
Revista Informatica Economică nr. 2(46)/2008

105

Building Domain Specific Languages for
Voice Recognition Applications

Cristian IONIŢĂ

Academy of Economic Studies, Bucharest
Cristian.Ionita@softmentor.ro

This paper presents a method of implementing the voice recognition for the control of

software applications. The solutions proposed are based on transforming a subset of the natu-
ral language in commands recognized by the application using a formal language defined by
the means of a context free grammar. At the end of the paper is presented the modality of in-
tegration of voice recognition and of voice synthesis for the Romanian language in Windows
applications.
Keywords: voice recognition, formal languages, context free grammars, text to speech.

ntroduction
Large scale usage of software products

imposed a significant development and di-
versification of the human – computer inte-
raction methods. A special category of inter-
faces is that based on voice recognition and
synthesis. Using this type of interface is ne-
cessary for voice recognition and synthesis. It
also helps the persons with disabilities to use
the applications and it is useful in the cases
when the classical interaction access is not
possible or is dangerous (equipment manipu-
lation, medical interventions, etc.).
Recognizing the natural language is a very
difficult task for a computer. The main diffi-
culties in the process of recognition are ([3]):
• unlike people, the voice recognition algo-
rithms do not have the general knowledge
necessary for interpreting and predicting the
words;
• impossibility of the voice recognition pro-
grams to receive and interpret the non-verbal
communication;
• the lacks of the intervals between words
and the omissions frequent in the current
speech;
• the large variability of the speech; the pro-
nunciation of the words differ according to
the speaker’s characteristics (style, sex, anat-
omy of the vocal apparatus and dialect), but
also according to context (the speed of
speech);
• identification and elimination of back-
ground noise.

Some of these difficulties can be diminished
by limiting the flexibility of the voice recog-
nition module. Limiting the vocabulary and
the word order that can be used for the con-
trol of the application can lead to a signifi-
cant increase of the accuracy and speed of
the recognition process. In the following
lines is presented a modality of building the
applications that use voice synthesis and rec-
ognition for Romanian language based on
free context grammars.
1. Grammars for voice recognition
The languages used for communication can
be classified in natural and formal languages.
Natural languages like the spoken languages
(Romanian, English, French), music and
sculpture are too complex to be completely
processed by the means of algorithms. The
formal languages are languages projected for
an automatic processing and described
through a formal grammar. A grammar is an
exact, finite and complete description of a
formal language.
A grammar is made up of a set of four com-
ponents ([4]):
• a set of terminal symbols (basic words of
the language);
• a set of non-terminal symbols (symbols
built on the basis of terminal symbols);
• a finite set of production rules (that specify
the ways the non-terminal symbols can be
built);
• a start symbol.
A simple way to represent a formal grammar
is Backus-Naur form (BNF, [2]). It uses pro-

I

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26895948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Revista Informatica Economică nr. 2(46)/2008

106

duction rules of type A:== B, where A is a
un non-terminal symbol and B is an expres-
sion that can contain terminal and non-
terminal symbols. The definition of B can
contain the following types of elements:
- sequences: B1 B2 …Bn ;
- alternatives: B1 | B2 |…| Bn ;
- brackets for combining sequences and al-
ternatives;
- ? symbols for indicating an optional ele-
ment, * for indicating repetitions of 0 or
more elements and + for indicating repeti-
tions of 1 or more elements.
For exemplification we will take into account
a language for describing a list of colors. A
phrase in this language will consists of a se-
ries such as: color1, color2, color 3, … colorn-1
and colorn. The BNF grammar corresponding
to this language is:
COLOR :== "white" | "yellow" | "orange" |
"red" | "blue" | "green" | "indigo "
SERIES _ COLORS:== COLOR
(","COLOR)*
LIST_COLORS:== SERIES _ COLORS
"and" COLOR
This grammar is formed of the terminal sym-
bols white, yellow, orange, red, blue, green,
indigo, and the non-terminal symbols COL-
OR, SERIES_ COLORS, LIST_ COLORS,
the three production rules corresponding to
them and the start symbol LIST_ COLORS.
An example of correct phrase in this lan-
guage is: “green, yellow and indigo”. Each
phrase of a formal language can be graphical-
ly represented as a tree according to the
grammar associated to the language. Figure 1
presents the tree associated to the above men-
tioned phrase.

Fig.1. The arborescent representation of a

phrase based on grammar

In the context of voice recognition, o gram-
mar is a structured list of rules that identify
phrases and words that can be used for voice
recognition within an application. These
rules offer to the application indications usa-
ble for a better recognition of the received
sounds. Indications provided by grammar are
used for the restriction of the selection base
for words and increase the process accuracy.
The formal grammars were classified by
Noam Chomsky ([2]) according to their de-
scriptive force. Within the systems of voice
recognition are used especially free context
grammars (type 2). These are grammars that
contain production rules A :== expression,
where A is a non-terminal symbol and ex-
pression is a succession of terminal and non-
terminal symbols. These are the languages
that can be efficiently processed by a finite
machine.
For describing the grammars used in voice
recognition, World Wide Web Consortium
(W3C) created the standard Speech Recogni-
tion Grammar Specification (SRGS, [8]).
This standard was adopted on a large scale
within the voice recognition solutions. The
standard allows the complete description of
the free context grammars used in voice rec-
ognition using the syntax XML or ABNF
(Augmented BNF).
A SRGS grammar allows the programmer to
indicate to the voice recognition module the
following:
- the valid words;
- the word order and the way of composition;
- the language used and the pronunciation for
each word;
- the semantic information associated to the
language constructions.
The SRGS grammars are made up of a list of
production rules. Each production rule is
composed of terminal symbols, references to
other rules, sequences, alternative structures,
repetitive structures and semantic elements.
The syntax used for defining a rule is: <rule
id = "string" scope = ("public" | "private")>
... </rule>. Identifiers associated to the rules
can be used for referring to that rule within
the grammar or from an external context (for
public rules). Within a production rule can be

Revista Informatica Economică nr. 2(46)/2008

107

included terminal symbols (defined through
<item> or direct inclusion within the rule)
and references to other non-terminal symbols
(defined through <ruleref>). The elements
existent within a rule are treated implicitly as
a part of a sequential structure. The alterna-
tive structure is introduced through the ele-
ment <one-of>. The operators ?, * and + of
the BNF notation are stimulated through the
attribute repeat applied top the symbols of
the grammar.
The SRGS grammars can contain also se-
mantic information for the automatic inter-
pretation of the production rules ([9]). This
information is included in the elements type
<tag>.
2. Building a language for voice recogni-
tion
Using the voice recognition within an appli-
cation involves defining the language of
commands of the associated SRGS grammar.
Developing such a language involves more
steps of design and implementation.
The first in designing the language is the de-
finition of the types of commands that should
be supported by the application. For exempli-
fication we will analyze an application that
involves guessing a number by the user. The
commands available in this case can be: “try
number N” and “stop the game”.
After identifying the commands, they should
be decomposed in the elements. The compo-
nents identified together with the start sym-
bol will become the public rules of the
grammar. For this example, these rules will
be:
<grammar xml:lang="EN-US" tag-
format="semantics-ms/1.0" version="1.0"
mode="voice"

xmlns="http://www.w3.org/2001/06/grammar
">

 <!-- Symbolul de start al gramaticii--
>
 <rule id="comanda" scope="public">
 <one-of>
 <item>

<ruleref uri="#incercare"/>
</item>

 <item>
<ruleref uri="#oprire"/>

</item>
 </one-of>
 </rule>

 <rule id="oprire" scope="public">
 <item>oprire joc</item>
 </rule>

 <rule id="incercare" scope="public">
 <item>incearca</item>
 <ruleref uri="#numar" />
 </rule>
</grammar>
In the next step should be identified the non-
terminal symbols in the process of establish-
ing the basic rules. For the analyzed example
we have to explain the manner of defining a
number. The simplified grammar for the rec-
ognition of the numbers in the interval 0 – 99
is:
 <rule id="numar">
 <one-of>
 <item>

<ruleref uri="#cifra" />
</item>

 <item>
<ruleref uri="#numar_10_19"

/>
</item>

 <item>
<ruleref

uri="#numar_20_100" />
</item>

 </one-of>
 </rule>

 <rule id="numar_20_100">
 <ruleref uri="#cifra"/>
 <item>zeci</item>
 <item repeat="0-1">si</item>
 <item repeat="0-1">
 <ruleref uri="#cifra"/>
 </item>
 </rule>

 <rule id="numar_10_19">
 <one-of>
 <item>zece</item>
 <item>unsprezece</item>
 ...
 </one-of>
 </rule>

 <rule id="cifra">
 <one-of>
 <item>zero</item>
 <item>unu</item>
 <item>doi</item>
 ...
 </one-of>
</rule>

After establishing the basic rules and ex-
plaining all the non-terminal symbols, the
next step is the process of refining the gram-
mar for improving the quality of recognition.
To this aim there will be taken into account
the alternative forms of the commands or

Revista Informatica Economică nr. 2(46)/2008

108

adding information regarding the pronuncia-
tion of the words or the language used. For
example, for the stop command we can take
into account the following alternatives:
 <rule id="oprire" scope="public">
 <one-of>
 <item>
 <one-of>
 <item>oprire</item>
 <item>părăsire</item>
 </one-of>
 <item repeat="0-1">joc</item>
 </item>
 <item>
 închide
 <item repeat="0-
1">aplicaţia</item>
 </item>
 </one-of>
 </rule>

After this step, the process of building the
grammar for commands recognition is com-
pleted. The engine for voice recognition is
able to recognize the voice of the user and to
produce the text in the specified language.
If the resulted text requires further processing
to be used by the application, the process of
designing can continue with the addition of
new semantic information for the post
processing of the resulted text. In the exam-
ple above it should be useful to replace the
text associated to the recognized numbers
with the numeric representation. For asso-
ciating a numeric property to a figure it will
be used:
<rule id="cifra">
 <one-of>
 <item>
 zero

<tag>$.valoareNumar={};
$.valoareNumar._value = 0;</tag>
 </item>

…
 </one-of>
</rule>
The same way the production rules can be
completed with the ECMA instructions for
generating the numeric values corresponding
to the other used numbers.
3. Integration of voice recognition in ap-
plications
Integrating the voice recognition and synthe-
sis in applications that works on the Micro-
soft Windows platform can be done by using
Microsoft Speech API library (SAPI, [6]).
Windows Vista includes SAPI 5.3 version

that implements the support for the standards
SRGS and SSML ([8], [10]), as well as the
support for the semantic interpretation using
the ECMA language. SAPI can be used di-
rectly by the native applications or through
System.Speech ([7]) library by the applica-
tions developed using platform .NET. Figure
2 presents the general architecture of a .NET
application that uses SAPI ([1]).

Fig.2. SAPI 5.3 general architecture

(Windows Vista)
Building an application that uses voice rec-
ognition for taking over the commands from
the users involves three basic steps: describ-
ing the commands supported by the applica-
tion and using a SRGS grammar, starting the
voice recognition engine and interpreting the
results.
The grammar corresponding to the language
can be built dynamically using the classes of-
fered by .NET platform in the library
System.Speech.Recognition.SrgsGrammar or
using a XML folder compatible with SRGS.
The dynamic building of the grammar is
done this way:
// SRGS document creation
SrgsDocument gramatica = new
SrgsDocument();

// Grammar rule creation
SrgsRule regulaCifra = new
SrgsRule("Cifra");
SrgsOneOf alternativaCifra = new
SrgsOneOf(
 new SrgsItem("zero"),
 new SrgsItem("unu"), …);
regulaCifra.Add(alternativaCifra);

// We attach the rule to the
existing grammar
// and specify the start symbol
gramatica.Rules.Add(regulaCifra);

Revista Informatica Economică nr. 2(46)/2008

109

gramatica.Root = regulaCifra;
Using this mechanism any grammar can be
built dynamically according to the SRGS
standard. Initializing the voice recognition
engine involves at least setting the used lan-
guage, the entrance device, the grammar and
the processing function:
// Speech recognition engine
creation
SpeechRecognitionEngine
motorRecunoaștere =
 new SpeechRecognitionEngine(new
CultureInfo("en-US"));

// We set the audio source
(microphone by default)
motorRecunoaștere.SetInputToDefaultA
udioDevice();

// We load the grammar into the
engine
motorRecunoaștere.LoadGrammar(new
Grammar(gramatica));
// We attach the handlers for result
procesing

motorRecunoaștere.SpeechRecognized +=
new
EventHandler<SpeechRecognizedEventArgs
> (motorRecunoaștere_SpeechRecognized);
// We start the engine in async mode
motorRecunoaștere.RecognizeAsync(Rec
ognizeMode.Multiple);
The search engine allows configuring also
other parameters by the means of properties
or of objects type RecognizerInfo. There can
also be added functions for taking over the
partial results of the voice synthesis: detect-
ing the language, taking over the recognition
alternatives or the audio data for alternative
analyses in the case when a command could
not be identified.
The results of voice recognition are transmit-
ted in asynchrony to the application through
the specified function at initializing the rec-
ognition engine. The data resulted from rec-
ognition are encapsulated in an object type
RecognitionResult. This object contains the
recognized text, the value obtained from the
application of the semantic corresponding to
the rules, the registered sound sequence and
information referring to the recognition (the
reliability, possible alternatives, etc.). The
application can use this information to select
the commands.

SAPI library allows also using the voice syn-
thesis for communicating information to the
user within a multimodal application. The
synthesis engine can generate the sounds cor-
responding to the message received as a text
or SSML document. The voice synthesis for
messages in Romanian can be done using the
Carmen voice module produced by IVO
Software ([5]) company.

Conclusions
The voice recognition techniques based on
restriction used by free context grammars
presented within the paper can be utilized for
building any voice controlled application by
the means of a set of commands. The restric-
tion of the vocabulary through the grammar
leads to a recognition rate clearly higher than
in the case of an unsupervised recognition.

References
[1] Brown R., Exploring New Speech
Recognition And Synthesis APIs In Windows
Vista, MSDN Magazine, January 2006
[2] Chomsky N., On certain formal properties of
grammars, Information and Control, 1 (1959),
pages 91-112
[3] Forsberg M., Why is Speech Recognition
Difficult?, Chalmers University of Technology,
Göteborg 2003
[4] Ioniţă C., “A Domain Specific Language for
Secure Document Management”, Proceedings of
the Seventh International Conference on
Informatics in Economy, ASE, Bucharest 2007
[5]IVOSoftware,http://www.ivosoftware.com/pro
ducts/ivona_professional.html, IVONA
Professional Presentation
[6]Microsoft, http://msdn2.microsoft.com/en-
us/library/ms723627.aspx, Microsoft Speech API
5.3 Documentation
[7]Microsoft, http://msdn2.microsoft.com/en-
us/library/system.speech.recognition.aspx,
System.Speech.Recognition Namespace
Documentation
[8] World Wide Web Consortium, Speech
Recognition Grammar Specification Version 1.0,
W3C Recommendation 2004
[9] World Wide Web Consortium, Semantic
Interpretation for Speech Recognition (SISR)
Version 1.0, W3C Recommendation 2007
[10] World Wide Web Consortium, Speech
Synthesis Markup Language (SSML) Version 1.0,
W3C Recommendation 2004

