
Opuscula Mathematica • Vol. 32 • No. 4 • 2012

A NOTE ON THE INDEPENDENT ROMAN
DOMINATION IN UNICYCLIC GRAPHS

Mustapha Chellali and Nader Jafari Rad

Abstract. A Roman dominating function (RDF) on a graph G = (V,E) is a function
f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is
adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value
f(V (G)) =

∑
u∈V (G) f(u). An RDF f in a graph G is independent if no two vertices as-

signed positive values are adjacent. The Roman domination number γR(G) (respectively,
the independent Roman domination number iR(G)) is the minimum weight of an RDF
(respectively, independent RDF) on G. We say that γR(G) strongly equals iR(G), denoted
by γR(G) ≡ iR(G), if every RDF on G of minimum weight is independent. In this note we
characterize all unicyclic graphs G with γR(G) ≡ iR(G).
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1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set V = V (G) and
edge set E = E(G). The open neighborhood of a vertex v ∈ V is N(v) = NG(v) =
{u ∈ V | uv ∈ E} and the degree of v, denoted by dG(v), is the cardinality of its
open neighborhood. A vertex of degree one is called a leaf, and its neighbor is called
a support vertex. If v is a support vertex, then v is called strong if v is adjacent to at
least two leaves.

For a graph G, let f : V (G) → {0, 1, 2} be a function, and let (V0;V1;V2) be the
ordered partition of V = V (G) induced by f , where Vi = {v ∈ V (G) : f(v) = i} for
i = 0, 1, 2. There is a 1−1 correspondence between the functions f : V (G)→ {0, 1, 2}
and the ordered partitions (V0;V1;V2) of V (G). So we will write f = (V0;V1;V2).

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G
if every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v of G
for which f(v) = 2. The weight of an RDF is the value f(V (G)) =

∑
u∈V (G) f(u).

An RDF f in a graph G is independent if no two vertices assigned positive values
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are adjacent. The Roman domination number γR(G) (respectively, the independent
Roman domination number iR(G)) is the minimum weight of an RDF (respectively,
independent RDF) on G. A function f = (V0;V1;V2) is called a γR(G)-function or
γR-function for G if it is a Roman dominating function on G and f(V (G)) = γR(G).
An iR(G)-function or iR-function for G is defined similarly. Let f be a γR(G)-function,
and f(x) = 0 for some vertex x. Then we say that x is a private neighbor of a vertex y
with f(y) = 2 if f is not an RDF forG−xy. Roman domination has been introduced by
Cockayne et al. [3] and has been studied for example in [7]. The study of independent
Roman domination has been initiated in [1].

We say that γR(G) and iR(G) are strongly equal for G, denoted by γR(G) ≡ iR(G),
if every γR(G)-function is an iR(G)-function. In [2] a constructive characterization of
all trees T with γR(T ) ≡ iR(T ) is provided. Note that strong equality between two
parameters was considered first by Haynes and Slater [6]. Later Haynes, Henning and
Slater gave in [4] and [5] constructive characterizations of trees with strong equality
between some domination parameters.

In this note we characterize all unicyclic graphs G with γR(G) ≡ iR(G).

2. MAIN RESULT

We first describe the procedure given in [2] to built trees T with γR(T ) ≡ iR(T ).
Let T be the family of trees T that can be obtained from k (k ≥ 1) disjoint stars of
centers x1, x2, ..., xk, where each star has order at least three, attached by edges from
their center vertices either to a single vertex or to the same leaf of a path P2. Such a
vertex is called a special vertex of T. Let F be the collection of trees T that can be
obtained from a sequence T1, T2, . . ., Tk (k ≥ 1) of trees, where T1 is a star K1,t with
t ≥ 2, T = Tk, and, if k ≥ 2, Ti+1 can be obtained recursively from Ti by one of the
following operations:

— Operation O1 : Assume y is a leaf of Ti with fi(y) = 0 and whose support vertex
z is either strong or satisfies γR(Ti − z) > γR(Ti). Then Ti+1 is obtained from Ti
by adding a new vertex x and adding the edge xy.

— Operation O2 : Assume y is a vertex of Ti. Then Ti+1 is obtained from Ti by
adding a tree T ∈ T of special vertex x and adding the edge xy with the condition
that if x is a support vertex, then y satisfies γR(Ti − y) ≥ γR(Ti).

— Operation O3 : Assume y is a vertex of Ti assigned 0 or 1 for every
γR(Ti)-function. Then Ti+1 is obtained from Ti by adding a path P3 = u-v-w
and adding the edge wy.

Theorem 2.1 (Chellali and Jafari Rad [2]). Let T be a tree. Then γR(T ) ≡ iR(T ) if
and only if T = K1 or T ∈ F .

Let H be the class of all graphs G such that G is obtained from a tree T ∈ F by
joining two non-adjacent vertices v1, v2 such that:

(1) For every γR(T )-function f , 0 ∈ {f(v1), f(v2)},
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(2) For 1 ≤ i 6= j ≤ 2, there is no non-independent RDF f for T − vi with weight
γR(T ) such that f(vj) = 2.

Now we are ready to state our main result.

Theorem 2.2. Let G be a unicyclic graph. Then γR(G) ≡ iR(G) if and only if G ∈ H.

Proof. Let G be a unicyclic graph, where C is its unique cycle. Assume that γR(G) ≡
iR(G) and let f = (V0, V1, V2) be a γR(G)-function. By assumption f is independent.
Let x ∈ V (C) ∩ V0, and let N(x) ∩ V (C) = {y, z}. Clearly x cannot be a private
neighbor for both y and z. Hence we assume that x is not a private neighbor of y and
let T = G− xy. Then f is an IRDF for T , and so γR(T ) ≤ iR(T ) ≤ γR(G) = iR(G).
If γR(T ) < iR(G), and f1 is a γR(T )-function, then f1 is an RDF for G with weight
less than γR(G), a contradiction. Thus γR(T ) = iR(T ) = iR(G) = γR(G). Next we
show that any γR(T )-function is independent. Assume to the contrary that f is a
γR(T )-function and f is not independent. Since f is an RDF for G and γR(G) =
γR(T ), we obtain that f is a γR(G)-function, contradicting the fact that γR(G) ≡
iR(G). Thus f is independent and consequently, γR(T ) ≡ iR(T ). We deduce that
T ∈ F .

Next we prove (1). Suppose that there is a γR(T )-function f such that 0 6∈
{f(x), f(y)}. If {f(x), f(y)} = {2, 1} and f(x) = 1, then g defined on G by g(x) = 0
and g(u) = f(u) if u 6= x is an RDF forG with weight less than γR(G), a contradiction.
Thus {f(x), f(y)} 6= {2, 1} but then f would be a non-independent γR(G)-function,
a contradiction since γR(G) ≡ iR(G).

Finally, let us prove (2). Assume that there is a non-independent RDF f for T −x
with weight γR(T ) such that f(y) = 2. Then f is a γR(G)-function which is not
independent, a contradiction.

Conversely, assume that G ∈ H. Let G be obtained from a tree T ∈ F by joining
two vertices x and y such that (1) and (2) hold. First notice that γR(G) ≤ γR(T ).
Assume to the contrary that γR(G) < γR(T ), and let f = (V0, V1, V2) be a
γR(G)-function. If {f(x), f(y)} 6= {0, 2}, then f is an RDF for T with weight less
than γR(T ), a contradiction. Thus {f(x), f(y)} = {0, 2}. Suppose that f(y) = 0.
Then N(y) ∩ V2 = {x}. Now g defined on T by g(y) = 1 and g(u) = f(u) if u 6= y, is
an RDF for T . Then w(g) = γR(T ) for otherwise g is an RDF for T with weight less
than γR(T ) which is impossible. Hence g is a γR(T )-function and 0 6∈ {g(x), g(y)},
contradicting (1). Therefore γR(G) = γR(T ). Now let h be an iR(T )-function. Note
that h is a γR(T )-function since γR(T ) ≡ iR(T ). If h is not an IRDF for G, then
0 6∈ {h(x), h(y)}, and h is a γR(T )-function that does not satisfy (1), a contradiction.
Thus h is an IRDF for G, and so iR(G) ≤ γR(T ) = γR(G) ≤ iR(G), implying that
iR(G) = γR(G) = γR(T ) = iR(T ). So h is an iR(G)-function. We next show that
each γR(G)-function is independent. Assume to the contrary that f = (V0, V1, V2)
is a γR(G)-function and f is not independent. If 0 6∈ {f(x), f(y)}, then f is a
γR(T )-function which is not independent, contradicting the fact that T ∈ F . Thus
0 ∈ {f(x), f(y)}, and we may assume that f(y) = 0. Furthermore, N(y) ∩ V2 = {x}.
Then f |T−y is an IRDF for T − y with weight γR(T ) and f(x) = 2, a contradiction
with (2). We deduce that γR(G) ≡ iR(G).
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