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INITIAL DATA GENERATING BOUNDED SOLUTIONS
OF LINEAR DISCRETE EQUATIONS

Abstract. A lot of papers are devoted to the investigation of the problem of prescribed
behavior of solutions of discrete equations and in numerous results sufficient conditions for
existence of at least one solution of discrete equations having prescribed asymptotic be-
havior are indicated. Not so much attention has been paid to the problem of determining
corresponding initial data generating such solutions. We fill this gap for the case of lin-
ear equations in this paper. The initial data mentioned are constructed with use of two
convergent monotone sequences. An illustrative example is considered, too.
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1. INTRODUCTION

We use the following notation: for integers s, q, s ≤ q, we define Zq
s := {s, s+1, . . . , q},

where s = −∞ and q = ∞ are admitted, too. Throughout this paper, using notation
Zq

s, perhaps with other sub- or superscripts, we suppose s ≤ q.
We consider a scalar discrete equation

∆u(k) = f(k, u(k)), (1.1)

where ∆u(k) = u(k+1)−u(k), f : Z∞a ×R → R and a is a fixed integer. Together with
discrete equation (1.1), we consider an initial problem: for a given s ∈ Z∞a determine
a solution u = u(k) of equation (1.1) satisfying the initial condition

u(a + s) = us ∈ R (1.2)

with a prescribed constant us. A solution of initial problem (1.1), (1.2) is an infinite
sequence of numbers {uk}∞k=0 with uk = u(a + s + k), i.e.,

u0 = us = u(a + s), u1 = u(a + s + 1), . . . , un = u(a + s + n), . . .
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such that for any k ∈ Z∞a+s equality (1.1) holds. If f is continuous with respect to
its second argument, then initial problem (1.1), (1.2) depends continuously on initial
data.

Let b(k), c(k) be real functions defined on Z∞a , such that b(k) < c(k) for every k ∈ Z∞a .
We define

ω := {(k, u) : k ∈ Z∞a , u ∈ ω(k)} with ω(k) := {u : b(k) < u < c(k)}

and the closure

ω := {(k, u) : k ∈ Z∞a , u ∈ ω(k)} with ω(k) := {u : b(k) ≤ u ≤ c(k)}.

Define, moreover, B := B1 ∪B2 with

B1 := {(k, u) : k ∈ Z∞a , u = b(k)}, B2 := {(k, u) : k ∈ Z∞a , u = c(k)}.

The following theorem concerning asymptotic behavior of solutions of equation (1.1)
is a particular case of a more general result in [1, Theorem 2].

Theorem 1.1. Let us suppose that f : ω → R is continuous with respect to its second
argument. If, moreover,

f(k, b(k))− b(k + 1) + b(k) < 0

in the case of (k, u) ∈ B1, and

f(k, c(k))− c(k + 1) + c(k) > 0

in the case of (k, u) ∈ B2, then there exists an initial condition

u∗(a) = u∗ ∈ ω(a) (1.3)

such that the corresponding solution u = u∗(k) satisfies the relation

u∗(k) ∈ ω(k) (1.4)

for every k ∈ Z∞a .

Analysing the result given by Theorem 1.1, we conclude that the existence of (at
least one) solution of problem (1.1), (1.3) having the indicated (asymptotic) behavior
characterized by relations (1.4) is stated with no specific corresponding initial data u∗

given. In this paper we particularly try to fill this gap in the linear case. Note that the
questions concerning behavior of solutions of discrete equations are considered, e.g.,
in [1]–[5]. Unfortunately, the problem concerning the determination of corresponding
initial data has not been considered there.
Let us put

f(k, u(k)) := ϕ(k)u(k) + δ(k)
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in (1.1) with ϕ(k), δ(k) : Z∞a → R and consider the corresponding linear equation

∆u(k) = ϕ(k)u(k) + δ(k) (1.5)

together with an initial problem
u(a) = u∗. (1.6)

It is easy to verify that in the linear case Theorem 1.1 takes the form:

Theorem 1.2. Let the inequalities

(1 + ϕ(k))b(k) + δ(k)− b(k + 1) < 0, (1.7)
(1 + ϕ(k))c(k) + δ(k)− c(k + 1) > 0 (1.8)

hold for every k ∈ Z∞a . Then there exists an initial condition

u∗(a) = u∗ ∈ ω(a), (1.9)

such that the corresponding solution u = u∗(k) of equation (1.5) satisfies the inequal-
ities

b(k) < u∗(k) < c(k) (1.10)

for every k ∈ Z∞a .

We note that, geometrically, inequalities (1.7), (1.8) express a strict egress property
of solutions at the boundary of ω.

We consider the following problem:

Problem 1.3. Determine at least one value u∗ such that the corresponding solution
u = u∗(k) of linear problem (1.5), (1.6) satisfies the relations (k, u∗(k)) ∈ ω for every
k ∈ Z∞a , i.e., it satisfies inequalities (1.10) for every k ∈ Z∞a .

The idea of solving this problem goes as follows. We consider a sequence of points

(a + s, c(a + s)), s ∈ Z∞0
and for every fixed s we try to determine a solution u = ucs(a + k), k ∈ Z∞0 of
equation (1.5) such that

(a + s, ucs(a + s)) = (a + s, c(a + s)). (1.11)

We consider the sequence {ucs}∞s=0 with ucs = ucs(a). Due to (1.11), we can expect
that, under some additional conditions, the limit c∗ := lims→∞ ucs (provided it exists)
defines one of the desired values u∗. Similarly, we consider a sequence of points

(a + s, b(a + s)), s ∈ Z∞0
and for every fixed s we try to determine a solution u = ubs(a + k), k ∈ Z∞0 of
equation (1.5) such that

(a + s, ubs(a + s)) = (a + s, b(a + s)). (1.12)

We consider the sequence {ubs}∞s=0 with ubs = ubs(a). Due to (1.12), we can expect
that, under some additional conditions, the limit b∗ := lims→∞ ubs(a) (provided it
exists) defines one of the desired values u∗ as well. Moreover, if c∗ 6= b∗, then we can
expect that every u∗ ∈ [b∗, c∗] solves Problem 1.3.
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2. TWO AUXILIARY SEQUENCES

Based on the described idea, we are going to define elements of two auxiliary sequences
{ucs}∞s=0 and {ubs}∞s=0 explicitly. We consider equation (1.5). The solution passing
through the initial point (a, u(a)) has the form

u(a + s) = u(a) ·
s−1∏
i=0

(1 + ϕ(a + i)) +
s−1∑
i=0

δ(a + i) ·
s−1∏

p=i+1

(1 + ϕ(a + p)). (2.1)

Supposing ϕ(k) 6= −1, k ∈ Z∞a , u(a + s) = c(a + s) (in accordance with (1.11)) and
letting u(a) = ucs, p = j − a in (2.1), we get

ucs =

c(a + s)−
s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

 ·
s−1∏

i=0

(1 + ϕ(a + i))

−1

. (2.2)

Elements of the sequence {ucs}∞s=0 are defined by formulas (2.2). Supposing ϕ(k) 6=
−1, k ∈ Z∞a , u(a + s) = b(a + s) (in accordance with (1.12)) and letting u(a) = ubs,
p = j − a in (2.1), we obtain

ubs =

b(a + s)−
s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

 ·
s−1∏

i=0

(1 + ϕ(a + i))

−1

. (2.3)

Elements of the sequence {ubs}∞s=0 are defined by formulas (2.3). The following lemma
gives an important property of both sequences.

Lemma 2.1. Let ϕ(k) 6= −1, k ∈ Z∞a . Then elements of the sequence {ucs}∞s=0

satisfy the difference equation

uc,s+1 − ucs =
c(a + s + 1)− c(a + s)− ϕ(a + s)c(a + s)− δ(a + s)

s∏
i=0

(1 + ϕ(a + i))
(2.4)

and elements of the sequence {ubs}∞s=0 satisfy the difference equation

ub,s+1 − ubs =
b(a + s + 1)− b(a + s)− ϕ(a + s)b(a + s)− δ(a + s)

s∏
i=0

(1 + ϕ(a + i))
. (2.5)
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Proof. Relation (2.4) holds because in view of (2.2)

uc,s+1 − ucs =
c(a + s + 1)−

s∑
i=0

δ(a + i)
a+s∏

j=a+i+1

(1 + ϕ(j))

s∏
i=0

(1 + ϕ(a + i))
−

−
c(a + s)−

s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

s−1∏
i=0

(1 + ϕ(a + i))
=

=
c(a + s + 1)− δ(a + s)−

s−1∑
i=0

δ(a + i)
a+s∏

j=a+i+1

(1 + ϕ(j))

s∏
i=0

(1 + ϕ(a + i))
−

−

[
c(a + s)−

s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

]
· (1 + ϕ(a + s))

s∏
i=0

(1 + ϕ(a + i))
=

=
c(a + s + 1)− c(a + s)− c(a + s)δ(a + s)− δ(a + s)

s∏
i=0

(1 + ϕ(a + i))
.

Relation (2.5) can be proved similarly with use of (2.3).

Lemma 2.2. Let ϕ(k) > −1 and inequalities (1.7), (1.8) hold for every k ∈ Z∞a .
Then the sequence {ucs}∞s=0 is decreasing convergent and the sequence {ubs}∞s=0 is
increasing convergent. Moreover, ucs > ubs holds for every s ∈ Z∞0 and for the limits
c∗, b∗, where

c∗ = lim
s→∞

ucs, b∗ = lim
s→∞

ubs, (2.6)

the inequality c∗ ≥ b∗ holds.

Proof. The property ucs > ubs, s ∈ Z∞0 , is obvious since c(a + s) > b(a + s) for
every s ∈ Z∞0 . We show that the sequence {ucs}∞s=0 is decreasing. This is a direct
consequence of relation (2.4), since the numerator is negative by assumption (1.8)
and the denominator is obviously positive. So the inequality ucs > uc,s+1 holds for
for every s ∈ Z∞0 .
Inequality ubs < ub,s+1 for s ∈ Z∞0 can be proved similarly with use of relation (2.5)
and condition (1.7). All remaining statements follow from the theory of number
sequences.
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Lemma 2.3. Suppose that ϕ(k) > −1 for every k ∈ Z∞a . Then solutions u(k), U(k),
k ∈ Z∞a , of two initial problems for linear equation (1.5)

u(a) = α and U(a) = β

with α < β satisfy the inequality

u(k) < U(k)

for every k ∈ Z∞a .

Proof. We omit the proof since it is trivial.

Lemma 2.4. Let ϕ(k) > −1 and inequalities (1.7), (1.8) hold for every k ∈ Z∞a .
Then:

a) Solution u = u∗cs(k), k ∈ Z∞a of the problem

u∗cs(a) = ucs, s ∈ Z∞0 (2.7)

for linear equation (1.5) satisfies

u∗cs(k) ∈ ω(k) (2.8)

for k ∈ Za+s−1
a and

u∗cs(a + s) = c(a + s). (2.9)

Moreover,
u∗c,s+1(k) < u∗cs(k) (2.10)

for k ∈ Za+s
a .

b) Solution u∗bs(k), k ∈ Z∞a of the problem

u∗bs(a) = ubs, s ∈ Z∞0 (2.11)

for linear equation (1.5) satisfies

u∗bs(k) ∈ ω(k) (2.12)

for k ∈ Za+s−1
a and

u∗bs(a + s) = b(a + s). (2.13)

Moreover,
u∗b,s+1(k) > u∗bs(k) (2.14)

for k ∈ Za+s
a .

Proof. We remark that relations (2.9), (2.13) hold due to the definition of sequences
{ucs}∞s=0, {ubs}∞s=0. By Lemma 2.2, ucs > ubs, s ∈ Z∞0 . Then, by Lemma 2.3, the
inequality u∗cs(k) > u∗bs(k) holds for every k ∈ Z∞a . Since, by Lemma 2.2, ucs > uc,s+1,
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s ∈ Z∞0 , and ubs < ub,s+1, s ∈ Z∞0 , properties (2.10) and (2.14) are a consequence of
Lemma 2.2 and Lemma 2.3. Let us prove relations (2.8), (2.12). Since

u∗bs(a) < u∗cs(a)

and
u∗b,s+1(a) > u∗bs(a), u∗c,s+1(a) < u∗cs(a),

Lemma 2.3 gives
u∗bs(k) < u∗b,s+1(k) < u∗c,s+1(k) < u∗cs(k).

For k = a + s we get

b(a + s) = u∗bs(a + s) < u∗b,s+1(a + s) < u∗c,s+1(a + s) < u∗cs(a + s) = c(a + s).

The last inequalities can be rewritten as

b(a + s̃) = u∗bs̃(a + s̃) < u∗b,s̃+1(a + s̃) < u∗c,s̃+1(a + s̃) < u∗cs̃(a + s̃) = c(a + s̃).

Consequently, letting s̃ = 0, 1, 2 . . . , s− 1, we see that (2.8) and (2.12) hold, too.

3. MAIN RESULTS

Theorem 3.1 (Main Result). Let ϕ(k) > −1 and inequalities (1.7), (1.8) hold for
every k ∈ Z∞a . Then every initial problem (1.9) with u∗ ∈ [b∗, c∗], where b∗ and c∗

are defined by (2.6), determines a solution satisfying inequalities (1.10).

Proof. The proof is a straightforward consequence of Lemmas 2.2–2.4. For solutions
of the problems u(a) = b∗, U(a) = c∗, there is

b(k) < u(k) ≤ U(k) < c(k)

for every k ∈ Z∞a and
u(k) ≤ ũ(k) ≤ U(k)

for every k ∈ Z∞a if starting point ũ(a) ∈ [b∗, c∗].

Remark 3.2. From the statement of Theorem 3.1 and from the explicit form of
problem (1.5), (1.9) it directly follows that the expression

u(a + s) = u∗ ·
s−1∏
i=0

(1 + ϕ(a + i)) +
s−1∑
i=0

δ(a + i) ·
s−1∏

p=i+1

(1 + ϕ(a + p))

with fixed u∗ ∈ [b∗, c∗] is a solution of problem (1.5), (1.9), satisfying inequali-
ties (1.10).

The following result can be proved easily. Therefore, we omit its proof.

Theorem 3.3. Let ϕ(k) > −1 and inequalities (1.7), (1.8) hold for every k ∈ Z∞a .
Then the initial problem

u(a) = u∇
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with
u∇ ∈ [b(a), c(a)] \ [b∗, c∗]

generates a solution u = u∇(k) of equation (1.5) not satisfying inequalities (1.10) for
a k ∈ Z∞a .

The following two corollaries follow from Theorems 3.1, 3.3.

Corollary 3.4. Let ϕ(k) > −1 and inequalities (1.7), (1.8) hold for every k ∈ Z∞a .
Then a solution u = u(k) of (1.5) satisfies inequalities (1.10) for every k ∈ Z∞a if
and only if u(a) ∈ [b∗, c∗].

Corollary 3.5. Let ϕ(k) > −1 and inequalities (1.7), (1.8) hold for every k ∈ Z∞a .
Let, moreover, b∗ = c∗. Then equation (1.5) has unique solution u = u∗(k) satisfying
inequalities (1.10) for every k ∈ Z∞a . This solution is determined by initial data

u∗(a) = u∗ = b∗.

We find sufficient conditions for the case b∗ = c∗. Let ϕ(k) > −1 and inequalities (1.7),
(1.8) hold for every k ∈ Z∞a . We denote

∆(s) := ucs − ubs, s ∈ Z∞0 .

The length of the interval [b∗, c∗] can be estimated (due to the monotonicity of se-
quences {ucs}∞s=0, {ubs}∞s=0) as

0 ≤ c∗ − b∗ < ∆(s), s ∈ Z∞a .

Moreover,

∆(s) = ucs − ubs =
c(a + s)−

s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

s−1∏
i=0

(1 + ϕ(a + i))
−

−
b(a + s)−

s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

s−1∏
i=0

(1 + ϕ(a + i))
=

=
c(a + s)− b(a + s)
s−1∏
i=0

(1 + ϕ(a + i))
.

The following corollary is obvious.

Corollary 3.6. Let ϕ(k) > −1 and inequalities (1.7), (1.8) hold for every k ∈ Z∞a .
Then

0 < ucs − c∗ < ∆(s), s ∈ Z∞0 ,

0 < b∗ − ubs < ∆(s), s ∈ Z∞0 .
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Theorem 3.7. Let ϕ(k) > −1 and inequalities (1.7), (1.8) hold for every k ∈ Z∞a .
Then b∗ = c∗ if

lim
s→∞

∆(s) = 0.

Proof. From Theorem 1.2, the existence of solution of problem (1.5), (1.9) follows.
We get

c∗ − b∗ = lim
s→∞

c(a + s)−
s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

s−1∏
i=0

(1 + ϕ(a + i))
−

− lim
s→∞

b(a + s)−
s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

s−1∏
i=0

(1 + ϕ(a + i))
=

= lim
s→∞

c(a + s)− b(a + s)
s−1∏
i=0

(1 + ϕ(a + i))
= lim

s→∞
∆(s) = 0.

Consequently c∗ = b∗.

4. EXAMPLE

Let us consider a particular case of equation (1.5), with

ϕ(k) = 2/(k + 1), δ(k) = 2 + exp(−k), a = 2,

i.e., the equation

∆u(k) =
2

k + 1
u(k) + 2 + exp(−k), k ∈ Z∞2 . (4.1)

We are going to show that there exists the unique solution

u = u∗(k), k ∈ Z∞2

of (4.1) satisfying the inequality

k2 < u∗(k) < (k + 1)2 (4.2)

on Z∞2 . Moreover, we are going to determine the initial value u∗ = u∗(2) generating it.

We put
b(k) ≡ k2, c(k) ≡ (k + 1)2, k ∈ Z∞2 .
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Then

(1 + ϕ(k))b(k) + δ(k)− b(k + 1) =
(

1 +
2

k + 1

)
k2 + 2 + exp(−k)− (k + 1)2 =

=
1− k

k + 1
+ exp(−k) < 0

for all k ∈ Z∞2 and inequality (1.7) holds for all k ∈ Z∞2 . Moreover,

(1 + ϕ(k))c(k) + δ(k)− c(k + 1) =
(

1 +
2

k + 1

)
(k + 1)2 + 2 + exp(−k)− (k + 2)2 =

= 1 + exp(−k) > 0.

and inequality (1.8) holds for all k ∈ Z∞2 , too. Then, by virtue of Theorem 3.1, there
exists at least one solution u = u∗(k), k ∈ Z∞2 of (4.1) satisfying

b(k) < u∗(k) < c(k)

and property (4.2) holds. We determine the initial value u∗ = u∗(2). To this end, we
compute c∗ and b∗. Pursuant to (2.6), there is

c∗ = lim
s→+∞

ucs = lim
s→+∞

c(a + s)−
s−1∑
i=0

δ(a + i)
a+s−1∏

j=a+i+1

(1 + ϕ(j))

s−1∏
i=0

(1 + ϕ(a + i))
.

Therefore,

c∗ = lim
s→+∞

(3 + s)2 −
s−1∑
i=0

(2 + e−2−i)
s+1∏

j=3+i

j + 3
j + 1

s−1∏
i=0

j + 5
j + 3

=

= lim
s→+∞

(3 + s)2 −
s−1∑
i=0

(2 + e−2−i) · i + 6
i + 4

· i + 7
i + 5

· · · · · s + 4
s + 2

5
3
· 6
4
· · · · · s + 4

s + 2

=

= lim
s→+∞

[
12(s + 3)

s + 4
− 24

s−1∑
i=0

1
(i + 4)(i + 5)

− 12
s−1∑
i=0

e−2−i · 1
(i + 4)(i + 5)

]
=

= lim
s→+∞

[
12(s + 3)

s + 4
− 24

s−1∑
i=0

(
1

i + 4
− 1

i + 5

)
− 12

s−1∑
i=0

e−2−i · 1
(i + 4)(i + 5)

]
=

= 12− 24 · 1
4
− 12 lim

s→+∞

s−1∑
i=0

e−2−i · 1
(i + 4)(i + 5)

=

= 6− 12
e2

∞∑
i=0

1
ei(i + 4)(i + 5)

.
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Since

lim
s→∞

∆(s) = lim
s→∞

c(a + s)− b(a + s)
s−1∏
i=0

(1 + ϕ(a + i))
=

= lim
s→∞

(s + 3)2 − (s + 2)2

1
12
· (s + 3)(s + 4)

= lim
s→∞

12(2s + 5)
(s + 3)(s + 4)

= 0,

then, by virtue of Theorem 3.7, b∗ = c∗ and there exists only one solution of (4.1)
with properties described above. It is defined by the initial value

u∗ = 6− 12
e2

∞∑
i=0

1
ei(i + 4)(i + 5)

.
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Brno University of Technology
Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering
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