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Abstract. Collocated sun photometer and nephelometer
measurements at Tinga Tingana in the Australian Outback
over the decade 1997–2007 show a significant increase in
aerosol loading following the onset of severe drought condi-
tions in 2002. This increase is confined to the season of dust
activity, particularly September to March. In contrast, back-
ground aerosol levels during May, June and July remained
stable. The enhanced aerosol loadings during the latter 5
years of the study period can be understood as a combina-
tion of dune destabilisation through loss of ephemeral veg-
etation and surface crust, and the changing supply of flu-
vial sediments to ephemeral lakes and floodplains within the
Lake Eyre Basin. Major dust outbreaks are generally highly
localised, although significant dust activity was observed at
Tinga Tingana on 50% of days when a major event occurred
elsewhere in the Lake Eyre Basin, suggesting frequent basin-
wide dust mobilisation. Combined analysis of aerosol opti-
cal depth and scattering coefficient shows weak correlation
between the surface and column aerosol (R2

= 0.24). The
aerosol scale height is broadly distributed with a mode typ-
ically between 2–3 km, with clearly defined seasonal varia-
tion. Climatological analysis reveals bimodal structure in the
annual cycle of aerosol optical depth, with a summer peak
related to maximal dust activity, and a spring peak related to
lofted fine-mode aerosol. There is evidence for an increase in
near-surface aerosol during the period 2003–2007 relative to
1997–2002, consistent with an increase in dust activity. This
accords with an independent finding of increasing aerosol
loading over the Australian region as a whole, suggesting that
rising dust activity over the Lake Eyre Basin may be a sig-
nificant contributor to changes in the aerosol budget of the
continent.
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1 Introduction

Atmospheric particulates or aerosols influence climate both
via direct interaction with the solar and terrestrial radiation
fields, and indirectly through the modification of cloud mi-
crophysics, with effects on cloud reflectance and lifetimes
(Forster et al., 2007). Hence, measuring and understanding
changes in aerosol loading over time are essential to climate
prediction.Wild et al. (2005) reported that the multi-decadal
reduction in solar irradiance at the earth’s surface known
as global dimming had largely reversed over the Northern
Hemisphere around 1990, probably due to reduction in pol-
lution aerosol emissions and their effect on cloud proper-
ties; however continued dimming was noted over Asia due
to growing aerosol emissions. Recently,Wang et al.(2009)
inferred a significant increase in global aerosol loading over
land during the period 1973–2007 from declining visibility
measurements, including a substantial increase in implied
aerosol loading over Australia in the period 2000–2007.

Potential climate effects of aerosol over the Australian re-
gion were recently reviewed byRotstayn et al.(2009b). Al-
though distant from most major aerosol sources in the North-
ern Hemisphere, Australian climate is subject to a number of
known or suspected aerosol influences including increased
rainfall in the north west due to modification of ocean heat
transport caused by East Asian pollution aerosol (Rotstayn
et al., 2007). Australia is a globally significant source of
biomass burning aerosol, with about 10% of global emissions
arising largely from seasonal savanna burning in the tropical
north. While large radiative forcings have been demonstrated
from this source (O’Brien and Mitchell, 2003; Luhar et al.,
2008), its climate implications are yet to be understood.

Australia is the largest dust source in the Southern Hemi-
sphere (Tanaka and Chiba, 2006; Li et al., 2008) with an
emission rate of around 100 Tg/yr or 5% of the global total,
although this value is very model-dependent, with estimates
ranging from 2.5% (Zender et al., 2003) to 15% (Miller et al.,
2004b). Recently,Rotstayn et al.(2009a) showed that inclu-
sion of an interactive aerosol scheme in the CSIRO global
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climate model greatly enhanced its capacity to represent Aus-
tralian rainfall, particularly the increased variability of rain-
fall in the southeast. Furthermore, there was tentative evi-
dence of a connection between increased rainfall variability
and dust aerosol loading, suggesting that dust feedbacks may
be important in understanding Australian climate.

With major dust sources in the Northern Hemisphere ex-
tending from Saharan Africa through the middle east to the
Asian deserts, dust feedbacks on climate have received con-
siderable attention. For example,Miller et al. (2004a) noted
that increased dust load reduces turbulent momentum cou-
pling through the planetary boundary layer, hence reduc-
ing surface wind and applying a negative feedback.Pérez
et al. (2006) explored the potential for improved numerical
weather prediction through realistic treatment of dust in a re-
gional model, whileRodwell and Jung(2008) studied long-
range propagation of dust feedbacks, demonstrating the po-
tential for rainfall effects. The study byHeinold et al.(2008)
underlined the complexity of this issue by pointing out the
potential for both positive and negative dust feedbacks over
strong source regions.Tegen et al.(2004) studied the bal-
ance between natural and anthropogenic dust sources, and
found that future changes in atmospheric dust load are likely
to be controlled by climate change induced effects rather than
through human activities per se.

Understanding the climate impact of Australian dust
aerosol requires better knowledge of the important sources
and how these change over time. The primary dust source
on the Australian continent is the Lake Eyre Basin (LEB), a
drainage basin of roughly 1.2 million km2 contained within
the much larger “arid zone” where the ratio of annual mean
pan evaporation to median rainfall exceeds 30:1. The LEB
comprises a complex mixture of saline lakes, claypans, dune-
fields and stony deserts or gibber. The saline lakes receive
alluvial sediments from inland-flowing river systems, whose
flow is highly intermittent; further details of the geomor-
phology and hydrology of the area can be found inTyler
et al. (1990). The complex relation between dust emission
and geomorphology in this region was studied byBullard
et al. (2008). They found heterogeneous dust sources with
significant contributions from sand dunes, floodplains and
ephemeral lakes (particularly lake margins), overturning a
perception that dry lake beds constitute the major source
(Washington et al., 2003).

The climate impact of aerosol also depends on a knowl-
edge of their optical properties. On this point,Qin and
Mitchell (2009) showed that Australian continental aerosol
occurs in four main groups, one of which they identified as
mineral dust. In common with overseas dusts, Australian
dust shows enhanced absorption in the blue spectral region
due to the iron oxide hematite. There is evidence for higher
hematite levels in dust from the LEB than usually found in
Northern Hemisphere dusts, although the situation is com-
plex as even within the LEB the dust properties are heteroge-
neous (Bullard and White, 2002).

This study investigates the time variation and climatology
of aerosol loading over the Australian arid zone, through the
analysis of a decadal time series of data from an aerosol
ground station located within in the LEB.

2 Observations

The measurements reported here were obtained from the
Aerosol Ground station operated by the Commonwealth
Scientific and Industrial Research Organisation (CSIRO)
at Tinga Tingana in the Strzelecki Desert of South Aus-
tralia (latitude 28.98 S, longitude 139.99 E). This site forms
part of the CSIRO Aerosol Ground Station Network
(AGSNet), affiliated with NASA’s Aerosol Robotic Network
(AERONET). The location of Tinga Tingana within the Lake
Eyre Basin is shown in Fig.1.

In common with all AERONET installations, the station
supports a Cimel sun photometer, model CE318. In addition,
the Tinga Tingana station also includes a model M903 Radi-
ance Research nephelometer, and subsidiary environmental
measuring instruments including a barometer, anemometer
and wind vane. Because the location is remote, data commu-
nication takes place via a satellite telephone, with the entire
system powered by solar panels. The satphone link provides
two-way communications, allowing status monitoring, data
download, and modification of operational parameters as re-
quired.

2.1 CE318 sun photometer

The operation and data quality of the CE318 sun photometers
as deployed by AERONET has been described in detail by
Holben et al.(1998). The performance of these instruments
under conditions prevailing in the Australian outback was
examined byMitchell and Forgan(2003). The latter work
showed that application of advanced calibration techniques
to collocated sun photometers operated at sea level in central
Australia yielded absolute accuracy of 0.007 in aerosol opti-
cal depth at the 95% (2σ ) confidence level. The calibration
strategy in the present study was based on this methodology.

A sun photometer was first installed at Tinga Tingana in
June 1997, and the data set reported here extends to the end
of February 2007. Over this interval, the instrumentation was
maintained by periodic site visits, which included cleaning
and swapout of the sun photometer as required. For cali-
bration purposes, the logarithmic exoatmospheric instrument
response lnV0 in each channel was assumed to vary linearly
with time throughout each of 26 sub-intervals between main-
tenance visits. For each of these, the technique described
by Mitchell and Forgan(2003) was applied, consisting of
(a) identification of “Langley” periods of highly stable atmo-
spheric transmission, allowing high-precision determination
of lnV0 at a reference wavelength, usually 870 nm, and (b) it-
erative application of the general method (Forgan, 1994) with
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Fig. 1. Map showing the Lake Eyre Basin of central Australia. CSIRO Aerosol Ground Stations are located at Tinga Tingana and Birdsville.

proach assumes stability of the aerosol size distribution but,
unlike the standard Langley method, not the aerosol optical
depth. In effect it propagates a high precision estimate of
ln V0 obtained at 870 nm toward shorter wavelengths. Typ-
ically, the uncertainty in ln V0 at 440 nm obtained by this
method is reduced by a factor of ∼2 over that obtained from
direct Langley analysis.

Cloud removal was performed by screening the data
for temporal variations characteristic of clouds, following
Smirnov et al. (2000). First, the data are filtered for short-
term variations by requiring that the coefficient of variation
amongst multiple measurements acquired in a two-minute
sliding window be <1%. Second, the coefficient of varia-
tion for all obervations during a given day is calculated. If
this is <1%, no further tests are applied. If not, data points
more than three standard deviations from the daily mean are
eliminated. This latter step is useful in removing data af-
fected by thin cirrus cloud, that may pass the high freqency
flitering offered by the previous step.

2.2 M903 Radiance Research Nephelometer

Operation of the M903 nephelometer in the Australian Out-
back has been described in detail by Mitchell et al. (2009). In
brief, the instrument reports the aerosol scattering coefficient
at 530 nm of ambient air sampled at 2 m above the surface
and passing through the instrument at a rate of ∼20 Lmin−1.

Mitchell et al. (2009) found a detection limit of ∼0.2 Mm−1

at the 95% confidence level for a 5-minute averaging period.
However, realistic uncertainties are much larger than this,
due to the need to track drifts in instrument response over
time. For the deployment discussed here, they calculated
95% uncertainties in aerosol scattering coefficient of ∼15%
at background levels (∼10 Mm−1), falling to ∼5% for scat-
tering coefficients >100 Mm−1. Mitchell et al. (2009) also
examined the reduction in reported aerosol scattering coeffi-
cient caused by selective loss of large particles at the inlet,
and undersampling of forward scattered radiance in the in-
strument (truncation error). For a particular dust aerosol de-
rived from AERONET inversion of sky radiance data from
Tinga Tingana, these effects combine to reduce the reported
scattering coefficient by a factor of 2.0 under calm condi-
tions, rising to 2.4 at a wind speed of 2 m s−1 due to the
dependence of inlet efficiency on wind speed. The time se-
ries analysis presented in section 3.1 below focuses on the
relative change in scattering coefficient over the deployment
interval, corrected for response drift but not inlet efficiency
or truncation error. However, for calculation of visibility as
considered in section 3.3 it is necessary to consider the latter
corrections.

Fig. 1. Map showing the Lake Eyre Basin of central Australia. CSIRO Aerosol Ground Stations are located at Tinga Tingana and Birdsville.

successively shorter reference wavelengths. This approach
assumes stability of the aerosol size distribution but, unlike
the standard Langley method, not the aerosol optical depth.
In effect it propagates a high precision estimate of lnV0 ob-
tained at 870 nm toward shorter wavelengths. Typically, the
uncertainty in lnV0 at 440 nm obtained by this method is re-
duced by a factor of∼2 over that obtained from direct Lang-
ley analysis.

Cloud removal was performed by screening the data
for temporal variations characteristic of clouds, following
Smirnov et al.(2000). First, the data are filtered for short-
term variations by requiring that the coefficient of variation
amongst multiple measurements acquired in a two-minute
sliding window be<1%. Second, the coefficient of varia-
tion for all obervations during a given day is calculated. If
this is<1%, no further tests are applied. If not, data points
more than three standard deviations from the daily mean are
eliminated. This latter step is useful in removing data af-
fected by thin cirrus cloud, that may pass the high freqency
flitering offered by the previous step.

2.2 M903 Radiance Research Nephelometer

Operation of the M903 nephelometer in the Australian Out-
back has been described in detail byMitchell et al.(2009). In
brief, the instrument reports the aerosol scattering coefficient
at 530 nm of ambient air sampled at 2 m above the surface
and passing through the instrument at a rate of∼20 L min−1.
Mitchell et al.(2009) found a detection limit of∼0.2 Mm−1

at the 95% confidence level for a 5-min averaging period.
However, realistic uncertainties are much larger than this,
due to the need to track drifts in instrument response over
time. For the deployment discussed here, they calculated
95% uncertainties in aerosol scattering coefficient of∼15%
at background levels (∼10 Mm−1), falling to ∼5% for scat-
tering coefficients>100 Mm−1. Mitchell et al. (2009) also
examined the reduction in reported aerosol scattering coeffi-
cient caused by selective loss of large particles at the inlet,
and undersampling of forward scattered radiance in the in-
strument (truncation error). For a particular dust aerosol de-
rived from AERONET inversion of sky radiance data from
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Tinga Tingana, these effects combine to reduce the reported
scattering coefficient by a factor of 2.0 under calm condi-
tions, rising to 2.4 at a wind speed of 2 m s−1 due to the de-
pendence of inlet efficiency on wind speed. The time series
analysis presented in Sect.3.1 below focuses on the relative
change in scattering coefficient over the deployment interval,
corrected for response drift but not inlet efficiency or trunca-
tion error. However, for calculation of visibility as consid-
ered in Sect.3.3 it is necessary to consider the latter correc-
tions.

3 Results and discussion

3.1 Aerosol time series

Figure2shows the time series of monthly mean aerosol prop-
erties at Tinga Tingana over the period 1997–2007, together
with other variables. Data gaps appear as blank intervals
between line segments. The top panel shows aerosol opti-
cal depth at 440 nm (τ440), with aerosol scattering coefficient
at 530 nm (σ sca

530) shown in the middle panel. The elevated
aerosol optical depth during September 2000 resulted from
an incursion of smoke-laden air from extensive fires in the
Pilbara region of north-western Australia, unusual in both
the vast quantity of smoke produced and its advection to the
south. The lack of a corresponding response in the scattering
coefficient identifies this as an elevated layer with little if any
aerosol close to the surface.

A least-squares fit to the entire aerosol optical depth record
indicates a trend of 0.0029 yr−1 with a standard uncertainty
of 0.0015 indicating that the trend is significant at the 95%
confidence level. If the September 2000 datum is removed,
the upward trend increases and is significant at the 99% level.
The enhancement of aerosol optical depth over the decade is
substantial; if all data are considered,τ440 increased from
0.042 to 0.071 or 69%, while if September 2000 is excluded,
the fitted trend indicates a doubling from 0.036 to 0.071.

Linear regression of the time series of scattering coef-
ficient (middle panel) suggests a more marked increase in
near-surface aerosol loading than in the column, with a trend
of 1.27 Mm−1 yr−1, corresponding to a threefold increase in
scattering coefficient over the study period. This trend is
largely driven by an abrupt increase in the amplitude of the
seasonal cycle beyond mid-2002. Before this time, the scat-
tering coefficient shows an annual variation declining from
∼30 Mm−1 in 1999–2000 to<10 Mm−1 in 2001–2002. The
transition after mid-2002 shows the scattering coefficient in-
creasing to its largest recorded monthly mean of 60 Mm−1 in
January 2003. Subsequently, the annual cycle remains well
defined and peaks in January or December, with peak values
in the range 25–50 Mm−1.

Examination of the upper panels in Fig.2 indicates higher
aerosol loading during the austral spring and summer months
with consistently low aerosol during autumn and winter. This

is confirmed by a least-squares fit to the months May, June
and July only. For the aerosol optical depth at 440 nm, this
yields a value of 0.028 with no significant trend at the 1σ

level. Likewise, a least-squares fit to the monthly mean scat-
tering coefficient in May, June and July shows no significant
trend. This suggests long-term stability in the winter time
background aerosol loading, and that the explanation for the
trend observed at other months must be due to changing sea-
sonal dependence of aerosol sources affecting this region,
rather than a general upscaling.

The lower panel of Fig.2 shows the time variation of
rainfall anomaly based on rainfall data from Moomba, lo-
cated 100 km north of Tinga Tingana (see Fig.1), and the
El Niño-Southern Oscillation index Niño 3.4 SST based on
sea surface temperature anomalies in the equatorial Pacific
Ocean (Philander, 1990). Correlation between ENSO and
Australian rainfall is well studied (Nicholls et al., 1996) al-
though poorly understood; other ocean phenomena including
the Indian Ocean Dipole are also under investigation (Um-
menhofer et al., 2009). The rainfall record shows wet periods
in 1998 and 2000, coinciding with La Niña events (negative
ENSO index). The year 2002 saw 11 consecutive dry months
accompanied by a moderate El Niño (positive ENSO index),
which appeared to herald the general increase in seasonal in-
tensity of the aerosol loading in subsequent years. However
there is significant interannual variability that will be further
discussed below.

3.2 Increase in aerosol loading

A number of authors have used visibility reports from mete-
orological stations to study change in aerosol loading, based
on the reciprocal relation between local visual range (visibil-
ity) and aerosol extinction coefficient given byKoschmieder
(1924). Mahowald et al.(2007) found evidence for changes
in dust loading over some regions during the period 1974–
2003, but no coherent global trend nor a significant change
over the Australian region.Lamb et al.(2009) related con-
trasting periods of dust activity over Australia to changing
climate modes in the Pacific Ocean and particularly their ef-
fect on surface winds. This analysis is consistent with the
general reduction in dustiness from 1977 onward relative to
the very active 1960s. Their visibility-based time series cap-
tures the 2002/3 dust peak discussed here, but not those of
2004/5 and 2005/6, a result at odds with the comparable
method ofBullard et al.(2008) for 2004/5 further discussed
in the following section.

Recently,Wang et al.(2009) used visibility measurements
to infer a global increase in aerosol loading since the late
1970s, largely driven by Asia and South America, but with
a significant increase over Australia since 1999. More de-
tailed examination of the Australian time series (kindly pro-
vided in tabular form by the author) shows a positive trend
between October 1999 and December 2005 of∼0.0035 yr−1,
followed by a step of∼0.03, then a further increase at about
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3 Results and discussion

3.1 Aerosol time series

Figure 2 shows the time series of monthly mean aerosol prop-
erties at Tinga Tingana over the period 1997-2007, together
with other variables. Data gaps appear as blank intervals be-
tween line segments. The top panel shows aerosol optical
depth at 440 nm (τ440), with aerosol scattering coefficient
at 530 nm (σsca530) shown in the middle panel. The elevated
aerosol optical depth during September 2000 resulted from
an incursion of smoke-laden air from extensive fires in the
Pilbara region of north-western Australia, unusual in both
the vast quantity of smoke produced and its advection to the
south. The lack of a corresponding response in the scattering
coefficient identifies this as an elevated layer with little if any
aerosol close to the surface.

A least-squares fit to the entire aerosol optical depth record
indicates a trend of 0.0029 yr−1 with a standard uncertainty
of 0.0015 indicating that the trend is significant at the 95%
confidence level. If the September 2000 datum is removed,
the upward trend increases and is significant at the 99% level.
The enhancement of aerosol optical depth over the decade is
substantial; if all data are considered, τ440 increased from

0.042 to 0.071 or 69%, while if September 2000 is excluded,
the fitted trend indicates a doubling from 0.036 to 0.071.

Linear regression of the time series of scattering coef-
ficient (middle panel) suggests a more marked increase in
near-surface aerosol loading than in the column, with a trend
of 1.27 Mm−1 yr−1, corresponding to a threefold increase in
scattering coefficient over the study period. This trend is
largely driven by an abrupt increase in the amplitude of the
seasonal cycle beyond mid-2002. Before this time, the scat-
tering coefficient shows an annual variation declining from
∼30 Mm−1 in 1999–2000 to <10 Mm−1 in 2001–2002. The
transition after mid-2002 shows the scattering coefficient in-
creasing to its largest recorded monthly mean of 60 Mm−1 in
January 2003. Subsequently, the annual cycle remains well
defined and peaks in January or December, with peak values
in the range 25–50 Mm−1.

Examination of the upper panels in Figure 2 indicates
higher aerosol loading during the austral spring and sum-
mer months with consistently low aerosol during autumn and
winter. This is confirmed by a least-squares fit to the months
May, June and July only. For the aerosol optical depth at
440 nm, this yields a value of 0.028 with no significant trend
at the 1σ level. Likewise, a least-squares fit to the monthly
mean scattering coefficient in May, June and July shows no

Fig. 2. Monthly mean time series obtained from the CSIRO aerosol ground station at Tinga Tingana from 1997 to 2007. The top panel
shows aerosol optical depth at 440 nm, the middle panel shows aerosol scattering coefficient at 530 nm, while the lower panel shows rainfall
anomaly and the ENSO index Niño 3.4 SST. The rainfall data were obtained from Moomba, approximately 100 km north of Tinga Tingana.

the previous rate until the end of the time series in 2007. In
order to compare this result with the present data set, we fit-
ted a linear trend line to the time series ofτ440 between Oc-
tober 1999 and February 2007, excluding the smoke-affected
datum of September 2000, yielding a trend of 0.0032 yr−1.
While the close agreement between this local measure and
the regional estimate ofWang et al.(2009) may be fortuitous,
it nevertheless leaves open the possibility that increased dust
load over Tinga Tingana, and by extension, the LEB, may be
representative of an aerosol increase on a continental scale.

3.3 Relation to regional dust sources

Bullard et al.(2008) identified the important geomorphologi-
cal units involved in dust production in the LEB, through ex-
amination of dust plumes in MODIS imagery. The most im-
portant sources were found to be activated dunes, floodplains
and ephemeral lakes and their margins. In addition,Hesse
and Simpson(2006) investigated the relation between dune
mobilisation and loss of vegetation and surface crust. The
interpretation of changes in aerosol load measured at Tinga
Tingana can be understood on the basis of these studies.

The location of Tinga Tingana in the Strzelecki dunefield
close to the arid lake system to the south (Fig.1) suggests
that the dust burden is likely to be controlled by emission
from dunes and ephemeral lakes and their margins. The pe-
riod of low dust activity from 1997–2002 follows from the
effect of rainfall during this period in supporting the growth
of ephemeral dune vegetation and crust formation, suppress-
ing dust emission while at the same time supplying alluvial
fine material to lakes and run-on areas for later deflation.
Measurements byHesse and Simpson(2006) on dunes in the
Strzelecki and Simpson deserts in July 2002 showed large

depths of loose sand, with very low plant cover. This sam-
pling occurred midway through the drought period seen in
the lower panel of Fig.2, so further activation of the dunes is
likely leading up to the 2002/3 dust season. The combination
of this extreme dune activation with large sediment supply to
the nearby lakes explains the very high dust load measured
during the 2002/3 dust season.

Widespread rainfall in 2003 caused re-establishment of
ephemeral cover and surface crust, as reported byHesse and
Simpson(2006) from measurements obtained in September
2004. This is evident in the comparatively small dust season
peak in 2003/4. In subsequent years the dust season intensity
returned to high levels as seen by the scattering coefficient
time series; this also suggests a modest decrease in peak in-
tensity from 2004/5 to 2006/7, possibly related to the limited
supply of erodible material given persistent drought condi-
tions since the 2003 rains.

The relation between the dust activity observed at Tinga
Tingana and that across the LEB is further examined in
Fig. 3. This charts dust activity according to “dust storm
year” (DSY), extending from July to the following June to
avoid division of the summer dust maximum across differ-
ent years. Figure3 shows the number of days per dust storm
year when the scattering coefficient entered the ranges 100-
1000 Mm−1 and>1000 Mm−1 at least once. Episodes in
these ranges are labelled “signifcant” and “major”, as they
denote enhancements over the typical background scattering
coefficient (∼10 Mm−1) by factors of 10–100 and>100 re-
spectively. Also shown is the number of “dust storm days”
(DSD) reported byBullard et al. (2008), defined as the
number of days on which the local visual range fell below
1 km at any of 19 meteorological stations in the LEB itself
or at another station within 250 km of its boundary. The
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cient (∼10 Mm−1) by factors of 10-100 and >100 respec-
tively. Also shown is the number of ‘dust storm days’ (DSD)
reported by Bullard et al. (2008), defined as the number of
days on which the local visual range fell below 1 km at any
of 19 meteorological stations in the LEB itself or at another
station within 250 km of its boundary. The aerosol scattering
coefficient corresponding to 1 km visual range can be esti-
mated from the Koschmieder (1924) relation, V = 3.9/σext.
Hence, for a dust single scattering albedo at 550 nm of∼0.95
(Qin and Mitchell, 2009), the scattering coefficient corre-
sponding to a visual range of 1 km is ∼3700 Mm−1. Ap-
plying a correction factor of 2.4 to relate reported to ambi-
ent scattering coefficient under windy conditions (see sec-
tion 2.2), the corresponding threshold in reported scattering
coefficient is ∼1500 Mm−1.

Figure 3 shows sustained enhancement for both ‘signifi-
cant’ and ’major’ event groups from DSY 2002/3 onwards.
For the three years covered by Bullard et al. (2008), the num-
ber of dust storm days across the LEB is roughly commen-
surate with the number of major dust events at Tinga Tin-
gana. Since the 1 km local visual range defining the dust
storm days is commensurate with the scattering coefficient

of >1000 Mm−1, it is tempting to infer that the nephelome-
ter record at Tinga Tingana is representative of ‘basin-wide’
dust activity.

However, attempts to match the specific set of dust storm
days each year in the Bullard et al. (2008) data set with the
events at Tinga Tingana reveal a different picture. In addition
to the published tally of dust storm days, the authors kindly
provided a list of dates on which the events occurred (Bullard
2009, personal communication). This list was examined for
coincidences with the nephelometer record from Tinga Tin-
gana. Table 1 shows that for the 17 DSDs reported in 2003/4,
on 11 of which Tinga Tingana data were available, only 1
of these recorded a major event, although 7 recorded signif-
icant events. Similar results apply in the other two years,
although the coincidence rate is improved in 2005/6 where
3 out of 6 matching days recorded major events. This re-
sult confirms that major dust outbreaks are sub-basin scale
events, dependent on the detailed geomorphological factors
discussed by Bullard et al. (2008) and Hesse and Simpson
(2006). However, Table 1 also shows that around 50% of
DSDs coincide with σ >100 Mm−1 at Tinga Tingana, sug-
gesting basin-scale dust mobilisation at lower but still signif-

Fig. 3. Comparison of dust events at Tinga Tingana with the Dust Storm Day (DSD) count ofBullard et al.(2008) where available. The
increased incidence in dust event days at Tinga Tingana from 2002/3 on is clear at both the “significant” level (100< σ < 1000 Mm−1) and
the “major” level (σ >1000 Mm−1). Although the diagram suggests a correspondence between DSDs and “major” dust event days at Tinga
Tingana, further analysis reveals that only a small number of the basin-wide DSDs are also seen at Tinga Tingana as “major” events. Equally,
most major event days recorded at Tinga Tingana were not registered as DSDs. However,∼50% of DSDs were associated with “significant”
dust activity at Tinga Tingana.

Table 1. Relation between basin-wide Dust Storm Days as reported byBullard et al.(2008) and dust activity at Tinga Tingana. For each dust
storm year (DSY) the table lists the number of dust storm days, the number of these on which scattering coefficient data were available at
Tinga Tingana, then the number of these on which scattering coefficients in excess of 100 Mm−1 and 1000 Mm−1 respectively were recorded
at least once. The column labelled “TT Total” lists the total number of days on which major dust events were recorded at Tinga Tingana,
while the final column lists the number of major events at Tinga Tingana which were unrecorded in the DSD inventory ofBullard et al.
(2008).

Coincident events at TT TT Total Unreported
DSY DSD Anyσ σ >100 σ >1000 σ >1000 major events

2003–2004 17 11 7 1 11 10
2004–2005 19 13 10 2 15 13
2005–2006 7 6 4 3 8 4

aerosol scattering coefficient corresponding to 1 km visual
range can be estimated from theKoschmieder(1924) rela-
tion,V = 3.9/σ ext. Hence, for a dust single scattering albedo
at 550 nm of∼0.95 (Qin and Mitchell, 2009), the scatter-
ing coefficient corresponding to a visual range of 1 km is
∼3700 Mm−1. Applying a correction factor of 2.4 to relate
reported to ambient scattering coefficient under windy condi-
tions (see Sect.2.2), the corresponding threshold in reported
scattering coefficient is∼1500 Mm−1.

Figure3 shows sustained enhancement for both “signifi-
cant” and “major” event groups from DSY 2002/3 onwards.
For the three years covered byBullard et al.(2008), the num-
ber of dust storm days across the LEB is roughly commen-
surate with the number of major dust events at Tinga Tin-
gana. Since the 1 km local visual range defining the dust
storm days is commensurate with the scattering coefficient

of >1000 Mm−1, it is tempting to infer that the nephelome-
ter record at Tinga Tingana is representative of “basin-wide”
dust activity.

However, attempts to match the specific set of dust storm
days each year in theBullard et al.(2008) data set with the
events at Tinga Tingana reveal a different picture. In addition
to the published tally of dust storm days, the authors kindly
provided a list of dates on which the events occurred (Bullard
2009, personal communication). This list was examined for
coincidences with the nephelometer record from Tinga Tin-
gana. Table1 shows that for the 17 DSDs reported in 2003/4,
on 11 of which Tinga Tingana data were available, only 1 of
these recorded a major event, although 7 recorded significant
events. Similar results apply in the other two years, although
the coincidence rate is improved in 2005/6 where 3 out of 6
matching days recorded major events. This result confirms
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that major dust outbreaks are sub-basin scale events, depen-
dent on the detailed geomorphological factors discussed by
Bullard et al.(2008) andHesse and Simpson(2006). How-
ever, Table1 also shows that around 50% of DSDs coincide
with σ >100 Mm−1 at Tinga Tingana, suggesting basin-scale
dust mobilisation at lower but still significant levels.

As noted byBullard et al.(2008), the sparsity of meteoro-
logical stations across the LEB means that many dust events
go unrecorded by human observers. Another factor concerns
the problem of recording nocturnal events, where usually no
observer is on duty and no visibility estimate is possible. To
complicate matters further, there is a nocturnal bias in the
timing of major dust events at Tinga Tingana from 2002/3
onward, with 75% of records withσ >1000 Mm−1 occurring
between 1800 and 0600 local time. In contrast, events in the
range 100–1000 Mm−1 were unbiased (49% nocturnal).

The right-hand column of Table1 highlights the extent of
these issues by listing the number of major events at Tinga
Tingana in each dust storm year that were unreported in
the tally of DSDs. These range from∼90% in 2003/4 and
2004/5 to 50% in 2005/6, once again emphasising the im-
portance of sub-basin scale dust activity. This issue is be-
ing addressed by engaging members of the outback com-
munity in recording dust activity as part of the DustWatch
initiative (Leys et al., 2008), and by re-analysis of visibil-
ity reports from meteorological station records (O’Loingsigh
et al., 2010).

3.4 Interrelation between aerosol optical depth and
scattering coefficient

As noted above, previous studies have attempted to infer col-
umn aerosol loading from surface visibility estimates (Ma-
howald et al., 2007; Wang et al., 2009). Since visibility is in-
versly related to the aerosol scattering coefficient, the present
data set allows direct assessment of this approach. For an un-
biased comparison between daily mean aerosol optical depth
and scattering coefficient, it is necessary to exclude night-
time nephelometer data, when the sun photometer is inactive.
Day-time means of the nephelometer data were obtained by
averaging the scattering coefficient over the hours 0600-1800
each day. Spectral interpolation was applied to obtain the
aerosol optical depth at 530 nm, based on the values at 440
and 670 nm assuming an̊Angstr̈om-like variation between
them. The reported scattering coefficient was corrected for
calibration drift, truncation error and inlet efficiency assum-
ing calm conditions followingMitchell et al.(2009).

The scatterplot ofτ scaagainstσ sca is shown in Fig.4. The
linear correlation coefficient ofR2=0.24 indicates a weak re-
lation between near-surface and column aerosol. The major-
ity of data are bounded by the region (0< σ sca< 50 Mm−1),
and (0< τ sca< 0.15). Points outside this region show a slight
bias toward cases of high optical depth and low scattering co-
efficient, indicative of lofted aerosol. The opposite case, with

high levels of surface aerosol tailing off rapidly with height,
occurs less frequently but is still significant.

The ratio of aerosol optical depth to scattering coefficient
gives the scale height of the aerosol vertical distribution,
which has not previously been characterised over the Aus-
tralian arid zone. Earlier studies focused on the near-surface
vertical dust profiles (e.g.,Butler et al.(2005), 0–10 m;Mc-
Gowan and Clark(2008), 0–500 m), not sufficiently high to
characterise the aerosol scale height.

The extinction optical depth is defined as the vertical in-
tegral of the extinction coefficient,σ ext. Since the scattering
coefficient is given byσ sca

= $σ ext where$ is the single
scattering albedo, the extinction optical depth and scattering
coefficient are related as

τext
=

∫
∞

0

σ sca(z)

$(z)
dz. (1)

For a well-mixed layer with constantσ scaup to heighth and
zero beyond, the vertical integration yieldsτext

= hσ sca/$ ,
assuming the single scattering albedo is independent of
height. Hence the scale heighth can be derived from the ratio
$τext/σ sca. The same result is obtained for the well-studied
exponential distributionσ sca(z) = σ sca(0)exp−z/h.

The frequency distribution of the scale heighth =

$τext/σ scaover the 10-year study period is shown in Fig.5.
The single scattering albedo$ was assumed to be 0.95 fol-
lowing Qin and Mitchell (2009). The overall distribution
peaks at∼2.5 km, with broad shoulders, particularly towards
large scale heights. During the quiescent months May–July,
the mode scale height is reduced to∼2 km, as expected in
view of a shallower mixed layer and low incidence of lofted
aerosol in the winter season. The period August-November
is characterised by larger scale heights, peaking at 5 km,
and giving evidence for lofted aerosol, with a prominent
shoulder between 6.5–8 km caused by elevated layers such
as the significant smoke incursion of September 2000. The
period December–April covers the summer dust maximum,
and shows a broad peak between 2–5 km indicating a deeper
mixed layer during this season.

These findings amply demonstrate the difficulty of at-
tempting to infer column aerosol loading from surface mea-
sures such as visibility. They also provide a data set of po-
tential value for validating aerosol transport models over the
Australian arid zone.

3.5 Aerosol climatology

Figure6 displays the annual cycles of aerosol optical depth,
scattering coefficient and̊Angstr̈om exponent derived from a
decade of measurements at Tinga Tingana. The plot shows
monthly means and standard deviations over the decade, and
means for the two pentads 1997–2002 and 2003–2007.

The annual cycle of aerosol optical depth is bimodal with
peaks in September and January. The September peak is en-
hanced by the unusually intense smoke plume of year 2000,
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Fig. 4. Scatterplot of aerosol scattering optical depth against aerosol scattering coefficient, both at 530 nm. The optical depths are daily means,
while the corresponding scattering coefficients were obtained by averaging the nephelometer signal over daylight hours. The coefficient of
linear regression between the two variables is R2 = 0.24.

The annual cycle of scattering coefficient (centre panel)
shows a single maximum in January that is heavily influ-
enced by the post-2002 period; no clear cycle is evident in
the pre-2002 period. The lack of a September peak in the
near-surface aerosol identifies the corresponding peak in the
aerosol optical depth as being due to lofted material, while
the strong January feature post-2002 is more closely related
to surface aerosol.

The annual cycle of Ångström exponent shown in the
lower panel confirms that the September peak is associated
with fine particles, and is thus consistent with an influence
from smoke aerosol, although a contribution from other fine
aerosol including dust cannot be ruled out. The reduction in
Ångström exponent through late spring to a weak minimum
in January is consistent with increasing coarse mode aerosol
as dust activity intensifies. The slightly lower values during
the post-2002 period are consistent with a general increase in
particle size, as expected from the greater incidence of sig-
nificant and major dust events capable of entraining larger
particles following the onset of the 2002 drought (see Fig-
ure 3).

A summary of the multi-spectral monthly aerosol clima-
tology at Tinga Tingana is given in Table 2. These data indi-
cate a well-defined aerosol baseline during the non-episodic

months of May, June and July, that remained essentially un-
changed over the decade of the observations. The mean and
standard deviation of the aerosol optical depth during these
months was 0.029±0.002 at 440 nm while the corresponding
scattering coefficient was 7.1±1.7 Mm−1.

4 Conclusions

Observations at a site in the Australian Outback reveal signif-
icant changes in aerosol loading over the decade 1997-2007.
Measurement of both the aerosol optical depth from a sun
photometer and the scattering coefficient using a nephelome-
ter allows analysis of the balance between column-integrated
and near-surface aerosol. Linear regressions suggest approx-
imate doubling of the aerosol optical depth over the study
period, with an even larger enhancement in the aerosol scat-
tering coefficient driven by a persistent increase in the am-
plitude of the summer dust maximum following the onset of
the 2002 drought.

Comparison of changes in aerosol optical depth and scat-
tering coefficient reveal an intensification of near-surface
aerosol activity in the years 2002-2007 relative to the preced-
ing pentad. For both instruments, the changes are confined to

Fig. 4. Scatterplot of aerosol scattering optical depth against aerosol scattering coefficient, both at 530 nm. The optical depths are daily means,
while the corresponding scattering coefficients were obtained by averaging the nephelometer signal over daylight hours. The coefficient of
correlation between the two variables isR2

= 0.24.
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Fig. 5. Frequency distribution of the ratio of scattering aerosol optical depth to aerosol scattering coefficient at 530 nm over the 10-year
study period. This ratio is equivalent to the aerosol scale height. The separate distributions for three parts of the year reflect changes either
in mixed-layer depth or the balance between lofted and surface material.

the months other than May, June and July, during which no
significant trend was observed.

Interannual differences in the intensity of dust seasons dur-
ing the study period confirm the importance of sub-basin
scale processes previously identified including activation of
dunes via the removal of vegetation and surface crusts, and
alluvial supply of erodible material to floodplains and dry
lakes. Major dust events with local visual ranges below 1 km
are usually associated with sub-basin scale deflation. How-
ever, occurrence of a major dust event anywhere in the basin
appears as a ‘significant’ dust event in the Tinga Tingana
record about 50% of the time, suggesting a substantial level
of basin-wide dust activity.

The daily mean aerosol optical depth is weakly correlated
with the scattering coefficient, confirming the difficulty of
using visibility estimates as a proxy for column aerosol. The
aerosol scale height derived from the ratio of aerosol optical
depth to scattering coefficient shows mode values typically
between 2–3 km, with significant broadening due to seasonal
changes in the aerosol vertical distribution.

Examination of the decadal aerosol climatology at Tinga
Tingana shows a bimodal annual cycle of aerosol optical
depth, controlled by coarse-mode dust activity in January,
and fine-mode lofted material in September, most likely due

to smoke aerosol from long-range transport. The low and sta-
ble aerosol levels during the quiescent months of May, June
and July set a baseline for Australian arid zone aerosol opti-
cal depth of 0.029±0.002 at 440 nm, with the corresponding
scattering coefficient at 530 nm of 7.1±1.7 Mm−1.

Finally, the increasing trend in aerosol load over the dust
source region measured here is aligned with an independent
estimate for the entire Australian region, suggesting that in-
creasing dust load may be a significant component of aerosol
change on a continental scale.
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Fig. 5. Frequency distribution of the ratio of scattering aerosol optical depth to aerosol scattering coefficient at 530 nm over the 10-year
study period. This ratio is equivalent to the aerosol scale height. The separate distributions for three parts of the year reflect changes either
in mixed-layer depth or the balance between lofted and surface material.

although it is still evident following removal of this datum.
The plot suggests a post-2002 enhancement of∼0.04 be-
tween November and February.

The annual cycle of scattering coefficient (centre panel)
shows a single maximum in January that is heavily influ-
enced by the post-2002 period; no clear cycle is evident in
the pre-2002 period. The lack of a September peak in the
near-surface aerosol identifies the corresponding peak in the
aerosol optical depth as being due to lofted material, while
the strong January feature post-2002 is more closely related
to surface aerosol.

The annual cycle ofÅngstr̈om exponent shown in the
lower panel confirms that the September peak is associated
with fine particles, and is thus consistent with an influence
from smoke aerosol, although a contribution from other fine
aerosol including dust cannot be ruled out. The reduction in
Ångstr̈om exponent through late spring to a weak minimum
in January is consistent with increasing coarse mode aerosol
as dust activity intensifies. The slightly lower values during
the post-2002 period are consistent with a general increase
in particle size, as expected from the greater incidence of
significant and major dust events capable of entraining larger
particles following the onset of the 2002 drought (see Fig.3).
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Fig. 6. Annual cycle of aerosol optical depth at 440 nm, scattering coefficient at 530 nm andÅngstr̈om exponent (defined on the wavelength
pair 440–870 nm) recorded at Tinga Tingana from 1997 to 2007. The vertical bars correspond to one standard deviation. The open circle
is the mean aerosol optical depth for September, excluding the datum for September 2000 which was unusual in being grossly enhanced by
smoke aerosol advected from fires in north-western Australia. The blue line shows the annual cycle from 1997–2002, while the red line is
for 2003–2007.

Table 2. Climatology of aerosol optical depth and scattering coefficient at Tinga Tingana compiled over the decade 1997–2007. The aerosol
optical depth is given at the four wavelengths common to all sun photometer filter configurations over that period. The rightmost columns
list the aerosol scattering coefficient at 530 nm obtained from an integrating nephelometer.

Aerosol Optical Depth Scat. Coef.
440 nm 670 nm 870 nm 1020 nm 530 nm, Mm−1

Month mean sd mean sd mean sd mean sd mean sd

1 0.090 0.050 0.064 0.034 0.059 0.031 0.064 0.033 25.7 19.4
2 0.063 0.028 0.046 0.026 0.043 0.026 0.049 0.031 20.9 14.0
3 0.045 0.007 0.033 0.007 0.031 0.008 0.035 0.009 13.2 9.4
4 0.046 0.020 0.034 0.020 0.032 0.021 0.036 0.022 9.9 7.6
5 0.031 0.004 0.020 0.003 0.017 0.002 0.020 0.003 8.0 2.3
6 0.027 0.003 0.018 0.004 0.017 0.003 0.020 0.003 6.8 0.9
7 0.028 0.003 0.019 0.003 0.018 0.003 0.020 0.003 6.4 1.2
8 0.044 0.015 0.027 0.008 0.022 0.006 0.023 0.006 6.1 1.2
9 0.114 0.075 0.063 0.040 0.048 0.027 0.044 0.022 10.9 6.7
10 0.074 0.021 0.043 0.012 0.035 0.010 0.034 0.009 13.5 6.9
11 0.066 0.036 0.042 0.022 0.038 0.020 0.039 0.018 11.1 6.4
12 0.074 0.041 0.053 0.027 0.048 0.023 0.049 0.020 16.4 10.9

A summary of the multi-spectral monthly aerosol clima-
tology at Tinga Tingana is given in Table2. These data indi-
cate a well-defined aerosol baseline during the non-episodic
months of May, June and July, that remained essentially un-
changed over the decade of the observations. The mean and
standard deviation of the aerosol optical depth during these
months was 0.029± 0.002 at 440 nm while the correspond-
ing scattering coefficient was 7.1± 1.7 Mm−1.

4 Conclusions

Observations at a site in the Australian Outback reveal sig-
nificant changes in aerosol loading over the decade 1997–
2007. Measurement of both the aerosol optical depth from a
sun photometer and the scattering coefficient using a neph-
elometer allows analysis of the balance between column-
integrated and near-surface aerosol. Linear regressions sug-
gest approximate doubling of the aerosol optical depth over
the study period, with an even larger enhancement in the
aerosol scattering coefficient driven by a persistent increase
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in the amplitude of the summer dust maximum following the
onset of the 2002 drought.

Comparison of changes in aerosol optical depth and scat-
tering coefficient reveal an intensification of near-surface
aerosol activity in the years 2002–2007 relative to the preced-
ing pentad. For both instruments, the changes are confined to
the months other than May, June and July, during which no
significant trend was observed.

Interannual differences in the intensity of dust seasons dur-
ing the study period confirm the importance of sub-basin
scale processes previously identified including activation of
dunes via the removal of vegetation and surface crusts, and
alluvial supply of erodible material to floodplains and dry
lakes. Major dust events with local visual ranges below 1 km
are usually associated with sub-basin scale deflation. How-
ever, occurrence of a major dust event anywhere in the basin
appears as a “significant” dust event in the Tinga Tingana
record about 50% of the time, suggesting a substantial level
of basin-wide dust activity.

The daily mean aerosol optical depth is weakly correlated
with the scattering coefficient, confirming the difficulty of
using visibility estimates as a proxy for column aerosol. The
aerosol scale height derived from the ratio of aerosol optical
depth to scattering coefficient shows mode values typically
between 2–3 km, with significant broadening due to seasonal
changes in the aerosol vertical distribution.

Examination of the decadal aerosol climatology at Tinga
Tingana shows a bimodal annual cycle of aerosol optical
depth, controlled by coarse-mode dust activity in January,
and fine-mode lofted material in September, most likely due
to smoke aerosol from long-range transport. The low and sta-
ble aerosol levels during the quiescent months of May, June
and July set a baseline for Australian arid zone aerosol opti-
cal depth of 0.029± 0.002 at 440 nm, with the corresponding
scattering coefficient at 530 nm of 7.1± 1.7 Mm−1.

Finally, the increasing trend in aerosol load over the dust
source region measured here is aligned with an independent
estimate for the entire Australian region, suggesting that in-
creasing dust load may be a significant component of aerosol
change on a continental scale.
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