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Abstract

In this paper is presented the new approach to asymptotic analysis
of the stress and strain fields around a crack tip that is propagating
dynamically along a bimaterial interface. Through asymptotic anal-
ysis the problem is being reduced to solving the Riemann-Hilbert’s
problem, what yields the strain potential that is used for determi-
nation of the strain field around a crack tip. The considered field
is that of a dynamically propagating crack with a speed that is
between zero and shear wave speed of the less stiffer of the two
materials, bound along the interface. Using the new approach in
asymptotic analysis of the strain field around a tip of a dynamically
propagating crack and possibilities offered by the Mathematica pro-
gramming package, the results are obtained that are compared to
both experimental and numerical results on the dynamic interfacial
fracture known from the literature. This comparison showed that it
is necessary to apply the complete expression obtained by asymp-
totic analysis of optical data and not only its first term as it was
done in previous analyses.
Keywords: Interfacial crack, dynamic crack growth, Mathematica R©

∗Faculty of Mechanical Engineering, Sestre Janjic 6, 34000 Kragujevac, Serbia
†Technical Faculty of Bor, University of Belgrade, Vojske Jugoslavije 12, 19210 Bor,

Serbia

299

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26897473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


300 R. Nikolic, Jelena M. Djokovic

1 Introduction

Scientific explanation of the initiation and growth mechanisms of a crack on
a bimaterial interface is fundamental for understanding the fracture process
in materials like composites and ceramics. The very important mechanism
of fracture of fiber-reinforced composites and whisker-reinforced ceramics
is, for instance, debonding between the substrate and reinforcing phases.
This failure process can be quasi-static or dynamic, depending on the type
of loading to which the composite structure is subjected.

The interfacial crack lies between the two ideally bound elastic half
spaces. Williams (1959) published first papers on that subject. He studied
local stress field near the tip of the traction free semi-infinite interfacial
crack. Williams has noticed that, as opposite to homogeneous materials,
stresses for a crack on the interface exhibit the oscillatory character. Many
authors have followed his work, and papers were published on the problem
of the static growth of an interfacial crack. The well known are works by Sih
and Rice (1964) and Rice and Sih (1965), who obtained explicit expressions
for stress field in the vicinity of a crack tip, and accordingly, the far elastic
stress fields for different problems. Papers by Erdogan (1965), England
(1965) and Malyshev and Salganik (1965) provided the new contribution to
research of the two-dimensional singular model for single or several cracks
in bimaterial systems. More recently, papers of Rice (1988), Hutchinson
and Suo (1992) and Shih (1991) provided for progress in research of static
interfacial fractures.

The failure process can also be dynamic, what leads to necessity of ana-
lyzing the dynamic crack growth on bimaterial interface. Due to complex-
ity of the problem, only a few theoretical results exist. They all provided
solutions only for particular fracture problems, as stated by Liu, Lambros
and Rosakis (1993). Those results provided insight of the dynamic crack
behavior only in the immediate vicinity of the crack tip. Obviously, the
knowledge of the complete spatial structure of the stress field, around the
moving interfacial crack tip is necessary.

Therefore, while the theoretical investigations were still lagging, nu-
merous experimental investigations of the strain field around an interfacial
crack tip were conducted. The most famous results were by Tippur and
Rosakis (1991) and Rosakis, Lee and Lambros (1991) using the optical
method Coherent Gradient Sensor (CGS) and very high-speed photogra-
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phy. They used polymethylmetacylate (PMMA) / Al as the bimaterial
system. The considered speeds were up to 90 % of Rayleigh’s wave speed
for PMMA. Guided by this investigation, Yang, Suo and Shih (1991) ob-
tained structure of the elastodynamic field in steady state growth con-
ditions of an interfacial crack. In addition, inspired by experiments by
Tippur and Rosakis (1991), Lo, Nakamura and Kushner (1994) have con-
ducted a numerical analysis of the same bimaterial system that was used
in experiments.

The experimental research described in work by Liu, Lambros and
Rosakis (1993) assume accelerations in the crack tip and very high crack
growth speed. Existence of acceleration creates conditions in which appli-
cation of the uniform crack growth assumption is not adequate. In this
paper is given the asymptotic structure of the near tip fields for a crack
in bimaterial system, for the non-uniform crack growth. Works of Freund
(1990) and Freund and Rosakis (1992) that were treating the problem of
the non-uniform crack growth under the Mode I loading in homogeneous
isotropic material preceded the paper by Rosakis, Lee and Lambros (1991).
Liu and Rosakis (1994) applied the same procedure for the non-uniform
crack growth in the mixed mode for homogeneous isotropic material along
an arbitrary curved path.

In section two of this paper is presented the general formulation of the
problem. The interfacial parameters characteristics are presented in sec-
tion three. They depend on characteristics of the bimaterial combination
and crack tip speed. Section four gives the asymptotic elastodynamic field
around the interfacial crack tip. This formulation follows closely that of
Liu, Lambros and Rosakis (1993). The idea was to compare their results
and those of Singh et al. (1997), obtained by the optical method Coherent
Gradient Sensor (CGS) and very high speed photography, with our results
obtained analytically by application of the programming package Mathe-
matica presented in section five, Veljkovic (1998, 2001) and Nikolic and
Veljkovic (2002, 2004). Mathematica is used for solving the non-uniform
elastodynamic field. In this way, the analytical results are obtained, which
are used for quantitative analysis of optical interferographs of dynamic
experiments on bimaterial systems. Possibilities offered by Mathematica
enable “accurate” calculations. Since here the subject of simulation is ac-
tually an asymptotic expression, it is not “solved” completely accurately,
but its presentation by Mathematica is much better, or closer to “accu-
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rate”, than by application of any numerical method. Section six presents
discussion of results and the comparison with experimental data and offers
concluding remarks.

2 Formulation of the problem

For dynamical problem, the equations of motion are used instead of equi-
librium equations what gives the following:

∂σji

∂xj

= ρüi, (1)

where xj are the orthogonal coordinates, (j = 1, 2) and dot indicates the
time derivative, Anderson (1991). For the quasi-static problems, the term
on the right hand side of (1) vanishes. For a linear elastic material, it is
possible to write the equations of motion in terms of displacements and
elastic constants, with introducing the compatibility equations and stress-
strains relationship:

µ
∂2ui

∂xj∂xj

+ (λ + µ)
∂2ui

∂xi∂xj

= ρüi, (2)

where µ and λ are the Lamé constants.
Considered is the planar body that consists of two homogeneous, isotropic,

linearly elastic materials that are bonded along a linear interface. The
crack propagates non-uniformly along the interface, Figure 1.

The usual fixed Cartesian coordinate system (x1, x2) is introduced in
such a way that the x1-axis lies on the interface and coincides with the crack
growth direction, and the x2 axis is perpendicular to the crack plane. It
is assumed that the crack propagates non-uniformly with speed v(t), and
that the crack surfaces are traction free. At time moment t = 0, the crack
tip is in the reference frame origin, thus the crack growth in time t ¿ 0 is
characterized by length `(t), (v(t) = ˙̀(t) ), which represents the distance
from the origin to the crack tip. The moving coordinate system is such
that its origin is at the crack tip and the standard relations between the
systems’ coordinates are given by:
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Figure 1: Schematic representation of the dynamic crack growth along a
bimaterial interface

ξ1 = x1 − `(t) , ξ2 = x2. (3)

If one assumes the plane strain state for each of the two materials that
constitute the interface, the displacement field can be described by two
displacement potentials φk(x1, x2, t) andψk(x1, x2, t), where the subscript
k refers to materials 1 and 2, respectively. In Figure 1, material 1 is shown
above, while the material 2 is below the interface. Accordingly, in each of
the two materials the displacement components can be expressed as:

uα (x1, x2, t) = φ,α (x1, x2, t) + eαβψ,β (x1, x2, t) , (4)

whereα, β ∈ {1, 2}, { },α denote differentiation with respect to coordinate
and the summation convention holds, and eαβ is the two-dimensional sym-
bol defined as: e12 = - e21 = 1, e11 = e22 = 0. Substituting (4) into (3),
one obtains:

φ,αα (x1, x2, t)− 1
c2`

φ̈ (x1, x2, t) = 0

ψ,αα (x1, x2, t)− 1
c2s

ψ̈ (x1, x2, t) = 0
(5)

where: µ – is the shear modulus, and cλ and cs are the longitudinal and
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shear wave speed for materials above and below the interface, respectively.
Those speeds are, for each of the two materials, in terms of shear modulus
µ, density ρ and Poisson’s ratio ν, defined as:

c` =

√
κ + 1

κ− 1
· µ

ρ
, cs =

√
µ

ρ
, (6)

where: κ = 3 – 4 ν for the plane strain state and κ = (3 – ν)/ (1 + ν) for
the plane stress state.

The stress components are expressed as functions of the displacement
potentials, as

σ11 = µ
[

c2`
c2s

φ,11 − 2φ,22 + 2ψ,12

]

σ22 = µ
[

c2`
c2s

φ,22 − 2φ,11 − 2ψ,12

]

σ12 = µ [2φ,12 + ψ,22 − ψ,11] .

(7)

for each of the considered materials.
In the moving reference frame, equations of motion (5) can be ex-

pressed, in terms of the displacement potentials φ(x1, x2, t)and ψ(x1, x2, t)become:

(
1− v2(t)

c2`

)
φ,11 + φ,22 + v̇(t)

c2`
φ,1 + 2v(t)

c2`
φ,1t − 1

c2`
φ,tt = 0(

1− v2(t)
c2s

)
ψ,11 + ψ,22 + v̇(t)

c2s
ψ,1 + 2v(t)

c2s
ψ,1t − 1

c2s
ψ,tt = 0

. (8)

It is assumed that φ(ξ1, ξ2, t) and ψ(ξ1, ξ2, t), for each material, can
be represented in the form of series:

φ (ξ1, ξ2, t) =
∞∑

m=0

γpmφm (η1, η2, t)

ψ (ξ1, ξ2, t) =
∞∑

m=0

γpmψm (η1, η2, t)
when r =

√
ξ2
1 + ξ2

2 → 0, (9)

where: ηi = ξi/γ, α ∈{1,2} and γ is the small arbitrary number. The
parameter γ is used in order to extend the area around the crack tip to
the whole field. If γ is chosen as infinitely small, all points in the (ξ1, ξ2)
plane, except for those that are in the immediate vicinity of the crack tip,
are out of the consideration area in the (η1, η2) plane and the crack tip
lies along the whole negative part of the η1 axis. If one adopts that γ =
1, the above equations (9) would be the asymptotic presentation of the
displacement potential in the non-scaled physical plane for each material,
respectively.
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In the asymptotic presentation (9), the influence of γ is such that:

pm+1 = pm +
1

2
, m = 0, 1, 2, ... . (9)

The displacement will be limited, over the whole area, but stresses
could be singular at the crack tip, it is expected that p0will be within the
range 1 ¡ p0 ¡ 2. It also holds:

εpm+nφm+n(η1,η2,t)
εpmφm(η1,η2,t)

→ 0,when γ→0, (11) for any positive number n. If the
non-scaled physical plane is adopted, it would be:

φm+n(ξ1,ξ2,t)
φm(ξ1,ξ2,t)

→ 0,when r =
√

ξ2
1 + ξ2

2 → 0, (12) for any positive number

n, thus in the physical plane (ξ1, ξ2) is φm(ξ1, ξ2, t) determined according
to its contribution to strain field at the crack tip. These characteristics of
φm are also valid for ψm.

If the asymptotic representation of φ(ξ1, ξ2, t) and ψ(ξ1, ξ2, t), equa-
tions (9), is substituted into Equation (8), the two equations are obtained,
whose left hand sides represent the infinite series in γ and the right hand
sides vanish. If γ is the arbitrary number, the co efficient of each term
with γ will be equal to zero. Thus, the equations of motion are reduced to
series of coupled differential equations for φm (η1, η2, t) and ψm(η1, η2, t),
Liu, Lambros and Rosakis (1993):

φm,11 + 1
α2

` (t)
φm,22 = −2

√
v(t)

α2
` (t)c2`

{√
v(t)φm−2,1

}
,t

+ 1
α2

` (t)c2`
φm−4,tt

ψm,11 + 1
α2

s(t)
ψm,22 = −2

√
v(t)

α2
s(t)c2s

{√
v(t)ψm−2,1

}
,t

+ 1
α2

s(t)c2s
ψm−4,tt

(10)

for m = 0, 1, 2, . . . , and values of αλ and αs depend on the vicinity of
the crack tip and time t, by:

α2
`,s = 1− v2(t)

c2
`,s

. (11)

The expression ”coupled” is used in the sense that the higher order
solutions for φm and ψmwill depend on the lower order solution for the
same variables. Equations are not coupled only in the case when m = 0
and m = 1, Liu, Lambros and Rosakis (1993). For the case when m ¿ 1,
from equations (10) can be seen that solutions for φm and ψm consist of two
parts. One is the particular solution, which is completely defined by the
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lower order solutions for φm and ψm. The second part is the homogeneous
solution that satisfies the Laplace’s equation in the corresponding scaled
coordinate plane. Combination of particular and homogeneous solutions
must satisfy the boundary conditions on the crack faces and along the
interface.

Liu, Lambros and Rosakis (1993) have found the solutions for φm and
ψm (expression (13), p. 1894 and (54), p. 1903). Associated with solutions
for φm and ψm they determined the stress components (expressions (56),
(57) and (58), p. 1905). Their equations make good use to determine the
angular variations of stresses for different values of crack tip speed in the
PMMA/steel bimaterial system. In Figures 2 and 3 are presented results
of simulation by Mathematica of those expressions.

3 Characteristic parameters of the dynamic

interfacial fracture

In analysis of an interfacial crack that propagates dynamically along the
interface, there exist two parameters, which do not depend only on char-
acteristics of materials that form the bimaterial system, but also on the
crack tip speed. These parameters were defined earlier; see for instance
Yang, Suo and Shih (1991). Characteristics of these parameters are very
important, since the asymptotic field in the crack tip changes drastically
in their presence. The first of these parameters is defined as:

ε =
1

2π
ln

1− β

1 + β
, (12)

where:β = h11√
h12h21

, while the second is defined with:

η =

√
h21

h12

. (13)
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Figure 2: Angular variations of stresses for different values of crack tip
speed in a PMMA/steel bimaterial system under the Mode I load, using
Mathematica.
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Figure 3: Angular variations of stresses for different values of crack tip
speed in a PMMA/steel bimaterial system under the Mode II, using Math-
ematica.
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In definitions of parameters (12) and (13) the auxiliary functions are:

h11 =
{

2α`αs−(1+αs)
2

µD(v)

}
1
−

{
2α`αs−(1+αs)

2

µD(v)

}
2

h12 =
{

αs(1−αs)
2

µD(v)

}
1
−

{
αs(1−αs)

2

µD(v)

}
2

h21 =
{

α`(1−αs)
2

µD(v)

}
1
−

{
α`(1−αs)

2

µD(v)

}
2

,

(14)

where:D(v) = 4α`αs − (1 + α2
s)

2
.

In Figure 4 are shown variations of parameters η and β as functions
of the crack tip speed for the plane strain conditions for three different
bimaterial combinations. Diagrams shown in Figures 4(a) and 4(b) are
drawn by application of the Mathematica programming package. It can be
seen that parameters η and β depend weakly on materials disagreement but
strongly on the crack speed. It can further be noticed that the parameter
η changes smoothly, from 1 for the stationary interfacial crack, to ∞, when
the crack tip speed approaches to transversal wave speed for material 1.
However, the situation is quite different for the other parameter, β. When
the crack tip speed is less than the Rayleigh’s wave speed for material 1,
i.e., c

(1)
R , the parameter β changes smoothly and tends to -1, when the

crack tip speed is very close to c
(1)
R . When the crack tip speed becomes

equal to c
(1)
R ,D1(v) changes its sign and parameter β has a jump from -1

to 1 and further tends to ∞, when the crack tip velocity approaches the
wave speed of material 1.

4 Asymptotic elastodynamic field around an

interfacial crack that propagates non-uniformly

The following section is partially taken from Liu, Lambros and Rosakis
(1993), and thus presented here in the abbreviated version. The objective
is to get the expression for the first stress invariant and its derivative with
respect to coordinate x1 and than to calculate it with application of the
programming package Mathematica. The point is to illustrate the necessity
of taking into account the whole expression for the derivative, and not only
its leading term, as was the case in Yang, Suo and Shih
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(1991). Liu, Lambros and Rosakis (1993) came to the same conclusion,
but their simulations are done numerically, and thus are presumably less
“accurate”. Both expressions (from Yang, Suo and Shih (1991) and Liu,
Lambros and Rosakis (1993)) are simulated in this paper by Mathematica
and results are presented and compared in section five.

Liu, Lambros and Rosakis (1993) argue that for the sake of compar-
ison with experimental investigations, the asymptotic analysis should be
conducted only of the first stress invariant around the interfacial crack tip.
Let, for any complex function W (t), the intensity be denoted with |W | and
phase with Φ(W ). Let the scaled polar coordinate system (rλ, θλ), with
the origin at the moving crack tip be defined with:

r` =
√

ξ2
1 + α2

`ξ
2
2 , θ` = arctg

α`ξ2

ξ1

. (15)

The first stress invariant in material above the interface can be ex-
pressed as:

σ11+σ22

2µ(α2
`−α2

s)
= |A0(t)|

{
Σ0(θ`) cos(ε ln r`) +

∗
Σ
0
(θ`) sin(ε ln r`)

}
1√
r`

+ 4αs

µD(v)(1+ωs)
|A1(t)| cos(Φ(A1))

+ε̇

{
Σd(θ`) cos(ε ln r`) +

∗
Σ
d
(θ`) sin(ε ln r`)

}√
r`(ln r`)

2

+

{
Σt(θ`) cos(ε ln r`) +

∗
Σ
t
(θ`) sin(ε ln r`)

}√
r` ln r`

+

{
Σtt(θ`) cos(ε ln r`) +

∗
Σ
tt
(θ`) sin(ε ln r`)

}√
r`

+ |A2(t)|
{

Σ2(θ`) cos(ε ln r`) +
∗
Σ
2
(θ`) sin(ε ln r`)

}√
r` + O(r`) .

(16)

This equation corresponds to (88, p. 1916) of Liu, Lambros and Rosakis
(1993), and all the coefficients are defined there. The discussion following
that equation should not be given here, except for stressing that the first
term has properties of the square root and is of the oscillatory nature. This
corresponds to the complex dynamic stress intensity factor Kd(t), which
was defined by Yang, Suo and Shih (1991). It is important to emphasize
that the influence of the non-uniform crack growth can noticeably change
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the structure of r and θ fields from that predicted by the steady-state
growth approximation.

The first stress invariant, differentiated with respect to x1 in the mate-
rial above the interface can be expressed as:

(σ11+σ22),1

2µ(α2
`−α2

s)
= |A0(t)|

{
Π0(θ`) cos(ε ln r`) +

∗
Π
0
(θ`) sin(ε ln r`)

}
r
−3/2
`

+ε̇

{
Πd(θ`) cos(ε ln r`) +

∗
Π
d
(θ`) sin(ε ln r`)

}
1√
r`

(ln r`)
2

+

{
Πt(θ`) cos(ε ln r`) +

∗
Π
t
(θ`) sin(ε ln r`)

}
1√
r`

ln r`

+

{
Πtt(θ`) cos(ε ln r`) +

∗
Π
tt
(θ`) sin(ε ln r`)

}
1√
r`

+ |A2(t)|
{

Π2(θ`) cos(ε ln r`) +
∗
Π
2
(θ`) sin(ε ln r`)

}
1√
r`

+ O(r`) .

(17)
Equation (17) corresponds to Equation (109, p. 1935) of Liu, Lambros

and Rosakis (1993). As stated in that paper, Equation (17) has four orders

of the variable rλ. Those are r
−3/2
` , r

−1/2
` (ln r`)

2, r
−1/2
` ln r` and r

−1/2
` .

There are 28 unknown constants here. The first two constants |A0| and
Φ(A0) correspond to the complex dynamic stress intensity factor Kd(t)
defined by Yang, Suo and Shih (1991). Actually, the simplest term in (17)
is reduced to equation obtained by Yang, Suo and Shih (1991):

∂(_
σ 11+

_
σ 22)

∂x1
=

r
−3/2
` e−ε(π−θ`)A(t)

2
√

2π

{
(1 + α2

s − 2ηαs) e2ε(π−θ`) cos
(

3θ`

2
− Φ(t)− ε ln r`

)

− (1 + α2
s + 2ηαs) cos

(
3θ`

2
+ Φ(t) + ε ln r`

)
+ 2ε (1 + α2

s − 2ηαs) e2ε(π−θ`) sin
(

3θ`

2
− Φ(t)− ε ln r`

)
−2ε (1 + α2

s + 2ηαs) sin
(

3θ`

2
+ Φ(t) + ε ln r`

)}
,

(18)
where:

A(t) =
(α2

` − α2
s)

∣∣Kd(t)
∣∣

D(v)ch(επ)
, Kd(t) = Kd

1 (t)+iKd
2 (t), Φ (t) = arctg

Kd
2 (t)

Kd
1 (t)

.

The first four terms in Equation (17) have the same form as those
obtained in the equilibrium state conditions. However, the other terms
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are much more complex and possess some unusual characteristics. They
have the proportionality coefficientε̇ = ε′(v)v̇(t). If ε̇ = 0 the majority,
but not all, terms of Equation (17) vanish, since they depend on the time
derivative of the complex dynamic stress intensity factor and the crack tip
speed.

5 Results and discussion

To demonstrate necessity of analysis presented in section 4, in presenta-
tion of experimental data will be analyzed the case of a non-uniformly
propagating crack.

Results obtained by application of programming routine Mathematica
for numerically evaluated Equations (17) and (18) are shown in Figure 5.
Considering the possibilities offered by programming package Mathemat-
ica, the stress field, shown in Figure 5(a) presents the analytical “solution”
of Equation (17). In obtaining the contour diagrams in Figures 5 and 6,
coordinates x1 and x2 were scaled with L = 1 m since the logarithmic func-
tion ln r` ought to be dimensionless. This was discussed by Rice (1988).
In the asymptotic analysis, it was supposed that the length L could be
arbitrary. The value of the complex dynamic factor, Kd(t), depends on
geometry and loads. Also, Kd(t) is a function of time. The contour di-
agrams, shown in Figure 5, were obtained for values

∣∣Kd
∣∣ = 1Pa

√
mand

F = 45o, for the purpose of their comparison with experimental results.
Figure 5(b) also presents results of analytical “solution” of Equation (18).
This equation, defined by Yang, Suo and Shih (1991), until now was not
solved in analytical form. In work by Lambros and Rosakis (1995a) only
the numerical solution of Equation (18) was presented. Comparison of
those solutions with one presented in Figure 5(b), shows the good agree-
ment between them. Solving Equation (17) was not, until now, found in
literature in the analytical form, but only in numerical one.

In Figure 5 are presented results of simulation by Mathematica of both
Equations (17) (Figure 5(a)) and (18) (Figure 5(b)), for the same crack
tip speed v = 720 m/s. The difference in appearance of the two fields is
obvious.

For the sake of comparison in Figures 6(a) are given contours that
represent the solution of Equation (17) obtained by Mathematica simula-
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tion and solution of Yang, Suo and Shih (1991), Equation (18). Through
this comparison can be noticed that Equation (18), which represents the
Kddominated field, cannot be used for analysis of the stress field near the
tip of a non-uniformly propagating crack. Equation (18) offers satisfac-
tory results only in the immediate vicinity of the crack tip. For the far
field (further away from the tip), its characteristics also depend on terms
that contain other powers of r (not only r1/2). Since those terms are not
included in Equation (18), it cannot satisfactorily describe the field away
from the tip. On the other hand, the crack tip stress field obtained by
Equation (17), which contains all the significant terms, exhibits the same
characteristics as the experimental one. Furthermore, all the field charac-
teristics are very well described by Equation (17) even at distances far away
from the crack tip. Thus, Equation (17) describes the complete stress field.
This proves that the Kd dominated field cannot be applied for cases when
acceleration exists. Thus, for the exact determination of fracture param-
eters it is necessary to apply the whole expression. Here one understands
that, by Equation (17), which represents the result of the asymptotic anal-
ysis of the non-uniform crack growth, the stress field around the crack tip
that propagates non-uniformly, can be better described then by Equation
(18).

The interferograph obtained in real time, with high-speed photography,
taken from literature, Lambros and Rosakis (1995b), is used for an illustra-
tion of exceptionally well agreement of analytical results and experimental
data. Results obtained by application of Mathematica programming pack-
age to solving of Equation (17) are ”drawn over” that interferograph, in
Figure 6(b). The crack tip speed for both cases was 720 m/s. Consider-
ing this Figure, it can be concluded that the complete Equation (17), as
analyzed in this paper, has to be used in order to adequately describe the
stress fields to which correspond high accelerations. In work by Liu, Lam-
bros and Rosakis (1993) the similar comparison was attempted. Over the
same interferograph, the contours were drawn obtained by their numerical
simulation of Equation (17) (Figure 16 in their paper). They also came to
the same conclusion that the whole expression has to be used, i.e., Equa-
tion (17) and not (18). However, the results of analytical simulation by
Mathematica seem to “fit” better to experimental data, than the numerical
ones.

Figure 7 offers yet another comparison of results obtained by applica-
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tion of Equation (17) and optical interferograph for bimaterial combination
Homalite-100/Al. The good agreement of theoretical and experimental
data is again confirmed. This also supports the previous conclusion for
necessity of application of the complete Equation (18).

Considering the possibilities offered by the Mathematica programming
package, the further simulations were performed and results are presented
in Figure 8, where the stress field around the crack tip is shown for different
values of the crack tip speed.

The contour diagrams shown in Figure 8 were obtained for values of∣∣Kd
∣∣ = 1Pa

√
m and Φ = 45˚ and different values of the crack tip speed.

From Figure 8 one can see that orientation of the stress field depends on
the crack tip speed. This influence is due to the term εlnrλ in the argument
of the sine and cosine terms in equation (17). This term also has influence
on change of the phase angleΦ. In previous considerations the complex
stress intensity factor was not considered as a function of the crack tip
speed, but it was being considered as constant. Its value also depends on
the chosen sample geometry and applied load.

In Figure 8 one can also notice that the ”rings” around the crack tip
change their magnitude and orientation with the variation of the crack
tip speed, what implies that there are changes in the stress field that
surrounds the crack tip. On the other hand, when the crack growth speed is
constant, those rings that surround such a crack do not change significantly
with time. The consequence of this remark is that some fundamental
physical variables, like the stress and the crack surfaces displacement, have
to remain constant during the crack growth phase.

From the asymptotic analysis of Yang et al. (1991), the crack surfaces
displacements are:

δ1(r) = h21

ch(πε)

√
2r
π

|Kd|√
1+4ε2

1
η
sin(Φ + ε ln r − arctg(2ε))

δ2(r) = h21

ch(πε)

√
2r
π

|Kd|√
1+4ε2 cos(Φ + ε ln r − arctg(2ε))

. (19)

Each of these two displacements in equation (19) depends on
∣∣Kd

∣∣, but
their ratio is a function only of Φ and v. If one assumes that the ratio
δ1/δ2 remains constant during the crack propagation (and this assumption
is plausible taking into account the considerations related to Figure 8), for
example C1, at a constant distance abehind the crack tip, then one can
write:
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δ1

δ2

∣∣∣∣
r=a

= C1 =
1

η
tg(Φ + ε ln r − arctg(2ε)) (20)

or solving forΦ:

Φ = Φ(v) = arctg(η(v)C1) + arctg(2ε(v))− ε(v) ln a. (21)

During the crack propagation the ratio remains δ1/δ2 constant. When
C1= - 0.3 it means that that the magnitude of crack opening is 3.3 times
larger than the crack surfaces shear. Based on this, one can conclude that,
for the given distance behind the crack tip, the crack opening mode (Mode
I) is dominant during the crack growth. For C1= - 3 the value of shear is
3 times larger than the crack opening behind the crack tip, at a distance
a= 2 mm.

In Figure 9 is presented the dependence of Φ on v for two different
value of constant C1 and for a= 2 mm, obtained by applying Mathematica.

However, the magnitude of the stress field that surrounds the crack tip
primarily depends on the value of the complex stress intensity factor

∣∣Kd
∣∣.

Thus, one should obtain the relationship between
∣∣Kd

∣∣, v andΦ. For this
purpose, it is assumed that the value of the crack opening has the constant
value, C2 at the same distance a from the crack tip. From the second of
equations (19), this assumption can be written as:

δ2(a) =
h21

ch(πε)

√
2a

π

∣∣Kd
∣∣

√
1 + 4ε2

cos(Φ + ε ln a− arctg(2ε)) = C2, (22)

or, solving for
∣∣Kd

∣∣:

∣∣Kd
∣∣ = C2

ch(πε)
√

1 + 4ε2

h21

√
π

2a

1

cos(Φ + ε ln a− arctg(2ε)
. (23)

Equation (23) represents the relationship between
∣∣Kd

∣∣, v andΦ, with
parameters C2 and a.
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(b) According to Equation (18).

Figure 5: Results of asymptotic analysis of the crack growth for bimaterial
combination PMMA/steel, for crack tip speed v = 720 m/s
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(a) Contours that represent the solution of Equation (17) obtained by Mathematica
simulation (in red) and solution of Yang, Suo and Shih (1991) (in green)

v=720m/s

crack tip

(b) Interferograph obtained for the dynamic crack growth along the PMMA/ steel inter-
face for the crack tip speed v = 720 m/s, Lambros and Rosakis (1995b), together with
contours (in red) that represent the solution of Equation (17) obtained by Mathematica
simulation.

Figure 6:
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(a) Results of asymptotic analysis of the crack growth for bimaterial combination Homa-
lite -100/Al according to Equation (17) for crack tip speed v = 720 m/s

v=720m/s

(b) Interferograph obtained for the dynamic crack growth along the Homalite -100/Al
interface subjected to impact load, Singh et al. (1997)), together with contours (in red)
that represent the solution of Equation (17) obtained by Mathematica simulation.

Figure 7:
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Figure 8: Results of the asymptotic analysis of the dynamic crack prop-
agation for the material combination PMMA/steel according to equation
(17) for different values of the crack tip speed



An approach to analysis of dynamic crack growth at bimaterial ... 321

Figure 9: Dependence of the phase angle Φ on the crack tip speed v.

Figure 10: Dynamic stress intensity factor as a function of the crack tip
speed
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If one substitutes equation (21) into (23), the relationship between∣∣Kd
∣∣and v is obtained as:

∣∣Kd
∣∣ = C2

ch(πε)
√

1 + 4ε2

h21

√
π

2a

1

cos(arctg(C1η)
. (24)

From equation (24) can be seen that
∣∣Kd

∣∣depends on both C1 and C2.
The dependence of

∣∣Kd
∣∣on v for the value of parameter C2= 1 is shown in

Figure 10. The diagram is also drawn by application of Mathematica.
Based on Figures 9 and 10, it can be seen that the crack propagates

dynamically across the bimaterial interface until the ratio of the values of
opening and shear, for the certain distance behind the crack tip remains
constant.

The exact causes of the crack initiation determine the correct crack
profile, i.e., the constants C1 and C2. The relationship between Φ and v is
such that Φ remains approximately constant for the lower values of v, as
can be seen from Figure 9. This is physically justified, since the material
inertia can not have the strong influence for the small crack tip speeds.

6 Conclusion

The aim of this paper was to present a different approach to asymptotic
analysis of the strain field around a crack that is propagating dynamically
along a bimaterial interface. The previously offered solutions by Yang,
Suo and Shih (1991) (YSS ) and Liu, Lambros and Rosakis (1993) (LLR)
were compared with each other. The main point was to illustrate the pos-
sibilities of application of the Mathematica programming routine in this
analysis. As a conclusion from results obtained by Mathematica simula-
tions of both solutions, and their comparisons with available experimental
data, it is quite obvious that the whole expression for the first stress in-
variant, given by Liu, Lambros and Rosakis (1993) has to be applied.

The YSS solution only refers to the first term of the LLR equation.
It offers satisfactory results for the field only in the immediate vicinity of
the crack tip. For the far field, whose characteristics also depend on terms
that contain other powers of r (not only r1/2) this solution is not adequate.
Since those terms are not included in the YSS equation, it cannot satis-
factorily describe the field away from the tip, while the LLR equation
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describes the complete stress field. This proves that the Kd dominated
field cannot be applied for cases when acceleration exists. The simulations
obtained by the Mathematica programming routine were superior over the
corresponding numerical solutions of the LLR expression, what was shown
by comparison to the experimental results.

Considering the possibilities offered by the Mathematica programming
package, the further simulations were performed and the stress field around
the crack tip was calculated for different values of the crack tip speed. It
was shown that orientation of the stress field depends on the crack tip
speed. This influence is due to the term εlnrλ in the argument of the
sine and cosine terms in the LLR equation. This term also influences the
change of the phase angleΦ.

In previous considerations the complex stress intensity factor was not
considered as a function of the crack tip speed, but it was being considered
as constant. Its value also depends on the chosen sample geometry and
applied load. However, the ”rings” of the stress field around the crack tip,
on the diagram, change their magnitude and orientation with the variation
of the crack tip speed, what implies that there are changes in the stress field
that surrounds the crack tip. When the crack growth speed is constant,
those rings that surround such a crack, do not change significantly with
time. This means that some fundamental physical variables, like the stress
and the crack surfaces displacements, have to remain constant during the
crack growth phase.

During the crack propagation the ratio of the crack surfaces displace-
ments δ1/δ2, remains constant (C1). For instance, when C1= - 0.3 it means
that that the magnitude of crack opening is 3.3 times larger than the crack
surfaces shear. Based on this, one can conclude that, for the given distance
behind the crack tip, the crack opening mode (Mode I) is dominant during
the crack growth. For C1= - 3 the value of shear is 3 times larger than the
crack opening behind the crack tip, at a distance a= 2 mm.

The crack propagates dynamically across the bimaterial interface until
the ratio of the values of opening and shear, for the certain distance behind
the crack tip remains constant.

The magnitude of the stress field that surrounds the crack tip primarily
depends on the value of the complex stress intensity factor

∣∣Kd
∣∣, which was

expressed in terms of crack tip speed v and phase angle Φ and depends
on both ratio of the crack surfaces displacements δ1/δ2 (C1) and some
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constant value of the COD (C2).
The exact causes of the crack initiation determine the correct crack pro-

file, i.e., the constants C1 and C2. The relationship between the phase angle
Φ and crack tip speed v is such that Φ remains approximately constant for
the lower values of v. This is physically justified, since the material inertia
can not have the strong influence for the small crack tip speeds.
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Nov pristup analizi dinamikog rasta prsline na bimaterijalnom
interfejsu

U ovom radu je prikazan nov pristup asimptotskoj analizi polja napona i
deformacije oko vrha prsline koja dinamiki propagira duž bimaterijalnog in-
terfejsa. Kroz asimptotsku analizu problem je sveden na rešavanje Rieman-
Hilbert-ovog problema, ime se dobija potencijal relativne deformacije koji
se koristi za odredjivanje polja deformacije oko vrha prsline. Razmatrano
je polje oko prsline koja propagira dinamiki brzinom koja se nalazi izmedju
nule i brzine smicajnog talasa manje krutog od dva materijala, koji su spo-
jeni interfejsom. Korǐsenjem novog pristupa u asimptotskoj analizi polja
deformacije oko vrha dinamiki rastue prsline i mogunosti koje pruža pro-
gramski paket Mathematica, dobijeni su rezultati koji su uporedjeni sa
eksperimentalnim i numerikim rezultatima poznatim iz literature. Ova
poredjenja pokazuju da mora da se koristi potpuni izraz dobijen asimp-
totskm analizom, a ne samo njegov prvi lan kako je radjeno u ranijim
analizama.
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