > t; the case τ < t is similar.
Since t is an interior point of P and τ > t, τ /∈ P, there exists a τ1
such that t < τ1 ≤ τ, [t, τ1) ⊂ P, and τ1 /∈ P. Consequently, since G is
closed, we have Cτ1 ∈ G ∩H; thus ψ(τ1) = ω(τ1) = ϕ(τ1). Let s̄, s̃ be
some subgradients of ω, ψ at τ1, respectively. Since ψ(t) ≥ ω(t), the
subgradient inequality provides

ψ(t) ≥ ω(t) ≥ ω(τ1) + s̄(t− τ1)

= ψ(τ1) + s̄(t− τ1)

≥ ψ(t) + s̃(τ1 − t) + s̄(t− τ1),

i.e., (s̃− s̄)(τ1 − t) ≤ 0, which implies s̃ ≤ s̄. The monotonicity of the
subgradients of ψ implies that s ≤ s̃ and thus s ≤ s̄. The subgradient
inequalities

ψ(τ1) ≥ ψ(t) + s(τ1 − t), ω(τ) ≥ ω(τ1) + s̄(τ − τ1)

and the identities ψ(τ1) = ω(τ1), ϕ(τ) = ω(τ), ϕ(t) = ψ(t) imply (10).
ut
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4 The example

Theorem 5. Let f : M
2×2 → R be given by

f(A) =

{

v1v2 if v1 ≤ 1,

v1 + v2 − 1 if v1 ≥ 1,
(11)

for all A ∈ M
2×2, where v1 ≥ v2 are the singular values of A. Then f

is rank 1 convex but not polyconvex; in fact

Pf(A) = Cf(A) =

{

0 if v1 + v2 − 1 ≤ 0,

v1 + v2 − 1 if v1 + v2 − 1 ≥ 0,
(12)

for all A ∈ M
2×2.

Proof Let g, h : M
2×2 → R and G,H ⊂ M

2×2 be given by

g(A) = v1v2, h(A) = v1 + v2 − 1,

G := {A ∈ M
2×2 : v1 ≤ 1}, H := {A ∈ M

2×2 : v1 ≥ 1}.
One finds that (9) holds. The functions g, h are rank 1 convex: in fact
g is polyconvex since g(A) = | detA| and h is convex by [3, Remark,
p. 364]. Then g, h,G,H satisfy the hypotheses of Lemma 4(ii) and f
is rank 1 convex.

To evaluate the polyconvex hull of f, note that since for any A ∈
M

2×2 with |A| sufficiently large we have f(A) = h(A), the form of h
implies that

f(A) ≤ c1|A| + c2

for some constants c1, c2 and all A ∈ M
2×2. Hence Lemma 3(ii) asserts

that Pf = Cf. Thus we have to evaluate the convex hull of f. Let us
first show that if A ∈ H then Cf(A) = f(A). Since the function h is
convex, for each A ∈ M

2×2 there exists an S = S(A) ∈ M
2×2 such that

h(B) ≥ h(A) + S · (B − A)

for all A ∈ M
2×2. Since f ≥ h and f(A) = h(A) if A ∈ H, we have

f(B) ≥ f(A) + S · (B − A)
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for all A ∈ M
2×2. The assertion Cf(A) = f(A) then follows. Consider

the case A ∈ G. By [8, Corollary 7.20], if m : M
2×2 → R is an O(2)

invariant convex function and the singular values v = (v1, v2), w :=
(w1, w2) of A,B ∈ M

2×2, respectively, satisfy

v1 ≤ w1, v1 + v2 ≤ w1 + w2 (13)

then m(A) ≤ m(B). Noting that the convex hull of any O(2) invariant
function is O(2) invariant (see [4]), we apply the above to m = Cf to
obtain

Cf(A) ≤ Cf(B) ≤ f(B)

wheneverA,B satisfy (13). Assume that the singular values of A satisfy
v1 + v2 − 1 ≤ 0 and prove Cf(A) = 0. The choice B = diag(1, 0) leads
to w1 = 1, w2 = 0 and thus (13) are satisfied. Hence

Cf(A) ≤ f(B) = 0

which proves the assertion. Next consider the case v1 + v2 ≥ 1, A ∈ G.
The choice B := diag(1, v1 + v2 − 1) gives w1 = 1, w2 = v1 + v2 − 1 and
(13) is satisfied also. Hence

Cf(A) ≤ f(B) = w1 + w2 − 1 = v1 + v2 − 1.

Thus Cf(A) ≤ v1 + v2 − 1. To summarize, it was shown that if m
denotes the function defined by the expression on the right-hand side
of (12) then Cf ≤ m. On the other hand, the function m is convex,
since it is the nonnegative part of h. Finally, we see that f is not
polyconvex since its polyconvex hull is different from f. ut

5 Conclusions

The paper shows that within the class of O(n) invariant functions, the
notions rank 1 convexity and polyconvexity are different by means of
a simple example. The function is of course also SO(n) invariant, thus
demonstrating the difference of the quasiconvexity and polyconvexity
in the class of SO(n) invariant functions, a special case n = 2 of which
was known previously [2], [7], [1]. Lemma 4 describes more generally
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situations under which the tailoring of two rank 1 convex functions
results in a rank 1 convex function but may fail to result in a polyconvex
function even if the starting functions are polyconvex. A future paper
[12] constructs a large class of O(n) invariant quasiconvex functions
that are not polyconvex.
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Jedna O(n)-invarijantna konveksna funkcija prvog
reda koja nije polikonveksna

UDK 531.01, 532.59, 536.76

Data je jedna O(n)-invarijantna nenegativna konveksna funkcija ranga
1 linearnog rasta koja nije polikonveksna. Ovim se daje odgovor na ne-
davno pitanje u referencama [8, p. 182] i [5]. Polikonveksna obvojnica
te funkcije je izračunata eksplicitno za n = 2.


