
87

Processing and Application of Ceramics  4 [2] (2010) 87–93

Numerical differentiation methods for the logarithmic derivative 
technique used in dielectric spectroscopy#

Henrik Haspel, Ákos Kukovecz*, Zoltán Kónya, Imre Kiricsi
Department of Applied and Environmental Chemistry, University of Szeged, Rerrich 1, 
6720 Szeged, Hungary
Received 15 January 2010; received in revised form 28 June 2010; accepted 30 June 2010

Abstract
In dielectric relaxation spectroscopy the conduction contribution often hampers the evaluation of dielectric 
spectra, especially in the low-frequency regime. In order to overcome this the logarithmic derivative technique 
could be used, where the calculation of the logarithmic derivative of the real part of the complex permittivity 
function is needed. Since broadband dielectric measurement provides discrete permittivity function, numerical 
differentiation has to be used. Applicability of the Savitzky-Golay convolution method in the derivative analy-
sis is examined, and a detailed investigation of the influential parameters (frequency, spectrum resolution, 
peak shape) is presented on synthetic dielectric data.

Keywords: dielectric spectroscopy, logarithmic derivative, Savitzky-Golay method

I. Introduction
Dielectric relaxation spectroscopy (DRS) has be-

come a popular and powerful technique for studying 
the dielectric properties of almost any kind of mate-
rial. Modern measurement systems allow the acquisi-
tion of relaxation spectra over a wide range in frequen-
cy and temperature with a high accuracy. Hence we 
are able to obtain information about molecular relax-
ation dynamics and conduction processes, leading to a 
deeper understanding of the materials’ nature.

In order to extract most of the information car-
ried by the measurement data, mathematical meth-
ods may be applied. In broadband dielectric spec-
troscopy the so-called harmonic analysis is used. 
This means that the value of the permittivity func-
tion is only known at given measurement frequen-
cies. Since the spectra are discrete datasets, only nu-
merical approximations can be used. Therefore, the 
result of the evaluation depends strongly on the pre-
cision of these methods. 

In this paper we will present numerical derivative 
calculations on synthetic dielectric data. All the influ-

ential parameters are considered, and the capabilities 
and limitations of the approach are discussed.

II. Theoretical Background
In DRS the frequency-dependent complex dielec-

tric function is used to determine the electrical/dielec-
tric properties of materials [1]:

where ε’(ω) is the real and ε”(ω) is the imaginary part 
of the complex dielectric function. 

If the measured sample contains mobile charge 
carriers, i.e. it exhibits conduction, a considerable 
increase shows up in the low frequency part of the 
imaginary permittivity spectrum (loss spectrum). In 
moderately to highly conducting materials this “con-
ductivity tail” hampers the proper analysis of slow 
dipolar relaxations. Furthermore, if the charge car-
riers are mobile ions, an undesirable effect, the so-
called electrode polarization takes place (EP) [2]. 
This is due to the partial blocking of the charge ex-
change at the sample/electrode interfaces which re-
sults in the formation of two double layers. These 
double layers give rise to large capacitances in series 
to the conducting bulk of the sample. This manifests 
itself in a high apparent dielectric constant typically 
in the low frequency range. There are several meth-

#Paper presented at 8th Students’ Meeting, SM-2009, Processing 
and Application of Ceramics, Novi Sad, Serbia, 2009 

* Corresponding author: tel: +380 44 424 3364, 
fax: +380 44 424 2131, e-mail: lena_sych@ukr.net

( ) ( ) ( )ωεωεωε ′′−′=∗  



88

H. Haspel et al. / Processing and Application of Ceramics 4 [2] (2010) 87–93

ods which help reduce the covering effect of the con-
duction and the electrode polarization. One of them 
is the numerical Kramers–Kronig transform, which 
is an elegant way to remove Ohmic conduction from 
measured loss spectra. It transforms the real part of 
the complex dielectric function into the imaginary 
part, which is now solely based on relaxation phe-
nomena. It can be calculated by numerical techniques 
described in literature [3,4].

An alternative to the numerical Kramers–Kronig 
transform is based on the logarithmic derivative:

which approximately equals the Ohmic-conduction-
free dielectric loss for rather broad peaks [5]. For non-
distributed Debye relaxations, i.e. for single-relaxation 
time processes, the derivative results in peaks that are 
sharper [6].

For the double-stretched Havriliak-Negami function 
we have for the imaginary part ε”:

where

Δε = εs – ε∞ is the relaxation strength, εs, and ε∞ is the 
permittivity as the frequency ω→0, and ω→ ∞.

The logarithmic derivative of this function is:

where 0 < α,β ≤ 1 are the shape parameters. There are 
three special cases. If α,β = 1 the relaxation peak is the 
sharpest possible and it is called a Debye peak caused 
by a Debye-type relaxation. α and β make peaks broader 
in a symmetrical (β = 1) or in an asymmetrically (α = 1) 
way. The first case is called a Cole-Cole, the latter a 
Cole-Davidson peak. The frequency where the function 
reaches its maximum equals with the characteristic fre-
quency for Debye and Cole-Cole peak, but not for Cole-
Davidson peak, where the difference between them de-
pends on the β shape parameter. 

Fig. 1 shows the peak sharpening effect, which 
makes possible to resolve nearby peaks better. Because 
the derivatives are sensitive to noise, a proper numer-
ical technique should be chosen for the differentiation 
of the data. Wübbenhorst and van Turnhout suggested 
to use either one based on a low pass quadratic least 
squares filter or a quadratic logarithmic-equidistant five 
point spline. These two techniques are special cases of 
the so-called Savitzky-Golay method (SG) for differ-
entiation [7,8], which is a convolution of a uniformly-
spaced (2m + 1) point (with a positive integer m) data 
array with a set of bk coefficients derived from the least-
squares-fit formulas of n-degree polynomial:

For differentiating the entire spectrum one has to slide 
this (2m + 1) point „window” through the measured data 
points (except for m points at each end of the data array 

Figure 1. Comparison of dielectric loss ε”(ω) (lines with symbols) and ε”der(ω) (dashed lines) for symmetric (left) and for 
asymmetric (right) HN functions for α,β = 0.2, 0.4, 0.6, 0.8, 1
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 = s –  is the relaxation strength, s, and  is the permittivity as the frequency →0, and → . 
The logarithmic derivative of this function is: 
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which is now solely based on relaxation phenomena. It 
can be calculated by numerical techniques described in 
literature [3,4]. 

An alternative to the numerical Kramers–Kronig 
transform is based on the logarithmic derivative: 




ln2
)(




der  

which approximately equals the Ohmic-conduction-
free dielectric loss for rather broad peaks [5]. For non-
distributed Debye relaxations, i.e. for single-relaxation 
time processes, the derivative results in peaks that are 
sharper [6]. 

For the double-stretched Havriliak-Negami 
function we have for the imaginary part ": 
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where 0 < , ≤ 1 are the shape parameters. There are 
three special cases. If , = 1 the relaxation peak is the 
sharpest possible and it is called a Debye peak caused 
by a Debye-type relaxation.  and  make peaks 
broader in a symmetrical ( = 1) or in an 
asymmetrically ( = 1) way. The first case is called a 
Cole-Cole, the latter a Cole-Davidson peak. The  
 

frequency where the function reaches its maximum 
equals with the characteristic frequency for Debye and 
Cole-Cole peak, but not for Cole-Davidson peak, 
where the difference between them depends on the  
shape parameter.  

Fig. 1 shows the peak sharpening effect, which 
makes possible to resolve nearby peaks better. 
Because the derivatives are sensitive to noise, a proper 
numerical technique should be chosen for the 
differentiation of the data. Wübbenhorst and van 
Turnhout suggested to use either one based on a low 
pass quadratic least squares filter or a quadratic 
logarithmic-equidistant five point spline. These two 
techniques are special cases of the so-called Savitzky-
Golay method (SG) for differentiation [7,8], which is a 
convolution of a uniformly-spaced (2m + 1) point 
(with a positive integer m) data array with a set of bk 
coefficients derived from the least-squares-fit formulas 
of n-degree polynomial: 
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asymmetric (right) HN functions for , = 0.2, 0.4, 0.6, 0.8, 1 
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that must be treated separately, using special coefficients 
to calculate the derivative [9]). The values of the coeffi-
cients depend on the degree of the fitted polynomial and 
the chosen width of the „window” and were published 
for a broad range of parameters in [7,9].

We examined the effect of the polynomial degree 
and the width of the dataset, used in one calculation 
step, on the quality of the approximation of the deriva-
tive at four different spectrum resolutions for three ba-
sic dielectric peaks. A normalized Debye, a Cole-Cole 
and a Cole-Davidson peak were chosen for that with the 
following parameters: Δε = 1, τ = 0.01, (β = 1, α = 0.22), 
(α = 1, β = 0.2). The SG coefficients of the used approx-
imations are listed in Table 1.

At n = 2 and (2m + 1) = 5 the two different set of co-
efficients are the quadratic five-point SG and the qua-
dratic spline, respectively [10]. r is the logarithmic 
spacing between the measurement points chosen as r 
= 2, 21/2, 21/4, 21/8. Thus, spacing is halved in every step 
(doubled the resolution) on a logarithmic scale.

III. Results and discussion
The results of the numerical differentiation with 

the five techniques for the Debye peak are presented in 

Fig. 2. One can easily compare the exact derived peak 
with the numerically calculated ones visually. The inset 
graphs magnify the peaks at their maxima. As a general 
rule we can state that as the resolution of the analyzed 
spectrum increases, all tested approximations provide 
good results. The larger the resolution, the more precise 
the technique is. At the same time we have to consid-
er that in broadband dielectric spectroscopy the number 
of measurement points could not be increased arbitrari-
ly because the measurement time strongly depends on 
it, especially in the low frequency regime. Remember 
that at 0.001 Hz one total period takes ~17 min, hence 
a dielectric measurement in the 10-3–107 Hz range takes 
hours or even days at very high resolution. There are 
cases where this can be realized (with stable sample, or 
quenched measurement technique [11]), but with sensi-
tive or time-dependent systems [12] time is of primary 
importance. Therefore, results at lower resolutions are 
of great practical significance.

The most emphatic differences between the applied 
numerical techniques are at r = 2 logarithmic spacing. It 
can be seen, that as the degree of the polynomial decreas-
es or the width of the dataset increases, the numerically 
derived peak is broadened its maximum is lowered.

Figure 2. Numerical approximation of the logarithmic derivative of the Debye peak at four different spectrum resolutions 
(r = 2, 21/2, 21/4, 21/8)
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of the used approximations are listed in Table 1. 
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coefficients are the quadratic five-point SG and the 
quadratic spline, respectively [10]. r is the logarithmic 
spacing between the measurement points chosen as r = 
2, 21/2, 21/4, 21/8. Thus, spacing is halved in every step 
(doubled the resolution) on a logarithmic scale. 

III. Results and discussion 

The results of the numerical differentiation with 
the five techniques for the Debye peak are presented in 
Fig. 2. One can easily compare the exact derived peak 
with the numerically calculated ones visually. The 
inset graphs magnify the peaks at their maxima. As a 
general rule we can state that as the resolution of the 
analyzed spectrum increases, all tested approximations 
provide good results. The larger the resolution, the 
more precise the technique is. At the same time we 
have to consider that in broadband dielectric 
spectroscopy the number of measurement points could 
not be increased arbitrarily because the measurement 
time strongly depends on it, especially in the low 
frequency regime. Remember that at 0.001 Hz one 
total period takes ~17 min, hence a dielectric 
measurement in the 10-3–107 Hz range takes hours or 
even days at very high resolution. There are cases 
where this can be realized (with stable sample, or 
quenched measurement technique [11]), but with 
sensitive or time-dependent systems [12] time is of 
primary importance. Therefore, results at lower 
resolutions are of great practical significance. 
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The explanation of the first observation is that a 
higher degree polynomial can describe rapid changes 
better. Since the Debye peak is the sharpest peak that 
theoretically exists in dielectric spectroscopy, such a 
function fits better onto the data. However, higher de-
gree polynomials are not considered in the following in 
order to avoid overfitting which would describe random 
error instead of the underlying process in a real, noisy 
measurement.

The latter statement is also easy to understand by re-
calling the calculation procedure applied in the convolu-
tion method. A set of data points is multiplied with a set 
of coefficients in order to get the smoothed derivative at 
the middle of the data set and then this “window” is slid 
forwards. Practically, this is a weighted moving average 
which suppresses here not only the transients (in the case 
of noisy data), but the whole peak. As the fitted dataset 
broadens, the suppression is more and more notable.

The following order of decreasing accuracy of the ap-
plied methods can be deduced from Fig. 2 at r = 2: five-
point cubic SG (5pt n = 3), five-point quadratic spline 
(Spline), seven-point cubic SG (7pt n  =  3), five-point 
quadratic SG (5pt n = 2), and seven-point quadratic SG 
(7pt n = 2). It is also obvious that this order is just an im-
pression from the figure and does not take the effect of 
the frequency into account. Furthermore, at higher reso-
lutions the differences between the function and the nu-
merical results decrease with each applied method, hence 
with increasing resolution the use of lower degree poly-
nomials or wider datasets provides also a good result. In 
those measurements where huge amounts of data can be 
collected and these data suffer from considerable noise, 
the use of larger arrays should be considered.

Visual comparison allows important qualitative con-
clusions to be drawn but it lacks the possibility of exact 
numerical characterization of the applied methods. In our 
case the absolute and the relative error is defined as:

and

The lack of the absolute value function in the defi-
nition of the relative error allows this quantity to take 
negative values that show the direction of the deviation 
from the approximated function.

The quantitative results for the Debye, Cole-Cole, 
and Cole-Davidson peaks are given in Fig. 3. Since the 
quadratic Savitzky-Golay approximations are the worst 
ones, only the three other techniques (five-point qua-
dratic spline, five-point cubic SG, seven-point cubic 
SG) are the subjects of our further investigations. Fig. 
3 is technically a matrix, in its rows results for the three 
peaks at one specific resolution, whilst in its columns 
calculations for one specific peak at four different reso-
lutions are presented.

As expected, the accuracy of the approximations 
strongly differs with changing peak shapes. A broader 
peak could be fitted by any of the tested methods with 
an acceptable error. The difference in the absolute and 
relative errors for the Debye and for the Cole-Cole peak 
is about four-five order of magnitude at any resolution. 
Furthermore, the accuracy depends on the measured 
frequency as well, so results near and far from the max-
imum are discussed separately.

Hence the original accuracy order established on the 
basis of Fig. 2. must be reconsidered, or more exactly, 
a detailed one needs to be determined in the light of the 
error calculations. 

At r = 2 spacing, near the maximum of the Debye 
peak the quadratic spline provides the best result, fol-
lowed by the five-point, and the seven-point SG with 
-0.9 %, -3.8 %, -11.7 % absolute, and -1.3 %, -5.0 % 
and -15.4 % relative errors. At lower and higher fre-
quencies the five-point SG claims the first place (-0.02 
% absolute, -15,1 % relative error), the spline is the sec-
ond (-0.04 % absolute, -40.3 % relative error), and the 
seven-point SG is the third best choice (-0.1 % absolute, 
and -127.9 % relative error).

In the case of the Cole-Cole peak at the peak max-
imum the five-point SG is the most accurate method 
(-1.1×10-4 % absolute, -1.5×10-3 % relative error) fol-
lowed by the seven-point SG (-7.2×10-4 %, absolute, 
-8.9×10-3 % relative error) and the quadratic spline 
(6.7×10-3 % absolute, and 8.4×10-2 % relative error). 
In Fig. 3. points for spline divided by ten are plotted 
in order to scale all results to the same order of mag-
nitude. Further from the maximum the same order of 
accuracy can be found with approximately half of ab-
solute errors which means slightly better relative er-
rors (5pt n = 3: 5.4×10-5 % abs., 1.2×10-3 % rel.; 7pt n 
= 3: 3.4×10-4 % abs., 7.2×10-3 % rel.; Spline: -1.4×10-3 
abs., -3.4×10-2 % relative error) in spite of the decreas-
ing function values. 

(2m + 1) n = 2 n = 3

5 (-2,-1,0,1,2)
10 ln r

(1,-6,0,6,-1)
8 ln r

(1,-8,0,8,-1)
12 ln r

7 (-3,-2,-1,0,1,2,3)
28 ln r

(22,-67,-58,0,58,67,-22)
252 ln r

Table 1. bk coefficients used for the calculation of the logarithmic derivative
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As the Cole-Davidson function describes an asym-
metrically broadened Debye peak where the slope of 
the low-frequency wing of the peak is unchanged and 
the slope of the high-frequency wing decreases with de-
creasing β, it could be regarded as a mixture of a Debye 
and a Cole-Cole peak. It behaves in the low-frequen-
cy range like a Debye peak and in the high-frequency 
range as a Cole-Cole peak as observable from the error 
calculations. Values at the characteristic frequency are 
best approximated by the quadratic spline (-0.03 % ab-
solute, -0.2 % relative error), then the five-point SG (-0.3 
% absolute, -1.7 % relative error), and the seven-point 
SG (-1.1 % absolute, and -5.5 % relative error). Close 

to the peak value the five-point SG is the most accurate 
(0.2 % absolute, 0.7 % relative error) then the quadratic 
spline (0.3 % absolute, 1.1 % relative error) and the sev-
en-point SG (0.9 % absolute, and 3.9 % relative error). 
So not only the accuracy order but the direction of the 
difference was changed. All tested methods behave at 
low frequencies similar to the Debye case: 1. five-point 
SG (-2.0×10-3 % absolute, -15.3 % relative error), 2. qua-
dratic spline (-5.4×10-3 % absolute, -40.5 % relative er-
ror), 3. seven-point SG (-1.7×10-2 % absolute, and -130.9 
% relative error), and at high frequencies similar to the 
Cole-Cole case: 1. five-point SG (4.6×10-4 % absolute, 
3.2×10-3 % relative error), 2. seven-point SG (1.1×10-2 % 
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absolute, 7.2×10-2 % relative error), 3. quadratic spline 
(-2.8×10-2 % absolute, -0.2 % relative error).

Doubling the resolution of the spectrum (r = 21/2) re-
arranges the accuracy order in the Debye and the Cole-
Davidson cases. At the maximum value of the Debye 
peak the former two best choices are interchanged: 1. 
five-point SG (-0.4 % absolute, -0.5 % relative error), 2. 
quadratic spline (0.8 % absolute, 1.0 % relative error), 
3. seven-point SG (-1.8 % absolute, and -2.4 % relative 
error), whereas at much lower and higher frequencies 
the order remains the same: 1. five-point SG (-4.5×10-4 

% absolute, -0.8 % relative error), 2. quadratic spline 
(-2.9×10-3 % absolute, -5.3 % relative error), 3. seven-
point SG (-3.0×10-3 % absolute, -5.5 % relative error). 
A strong decrease in the errors could be observed, es-
pecially far from the peak maximum for the quadratic 
spline and the seven-point SG. In the case of the Cole-
Cole function the order is the same as mentioned above, 
but the absolute and the relative errors are so small even 
if we use quadratic spline (0.002 % absolute, and 0.02 
% relative error), that these are completely negligible in 
the evaluation of a real measurement. Since the errors 
decrease with increasing resolution, only the two other 
types of peaks are discussed below.

The best method for the Cole-Davidson function at 
this resolution (r = 21/2) is the five-point SG with the 
highest absolute error of 0.03 % (0.35 % relative error) 
in the peak area, and -5.4×10-5 % (-0.8 % relative er-
ror) in the low-frequency range. The second best choice 
is the quadratic spline with an absolute error of 0.12 % 
(0.54 % relative error) near the maximum and -3.5×10-4 

% (-5.3 % relative error) at low frequencies. The abso-
lute error for the seven-point SG at the maximum is un-
der 1 % (0.17 % absolute, 0.77 % relative error) and 
is close to the absolute error of the spline in the low-
frequency regime (-3.6×10-4 % abs., and -5.5 % rela-
tive error). At high frequencies both the absolute and 
the relative errors of all three methods are much lower, 
practically negligible, which is the effect of the similar-
ity to the Cole-Cole function.

At r = 21/4 logarithmic spacing for Debye peak the 
accuracy order is the following in the whole frequen-
cy range: 1. five-point SG with a highest absolute er-
ror of -0.04% and -0.05% relative error. 2. seven-point 
SG with maximum -0.2 % absolute and -0.3 % relative 
errors. 3. quadratic spline with maximum of 0.3 % ab-
solute and 1.1 % relative errors. From this resolution 
on, all examined techniques are able to approximate the 
sharpest possible derived spectrum with an error (either 
absolute or relative) less than 1 % (even less than 0.5 
%) which is an often used limit in the characterization 
of analytical methods.

For the Cole-Davidson peak the same order holds 
with very similar highest error values: 1. five-point SG 
(-0.003 % absolute, and -0.05 % relative error). 2. sev-
en-point SG (-0.02 % absolute, and 0.3 % relative er-

ror). 3. quadratic spline (0.04 % absolute, 1.1 % rela-
tive error).

At r = 21/8 spacing the previous order is valid for all 
types of peaks used to describe dielectric relaxation pro-
cesses. Even if we use the least accurate one, the qua-
dratic five-point spline, the absolute error remains be-
low 0.1 %, the relative error under 0.3 % for a Debye 
peak, and below 0.01 % absolute, and 0.25 % relative 
error for a Cole-Davidson peak

IV. Conclusions
The accuracy of numerical techniques could depend 

on many parameters, hence we have to apply them very 
carefully. Here we examined the effect of the frequency, 
spectrum resolution and the shape of the peak on the ac-
curacy of the so-called numerical logarithmic derivative 
technique, a versatile tool in the evaluation of dielectric 
relaxation spectroscopy measurements. A well-known nu-
merical method, the Savitzky-Golay convolution method 
for differentiation was chosen for the calculations.

Synthetic dielectric data were generated in the 10-3–
107Hz frequency range with four different resolutions 
(r = 2, 21/2, 21/4, 21/8 logarithmic spacing). Three types of 
peaks were used to investigate the shape effect: the log-
arithmic derivative of the normalized Debye, a normal-
ized Cole-Cole (α = 0.2), and a Cole-Davidson (β = 0.2) 
functions. These are all empirical dielectric relaxation 
functions used frequently.

From visual comparison of the numerical results for 
the Debye peak it can be concluded, that with increas-
ing polynomial degree or decreasing dataset width bet-
ter approximations could be reached even at lower res-
olution (i.e. at r = 2 spacing). As the resolution of the 
spectrum increases, all of the investigated methods give 
good results with an acceptable error. Although apply-
ing higher-than-third degree polynomials is not recom-
mended in order to avoid overfitting, the use of wider 
dataset could be beneficial due to its stronger noise sup-
pression capability.

A quantitative analysis of the investigated methods 
was also done for all the three types of peaks at the four 
different resolutions. In the case of the Cole-Cole func-
tion a definite order in the accuracy can be found. The 
best choice for the differentiation of such a symmet-
rically broadened peak is the five-point Savitzky-Go-
lay method at all resolutions. In the case of Debye and 
Cole-Davidson functions, at lower resolutions there is a 
difference in the order of accuracy near the peak maxi-
mum and far from it. Generally the five-point quadratic 
spline approximates the peak values best, followed by 
the five-point SG, which is in turn the most accurate in 
the low and high frequency regime followed by the qua-
dratic spline. As the resolution increases the five-point 
SG overtake the first place in every range of frequency 
for any of the peak shape, and the accuracy of the sev-
en-point SG also increases. Hence if the spacing can be 
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chosen short enough, wider „windows” in the convolu-
tion procedure can be used.

Summarizing, numerical differentiation techniques 
for logarithmic derivative method must be chosen care-
fully, taking the shape of the relaxation peak, the reso-
lution and possibly the frequency range where the ap-
proximation should be the most accurate into account. 
Although our results support the selection of a proper 
method, the best tactics is the generation of noisy syn-
thetic dielectric data, which properties are almost the 
same as the measured spectrum. In that case we could 
be 100 % sure regarding the reliability of the applied 
numerical technique.
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