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Abstract

The presence of pure imaginary eigenvalues of the partially damped
vibrating systems is treated. The number of such eigenvalues is
determined using the rank of a matrix which is directly related to
the system matrices.
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1 Introduction and preliminaries

In this note a “damped vibrating system” is understood to be the classical
model of a linear, viscously damped elastic system with n degrees of
freedom. This system has equations of motion

Aq̈ + Bq̇ + Cq = 0, q ∈ <n (1)

where A,B and C are n × n constant real symmetric matrices. The
inertia matrix A and stiffness matrix C are positive definite (> 0), and
the damping matrix B may be positive definite or positive semi-definite
(≥ 0). In the case B > 0 dissipation is complete, and the case B ≥ 0
corresponds to incomplete dissipation. In the latter case the system is
called partially dissipative (damped).
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It is convenient, although not necessary, to rewrite equation (1) in the
form

ẍ + Dẋ + Kx = 0, (2)

using the congruent transformation x = A1/2q, where A1/2 denotes the
unique positive definite square root of the matrix A, and D = A−1/2BA−1/2,
and K = A−1/2CA−1/2.

All solutions x(t) of the equation (2) (or q(t) of (1)) can be character-
ized algebraically using properties of the quadratic matrix polynomial

L(λ) = λ2I + λD + K, (3)

where I is the identity matrix. The eigenvalues of the system are zeros
of the characteristic polynomial

∆(λ) = det(L(λ)) (4)

Since (4) is a polynomial of degree 2n with respect to λ, there are
2n eigenvalues, counting multiplicities. If λ is an eigenvalue, the nonzero
vectors X in the nullspace of L(λ) are the eigenvectors associated with
λ, i. e.,

L(λ)X = 0 (5)

In general, eigenvalues and corresponding eigenvectors may be real or
may appear in complex conjugate pairs.

If the dissipation is complete, it is well-known that the system (2) (or
(1)) is asymptotically stable (x(t) → 0 as t → ∞ for all solutions x(t)).
On the other hand, the partially damped system (2) may or may not
be asymptotically stable, although it is obviously stable in the Lyapunov
sense (any solution of equation (2) remains bounded). Consequently,
all eigenvalues of this system lie in the closed left-half of the complex
plane (Reλ ≤ 0). Notice that if the system is asymptotically stable, then
Reλ < 0.

Recently some attention has been paid to the question whether or not
a damped system has pure imaginary eigenvalues, i. e., in the terminology
of the mechanical vibrations, whether or not undamped motions (also
called “residual motions”) are possible in such system (see [1] and quoted
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references). From the above discussion it is clear that nonexistence of
undamped motions is equivalent to the asymptotic stability of the system,
and consequently, any test for asymptotic stability gives the answer of the
question. A survey of the stability criteria for linear second order systems
is given in [2]. Also, it should be mentioned that the paper [1] rediscovered
an old criterion for asymptotic stability of the system [3], as was recently
stressed in [4].

In this note we are interested in the determination of the number of
pure imaginary eigenvalues of the system without computing the zeros
of the characteristic polynomial (4). The main result given in the next
section (Theorem 1) is based on the well-known condition of asymptotic
stability [5], which coincides with the rank condition of controllability of
a linear system (see [6]).

2 Results

Introduce the n× n2 matrix

Φ =
(

D
... KD

...
...

... Kn−1D

)
(6)

which plays key role in a test for asymptotic stability of the system [5].

Theorem 1. The system (2) has r = n − rankΦ conjugate pairs of
purely imaginary eigenvalues, including multiplicity.

Corollary. If rankD = m, then 0 ≤ r ≤ n−m.

This follows immediately from rankD ≤ rankΦ ≤ n.

To prove Theorem 1 we need the following lemmas.

Lemma 1. Let (iω,X), ω ∈ <, i =
√−1, be an eigenpair of L(λ).

Then (ω2, X) and (0, X)are eigenpairs of the matrices K and D, respec-
tively.

Proof. From

L(iω)X = (−ω2I + iωD + K)X = 0, (7)

we obtain

< X, (K − ω2I)X > +iω < X, DX >= 0, (8)



216 Ranislav M. Bulatović

where < ., . > denotes the inner product, and < X, (K − ω2I)X >,
and < X,DX > are real quantities, since K and D are real symmetric
matrices. Then < X, DX >= 0, which implies DX = 0, since D ≥ 0.
This together with L(iω)X = 0 gives KX = ω2X. 2

It is clear that the eigenvector X in Lemma 1 can be taken to be unit
(< X, X >= 1) and real.

Lemma 2. a) If (iω1, X
(1)) and (iω2, X

(2)) are eigenpairs of L(λ) with
ω2

1 6= ω2
2, then < X(1), X(2) >= 0.

b) If the eigenvalue iω of L(λ) has multiplicity k, it possesses k eigenvec-
tors which are mutually orthogonal.

Proof. a) The result follows from Lemma 1 and the additional fact that
eigenvectors associated with distinct eigenvalues of a symmetric matrix
are orthogonal.
b) Since the system (2) is stable, the multiple eigenvalue iω must be
semi-simple, which means that the eigenvalue has k linearly independent
eigenvectors. Since a linear combination of these k vectors is also an
eigenvector of L(λ) associated with iω, the Gram-Schmidt process (see
[7]) can be used to obtain k mutually orthogonal eigenvectors. 2

Lemma 3. Let ±iω1, ...,±iωr be eigenvalues of L(λ). Then there
exists an orthogonal matrix Q such that

QT DQ = D̂ =

(
0r 0

0 D̂n−r

)
, (9)

and

QT KQ = K̂ =

(
Ωr 0

0 K̂n−r

)
, (10)

where 0r is the zero square matrix of order r, and Ωr = diag(ω2
1, ..., ω

2
r).

Proof. By lemmas 1 and 2, there exists an orthonormal set of r vectors
X(1), ..., X(r), such that

DX(j) = 0, KX(j) = ω2
j X

(j), j = 1, . . . , r (11)

Now, consider an orthogonal matrix Q having the vectors X(1), ..., X(r)

as its first r columns,

Q = (X(1), ..., X(n)) (12)
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The matrices D and K are then orthogonally congruent to matrices
D̂ and K̂, respectively, described by

D̂ = QT DQ = (< X(i), DX(j) >) (13)

and

K̂ = QT KQ = (< X(i), KX(j) >), (14)

where i, j = 1, . . . , n. Using (11) and < X(i), X(j) >= δij, where δij is the
Kronecker delta and i, j = 1, . . . , n, we compute

< X(i), DX(j) >= 0 (15)

and

< X(i), KX(j) >= ω2
j δij, (16)

where i = 1, . . . , nandj = 1, . . . , r. The relations (15) and (16) show that
D̂ and K̂ have the partitioned forms (9) and (10). 2

Proof of Theorem 1. Suppose that ∆(±iωj) = 0,ωj ∈ <, j = 1, . . . , r
and that remaining zeros of ∆(λ) take places on the open left-half of
the complex plane. Then from Lemma 3 it follows that there exists an
orthogonal coordinate transformation

x = Q

(
y
z

)
, y ∈ <r, z ∈ <n−r, (17)

which transforms equation (2) to the form

(
ÿ
z̈

)
+ D̂

(
ẏ
ż

)
+ K̂

(
y
z

)
=

(
0
0

)
(18)

where D̂ and K̂ have the partitioned forms (9) and (10). Under the above
assumptions it is clear that the (n− r) dimensional subsystem of (18)

z̈ + D̂n−rż + K̂n−rz = 0, z ∈ <n−r (19)

is asymptotically stable and, according to well-known result [5], we have

rank
(

D̂n−r
... K̂n−rD̂n−r

...
...

... K̂n−r−1
n−r D̂n−r

)
= n− r (20)
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On the other hand, the matrix Φ coincides with the matrix

Q
(

D̂
... K̂D̂

...
...

... K̂n−1D̂

)
P, (21)

where P = diag(QT , ..., QT ). Then

rankΦ = rank
(

D̂n−r
... K̂n−rD̂n−r

...
...

... K̂n−1
n−r D̂n−r

)
, (22)

since Q and P are nonsingular, and D̂ = diag(0r, D̂n−r), and K̂jD̂ =
diag(0r, K̂j

n−rD̂n−r). Now, according to the Cayley-Hamilton theorem

(see [7]), every matrix K̂j
n−rD̂n−r with integer j ≥ n−r can be represented

by a linear combination of the matrices D̂n−r, K̂n−rD̂n−r, . . . , K̂
n−r−1
n−r D̂n−r,

and, consequently

rank
(

D̂n−r
...

...
... K̂n−1

n−r D̂n−r

)
=

rank
(

D̂n−r
...

...
... K̂n−r−1

n−r D̂n−r

)
.

(23)

The result then follows from (20), (22) and (23). 2

Remark 1. The proof of theorem 1 is based on a transformation
converting the system (2) into two uncoupled subsystems; one of them is
r-dimensional undamped subsystem, where r is the number of conjugate
pairs of purely imaginary eigenvalues of the system including multiplicity,
the second is (n – r)-dimensional damped asymptotically stable subsys-
tem. When the matrix K has distinct eigenvalues, and r its eigenvectors
lie in the nullspace of the damping matrix, the decomposability of the
system in modal coordinates was observed in [3].

Remark 2. The matrix (6) can be expressed in terms of the original
matrices as

Φ = A−1/2Φ̃ diag(A−1/2, ..., A−1/2), (24)

where

Φ̃ =
(

B
... (CA−1)B

...
...

... (CA−1)n−1B

)
. (25)

Consequently, rankΦ = rankΦ̃, since A is nonsingular.
In the case of “classical damping” in which D and K commute the

following result as a consequence of Theorem 1 can be obtained.
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Theorem 2. If DK = KD, then the system has r = n − rankD
conjugate pairs of purely imaginary eigenvalues.

Proof. Since D and K commute there exists an orthogonal matrix
such that both D and K are orthogonally congruent to diagonal matrices
[4]. Then, evidently, rankΦ = rankD, and Theorem 2 follows from
Theorem 1. 2

3 Illustrative examples

Example 1. Consider the two-degree-of-freedom system shown in Fig.1,
where ci > 0 and β > 0 stand for the spring constants and coefficient of
viscous damping, respectively, and q1 and q2 are the displacements from
equilibrium positions of masses m1 and m2.

Figure 1: The system of example

The inertia, damping and stiffness matrices of this system are as follows

A =

(
m1 0
0 m2

)
, B = β

(
1 −1

−1 1

)
, C =

(
c1 0
0 c2

)
, (26)

It is clear that rankB = 1, and consequently, the system is partially
damped. The matrix (25) takes the form

Φ̃ =
(

B CA−1B
)

= β

(
1 −1 c1

m1
− c1

m1−1 1 − c2
m2

c2
m2

)
(27)

Thus, by Theorem 1, we have

r = 2− rankΦ̃ =

{
0, c1m2 6= c2m1,
1, c1m2 = c2m1.

(28)

In the case c1m2 = c2m1, the system can oscillate such that relative
motion between the masses is absent, so that the damper dissipates no
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energy. If c1m2 6= c2m1, the system does not have pure imaginary eigen-
values, and all motions lead up to dissipation of energy.

Example 2. Consider the three-degree-of-freedom system (2) with

D =




1 0 −1
0 0 0

−1 0 1


 , and K =




2 −1 0
−1 2 −1

0 −1 2


 , (29)

previously studied in [5].

It can be easily verified that rankD = 1, and that DK = KD. Thus,
by Theorem 2, system of this example has two conjugate pairs of purely
imaginary eigenvalues.
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O prigušeno oscilujućim sistemima

UDK 534.16

Razmatra se prisustvo čisto imaginarnih sopstvenih vrednosti delimično
prigušeno oscilujućih sistema. Broj takvih sopstvenih vrednosti se odred-
juje pomoću ranga matrice koja je direktno vezana za matrice sistema.


