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Abstract. The optical properties of sea-salt aerosol have
been parameterized at shortwave and longwave wavelengths.
The optical properties were parameterized in a simple func-
tional form in terms of the ambient relative humidity based
on Mie optical property calculations. The proposed parame-
terization is tested relative to Mie calculations and is found to
be accurate to within a few percent. In the parameterization,
the effects of the size distribution on the optical properties
are accounted for in terms of effective radius of the sea-salt
size distribution. This parameterization differs from previous
works by being formulated directly with the wet sea-salt size
distribution and, to our knowledge, this is the first published
sea-salt parameterization to provide a parameterization for
both shortwave and longwave wavelengths.

We have used this parameterization in a set of idealized 1-
D radiative transfer calculations to investigate the sensitivity
of various attributes of sea-salt forcing, including the depen-
dency on sea-salt column loading, effective variance, solar
angle, and surface albedo. From these sensitivity tests, it is
found that sea-salt forcings for both shortwave and longwave
spectra are linearly related to the sea-salt loading for realis-
tic values of loadings. The radiative forcing results illustrate
that the shortwave forcing is an order of magnitude greater
than the longwave forcing results and opposite in sign, for
various loadings. Forcing sensitivity studies show that the in-
fluence of effective variance for sea-salt is minor; therefore,
only one value of effective variance is used in the parameter-
ization. The dependence of sea-salt forcing with solar zenith
angle illustrates an interesting result that sea-salt can gen-
erate a positive top-of-the-atmosphere result (i.e. warming)
when the solar zenith angle is relatively small (i.e.<30◦). Fi-
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nally, it is found that the surface albedo significantly affects
the shortwave radiative forcing, with the forcing diminishing
to zero as the surface albedo tends to unity.

1 Introduction

In the last several decades, interest in sea-salt aerosol has in-
creased, partly because it is essential for explaining a sig-
nificant portion of the differences in clear-sky top-of-the-
atmosphere irradiance between observations and modeling
results over the oceans (Haywood et al., 1997; Li et al.,
2006). Globally and annually averaged, sea-salt dominates
the radiative transfer in the marine atmosphere compared to
all other types of aerosol in terms of the outgoing shortwave
irradiance at the top-of-the-atmosphere. Accurate sea-salt ra-
diative properties are not only important for the energy bud-
get of the present-day atmosphere, they are also important
for understanding both past and future climate change. As
examples, consider that during the Younger Dryas period,
sea-salt concentrations were higher than at present by a fac-
tor of about three (Alley , 2000). By the end of this century,
IPCC scenarios are predicting an increase in sea-salt burden
based on future global wind patterns and strengths. This
might entail an estimated additional−0.8 W/m2 direct sea-
salt forcing and−1.16 W/m2 indirect forcing (Penner et al.,
2001). However, considerable uncertainties exist with regard
to the magnitude of the sea-salt radiative forcing, especially
the indirect forcing. For example, an increase in sea-salt con-
centrations in the marine boundary layer may lead to either
increased or reduced cloud droplet number concentrations,
depending on the amount of sulphate aerosol and meteoro-
logical situation (e.g.,O’Dowd et al., 1999).
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Figures

Fig. 1. Upper panel, aerosol size distributions from AERONET for all stations. Lower panel for stations only

over ocean with for sites: Bermuda (longitude 295.32, latitude 32.37), Lanai (203.02, 20.82), Azores (331.37,

38.53), Ascension Is. (345.60, -7.97), Barbados (300.50, 13.17), Nauru (166.90, -0.52), Tahiti (210.40, -17.57),

Gadeloup (298.50, 16.32), Midway Is. (182.63, 28.20).
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Fig. 1. Upper panel, aerosol size distributions from AERONET for
all stations. Lower panel for stations only over ocean with for sites:
Bermuda (longitude 295.32, latitude 32.37), Lanai (203.02, 20.82),
Azores (331.37, 38.53), Ascension Is. (345.60,−7.97), Barbados
(300.50, 13.17), Nauru (166.90,−0.52), Tahiti (210.40,−17.57),
Gadeloup (298.50, 16.32), Midway Is. (182.63, 28.20).

The radiative forcing from sea-salt affects a variety of pro-
cesses such as sensible and latent heat fluxes and conse-
quently the static stability of the atmosphere and its general
circulation. Although, shortwave parameterizations of sea-
salt optical properties exist (Dobbie et al., 2003; Winter and
Chýlek, 1997), no parameterization of sea-salt optical prop-
erties appear in the literature for the longwave yet, as they do
for example for sulphates (Li and Min, 2002) and black car-
bon and organic carbon (Bäumer et al., 2007). Dobbie et al.’s
approach is based on a two-mode scheme which separates the
sea-salt size distribution into separate particle size categories
for accumulation mode and coarse mode sea-salt. Here, a
new parameterization for sea-salt longwave and shortwave
optical properties is proposed. The approach is based on
the assumption of variable sea-salt size distributions and an
updated treatment of shortwave optical properties. Sea-salt
particles grow (shrink) in size as relative humidity increases

(decreases) (Tang et al., 1997) changing not only size but
also the water: solute ratio (and hence refractive index). A
key aspect of the work has been to provide an accurate rep-
resentation of the response of sea-salt optical properties and
radiative forcings to changes in relative humidity. In many
models, aerosol optical properties are either fixed or based
on the dry aerosol size distribution for two specified parti-
cle size modes with a corresponding growth factor taken at
a representative humidity. In contrast, it is proposed here
to directly consider the size distribution of the wet sea-salt
aerosol particles for optical properties. This method has the
advantage over previous methods in that it is more precisely
based on the underlying physics related to the sea-salt size
distribution.

To understand the physics for the aerosol radiative forc-
ing, we implemented the proposed parameterization scheme
in a 1D column radiative transfer model. We investigated
the sensitivity of the simulated forcing to variations in effec-
tive radius, effective variance, surface albedo and solar zenith
angle. In contrast to other studies based on global climate
models, this approach allows a more rigorous evaluation of
fundamental aspects of sea-salt radiative forcing.

2 Sea-salt growth rate and size distribution

Sea-salt is generated at the ocean surface by various pro-
cesses, including bubble bursting and the generation of
spume droplets. The bursting of bubbles and subsequent
ejection of jet droplets into the air represents a major source
of sea-salt particles. The jet droplets are solutions of wa-
ter and sodium chloride and other minor inorganic and or-
ganic compounds. In this study, the sea-salt composition is
the same as that assumed by (Tang et al., 1997). Further dis-
cussions of sea-salt production and properties can be found
in Lewis and Schwartz(2004).

After injection, the solution droplets will either grow or
evaporate until thermodynamic equilibrium with the atmo-
sphere is reached or fall back to the sea. As the particle size
varies with respect to the environmental relative humidity,
the concentrations of the solutes in the aerosol particles will
vary accordingly, affecting the aerosol mass density, surface
tension, refractive indexes, and optical properties.

The wet size distribution of sea-salt aerosol is often ap-
proximated by a log-normal distribution (Fitzgerald, 1975),
i.e.,

n(r)=
dN

dr
=

N0
√

2πr ln σ
exp

[
−
(ln r − ln r0)2

2(ln σ)2

]
. (1)

In Eq. (1),r is the radius of the aerosol particle,N0 is the
total number density,r0 is the geometric mean radius andσ
is the geometric standard deviation. The effective radius and
effective variance for the log-normal distribution are easily
obtained as
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re =

∫
∞

0 n(r) r3 dr∫
∞

0 n(r) r2dr
=r0 exp[2.5(ln σ)2] (2)

and

ve =

∫
∞

0 (r − re)
2r2n(r) dr

r2
e

∫
∞

0 r2n(r) dr
= exp[(ln σ)2]−1. (3)

In the Canadian Centre for Climate Modelling and Analy-
sis (CCCma) GCM, the sulphate aerosol size distribution has
previously been simulated based on a bin method (Ma and
von Salzen, 2006) and also based on the more efficient piece-
wise log-normal approximation (PLA) method (von Salzen,
2006). According to the PLA method, pieces of different log-
normal distributions are used within separate sections of the
particle size spectrum for a realistic and flexible representa-
tion of aerosol size distributions. A smaller number of size
sections can be used in simulations with the PLA method
compared to the bin method. This results in a numerically
more efficient and accurate treatment of aerosol size distri-
butions in atmospheric models.

In Fig. 1, the upper panel shows observed aerosol size dis-
tributions according to AERONET (Holben et al., 1998) for a
large number of sites around the world. The lower panel only
shows the results for ocean sites. An important feature for
the observed size distribution in Fig.1 is the bi-modal shape.
The small mode typically corresponds to sulfate aerosol and
sea-salt (from the bursting bubble film), and the large mode
to sea-salt (from jet and spume sources) and mineral dust.
From the available observations it is not straightforward to
distinguish between different types of aerosol, including sea-
salt. In addition, simulated sea-salt distributions from an ex-
perimental version of the CCCma AGCM are shown in Ma
et al. (2008) for the same locations as the AERONET obser-
vations in Fig.1. It is found that the simulated sea-salt dis-
tribution matches reasonably well with the large mode distri-
butions from the AERONET observations, especially for the
ocean sites.

Figure2 shows vertical profiles of the wet aerosol effective
radius and effective variance for globally averaged values
over oceans based on simulations with CCCma AGCM. The
simulated effective radius generally decreases with height
owing to aerosol sedimentation and deposition processes.
The globally averaged values of the effective radii have a
wide range from approximately 1 to 3.5µm. The range is
even larger for individual grid-points in the simulation. In
contrast, the global mean effective variance has a relatively
small range of variation in the lower atmosphere.

In previous studies the dry sea-salt can be categorized into
two modes, an accumulation mode withre=0.732µm and a
coarse mode withre=6.13µm, both with the sameve=0.65,
based on climatologically representative results (Koepke et
al., 1997), in which the mass proportion in the coarse mode is

Fig. 2. Vertical profiles of the oceanic global mean effective radius (left panel), effective variance (middle

panel) and concentration (right panel) for wet sea-salt particles taken from GCMs calculations.
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Fig. 2. Vertical profiles of the oceanic global mean effective ra-
dius (left panel), effective variance (middle panel) and concentra-
tion (right panel) for wet sea-salt particles taken from GCMs calcu-
lations.

considered much larger than for the accumulation mode. We
note that the AERONET results in Fig.1 show wet sizes and
yet the wet observed sea-salt effective radius is similar to the
dry coarse mode effective size for sea-salt assumed above.
Assuming the dry size and applying a humidity growth fac-
tor, that can be between about 1.5–5 (based on Eq. 5), the
set of coarse modes for dry sea-salt will estimate the wet size
that is unreasonably large.

For the growth of aerosol particles, the growth factor,η,
is defined as the ratio of the aerosol particle radiusr at a
specifiedH (the relative humidity normalized to unity) to the
radius of the corresponding dry aerosolrd,

r

rd
=η(rd,H) . (4)

However, for dry particle size larger than 0.1µm the de-
pendence of the wet growth on dry size becomes very weak
except forH close to 100%. All dry sizes studied show sig-
nificant growth factors relative to dry, even for moderateH
values, it is just that some variation of the growth depen-
dence with initial dry size is noted for small aerosol sizes and
high humidities. Therefore, the growth factor is simplified as
η(H). According toLewis and Schwartz(2004, 2006), the
bulk sea-salt growth factor is represented as

η(H) =

(ρd
ρ

1

x

)1/3
(5)

whereρ is the solution density for sea-salt particle,ρd is
the density for dry sea-salt,ρd=2.24 g cm−3 is assumed,x
is the solute weight fraction. FollowingTang et al.(1997),
the solute weight fraction can be obtained from relative hu-
midity through iteration, with the assumption that the relative
humidity equals the water activity, since the surface tension
contribution is generally negligible for theH and particle
size under consideration (Lewis, 2008). Then the solution
density is determined by the solute weight fraction based on
Tang et al.(1997).
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It is useful to consider the relationship between dry and
wet particle sizes. The number of dry particles in the in-
terval from rd to rd+drd is required to equal the number
of wet particles in the interval fromr to r+dr. That is,
nd(rd)d rd=n(r)dr. Consequently, the wet size distribution,
n(r), is related to the dry size distribution,nd(rd), in the fol-
lowing way

nd(rd) → n(r) = nd(r/η)
d(r/η)

dr
. (6)

As the particles grow, the wet size distribution,n(r), shifts
toward larger radius sizes. If we assume the dry particle size
distribution adheres to the log-normal distribution, then the
wet size distribution will be distorted (e.g. stretching) from
the log-normal form for the dry particles, and vice versa.

A wet particle size weighted physical quantityF(r) (e.g.
extinction) can be calculated directly

F̄ =

∫
∞

0
F(r)n(r) dr/N0 . (7)

Based on Eq. (6), the manner in which the wet size distri-
bution is related to the dry size distribution is specified, and
F(r) also can be calculated through the dry size distribution,

F̄ =

∫
∞

0
F(ηrd)nd(rd) drd/N0 . (8)

The assumption thatη is only a function ofH, according
to Eq. (5) in combination with Eq. (6), leads to

re =

∫
∞

0 n(r)r3dr∫
∞

0 n(r)r2dr
≈
η3

∫
∞

0 nd(rd)r
3
ddrd

η2
∫

∞

0 nd(rd)r
2
ddrd

=ηrd e (9)

whererd e is the effective radius for dry size distribution. It
can be easily shown thatve≈vd e, wherevd e is the effective
variance for the dry aerosol.

Although physical properties can in principle be obtained
for wet particle size distributions based on dry particle size
distributions according to Eq. (8), this can be problematic for
modeling. First, sea-salt particle sizes are considerably dif-
ferent from dry particle sizes at typical atmospheric relative
humidities. The conversion from dry to wet sizes therefore
needs to be sufficiently well known for accurate results. Fur-
ther, the assumption of particle effective sizes in radiation
calculations should be consistent with assumptions required
for simulations of atmospheric transport processes, including
sedimentation. Second, a radiation sea-salt optical property
parameterization based on a limited number of dry sizes will
not adequately represent the physics (growth and associated
optical properties) well for much of the potentially diverse
range of effective radii that sea-salt can attain between the pa-
rameterization effective dry sizes. Using a parameterization

based on a few dry effective sizes generally results in inad-
equate results for optical properties when the effective size
is between the parameterization’s chosen sizes when used
in conjunction with a limited number of interpolation points
(see detailed discussion for Figs.4 and5). Therefore it ap-
pears to a be a natural choice to directly calculate sea-salt
optical properties based on wet size distributions in models.

In the early stages of aerosol climate modeling, it was not
possible to predict the wet size distribution of sea-salt. At
best, different fixed dry modes were considered. For exam-
ple, the parameterization (Dobbie et al., 2003) was based on
rd e. Today, more climate models are able to simulate the full
wet size distribution, thus parameterizations for sea-salt op-
tical properties should be consistent with the simulated wet
sea-salt size distribution.

Based on the above argument, we propose a new approach
which directly uses the wet particle distribution. Under the
assumption of equilibrium, the growth factor can be calcu-
lated through the bulk scheme (Lewis and Schwartz, 2004,
2006) to obtain the droplet density and growth rate based on
Tang et al.(1997). This allows the determination of the mo-
lar weights of the dry aerosol and water in the wet particles.
Accordingly, the refractive index for the wet particles can be
determined as the mean of the molar mixing weighted refrac-
tive indexes for the dry particle and water (Tang et al., 1997;
Wang and Martin, 2006). The refractive index for water and
sea-salt are based onVolz (1972); Hale et al.(1973); Shettle
and Fenn(1979).

3 Parameterization of sea-salt optical properties

The sea-salt optical properties typically required in radia-
tive transfer calculations are the extinction coefficient, sin-
gle scattering albedo and asymmetry factor for shortwave ra-
diation and specific absorption coefficient for the longwave
calculations.

The sea-salt optical depth is

τ=WAC lψ , (10)

where l is the geometrical path length, WAC is the wet
aerosol content given by

WAC=
4π

3

∫
ρan(r) r

3 dr , (11)

whereρa is the mass density of the wet aerosols. WACl is
the aerosol loading. In Eq. (7)ψ is the specific extinction

ψ =
π

∫
Qext(λ, r)r

2 n(r) dr

WAC
, (12)

whereQext is the extinction efficiency. The single scattering
albedo,ω, specifies the fraction of total radiation interacting
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with a particle through scattering and absorption processes.
It is defined as

ω=

∫
Qsca(λ, r)r

2n(r) dr∫
Qext(λ, r)r2 n(r) dr

, (13)

whereQsca is the scattering efficiency.
The phase function,P , describes the angular distribution

of scattered photons for scattering events. The normalized
phase function is given by

P(θ, λ)=

λ2

2π2

∫
(i1(θ, r, λ)+i2(θ, r, λ))n(r) dr∫
Qsca(λ, r)r2 n(r) dr

, (14)

whereθ is the scattering angle andi1 andi2 are the squares
of the vertical and horizontal scattering amplitudes, respec-
tively. The asymmetry factor isg, which is the integrated
phase function weighted by the cosine of the scattering angle,
and equates to one third of the first moment of the Legendre
expansion of the phase function.

For the infrared, since the scattering is very weak, the ra-
diative transfer equation can be dramatically simplified (Li ,
2002; Bäumer et al., 2007) and only the absorptance depth,
κ=WAC lξ , is required, whereξ is the specific absorptance
with

ξ=ψ(1 − ω) (15)

Equations (11)–(14) are different from the corresponding
formulae inLi et al. (2001), Li and Min (2002), andBäumer
et al. (2007), since this work is directly based on the wet
particle distribution. The upper bound in integrations for
Eqs. (11)–(14) are set as 25µm (Lewis and Schwartz, 2004).

The parameterization is based on five specified values for
the effective radii for wet sea-salt size (0.732µm, 1.75µm,
and 2.75µm, 4.0µm, and 6.13µm). To obtain the optical
properties for other values of effective radius, a Lagrangian
interpolation technique can be employed.

It was generally believed that the variation in optical prop-
erties for effective variance is smaller than that for the effec-
tive radius. The corresponding radiative impact is also small
for changes in the effective variance. As shown in Fig.2,
GCM results present a relatively small variation in the ef-
fective variance for sea-salt in the atmosphere. According
to the simulation results, in the lower troposphere the value
of the sea-salt effective variance is generally larger than the
commonly used value of 0.65, which was suggested by the
simple two mode dry sea-salt scheme. The sensitivity of the
sea-salt radiative forcing to observed variations in the effec-
tive variance will be discussed in a later section.

In the development of the parameterization, the humidity
was considered to range fromH=0.45 toH=0.99. The crys-
tallization point for sea-salt is at aboutH=0.45. Therefore,
for humidity belowH=0.45 the sea-salt is considered to be
dry. The parameterization for dry sea-salt optical properties

Table 1. Coefficients for the sea-salt parameterization in Eq. (16)–
(18) for 4 band scheme.

The band ranges are 0.2–0.69, 0.69–1.19, 1.19–2.38, 2.38–4µm for bandsi=1,2,3,4

re i ai1 ai2 ai3 bi1 bi2 ci1 ci2
(µm) (m2g−1) (m2g−1) (m2g−1)

0.732 1 1.510 8.619e-1 -1.619e-2 1.117e-7 4.438e-8 .7482 4.828e-2
2 1.378 6.081e-1 -1.190e-2 1.140e-5 6.103e-6 .7558 4.413e-2
3 .9634 3.001e-1 -6.526e-3 7.928e-4 5.915e-4 .7453 3.943e-2
4 .4491 1.384e-1 -3.318e-3 1.964e-1 1.202e-1 .6992 9.346e-3

1.75 1 .5659 3.652e-1 -6.879e-3 2.769e-7 1.347e-7 .7635 3.531e-2
2 .6226 3.835e-1 -7.186e-3 2.704e-5 9.128e-6 .7544 4.505e-2
3 .6251 3.195e-1 -6.057e-3 1.397e-3 6.123e-4 .7630 4.808e-2
4 .4818 1.621e-1 -3.428e-3 1.466e-1 6.311e-2 .7827 3.069e-2

2.75 1 .3410 2.177e-1 -4.115e-3 4.179e-7 2.752e-7 .7854 2.749e-2
2 .3689 2.382e-1 -4.491e-3 4.565e-5 1.441e-5 .7622 3.707e-2
3 .3984 2.382e-1 -4.454e-3 2.218e-3 7.855e-4 .7616 4.748e-2
4 .3797 1.584e-1 -3.048e-3 1.497e-1 4.436e-2 .8000 3.921e-2

4 1 .2291 1.447e-1 -2.735e-3 5.689e-7 4.658e-7 .8036 2.442e-2
2 .2420 1.556e-1 -2.948e-3 6.834e-5 2.253e-5 .7783 2.926e-2
3 .2619 1.669e-1 -3.129e-3 3.323e-3 1.091e-3 .7653 4.247e-2
4 .2772 1.385e-1 -2.550e-3 1.643e-1 3.287e-2 .8072 4.410e-2

6.13 1 .1506 9.445e-2 -1.786e-3 8.133e-7 7.309e-7 .8195 2.357e-2
2 .1562 9.888e-2 -1.876e-3 1.019e-4 3.670e-5 .8000 2.391e-2
3 .1653 1.067e-1 -2.013e-3 5.079e-3 1.707e-3 .7795 3.384e-2
4 .1810 1.055e-1 -1.929e-3 1.914e-1 2.375e-2 .8147 4.527e-2

is also provided based on the same effective radii and effec-
tive variances as for the wet case.

For the optical properties in the shortwave range, the
wavelengths from 0.2 to 4µm are considered, with 25 single
wavelength results. In the infrared, wavelengths from 4 to
1000µm are considered, with 39 single wavelength results.
Aerosol optical properties as functions of wavelength are
much smoother than gaseous optical properties. Therefore,
even in a correlatedk-distribution model, the aerosol optical
properties are treated based on the band averaged results. For
shortwave radiation, the band average is obtained through a
weighting of the results for each single wavelengths by the
incoming shortwave spectrum at the top of the atmosphere.
A weighting at the top of the sea-salt layer could also be con-
sidered but variations in sea-salt layer height and variations
in the gaseous concentrations make this a considerable task
with minimal benefit.

The band averaged specific extinction coefficient, single
scattering albedo and asymmetry parameter for each band,i,
are parameterized in the following way:

ψi = ai1+a
i
2H+

ai3

(H−1.05)
(16)

1−ωi = bi1+b
i
2H (17)

gi = ci1+c
i
2H , (18)

The form of the parameterizations are chosen because of
their simple form. The parameterization coefficientsain, b

i
n,

andcin are obtained by least squares fitting to the exact Mie
calculation results. For each value of a reference effective
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Fig. 3. The variation of the optical properties of specific extinction coefficient, single scattering co-albedo

and asymmetry parameter as functions of relative humidity for sea-salt. Two effective radii are considered as

re = 1.5µm (left column ) and re = 3µm (right column), both for an effective variance ve = 0.65. The

theoretical calculations are shown as solid lines and the results by the proposed parameterization with a 5-point

Lagrangian interpolation are indicated by dotted lines. Note, any bias is due to the interpolation scheme and not

due to the fitting at parameterization effective sizes. Circles identify dotted and solid lines for the same band.
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Fig. 3. The variation of the optical properties of specific extinction
coefficient, single scattering co-albedo and asymmetry parameter as
functions of relative humidity for sea-salt. Two effective radii are
considered asre=1.5µm (left column) andre=3µm (right column),
both for an effective varianceve=0.65. The theoretical calculations
are shown as solid lines and the results by the proposed parame-
terization with a 5-point Lagrangian interpolation are indicated by
dotted lines. Note, any bias is due to the interpolation scheme and
not due to the fitting at parameterization effective sizes. Circles
identify dotted and solid lines for the same band.

radius and each effective variance, a group of values forψi ,
ωi andgi is provided. Results forain, b

i
n, andcin are shown in

Table 1 for a 4 band scheme. The variation of 1− ωi andg
are relatively smaller compared toψi , therefore linear fitting
can produce accurate results with relative error less than 1%.

Similar to the treatment for shortwave radiation, a band
averaged weighted mean is applied to the longwave param-
eterization. The average value of specific absorptance for
bandi is defined as,

ξi=

∫
1λi

ξλBλ(T )dλ/

∫
1λi

Bλ(T )dλ . (19)

whereBλ(T ) is the Planck function at wavelengthλ, T is
the temperature and1λi is the spectral interval for band
i. Eq. (19) is physically similar to the Chandraskhar mean.
T=273K is used in the weighting process since sea-salt
is mostly located in the lower atmosphere. Similarly,ξi is
parametrized as

ξi=d
i
1+d

i
2H+

d i3

(H−1.05)
. (20)

In contrast to the shortwave case, in which the spectral
range of the 4 band scheme is a popular choice (Dobbie et
al., 1999), there is significant variations in the band structures
of different radiation algorithms for the longwave. There-
fore, we do not provide any band averaged coefficients for
the longwave (to obtain coefficients for individual band av-
eraging, contact the corresponding author).

For shortwave wavelengths, it is found that the specific
extinction shows a completely different behavior in response
to changes inH for different values of the effective radius.
However for the longwave, the behavior of specific absorp-
tance in response to changes inH is very similar for different
values of the effective radius. In the shortwave wavelength
range, the ratio of the wavelength to particle size is small;
while for the infrared the ratio is very large. From Mie theory
the absorption is more sensitive to this ratio only when the ra-
tio is small. We parameterize the longwave optical property
based on the same five values ofre in order to achieve the
accurate result and consistency with the treatment for short-
wave radiation.

It is found that the parameterized optical properties as
functions of relative humidity match very well the results
from exact Mie calculations for the five selected values of
the effective radiusre. The sea-salt optical properties for
other values can be obtained through Lagrangian interpola-
tion between the five values ofre (Table 1). As an illustration,
Figure3 shows interpolated results for sea-salt atre=1.5µm
andre=3µm, both withve=0.65. It is found that the interpo-
lated results generally agree very well with Mie calculations.
The relative error of specific extinction coefficient is within
2%. The relative error for the asymmetry factor in band 4
at re=1.5µm is within 0.4%. Overall, the results in Fig.3
illustrate that the simple parameterization developed here is
able to provide accurate values for the optical properties at
arbitrary values ofre.

In Fig.3, it is interesting to note that the specific extinction
coefficient is largest for band 3. For aerosol with small size,
usually the specific extinction is larger for smaller shortwave
wavelength, thus the largest specific extinction would be ex-
pected to occur for band 1. We find this is true for the case
with re=0.732; however for larger particle sizes, the back
scattering becomes weaker and absorption becomes stronger.
These two effects reduce the extinction at short wavelengths
(where scattering is important) and enhance the extinction in
the longer wavelengths (where absorption is important).

As mentioned above, in principle the aerosol optical prop-
erties can also be calculated based on dry size distributions
according to Eq. (8). We can use the approximate relation-
shipre≈η rd e with η given by the parameterization shown in
Lewis and Schwartz(2006) to determine optical properties
in terms ofrd e. Also, for a givenrd e, the Lagrangian inter-
polation can be used to create the sea-salt optical properties
based on the pre-calculated results for a number ofrd e. On
the other hand, the two mode dry schemeDobbie et al.(2003)
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cannot be expected to work in this case, since an interpola-
tion based on only two points is not sufficiently accurate.

Here we used an 8-point Lagrangian interpolation method
based onrd e=0.35, 0.5, 0.732, 1.2, 1.75, 2.75, 4 and
6.13µm. Note that this includes the valuesrd e=0.732 and
6.13µm which allows direct comparisons with results from
the two mode dry scheme. Although more Lagrangian inter-
polation points are used than for the wet approach shown in
Fig. 3, the results for the dry approach shown in Fig.4 are
overall poor compared to Fig.3. In Fig. 4, the errors are rel-
atively small for the single scattering albedo and asymmetry
factor, but errors are large for the specific extinction coeffi-
cient, especially for large values ofH. Even the 8-point La-
grangian interpolation cannot produce sufficiently accurate
results under these conditions. In order to obtain accurate
results, a much higher number of interpolation points would
be required. However, from the direct wet method, a few
interpolation points can produce very accurate results.

These results give evidence that simulations of sea-salt op-
tical properties in climate models should be directly based on
the wet size distribution. While it is possible to determine
optical properties for dry particles based on wet particles, the
opposite is less straightforward.

4 Physics of sea-salt radiative forcing

In order to quantify the radiative impact of sea-salt, we
use a one-dimensional radiative transfer model. A one-
dimensional radiative transfer model has the advantage over
a General Circulation Model that it is much easier to analyze
fundamental factors that determine the sea-salt direct forcing.
More general results for sea-salt direct forcings in the global
atmosphere were previously published byMa et al.(2008).

The radiation algorithm of the Canadian Centre for Cli-
mate Modelling and Analysis is used here. This radiation
model is a correlatedk-distribution scheme for gaseous trans-
mission (Li and Barker, 2005). For shortwave radiation, wa-
ter vapor, CO2, O3, CH4 and O2 are considered for gaseous
transmission. For longwave radiation, water vapor, CO2,
O3, CH4, O3, CH4, N2O, CFC11, and CFC12 are consid-
ered for gaseous transmission. For cloud and aerosol optical
properties, there are 4 bands covering 0.2–4µm and 9 bands
covering from 4–1000µm. We will present forcing calcula-
tions for standard atmospheric profiles for mid-latitude sum-
mer (MLS) and sub-Arctic winter (SAW) fromMcClatchey
(1972). Selected shortwave and longwave radiative forcing
results evaluated at the tropopause (200 mb) and surface will
be presented. The sensitivity of forcing to the total loading,
the surface albedo, the solar zenith angle and dependence of
effective variance will be investigated.

First, the radiative forcing is calculated using the sea-salt
effective radius, effective variance and concentration profiles
shown in Fig.2. The vertically integrated loading shown
in Fig. 2 is 0.136 gm−2. By converting the wet concentra-

Fig. 4. The same as Fig. 3 but parameterization is based on a dry aerosol size distribution with an 8-point

Lagrangian interpolation.
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Fig. 4. The same as Fig.3 but parameterization is based on a dry
aerosol size distribution with an 8-point Lagrangian interpolation.

tion to dry concentration using equilibrium theory, we obtain
a global oceanic mean dry sea-salt loading of 0.0133 gm−2.
This value is in good agreement with corresponding results
from other models that were used in the AEROCOM project
(Schulz et al., 2006). Note, that the concentration in Fig.2
is the oceanic global mean, which is supposed to be higher
than the global mean result since the sea-salt concentration is
much lower over land.

In order to study the response of the forcing to the sea-
salt loading, the sea-salt loading is varied from 0 to 2.0 gm−2

by scaling the concentration profile in Fig.2. The observed
maximum sea-salt loading is generally less than 0.2 gm−2

(Holben et al., 1998). Results are shown in Fig.5. The forc-
ing is defined as the difference in the net radiative flux at
200 mb from two simulations, one with and the other without
the aerosol. Also the forcing at surface is shown. In Fig.5,
the solar zenith angle is set to be 53◦ which represents the
daily average value for the global mean. The surface albedo
is set to 0.1.

It is shown in Fig.5 that for an oceanic global mean load-
ing of 0.136 gm−2, the sea-salt shortwave radiative forcing at
200 mb and surface is about 10 Wm−2. The longwave forc-
ing is about 1 Wm−2 at the surface and negligible at 200 mb.
It is interesting to note that the response in forcing is almost
linearly related to the loading, even for the high loading value
of 0.5 gm−2.

Generally, the sea-salt optical depth in the simulations is
very small, thus the radiative effect of sea-salt could in prin-
ciple be treated as a perturbation. For sufficiently small per-
turbations, the response to a perturbed quantity is usually
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Fig. 5. The sea-salt shortwave radiative forcing (upper panels) and longwave radiative forcing (lower panels) at

200 mb (dashed lines) and at surface (solid lines). Two atmospheric profiles of MLS (middle latitude summer)

and SAW (sub-Arctic winter) are considered. The sea-salt vertical profiles of re, ve and concentration are the

same as for Fig. 2. Concentrations are scaled linearly relative to the profiles shown in Fig. 2 (as discussed in the

text). The corresponding thick lines refer to results for the same input conditions but with a low cloud located

between 751 to 822 mb with a liquid water content of 0.28 gm−3.
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Fig. 5. The sea-salt shortwave radiative forcing (upper panels)
and longwave radiative forcing (lower panels) at 200 mb (dashed
lines) and at surface (solid lines). Two atmospheric profiles of MLS
(middle latitude summer) and SAW (sub-Arctic winter) are consid-
ered. The sea-salt vertical profiles ofre, ve and concentration are
the same as for Fig.2. Concentrations are scaled linearly relative
to the profiles shown in Fig.2 (as discussed in the text). The cor-
responding thick lines refer to results for the same input conditions
but with a low cloud located between 751 to 822 mb with a liquid
water content of 0.28 gm−3.

linear, even for a non-linear problem (see the later discussion
of Eq. 21). The simulated forcings are different for MLS and
SAW despite identical aerosol properties in the calculations.
The SAW atmosphere is drier. This produces less attenuation
(i.e. sum of scattering and absorption) of shortwave radiance
by water vapor above the layer with high sea-salt concentra-
tions in the lower atmosphere. The relatively large incident
shortwave flux produces a larger sea-salt forcing compared to
MLS case. The sea-salt shortwave forcing is slightly lower
at 200 mb in comparison with the forcing at the surface, for
a given loading. At 200 mb, the shortwave forcing is mainly
caused by the change of upward flux due to scattering by the
sea-salt, while at the surface the shortwave forcing is mainly
caused by the attenuation of the downward flux.

For the longwave, the radiative forcing is about one order
of magnitude smaller than the corresponding shortwave forc-
ing and is opposite in sign. The negative shortwave forcing
means that the sea-salt acts to reduce the shortwave energy
reaching the lower troposphere and thus causes a cooling,
whereas the positive longwave forcing means that the sea-salt
acts like a greenhouse gas in that it acts to prevent radiation
loss to space. In a similar fashion to the shortwave forcing
in which the change is mainly caused by the change in the
upward flux, the longwave forcing at surface is caused by the
change in the downward flux. Aerosols can reduce the down-
ward flux of the longwave radiation and also can enhance the
emission to the surface. The aerosol longwave direct forcing
for the downward flux is determined by these two opposing
factors.

Fig. 6. The sea-salt shortwave radiative forcing versus surface albedo. The atmospheric profile and sea-salt

vertical profiles are the same as in Fig. 2. The solar zenith angle is 53◦.
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Fig. 6. The sea-salt shortwave radiative forcing versus surface
albedo. The atmospheric profile and sea-salt vertical profiles are
the same as in Fig.2. The solar zenith angle is 53◦.

The sea-salt longwave forcing is extremely small at
200 mb, generally less than 0.1 Wm−2. In order to explain
the weak infrared forcing at the tropopause, a simple analyt-
ical approach has been developed. We first assume that the
sea-salt is located in the lower atmosphere. For simplicity,
we assume an isothermal longwave radiation source, i.e. a
constant Planck function,B, for the temperature at the mid-
dle of the aerosol layer. The solution for the upward flux
for longwave radiative transfer through such aerosol layers is
given by (Li , 2002),

F↑
=F

↑

0 e
−κ/µ1+(1 − e−κ/µ1) B , (21)

whereκ is the total absorptance depth with no aerosol contri-
bution,F↑ is the upward out-going flux from the considered
layer andF↑

0 is the incoming flux from the surface, 1/µ1 is
the diffusivity factor. Assuming the aerosol layer with ab-
sorptance depth1κ(1κ<<κ), the forcing is

1F↑
=−F

↑

0 e
−(κ+1κ)/µ1 − (1−e−(κ+1κ)/µ1)B

+F
↑

0 e
−κ/µ1 + (1−e−κ/µ1)B≈(F

↑

0 − B)e−κ/µ11κ . (22)
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In the lower atmosphere, the difference in temperature be-
tween the atmosphere and surface is small. Therefore the
values ofF↑

0 andB are similar and the forcing is small. Gen-

erallyF↑

0 >B, thus the longwave forcing at the tropopause is
positive, but the sign of the forcing may change if there is a
strong temperature inversion in the lower atmosphere.

Equation (22) can be used to interpret the linear response
of shortwave and longwave forcing to the loading as shown
in Fig.5. In the shortwave case, the forcing calculation is less
straightforward compared to the longwave owing to scatter-
ing of shortwave radiation. However, a linearized treatment
is appropriate for both forcings owing to relatively small per-
turbations (see previous discussion).

The thick lines in Fig.5 show the sea-salt forcing un-
der the same condition but with a low cloud appearing be-
tween 751 to 822 mb (the cloud liquid content is specified as
0.28 gm−3). The introduction of a cloud acts to reduced the
sea-salt forcing for both cases because the back scattering of
shortwave radiation is dominated by the cloud.

Similarly, the response of the shortwave forcing to vari-
ations in surface albedo is shown in Fig.6. The aerosol
concentration is given in Fig.2 and the solar zenith angle
is the same as for Fig.5. The ocean is optically dark with
an albedo that is generally less than 0.1. We note that sea-
salt over highly reflective surfaces such as sea-ice can have a
dramatic impact on the forcing, leading to large reduction in
the magnitude of the forcing as the albedo of the surface ap-
proaches unity. This is easy to understand for the shortwave
forcing at the surface since the magnitude of the net short-
wave flux at the surface diminishes as the surface albedo ap-
proaches unity. For the forcing at 200 mb, the reduction of
the magnitude of the forcing is mostly caused by a reduc-
tion in the difference in the reflected upward fluxes (with and
without aerosol input). Over a high albedo, more photons are
reflected back to the space, and so the effect of reflection by
the aerosol layer does not make a significant difference to the
total reflection, so the effect on the forcing is minimal. The
sea-salt shortwave forcing also varies with the solar zenith
angle. For Fig.7, the sea-salt input is the same as for Fig.6
but with a solar zenith angle varying from 0 to 90◦ and for a
surface albedo of 0.1. It is found for both the MLS and SAW
that the shortwave forcing is positive for zenith angles less
than about 30◦. For larger solar zenith angles, the shortwave
forcing becomes negative. Therefore the commonly accepted
concept of negative sea-salt shortwave forcing does not ap-
ply under these circumstances. The sign of sea-salt forcing
is highly dependent on the direction of incoming shortwave
radiation. When the solar zenith angle is small, the scattering
by the sea-salt is mostly downwards. Effects of sea-salt on
downward scattering are relatively small so that the fluxes do
not depend strongly on the amount of sea-salt. However, the
shortwave flux reflected by the surface and escaping to space
is reduced by the absorption in the sea-salt layer at near in-
frared bands. For larger solar zenith angles, the up-scatter

Fig. 7. The sea-salt shortwave radiative forcing versus solar zenith angle. The atmospheric profile and sea-salt

vertical profiles are the same as for Fig. 2. A surface albedo of 0.1 is assumed.
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Fig. 7. The sea-salt shortwave radiative forcing versus solar zenith
angle. The atmospheric profile and sea-salt vertical profiles are the
same as for Fig.2. A surface albedo of 0.1 is assumed.

from the sea-salt increases as the incident angle increases. In
this case, the strong forward scattering in the phase function
begins to contribute to the up-scatter and hence reflection.

The negative shortwave forcing does not increase mono-
tonically with solar zenith angle, and for very large angles
the magnitude of the forcing becomes very small. Two com-
peting factors are important. As the solar zenith angle gets
larger, the incoming radiation is more horizontal in direc-
tion. This is associated with an increased probability that
the strong forward diffraction peak will contribute to the up-
scatter and reflection. On the contrary, the increased solar
zenith angle decreases the flux to the sea-salt layer. In the
limit of grazing incident radiation, the flux and consequently
forcing tends to zero. The result of the competition of these
two processes is a maximum negative forcing at about 75◦.

It is worthy to point out the positive solar forcing found
here does not occur for sulfate aerosols. For sulfate aerosol,
our calculations show that the radiative forcing for sulfate
aerosol is always negative even at 0◦ solar zenith angle. The
particle size of sulfate aerosol is about one order smaller than
that of sea-salt. The forward scattering therefore is weak and
above physical explanation of positive forcing does not ap-
ply.
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Fig. 8. The differences in radiative forcing between constant ve against the results of Fig. 5 (clear sky case)

with ve profile shown in Fig. 2. All other input parameters are the same as those for Fig. 5 (clear sky case).

∆ve1 = ve(0.4)− ve(Fig.2) represents the results for constant ve = 0.4 relative to the results for ve from the

profile shown in Fig. 2. ∆ve2 = ve(0.8) − ve(Fig.2) represents the results for constant ve = 0.8 relative to

the results for ve from the profile shown in Fig. 2. Circles identify dotted and solid lines for the same effective

variance.
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Fig. 8. The differences in radiative forcing between constantve
against the results of Fig.5 (clear sky case) withve profile shown
in Fig. 2. All other input parameters are the same as those for Fig.5
(clear sky case).1ve1=ve(0.4)−ve(Fig.2) represents the results
for constantve=0.4 relative to the results forve from the profile
shown in Fig.2. 1ve2=ve(0.8)−ve(Fig.2) represents the results
for constantve=0.8 relative to the results forve from the profile
shown in Fig.2. Circles identify dotted and solid lines for the same
effective variance.

The positive shortwave forcing for small solar zenith angle
may partly explain small negative sea-salt shortwave forc-
ing observed in the tropics, since small solar zenith angles
occur more frequently in the tropics compared to the extra-
tropics. Of course, another very important reason for small
shortwave sea-salt forcings in the tropics is the relatively low
wind speed compared to the extratropics which are generally
associated with lower production rates for sea-salt particles.

The aerosol effective radius plays a critical role in radia-
tive transfer. This is particularly true for the shortwave spec-
trum. For a given aerosol burden, smaller particles reflect
more shortwave energy to space relative to large particles.
This is because smaller particles have a much smaller for-
ward scattering peak. However, the differences in forcing for
changes in effective variance are not believed to be impor-
tant for radiative forcing (Chýlek and Wong, 1995). To our
knowledge, this has not been verified with calculations using
observed values ofve in the real atmosphere. In order to in-
vestigate the impact ofve on forcings, we used the same sea-
salt input as for Fig.5, but replaced theve profile shown in
Fig. 2 with two constant valuesve=0.4 and 0.8, respectively.
The differences in forcings forve=0.4 (ve=0.8) relative to
the results for Fig.5 with a vertically varyingve taken from
Fig. 2 are shown in Fig.8. According to Fig.8, results are
not sensitive tove for both shortwave and longwave. The
maximum difference is less than 0.2 Wm−2. Compared to
the results in Fig.5, the relative difference in the forcings is
very small. Asve increases, compensating effects of greater
numbers of larger and smaller particles as well as a reduc-

tion in the mid-range lead to this effect. We therefore use
ve=0.65, as presented in Table 1.

5 Conclusions

We have presented a new parameterization of the shortwave
and longwave optical properties for sea-salt aerosol. The
shortwave part of the parameterization represents an im-
provement over previous work (Dobbie et al., 2003) by using
an efficient method for the calculation of the optical prop-
erties based on the wet sea-salt aerosol size distribution. For
the longwave, we note this to be the first parameterization for
sea-salt optical properties to appear in the literature. The pa-
rameterization is based on results from Mie calculations for
five values of the effective radius. A Lagrangian interpolation
is proposed to obtain results for other values of the effective
radius. Results for sea-salt aerosol optical properties are in
better agreement with Mie calculations for a wide range of
aerosol particle sizes compared to a two mode scheme based
on dry sea-salt aerosol size distribution.

It is shown that the effective variance has only a small im-
pact on sea-salt radiative forcings, based on values of the ef-
fective variance varying from 0.5 to 0.8 for the studied atmo-
spheric profiles. We have therefore used a single value for
this parameterization ofve=0.65.

Variations in sea-salt size distributions in terms of effective
radius and sea-salt column loading have been shown to have
a strong impact on radiative forcings. Both the sea-salt short-
wave forcing and longwave forcing were shown to respond
nearly linearly to the sea-salt loading for a realistic range of
values. The nearly linear response can be attributed to the rel-
atively small perturbation of sea-salt aerosol to the radiative
transfer process in the atmosphere. It is further confirmed
that the surface albedo can substantially affect the sea-salt
shortwave forcing, with the forcing diminishing toward zero
as the surface albedo tends to unity.

It is interesting to note that sea-salt can generate a positive
shortwave forcing when the solar zenith angle is less than
30◦. For small solar zenith angles, the scattering in the sea-
salt layer is mostly forward and downward with only small
effects of sea-salt on back scattering of the shortwave radia-
tion. The absorbing components of sea-salt, however, cause
a reduction in the shortwave flux reaching the surface and
therefore may lead to a positive shortwave forcing. These re-
sults should be emphasized since traditionally it is assumed
that the sea-salt shortwave forcing is negative. Also, it is
interesting to note that the sea-salt longwave forcing can be
negative when there is a large temperature inversion in the
lower atmosphere. We note that in general the shortwave
forcing is greater than the longwave forcing by an order of
magnitude for the results presented.

This work offers a versatile and efficient parameteriza-
tion for sea-salt at shortwave and longwave wavelengths that
is appropriate for implementation in GCMs. We note that
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the parameterization presented in the paper can be modified
for other band structures. Parameterization coefficients in
Eqs. (16–18) for the 25 single wavelength values between
0.2 to 4µm and the coefficients in Eq. (20) for 39 single
wavelength values between 4 to 50µm are available from
the authors. Also the data of sea-salt optical properties for
radii less than 0.732µm and larger than 6.13µm are avail-
able upon request.
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