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Abstract. The global sulphur cycle has been simulated using
a general circulation model with a focus on the source and
oxidation of atmospheric dimethylsulphide (DMS). The sen-
sitivity of atmospheric DMS to the oceanic DMS climatol-
ogy, the parameterisation of the sea-air transfer and to the ox-
idant fields have been studied. The importance of additional
oxidation pathways (by O3 in the gas- and aqueous-phases
and by BrO in the gas phase) not incorporated in global mod-
els has also been evaluated. While three different climatolo-
gies of the oceanic DMS concentration produce rather simi-
lar global DMS fluxes to the atmosphere at 24–27 Tg S yr−1,
there are large differences in the spatial and seasonal distri-
bution. The relative contributions of OH and NO3 radicals
to DMS oxidation depends critically on which oxidant fields
are prescribed in the model. Oxidation by O3 appears to be
significant at high latitudes in both hemispheres. Oxidation
by BrO could be significant even for BrO concentrations at
sub-pptv levels in the marine boundary layer. The impact
of such refinements on the DMS chemistry onto the indirect
radiative forcing by anthropogenic sulphate aerosols is also
discussed.

Correspondence to:O. Boucher
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1 Introduction

Although a lot is now understood about the global sulphur
cycle, some uncertainties remain, in particular about the
emission strength of dimethylsulphide (DMS). The DMS-
cloud albedo-climate feedback loop proposed by Shaw
(1983) and Charlson et al. (1987) generated many studies, but
it is still not clear whether this feedback mechanism involv-
ing the biosphere, the ocean, and the atmosphere has played
an important role in past climates, and whether it can play
a role in future climate change (Bopp et al., 2002a, 2002b).
Several modelling studies attempted to model the global dis-
tribution of DMS (e.g. Chin et al., 1998; Sciare et al., 2000b).

Recently Jones et al. (2001) showed in a global model
study that using the parameterisation of DMS sea-air ex-
change of Wanninkhof (1992) instead of Liss and Merlivat
(1986) results into a doubling of the DMS emission flux
and a 25% reduction in the indirect radiative forcing due
to anthropogenic sulphate aerosols. This is because the in-
crease in the DMS flux causes an increase in the concentra-
tion of sulphate aerosol, thus reducing the cloud susceptibil-
ity to anthropogenic aerosols. Nightingale et al. (2000) found
that observations of the sea-air exchange rate scatter between
the two above-mentioned parameterisations and suggested a
revised parameterisation which will be used in the present
study.
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The estimation of the yield of SO2 from DMS oxidation is
one of the critical points required to evaluate the relative con-
tribution of DMS in the marine sulphate aerosols. Whereas
the OH radical is clearly identified as a major DMS oxidant
in the atmosphere, strong uncertainties still remain in the es-
timation of SO2 yields from the DMS+OH reaction. Another
uncertainty in the SO2 yield from the DMS oxidation con-
cerns the role played by other radicals than OH, and espe-
cially nitrate (NO3) and bromide oxide (BrO) radicals for the
most important. Contrary to the reaction DMS+OH which
proceeds by two different pathways (the H-abstraction chan-
nel leading to SO2 and the OH-addition channel leading to
dimethylsulphoxide (DMSO)), DMS oxidising mechanisms
with NO3 and BrO only proceed through the addition chan-
nel leading to DMSO for BrO radicals and the H-abstraction
channel leading to SO2 for NO3 radicals. Unlike the DMS
oxidation by OH, there is no uncertainty in the SO2 yield
from the DMS oxidation by NO3 and BrO radicals. However,
the role of these radicals on the fate of DMS remains elusive
since no field experiments were carried out with simultane-
ous measurements of atmospheric DMS, and BrO and NO3
radicals. The atmospheric fate of DMSO is also uncertain.
If DMSO is preferentially oxidised to methanesulfonic acid
(MSA), the production of SO2 and sulphate aerosols in the
clean MBL will be less than presently thought.

The aqueous-phase reaction of DMS and O3 expected to
occur in cloud droplets, has been indicated to be of atmo-
spheric importance (Lee and Zhou, 1994; Gershenzon et al.,
2001). This reaction, as well as that in the gas phase, is usu-
ally not considered in global models of the sulphur cycle.
Campolongo et al. (1999) stressed the importance of mul-
tiphase chemistry for determining accurately the latitudinal
dependence of the MSA to nss-SO2−

4 ratio but did not esti-
mate its importance for DMS oxidation itself. As mentioned
above, there are also several indications that reaction with
BrO can be a significant loss of DMS in the marine bound-
ary layer (MBL) during daytime. This was first suggested
by Toumi (1994) based on box model calculations. Sciare et
al. (2000a) found from simultaneous measurements of sea-
water and atmospheric DMS, OH radicals, and the boundary
layer height that the diurnal variation of gas-phase DMS in
the Tropical Atlantic Ocean could not be explained by the
oxidation with OH alone. They state that 3 pptv of BrO pre-
scribed during daytime could resolve the discrepancy. Sim-
ilar problems with too strong measured diurnal variation of
DMS compared to model calculations with standard chem-
istry were also found by Yvon et al. (1996). Box model cal-
culations based on recent kinetic data emphasize the possi-
ble strong effects of BrO on DMS and DMSO concentrations
(Ingham et al., 1999). Recently, von Glasow et al. (2002) cal-
culated with a 1D model that consideration of BrO increases
the DMS oxidation rate by 63% for remote MBL conditions.
However, a large uncertainty is associated with the amount
and speciation of inorganic bromine, Brx , in the MBL.

In this paper we use three different distributions of the

oceanic DMS concentrations, two parameterisations of the
sea-air transfer function, and two distributions of atmo-
spheric oxidants to predict the atmospheric fate of DMS and
its impact on the sulphur cycle. We also test the impor-
tance of the three additional above-mentioned DMS oxida-
tion pathways.

2 Description of the models and experiments

2.1 Sulphur cycle model

We use here a model of the global sulphur cycle developed in
the framework of the general circulation model of the Labo-
ratoire de Ḿet́eorologie Dynamique, LMD-ZT. This model is
fully described and evaluated in Boucher et al. (2002). It has
been used in Boucher and Pham (2002) to predict the evolu-
tion of the sulphur cycle from 1850 to 1998 and by Cosme
et al. (2002) to study the sulphur cycle in the high southern
latitudes. Only aspects relevant to DMS sources and sinks
and SO2 oxidation are repeated here.

DMS is emitted using the sea to air parameterisation of
Liss and Merlivat (1986) or Nightingale et al. (2000). It is
oxidised in the gas phase by OH and NO3 radicals. While
the oxidation of DMS by NO3 only produces SO2, the ox-
idation by OH produces both SO2 and DMSO through the
addition channel and only SO2 through the abstraction chan-
nel. DMSO is oxidised in the gas-phase by OH to produce
SO2 (60%) and MSA (40%) and is also subject to in-cloud
and below-cloud scavenging (Boucher et al., 2002). No het-
erogeneous sink for DMS and DMSO is included. Sulphur
dioxide, SO2, is oxidised in the gas phase by OH and in the
aqueous phase by O3 and H2O2. All reaction rates are given
in Boucher et al. (2002).

The monthly concentrations of all oxidants except H2O2
are prescribed from the IMAGES (Pham et al., 1995) or the
MATCH-MPIC (von Kuhlmann, 2001; von Kuhlman et al.,
2003) chemical transport models. The diurnal variations of
the oxidant fields are taken from the IMAGES model only
and are applied in LMD-ZT with a timestep of 30 minutes.
Hydrogen peroxide, H2O2, is predicted interactively in the
model from prescribed HO2 concentrations and H2O2 pho-
todissociation rates. It also undergoes dry and wet scav-
enging and is depleted upon SO2 oxidation, as described in
Boucher et al. (2002).

2.2 Experiment design

Our model runs are for 18 months and we present results for
the last 12 months. All runs are for the same meteorology
so the differences in the runs are only due to differences in
the DMS emission or oxidation. The indirect radiative forc-
ing due to sulphate aerosols is estimated as the difference
in top-of-atmosphere radiative fluxes obtained in two simu-
lations with and without the anthropogenic emissions of sul-
phur species, but with the same oxidant fields (except H2O2).
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Table 1. Characteristics of the experiments performed in this study

Experiment Sea-air transfer function Oxidant fields Oceanic DMS climatology Additional DMS oxidation

EXP1 Nightingale et al. (2000) IMAGES model Kettle and Andreae (2000) No

EXP2 Nightingale et al. (2000) IMAGES model Belviso et al. (2002) No

EXP3 Nightingale et al. (2000) IMAGES model Aumont et al. (2002) No

EXP4 Liss and Merlivat (1986) IMAGES model Kettle and Andreae (2000) No

EXP5 Nightingale et al. (2000) MATCH model Kettle and Andreae (2000) No

EXP6 Nightingale et al. (2000) IMAGES model Kettle and Andreae (2000) DMS+O3 gas/aqueous

EXP7 Nightindale et al. (2000) IMAGES model Kettle and Andreae (2000) DMS + BrO

We follow Boucher and Lohmann (1995) and Boucher and
Pham (2002) to estimate the cloud properties from the sul-
phate mass concentration. This calculation is only diagnos-
tic and therefore only includes the first indirect effect (change
in cloud optical properties for a fixed liquid water content).
Our estimate is for sulphate aerosols only, but to some extent
sulphate aerosols can be used as a proxy for the total anthro-
pogenic aerosol. While improvements on the parameterisa-
tion of the aerosol indirect effects are desirable (Lohmann et
al., 2000), our parameterisation is still useful to perform the
sensitivity experiments of the present study.

Table 1 gives the list and characteristics of the seven ex-
periments performed in this study. EXP1 is our baseline ex-
periment. The sensitivity to the oceanic DMS distribution is
evaluated from simulations EXP1, EXP2, and EXP3. The
role of the sea-air transfer function is examined by compar-
ing EXP1 and EXP4. EXP1 and EXP5 can be used to es-
timate the sensitivity of the results to the prescribed oxidant
distributions. Finally, the importance of three more pathways
for DMS oxidation, not yet incorporated in global models, is
investigated in the simulations EXP6 and EXP7.

2.3 Oceanic DMS datasets

We test here three different distributions of the oceanic DMS.
The first one is the updated climatology of Kettle and An-
dreae (2000) which is derived from a compilation of mea-
surements of DMS in the sea water and an interpolation pro-
cedure in regions where no data are available (Kettle et al.,
1999). In this sense the seasonal variability of DMS in the
mid and high latitudes of the Southern Hemisphere is bet-
ter constrained in the spring and summer seasons than in
autumn and winter (Curran and Jones, 2000). This clima-
tology is widely used in global models of the sulphur cy-
cle (e.g. Jones et al., 2001; Boucher and Pham, 2002). It
is used here in the baseline experiment (EXP1) as well as
in EXP4, EXP5, EXP6, and EXP7. The work of Belviso et
al. (2002) forms the basis for our second dataset and is used
in EXP2. The global distribution of oceanic DMS concen-
tration is estimated from the 1998–2001 SeaWiFS (satellite-
based) measurements of the sea-surface chlorophylla (Chl

a) content and from a phytoplanktonic community structure
index which are then empirically linked to the DMS concen-
tration. In EXP2, the phytoplanktonic community structure
index is a non-linear function of Chla, so that sea surface
DMS concentration was computed solely from the SeaWiFS
ocean color measurements. The oceanic DMS concentration
is prescribed globally as monthly means based on a four-year
climatology with the reservations that (1) a minimum value
of 0.2 nmol l−1 is assumed in regions where no SeaWiFS
data are available in particular at high latitudes in wintertime
due to the low insolation and in areas covered of ice, and
(2) a maximum value of 50 nmol l−1 is also introduced to
overcome the few unrealistic values obtained at very large
Chl a content in coastal waters. Our third DMS climatol-
ogy, used in EXP3, originates in the modelling work of Au-
mont et al. (2002). In this study the DMS concentration in
sea water is derived from the concentration of Chla and the
phytoplanktonic community structure index which are both
independently calculated by a global 3-D ocean carbon cycle
model. Moreover, the diagnostics of DMS concentrations
used by Belviso et al. (2002) and by Aumont et al. (2002)
are slightly different.

2.4 Oxidant fields

Oxidant fields from the IMAGES model are used in all ex-
periments except EXP5 in which we use instead the oxi-
dant fields from MATCH-MPIC. The major features of IM-
AGES are described in M̈uller and Brasseur (1995) and ref-
erences herein. The IMAGES model calculates the distribu-
tion of about 60 species, including O3, HOx , NOx , sulfur ox-
ides, acetone, methane, non-methane hydrocarbons (NMHC:
ethane, ethylene, propylene, isoprene,α-pinene, propane,
andn-butane as a surrogate for the other higher hydrocar-
bons) and their degradation products. Heterogeneous reac-
tions of NO3 and N2O5 on prognostic sulfate distributions
are taken into account. The model uses emissions described
in Müller and Brasseur (1995) except for fossil fuel emis-
sions of SOx and NOx , as well as biogenic continental emis-
sions of NMHC and NOx , where GEIA inventories have
been used, and for biomass burning (Granier et al., 1996)
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(a)

(b)

(c)

(d)

Fig. 1. Spatial distribution of the annually-averaged oceanic DMS flux (mg S m−2 yr−1) from (a) EXP1,(b) EXP2,(c) EXP3, and(d) EXP4.
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Fig. 2. Zonally- and annually-averaged oceanic DMS flux (mg S m−2 yr−1).

and lightning (Pickering et al., 1998; Price et al., 1997). In
this version, no emissions from ocean-going ships have been
included.

The model MATCH-MPIC includes up to C5-hydrocarbon
chemistry (ethane, propane, ethene, propene, isoprene,
higher alkane surrogate) and uses up-to-date emissions
mostly from EDGAR or GEIA inventories. Emissions
from ocean-going ships represent an additional source of
2.6 Tg N yr−1 and follow the distribution of Corbett et
al. (1999). Heterogeneous reaction of N2O5 on sulphate
aerosols is included based on monthly mean fields from
Dentener and Crutzen (1993). Further details are described
in von Kuhlmann et al. (2003), von Kuhlmann (2001) and
Lawrence et al. (1999).

2.5 Additional oxidation pathways

In EXP6, we further consider oxidation of atmospheric DMS
by ozone in gas and aqueous phase. While the photo-
chemical sources and sinks of OH and NO3 radicals are
such that the OH reaction occurs during daytime and the
NO3 reaction at night, the aqueous phase ozone reaction
would occur during both periods. The reaction was re-
cently investigated as a function of temperature (274–300 K),
over a significant range of gas densities from about 1015

to 1016 cm−3 (Gershenzon et al., 2001). The temperature-
dependent, second-order aqueous reaction constant was es-
timated as 5.3 1012 exp(−2600/T ) M−1 s−1, and was about
six orders of magnitude larger than the corresponding gas-
phase rate constant. For this latter rate constant we use
the upper limit given by Martinez and Herron (1978) of
5 102 M−1 s−1 (or 8.3 10−19 cm3 molec−1 s−1). The con-
centrations of DMS and O3 in the cloud phase are com-
puted assuming Henry’s law equilibrium. Note finally that

the gas-phase reaction with O3 produces SO2 only, while the
aqueous-phase reaction with O3 produces DMSO only.

In order to get an indication of the importance of the ox-
idation of DMS by BrO a simple sensitivity simulation is
performed. In the EXP7 experiment we specify a constant
mixing ratio for BrO of 1 pptv during daytime in the first
four model layers (i.e. up to an altitude of approximately
1.3 km) and zero elsewhere and at night. This value is es-
sentially below the detection limit of current measurement
techniques, and has been found to be exceeded in some in-
stances (e.g. Hausmann and Platt, 1994; Hebestreit et al.,
1999). Typical mixing ratios of a few pptv have been cal-
culated in other modeling studies (Toumi, 1994; Ingham et
al., 1999; von Glasow et al., 2002) and were also supported
in the study of Sciare et al. (2000a). The rate constant of
1.3 10−14 exp(1033/T ) cm3 molec−1 s−1 used here has been
determined by Nakano et al. (2001) and is in agreement with
the value obtained by Ingham et al. (1999) at 298 K. The tem-
perature dependence is somewhat stronger than the recom-
mendation in DeMore et al. (1997). The oxidation of DMS
by BrO produces only DMSO (Ingham et al., 1999).

3 Results and discussion

3.1 DMS flux to the atmosphere

Using the sea-air parameterisation of Nightingale et al.
(2000) and the wind fields of the LMD-ZT model the three
DMS datasets considered here produce global DMS fluxes
of 24–27 Tg S yr−1. Our total emission rates for DMS are
significantly larger than those of Koch et al. (1999), Barth et
al. (2000), and Chin et al. (2000), which are 10.7, 15.5, and
13.3 Tg S yr−1, respectively, and were obtained using differ-
ent methodologies or DMS concentration fields. Although

www.atmos-chem-phys.org/acp/3/49/ Atmos. Chem. Phys., 3, 49–65, 2003
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Fig. 3. Seasonal variation of the oceanic DMS flux (Tg S yr−1) averaged over the Northern Hemisphere (top) and the Southern Hemisphere
(bottom).

significantly larger due to the choice of the Nightingale et
al. (2000) parameterization, our emission rates are within the
range of 10 to 40 Tg S yr−1 usually accepted for DMS emis-
sions (Penner et al., 2001).

There are however significant disagreements in the spa-
tial (Figs. 1 and 2) and seasonal (Fig. 3) distributions of
the DMS flux. There are patches of large DMS flux in the
North Atlantic ocean in the EXP1 simulation (Kettle and An-
dreae, 2000) which do not exist in EXP2 and EXP3. One
can also note that the Aumont et al. climatology (EXP3) pro-
duces a more inhomogeneous DMS flux. However, the zonal
averages of the DMS flux exhibit similar behaviours in the
first three experiments, with minima and maxima positioned
at about the same latitudes (Fig. 2). Figure 3 shows the
seasonal variations of the hemispherically-averaged DMS
fluxes. The differences are particularly large in the South-
ern Hemisphere. The DMS flux from the Kettle and Andreae
database (EXP1) exhibits a large seasonal cycle with low
emissions during May to July, whereas the DMS flux pre-
dicted using the SeaWiFS data (EXP2) has a rather flat sea-
sonal variation. The DMS flux from Aumont et al. (EXP3)

exhibits a maximum in September–October when Kettle and
Andreae (2000) predict a secondary minimum. In the North-
ern Hemisphere, the three climatologies produce more con-
sistent DMS fluxes.

Using the less sophisticated parameterisation of Liss and
Merlivat (1986) instead of Nightingale et al. (2000) decreases
the global DMS flux from 26.8 to 18.2 TgS yr−1 for the Ket-
tle and Andreae (2000) climatology. The reduction in flux
is uniformly distributed throughout the year (Fig. 3). These
results are quantitatively consistent with those of Jones et al.
(2001).

3.2 Atmospheric DMS concentrations

Figure 4 shows the spatial distribution of DMS mixing ra-
tio at the surface in the EXP1, EXP2, EXP3, and EXP4
experiments. Once again significant differences can be ob-
served. In contrast to EXP2, EXP1 shows among the largest
annually-averaged DMS mixing ratios south of 60◦S and
more specifically in the Pacific sector of the seasonal ice zone
(Bellingshausen Sea) where the phytoplanktonic biomass

Atmos. Chem. Phys., 3, 49–65, 2003 www.atmos-chem-phys.org/acp/3/49/
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(a)

(b)

(c)

(d)

Fig. 4. Annually-averaged atmospheric DMS mixing ratio (pptv) at the surface from(a) EXP1,(b) EXP2,(c) EXP3, and(d) EXP4.
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Fig. 5. Comparison of simulated and measured monthly-mean atmospheric mixing ratios (pptv):(a) DMS at Amsterdam Island (37.83◦ S
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Table 2. Characteristics of the global DMS budget and sulphate aerosol indirect radiative forcing (RF) in the seven experiments. Emission
fluxes and oxidation rates are given in Tg S yr−1, burdens in Tg S, residence times in days, and RF in Wm−2. In parenthesis are the
percentage contributions to the sources and sinks of DMS.

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7

Oceanic DMS 26.8∗ (99%) 24.1 (99%) 25.4 (99%) 18.2 (98%) 26.8 (99%) 26.8 (99%) 26.8 (99%)
emission flux

Oceanic DMS 11.4∗ (42%) 10.3 (42%) 9.1 (35%) 7.6 (41%) 11.4 (42%) 11.4 (42%) 11.4 (42%)
emission flux (NH)

Oceanic DMS 15.4∗ (57%) 13.8 (57%) 16.3 (64%) 10.6 (57%) 15.4 (57%) 15.4 (57%) 15.4 (57%)
emission flux (SH)

Continental DMS 0.3 (1%) 0.3 (1%) 0.3 ( 1%) 0.3 (2%) 0.3 (1%) 0.3 (1%) 0.3 (1%)
emission flux

Oxidation by 15.5 (57%) 13.1 (53%) 13.8 (53%) 10.5 (57%) 9.0 (33%) 14.1 (52%) 10.6 (39%)
OH to SO2

Oxidation by 7.7 (29%) 8.2 (34%) 8.4 (33%) 5.4 (29%) 15.7 (58%) 7.0 (26%) 6.2 (23%)
NO3 to SO2

Oxidation by 3.9 (14%) 3.1 (13%) 3.5 (14%) 2.6 (14%) 2.4 ( 9%) 3.4 (13%) 2.5 (9%)
OH to DMSO

Oxidation by – – – – – 0.9 (3%) –
O3 (gas phase)

Oxidation by – – – – – 1.7 (6%) –
O3 (aqueous phase)

Oxidation by BrO – – – – – – 7.8 (29%)

DMS burden 0.084 0.075 0.089 0.058 0.060 0.071 0.054
DMS residence time 1.1 1.1 1.2 1.1 0.8 0.9 0.7
Sulphate burden 0.748 0.733 0.731 0.682 0.717 0.742 0.715

Sulphate aerosol −0.99 −1.07 −1.12 −1.15 −0.97 −1.00 −1.04
indirect RF

∗ The oceanic fluxes of DMS obtained using the earlier version of the climatology (Kettle et al., 1999) are 27.9, 12.8, and 15.1 Tg S yr−1 for
the globe, the NH, and the SH, respectively.

during summer is among the lowest of the Southern Ocean
according to SeaWiFS observations. In fact DMS rich waters
occupy a small portion of the Bellingshausen Sea (Turner et
al., 1995). In EXP1, these large concentrations result from
the assimilation methodology of Kettle and Andreae which
applies in this region large oceanic DMS levels from other
biogeochemical provinces. The relatively low levels of at-
mospheric oxidants also contribute to enhance the concen-
trations of atmospheric DMS.

There are few long-term measurements of atmospheric
DMS concentrations. We compare here the modelled atmo-
spheric DMS and SO2 mixing ratios to measurements made
at Amsterdam Island in the Southern Ocean (Fig. 5a and b).
The EXP1 predicted concentrations and seasonal variations
appear to be in reasonable agreement with measured values.
However the very large concentrations during the January
month is not reproduced by any of the model experiments.
EXP2 and EXP3 do not perform well at Amsterdam Island.

We already know that Kettle and Andreae (2000) and SeaW-
iFS DMS datasets are much better constrained in the North-
ern than in the Southern Hemisphere because most of the in-
situ Chla and DMS measurements used to generate the cli-
matology (Kettle and Andreae, 2000) or to estimate the DMS
to Chla relationship (Belviso et al., 2002) were performed in
northern oceans. In the Indian sector of the Southern Hemi-
sphere, the SeaWiFS DMS dataset is much better constrained
by observations in August than in December (Belviso et al.,
2002). This is also reflected in Fig. 5a where the agreement
between EXP1 and EXP2 (and also EXP3) is better in Au-
gust than in December. In May, June, July, and September,
the marine fields of DMS are poorly constrained by observa-
tions. So it is in August when marine data offer the best op-
portunity to investigate the winter photochemistry of DMS.
At Cape Grim EXP1 performs better than EXP2 and EXP3
(Fig. 5c). This does not imply that EXP1 would also perform
better at lower or higher latitudes of the Southern Ocean,
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Fig. 7. Annually-averaged OH and NO3 mixing ratios (pptv) at the surface in IMAGES(a, c) (EXP1) and MATCH-MPIC(b, d) (EXP5).
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where the DMS concentrations are less constrained by actual
measurements.

We also compare in Fig. 6 the monthly-mean DMS mix-
ing ratios simulated by the model with the mixing ratios
measured during the Albatross cruise in the Atlantic Ocean
(Sciare et al., 2000a). At most latitudes the observed val-
ues lie within the variability simulated by the model, with a
noticeable exception in the 30–40◦N transect where the ob-
served peak in concentration is not reproduced. This peak
is due to the transport of air masses from further south at
20–30◦N (Sciare et al., 2000a) and these particular meteoro-
logical conditions are not simulated here.

From these comparisons we see that it is difficult to es-
tablish which DMS climatology performs best. This clearly
points to the need for more numerous continuous long-term
measurements of atmospheric DMS in the North Atlantic
Ocean and elsewhere.

3.3 Atmospheric DMS budget: OH versus NO3 oxidation

Table 2 summarises the global annual atmospheric budget
of DMS. The different spatial and temporal distributions of
DMS emissions result in a different partitioning of DMS oxi-
dation, with a slightly larger role played by NO3 oxidation in
the case of the SeaWiFS and Aumont et al. DMS source (8.24
and 8.42 Tg S yr−1 in EXP2 and EXP3, respectively) com-
pared to the Kettle and Andreae (2000) case (7.75 Tg S yr−1

in EXP1).
There are significant differences in the DMS oxidation if

the oxidant fields are prescribed from the MATCH-MPIC
model (EXP5) or from the IMAGES model (EXP1). The rel-
ative contributions of DMS+OH and DMS+NO3 pathways
are opposite. This results from similar distributions of OH
radical but very different distributions of the NO3 radical
over the oceans between the two chemical models (Fig. 7).
These differences remain unresolved at the moment but may
be due to different treatments of NMHCs and/or NO3 hetero-
geneous sink in the two models. The larger contribution of
NO3 to DMS oxidation in EXP5 is accompanied by a signif-
icant decrease in the DMS burden and lifetime (0.060 Tg S
and 0.8 day in EXP5 compared to 0.084 Tg S and 1.1 day in
EXP1). The decrease in DMS concentration in EXP5 com-
pared to EXP1 occurs throughout the troposphere (Fig. 8a)
but it is more pronounced in the 0–30◦N latitude band and
above 100 hPa.

3.4 Atmospheric DMS budget: importance of new addi-
tional oxidation pathways

In EXP6, the gas- and aqueous-phase oxidations of DMS
by O3 account for 3.5 (upper limit) and 6.2% of the total
DMS oxidation rate, respectively. The aqueous-phase re-
action contributes 15–30% over the regions north to 60◦N
and in the 50–75◦S latitude band over the oceans (Fig. 9a).
This reaction plays an important role in regions with signifi-

cant cloud liquid water content and low concentrations of OH
and NO3 radicals. The gas-phase reaction contributes mostly
over Antarctica where no other efficient oxidation pathway is
present (Fig. 9b). These additional pathways result in DMS
concentrations which are up to 50% smaller at high latitudes
and 10–30% smaller at low and middle latitudes (Fig. 8b).

In order to assess the possible limitation on the DMS+O3
aqueous reaction rate from the aqueous diffusion rate of both
species, the characteristic diffusion and reaction times were
calculated for an average cloud drop diameter of 50µm, us-
ing the DMS and O3 concentrations obtained between 50–
70◦N and 50–70◦S, where this reaction predominates. Using
diffusivities and Henry’s constants at 298 K (Gershenzon et
al., 2001) for DMS and O3, the estimated diffusion rates are
about 100 times faster than the reaction rate, indicating no
diffusion limitation, as also previously reported for the aque-
ous reactions of SO2 with O3 and H2O2 (Venkataraman et
al., 2001).

Oxidation by BrO is found to be an important sink for
DMS in EXP7. Globally it contributes 28.8% to the total
DMS oxidation rate, and up to 60% at high latitudes (Fig. 9c)
where the concentrations of other oxidants are low. However
it should be remembered that this experiment is highly ide-
alised. BrO concentrations are highly variable in space and
time, and a uniform mixing ratio of 1 pptv in the MBL is
probably an overestimate for some regions or seasons. For
instance, the diurnal variations of DMS at Amsterdam Island
can be explained with the DMS+OH reaction alone (Sciare
et al., 2000c). The EXP7 simulation points to the need for at-
mospheric measurements of BrO at mixing ratios well below
1 pptv. As pointed out by Ingham et al. (1999) simultane-
ous measurements of DMS and DMSO can also provide in-
direct evidence on the importance of BrO. In fact, Nowak et
al. (2001) report such measurements and find a DMSO/DMS
ratio that is larger than expected if DMSO was only produced
from the DMS+OH pathway. However, more data especially
at night would be clearly valuable.

3.5 Production of DMSO

Fig. 10 shows how the DMSO production (as a fraction of the
total DMS oxidation) is distributed spatially in EXP1, EXP6,
and EXP7 experiments. As expected from the temperature
dependences of the DMS+OH reaction rates, a larger fraction
of DMS is oxidised in DMSO in the high latitudes (EXP1,
Fig.10a). The asymmetry between the two hemispheres is
due to the asymmetry in NO3 concentrations (Fig. 7c) which
oxidise more DMS in SO2 in the Northern Hemisphere rel-
ative to the Southern Hemisphere. Considering the oxida-
tion of DMS by O3 in the gas- and aqueous-phases (EXP6)
leads to enhanced production of DMSO. In this experiment,
the fraction of DMS oxidised into DMSO can reach 30 to
40% and 40 to 50% in the high latitudes of the Northern and
Southern Hemispheres, respectively (Fig. 10b). The simpli-
fied introduction of BrO in our model (EXP7) leads to a very
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(a) (b)

(c)

Fig. 8. Ratio of the zonally- and annually-averaged atmospheric DMS mixing ratio from(a) EXP5, (b) EXP6, and(c) EXP7 to that from
EXP1.

large production of DMSO which can reach more than 60%
in the high latitudes of the Southern Hemisphere in agree-
ment with the prescribed temperature dependence of the re-
action rate (Fig. 10c). While EXP7 may overestimate the
production of DMSO, it is nevertheless important to bet-
ter understand the atmospheric fate of DMSO and establish
whether or not it can contribute significantly to the formation
of background sulphate aerosols.

3.6 Indirect radiative forcing of sulphate aerosols

The spatial distribution of the indirect radiative forcing
by anthropogenic sulphate aerosols is very similar in all
seven experiments. The indirect radiative forcing is much
more sensitive to the assumed relationship between sulphate
mass and cloud droplet number concentrations (Boucher and
Lohmann, 1995) than the exact distribution of the DMS flux
and resulting background sulphate concentration. However,
we can estimate the uncertainty in radiative forcing due to
uncertainties in the temporal and spatial distributions of the
background aerosols (here taken to be sulphate aerosols).
The largest difference is between the baseline experiment

EXP1 and EXP4 (see Fig. 11). The increase in DMS flux
between the EXP4 and EXP1 experiments results in a 14%
decrease in radiative forcing. This result is again consis-
tent with that of Jones et al. (2001). It stresses the im-
portance to simulate accurately the concentrations of back-
ground accumulation-mode aerosols in the pre-industrial and
present-day atmospheres, but also in the future atmosphere
when climate change may induce changes in DMS emissions
(Bopp et al., 2002a, 2002b).

4 Conclusions

We tested the sensitivity of the DMS atmospheric budget to
the oceanic DMS concentration, the assumed sea-air transfer
function, the atmospheric oxidant fields, and additional oxi-
dation paths. The conclusions of the study are the following:

1. Using three different oceanic DMS climatologies results
into very similar global DMS fluxes but also into large
differences in the spatial and seasonal distribution of
the DMS emissions, particularly in the Southern Hemi-
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Fig. 9. Relative contribution (%) of the additional oxidation pathways to the vertically-integrated DMS oxidation rate:(a) DMS+O3 in
aqueous phase (EXP6),(b) DMS+O3 in gas phase (EXP6), and(c) DMS+BrO (EXP7).

sphere. These differences translate into quite different
distributions of atmospheric DMS.

2. Using the more sophisticated parameterisation of DMS
sea-air transfer of Nightingale et al. (2000) instead of
that of Liss and Merlivat (1986) results in a global DMS
flux that is 47% larger and an indirect radiative forcing
by sulphate aerosols that is 14% smaller.

3. We found significant differences in the relative contri-
butions of OH and NO3 to DMS oxidation when us-
ing oxidant fields from the IMAGES or MATCH-MPIC
chemical transport models. This introduces a signifi-
cant source of uncertainty in the atmospheric DMS cy-

cle. Measurements of the concentration of NO3 radical
to better constrain the models would be very valuable.

4. Gaseous- and aqueous-phase oxidations of DMS by O3
are found to contribute 3.5 and 6.2% to the total DMS
oxidation, respectively, and up to 30–40% at high lati-
tudes. These reactions should be incorporated in future
modelling studies of the sulphur cycle at high latitudes.
Note however that we used an upper limit for the reac-
tion rate of DMS by O3 in gaseous phase, the value of
which needs to be refined.

5. Assuming a BrO mixing ratio of 1 pptv in the marine
boundary layer at day, oxidation of DMS by BrO proved
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(a)

(b)

(c)

Fig. 10. Fraction (%) of DMS which is oxidised in DMSO on annual average in(a) EXP1,(b) EXP6, and(c) EXP7.

to be a significant sink for DMS at high latitudes. It
is therefore important to measure BrO in the marine
boundary layer down to a detection limit of∼0.1 pptv.

6. The oxidation of DMS by O3 in the aqueous phase and
by BrO in the gas phase produces only DMSO. Consid-
ering these two reactions results in a very different parti-
tioning of the DMS oxidation between SO2 and DMSO.
It is therefore important to better understand the atmo-
spheric fate of DMSO, the importance of heterogeneous
sinks, and whether it can contribute to the production
of background sulphate aerosols or not (Sciare et al.,
2000c).

7. There are very few long-term measurements of atmo-
spheric DMS to evaluate our model. It is not straight-
forward to select the most realistic simulations from the
limited set of atmospheric DMS measurements. This
study points to the need for more numerous continuous
multi-year measurements of the DMS concentrations
not only in seawater and but also in the atmosphere.
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Fig. 11. Spatial distribution of the annually-averaged indirect radiative forcing (Wm−2) by sulphate aerosols for(a) EXP1 and(b) EXP4.
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