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Abstract (English version) 

Hepatitis B is a global health problem, affecting >2 billion people worldwide. 

Chronicity develops in >90% of neonates infected by hepatitis B virus (HBV). After 

several decades of the infection, about a-quarter-to-half may progress to liver cirrhosis 

and hepatocellular carcinoma (HCC). In contrast, more than 90% of people infected 

during adulthood may clear the infection, resulting in acute self-limiting hepatitis. Both 

virus and host may influence clinical outcome of the infection. Basal core promoter 

(BCP; A1762T/G1764A) and precore stop codon (G1896A) mutations have been 

commonly associated with cirrhosis and HCC, whereas wild-types of these mutations 

with acute hepatitis. These associations have been inconsistent; the disease progression 

may have been affected by other non-viral factors. Host iron status could be one of the 

important factors; iron overload increases risk of cirrhosis and HCC. It has rarely been 

considered in chronic hepatitis B studies. The present study is divided into two sections. 

The aim of the first section is to investigate the influence of viral genomic variations 

and host iron markers (serum iron and serum ferritin) on progression to cirrhosis and 

HCC, whereas the second section to identify potential viral genomic variations 

associated with chronicity based on in silico observation. Overlapping polymerase chain 

reaction (PCR) was applied to amplify viral genomic fragments. The fragments were 

then sequenced and assembled. Sera were also sent to clinical laboratory for testing of 

the iron markers. To search for candidate nucleotides associated with cirrhosis, 

comparative sequence analysis was performed in 20 cirrhotic cases and 20 controls, 

whereas for HCC, the analysis was done in 21 HCC cases and 24 controls. The most 

potential viral marker was then applied in larger chronic hepatitis B populations, 

including 216 controls, 78 cirrhosis and 39 HCC cases. Binary logistic regression 

analysis showed that older age, cigarette smoking, family history of cirrhosis/HCC, 

HBV precore wild-type, serum iron and serum ferritin were associated independently 
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with HCC, whereas older age, male gender, Malay ethnicity, precore wild-type, serum 

iron and serum alanine aminotransferase (ALT) with cirrhosis. To search for candidate 

nucleotides associated with chronicity, comparative sequence analysis was conducted in 

177 acute cases and 1,149 chronic cases. Binary logistic regression coupled with 

Bonferroni-correction identified four novel viral variants (G1171, T1785, A1786 and 

T3112) independently associated with acute hepatitis. These variants are located in 

enhancer-I-X-promoter and S promoter regions, mutations in which result in reduced 

viral replication and release. In conclusions, older age, precore wild-type and serum iron 

markers may increase the risk of progression to cirrhosis and HCC, but not to NAFLD. 

Cigarette smoking, male gender, Malay ethnicity and high serum ALT should also be 

considered. The present study has also identified novel variants (G1171, T1785, A1786 

and T3112) highly specific for acute self-limited infection. These putatively replication-

defective variants may be responsible for lower rate of chronicity in some cases of HBV 

infection. Further in vitro and in vivo investigations are required to confirm this 

hypothesis.  
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Abstrak (Malay version) 

Hepatitis B adalah masalah kesihatan global yang menjejaskan lebih 2 ribu juta orang di 

seluruh dunia. Jangkitan hepatitis B kronik berlaku pada lebih daripada >90% bayi baru 

lahir yang dijangkiti oleh virus hepatitis B (HBV). Selepas jangkitan selama beberapa 

dekad, lebih kurang satu perempat hingga 40 peratus boleh mengalami komplikasi 

serius seperti sirosis hati dan kanser sel hati (HCC). Sebaliknya, lebih daripada 90% 

daripada orang yang dijangkiti semasa dewasa boleh mengawal jangkitan mereka yang 

terhad kepada hepatitis akut. Faktor-faktor melibatkan HBV and pesakit sendiri boleh 

mempengaruhi akibat jangkitan. Mutasi “basal core promoter” (BCP; A1762T/G1764A) 

dan “precore stop codon” (G1896A) telah sering dikaitkan dengan sirosis dan HCC, 

sedangkan nukleotida-nukleotida jenis liar tersebut sering berhubungkait dengan 

hepatitis akut. Hubungkait-hubungkait ini adalah tidak konsisten, perkembangan 

penyakit mungkin telah dipengaruhi oleh faktor-faktor yang bukan berkaitan dengan 

virus. Status zat besi pesakit boleh menjadi salah satu faktor penting; lebihan beban zat 

besi meningkatkan risiko sirosis dan HCC. Akan tetapi, ia jarang dipertimbangkan 

dalam kajian penyakit kronik hepatitis B. Kajian ini dibahagikan kepada dua bahagian. 

Tujuan bahagian pertama adalah untuk menyiasat pengaruh variasi virus genomik dan 

penanda zat besi pesakit (besi serum dan ferritin serum) pada perkembangan sirosis dan 

HCC, manakala bahagian kedua adalah untuk mengenalpasti variasi genomik virus 

berpotensi yang boleh dikaitkan dengan jangkitan kronik berdasarkan pemerhatian in 

silico. Tindakbalas rantaian polimerase (PCR) secara bertindih telah digunakan untuk 

mengamplikasi fragmen genomik virus. Fragmen tersebut kemudiannya disusun dan 

dipasang. Sera juga telah dihantar ke makmal klinikal untuk ujian-ujian penanda besi. 

Untuk mencari nukleotida calon virus yang dikaitkan dengan sirosis, analisis urutan 

genetik virus secara perbandingan telah dilaksanakan dalam 20 kes sirosis dan 20 

kawalan, manakala bagi HCC, analisis telah dilakukan dalam 21 kes HCC dan 24 
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kawalan. Penanda virus yang paling berpotensi untuk mengakibatkan sirosis dan HCC 

kemudiannya diaplikasikan dalam populasi kronik hepatitis B yang lebih besar, 

termasuk 216 kawalan, 78 sirosis dan 39 kes HCC. Analisis regresi logistik secara 

perduaan menunjukkan bahawa umur yang lebih tua, merokok, sejarah keluarga 

sirosis/HCC, HBV precore jenis liar (“precore wild type”), besi serum dan ferritin 

serum dikaitkan secara bebas dengan HCC, sedangkan usia yang lebih tua, jantina 

lelaki, etnik Melayu, precore liar-jenis, besi serum dan serum alanine aminotransferase 

(ALT) dengan sirosis. Untuk mencari calon-calon nukleotida virus yang dikaitkan 

dengan jangkitan kronik, analisis urutan genetik virus secara perbandingan telah 

dijalankan pada 177 kes akut dan 1149 kes kronik. Regresi logistik secara perduaan 

disertakan dengan pembetulan Bonferroni mendapati bahawa empat varian virus novel 

(G1171, T1785, A1786 dan T3112) dikaitkan secara bebas dengan hepatitis akut. 

Varian-varian ini terletak dalam lingkungan “enhancer I-X promoter” dan “S promoter”, 

kawasan-kawasan mutasi yang mengurangkan kadar replikasi and pelepasan virus. 

Kesimpulannya, usia yang lebih tua, precore jenis liar dan penanda zat besi serum yang 

tinggi boleh meningkatkan risiko perkembangan bagi sirosis dan HCC, tetapi tidak bagi 

NAFLD. Merokok, jantina lelaki, etnik Melayu dan ALT serum yang tinggi juga perlu 

dipertimbangkan. Kajian ini juga telah mengenal pasti varian novel (G1171, T1785, 

A1786 dan T3112) yang sangat khusus untuk jangkitan akut terhad sendiri. Varian 

replikasi-cacat tersebut mungkin bertanggungjawab bagi jangkitan kronik pada kadar 

yang lebih rendah dalam kes-kes jangkitan HBV. Penyiasatan in vitro dan in vivo yang 

selanjutnya diperlukan untuk mengesahkan pertemuan yang baru ini.  
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Chapter 1 General Introduction 

1.1 Epidemiology and clinical manifestations of hepatitis B 

Hepatitis B virus (HBV) is a major cause of liver disease globally. More than 2 billion 

people world-wide have been infected by HBV, of whom 350 million develop chronic 

hepatitis and one million of them decease every year [Maddrey, 2000] and over 4 

million acute cases [WHO, 2002]. About 75% of them are Asian [Merican et al., 2000; 

Arauz-Ruiz et al., 2002]. HBV is usually transmitted through body fluids, such as blood 

and semen, and rarely through saliva [WHO, 2002]. In Asia, HBV infection is highly 

endemic and predominantly acquired at birth or in early childhood [André, 2000]. The 

early infection results in persistency in more than 90% of children [Michel and Tiollais, 

2010]. Malaysia has intermediate endemicity of HBV infection with a prevalence of 

4.7% among the general population [Lim et al., 2003]. Prevalence of HBV infection 

was higher among Chinese and Malays than that in Indians [Qua and Goh, 2011]. 

Symptomless infection is common in children. The main symptoms of acute infection 

may include jaundice, dark urine, malaise, low-grade fever, nausea, anorexia and pale 

stool. The chronic infection often leads to severe complications. 

 Hepatitis B can manifest as acute hepatitis, fulminant hepatitis, chronic hepatitis, 

fatty liver, cirrhosis and hepatocellular carcinoma (HCC). Acute hepatitis B is mostly 

self-limiting, being less than 1% cases progress to fulminant hepatitis [Han, 2009]; the 

latter is associated with high mortality. One million people die per year from chronic 

complications, including cirrhosis and HCC [WHO, 2002]. The age at infection is the 

major factor determining chronicity [Juszczyk, 2000]. Risk of chronicity varies 

inversely with age. Chronic hepatitis B develops in about 90% of infected newborns, 

29-40% of children and 5-10% of adults [Juszczyk, 2000]. Cirrhosis occurs in 15-40% 

of those with the chronic infection [Liaw et al., 1988]. Of these, 25% progress to HCC 

[Beasley et al., 1981]. Patients with cirrhosis are characterised by the formation of 
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nodules and scarring on liver tissue, whereas those with HCC suffer overgrowth and 

neoplastic transformation of the liver tissue. HCC is ranked at fifth in all cancers 

globally. HBV accounts for 60-80% of the liver cancer [Lopez, 2005]. In Taiwan, about 

75% of HCC patients will die within 3 years [Changchien et al., 2008]. HBV DNA 

level, also called viral load, is a surrogate marker for viral replication. It has been shown 

to be one of the important predictive factors for progression to cirrhosis and HCC [Chen 

et al., 2006a; Iloeje et al., 2006]. Male gender, Asian or African ethnicity, longer 

duration of infection, family history of HCC, heavy alcohol drinking, tobacco smoking, 

aflatoxin exposure, obesity and diabetes mellitus are among the risk factors for HCC 

[Elgouhari et al., 2008; McMohan, 2009; Tanaka et al., 2011]. Risk factors for cirrhosis 

are similar to that of HCC, except for no ethnic difference and no family history of HCC 

[Elgouhari et al., 2008]. 
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1.2 The virus 

HBV is a partially double-stranded DNA (dsDNA) virus classified under the Family 

Hepadnaviridae. In 1970, the virion was first described as a 42 nm spheres under 

electron microscopy [Dane et al., 1970], as shown in Figure 1.1. The viral dsDNA is 

kept within a protein coat and surrounded by a lipid envelope [Seeger and Mason, 

2009]. The DNA virus mainly replicates in liver. It uses a reverse-transcription and an 

RNA intermediate for replication. HBV has a high replication rate and the replication 

strategy is error-prone. 

 

 

 

 

 

 

 

 

Figure 1.1 : Electron microscopic structure of hepatitis B virus.  
 

1.2.1 Viral genome 

The HBV genome has a size of about 3.2 kb. It is circular and highly compact. It 

consists of four overlapping open reading frames (ORFs), namely C (core), P 

(polymerase), S (surface) and X (X protein) (Figure 1.2). The C ORF can be divided 

into two overlapping domains, precore and core. Precore (pre-C) domain produces 

hepatitis B e antigen (HBeAg, a truncated, secretory precore protein) whereas core 

domain expresses hepatitis B core antigen (HBcAg, a subunit of virion protein coat). 

HBcAg is the building block for virion protein coat. Meanwhile, S ORF is divided into 

three overlapping domains, pre-S1, pre-S2 and S; each of the domains is responsible for 
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production of large (LHBsAg), middle (MHBsAg) and small hepatitis B surface antigen 

(SHBsAg) respectively. The surface antigens, mainly SHBsAg, are transmembrane 

proteins embedded within lipid envelope [Heermann et al., 1984]. P ORF is divided into 

four domains – terminal protein (aa1-182), spacer (aa183-348), reverse transcriptase-

polymerase (aa349-691) and RNaseH (aa692-845) [Zoulim, 2004].  P ORF is involved 

in viral replication and antigen syntheses. X ORF produces X protein (HBx), known to 

have some gene trans-activating properties, and has been essential for viral replication 

[Keasler et al., 2009].  

 

 

 

 
 
 
 
 

 

 

 

 

 
 
 

Figure 1.2 : HBV genome organisation [Beck and Nassal, 2007].  
 

 Viral regulatory sequences, such as enhancer I (EnhI), enhancer II (Enh II), 

negative regulatory element (NRE), core upper regulatory sequence (CURS), basal core 

promoter (BCP), S1 promoter, S2 promoter and X promoter, may also affect viral 

replication and antigen syntheses. For example, enhancer I mutation may decrease viral 

replication [Bock et al., 2000] and S2 promoter mutation may down-regulate HBsAg 
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production [Sengupta et al., 2007]. The nucleotide (nt) position of various coding and 

some of the regulatory regions are listed in Table 1.1. 

 

Table 1.1 : Coding and regulatory regions in a HBV genome of 3215 nt. 

Region Typical genotype B/C genome (nt) 
Start End 

Coding   
Pre-C 1814 1900 
C 1901 2452 
Pre-S1 2848 3204 
Pre-S2 3211 154 
S 155 835 
X 1374 1838 
P 2307 1623 
Regulatory   
EnhI 1043 1235 
EnhI-X promoter 950 1350 
NRE 1611 1634 
EnhII 1644 1666 
CURS 1643 1741 
BCP 1742 1849 
ε 1847 1907 
S1 promoter (pre-S1 promoter) 2710 2800 
S2 promoter (S promoter) 3045 3180 
BCP, basal core promoter; C, core; CURS, core upper regulatory sequence; ε, encapsidation signal; EnhI, 
enhancer I; EnhII, enhancer II; nt, nucleotide; NRE, negative regulatory element; P, polymerase; S, 
surface. 
References: Ori et al., 1998; Norder et al., 1994; Moriyama, 1997; Kurbanov et al., 2005; Tanaka et al., 
2006; Xu et al., 2006; Panjaworayan et al., 2007; Cui et al., 2010; Lin et al., 2012. 
 

1.2.2 Viral genotype 

HBV genotype was classified based on more than 8% genomic divergence [Okamoto et 

al., 1988]. Later, it was re-defined as 7.5% [Kramvis et al., 2008]. Currently, nine 

genotypes has been identified, namely genotypes A-I [Okamoto et al., 1988; Norder et 

al., 1994;  Arauz-Ruiz et al., 2002; Kato et al., 2002; Olinger et al., 2008] and one 

provisional genotype J [Tatematsu et al., 2009]. Sub-genotyping was defined as between 

4-7.5% genomic divergence [Kramvis et al., 2008]. However, this sub-genotyping 

definition has not been followed strictly by all researchers; some published sub-

genotypes were more geographical-specific rather than based on the divergence rule 

[Pourkarim et al., 2010]. Besides these, a number of HBV recombinants have also been 
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found, for example, genotype B/C [Sugauchi et al., 2003] and C/D [Cui et al., 2002] 

recombinants. 

 

1.2.3 Life cycle 

Life cycle of HBV begins with the viral attachment on liver cell membrane via envelope 

protein; both pre-S1and HBsAg proteins could be involved in the viral entry [Le Duff et 

al., 2009]. The lipid envelope of the virus then fuses with the cell membrane, and 

subsequently the viral protein coat is released into the cytoplasm. The protein coat 

posseses nuclear localization signal located at C-terminal of HBcAg. This brings the 

virus to nuclear membrane. The viral relaxed circular DNA (RC-DNA) is then released 

into the nucleoplasm via the nuclear pore. The RC-DNA is then repaired to form 

covalently closed circular DNA (cccDNA) [Seeger and Mason, 2000]. The cccDNA, 

acting like mini-chromosome, start transcribing viral pregenomic RNA (pgRNA) and 

various viral mRNAs by host DNA-dependent RNA polymerase II (shown in Figure 

1.3). The viral mRNAs encode various viral proteins described earlier, inclusive of viral 

reverse transcriptase-polymerase and so on, whereas pgRNA is packaged into a viral 

protein coat via an encapsidation signal (ε; shown in Figure 1.4) and subsequently 

converted into viral negative DNA strand by the viral reverse transcriptase. The 

complementary positive DNA strand is then synthesized by viral DNA polymerase 

[Beck and Nassal, 2007]. However, the synthesis halts half-way due to limited space in 

the protein coat, resulting in formation of a partially double-stranded DNA. The newly 

packaged virion can either be be transported out of plasma membrane for infecting other 

hepatocytes [Gerelsaikhan et al., 1996] or be re—transported into the nucleus for 

perpetuating replication [Tuttleman et al., 1986].  
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Figure 1.3 : Life cycle of HBV in a hepatocyte [Beck and Nassal, 2007].  
cccDNA, covalently closed circular DNA; RC-DNA, relaxed circular DNA. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 : ε loop structure of pgRNA [Sugauchi et al., 2004]. The stable Watson-Crick 
base pairing in the encapsidation signal sequence is required for efficient viral 
replication. For example, the pairing between C1858 and G1896 is a characteristic of 
genotype A [Li et al., 1993]. 
ε, encapsidation signal; pgRNA, pregenomic RNA.  
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1.3 Viral markers in various clinical manifestations 

1.3.1 Viral protein markers 

Hepatitis B virus was first identified in an HBV-infected Australian aborigine as the 

Australian antigen [Blumberg et al., 1967], now known as hepatitis B surface antigen 

(HBsAg). Acute hepatitis B occurs in HBV-infected individuals who clear HBsAg 

within 6 months whereas chronic hepatitis B is said to occur in those remaining HBsAg 

positive for more than 6 months [WHO, 2002].  

In the early phase of HBV infection, hepatitis B early antigen (HBeAg) is 

usually positive, indicating active replication of the virus [Cheng et al., 2012]. However, 

the inverse is not true. HBeAg shares antigenic epitopes with HBcAg. HBcAg is 

targeted by immune system, which could lead to either viral clearance or necrosis of 

hepatocytes. HBeAg was thought to induce immune tolerance against HBV, more 

specifically, HBcAg [Milich et al., 1990]. Having said so, in a HBV-transgenic mouse 

model study, it was demonstrated that HBeAg was the major antigen inducing liver 

injury with respect to HBcAg [Frelin et al., 2009]. Persistent HBeAg positivity has been 

linked with HCC [Yang et al., 2002]. Late HBeAg seroconversion, especially at elder 

age, confers higher risk for development of cirrhosis [Lai and Yuen, 2007a]. Early 

HBeAg seroconversion usually confers a favourable clinical outcome [Lin and Kao, 

2008].  

Acute HBV infection is associated with a high titre of IgM hepatitis B core 

antibody (IgM anti-HBc). Those having resolved infection are expected to be negative 

for HBV DNA and HBsAg together with presence of hepatitis B surface antibody (anti-

HBs) and IgG anti-HBc [Towell and Cowie, 2012]. 
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1.3.2 Viral genetic markers 

Viral genotype, T1762/A1764 (a common BCP double mutation) and A1896 (a 

common precore stop codon mutation) are the three most commonly studied viral 

markers in various clinical manifestations. In Asia, there is a greater association of HBV 

genotype C infection than genotype B, whereas in North America and Western Europe, 

incidence of HCC in genotype D infection is higher than that in genotype A [El-Serag, 

2012]. The BCP mutation is known to suppress HBeAg expression [Buckwold et al., 

1996] whereas the precore mutation to abolish the antigen synthesis [Buti et al., 2005]. 

The association of these markers with various clinical manifestations, however, has 

been largely controversial. 

 

(a) Cirrhosis 

About 80% of HCC patients have underlying cirrhosis. Patients with cirrhosis have 

higher predisposition to HCC. T1762/A1764 was more frequently encountered in 

cirrhosis cases compared to non-cirrhotic carriers while A1896 was more in 

asymptomatic carriers [Song et al., 2006]. Some researchers have proposed a complex 

algorithm of viral mutations to predict development of cirrhosis [Chen et al., 2007]. 

 

(b) Hepatocellular carcinoma 

Extensive studies have been done to determine viral markers associated with HCC. A 

meta-analysis study reported that pre-S mutations, T1653, V1753 and T1762/A1764 

were associated with an increased risk of developing HCC; relationship between A1896 

with HCC was inconsistent [Liu et al., 2009]. Yet, some other studies reported no 

association between T1762/A1764 and HCC [Guo et al., 2008]. 

 

(c) Acute and chronic hepatitis 
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Viral markers highly specific for acute infection (non-fulminant hepatitis) of HBV 

could predict those who are likely to have a self-limiting infection, whereas those for 

chronic infection of the virus could predict a persistent infection. HBV genotype A has 

been shown to be associated with acute hepatitis whereas genotype C with chronic 

hepatitis [Kobayashi et al., 2004]. Individuals with T1762/A1764 and A1896 were 

reported to be more likely to develop acute hepatitis [Kobayashi et al., 2004; Liu et al., 

2010] but not in the other [Chu et al., 1996]. 

 

1.4 Biochemical markers in various clinical manifestations 

1.4.1 Serum aminotransferase 

Aminotransferase is an enzyme involving conversion of amino acids. Alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST) are two of the enzymes 

found in cytoplasm and mitochondria of various tissues. Both of them are involved in 

energy production. 

 ALT is an enzyme found abundantly in the cytosol of liver tissue, but to lesser 

extent in kidney and other organs. ALT activity in liver is about 3000 times that of 

serum activity [Kim et al., 2008]. Measurement of the enzyme activity in serum has 

been regarded as a reliable and sensitive marker of active liver disease. A high level of 

serum ALT activity is commonly indicated in hepatocellular injury [Prati et al., 2002]. 

Furthermore, the elevation has been strongly associated with HCC [Ishiguro et al., 

2009]. However, chronic hepatitis B patients with persistently normal ALT may have 

significant hepatic inflammation and fibrosis [Lai et al., 2007a].  

Measurement of serum ALT is unlikely to be reliable for the prediction of risk of 

cirrhosis and HCC because they may fluctuate during the course of chronic HBV 

infection. Serum AST is sometimes combined with ALT as a ratio to reflect liver 

impairment, such as cirrhosis [Gianini et al., 2003]. Yet, Lin et al. (2008) did not find 
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such relationship. In addition, both tests may be elevated in response to certain drug use 

[Sokolove et al., 2010] and systemic inflammation [Al-Maini, et al., 2000; Curtis et al., 

2010]. 

 

1.4.2 Serum alpha-fetoprotein 

Alpha-fetoprotein (AFP) is a glycoprotein normally produced in the fetal yolk sac and 

liver during embryonic life. Serum AFP increases in markedly in hepatoblastoma 

(during childhood), HCC and certain germ cell cancers. Liver injury and increased 

cellular regeneration may increase serum AFP because patients with chronic active 

disease have higher serum AFP levels than the quiescent ones [Collazos et al., 2002]. 

According to a Malaysia report, about 70% of serum AFP >20 ng/ml was demonstrable 

in HCC [Yap and Peh, 1991]. About 44% of cirrhotic patients with persistently high 

serum AFP (>50 ng/ml) developed HCC after 2-10 year [Imaeda and Doi, 1992]. Serum 

AFP may fluctuate during the course of the disease (Figure 1.5). Serum AFP rises in 

acute hepatitis (12%), chronic hepatitis (34%), chronic severe hepatitis (67%) and 

cirrhosis (58%) [She et al., 2003]. Elevated serum AFP was detected in 58% of those 

with family history of HCC, higher than those without [She et al., 2003]. In HCV 

studies, serum AFP at cutoff of 16 ng/ml may have sensitivity ranged from 60-80% and 

specificity from 70-90% [Wright et al., 2007]. Even for diagnosis only (not to say early 

diagnosis), the sensitivity may go as low as 30% as in other HCC studies [Block et al., 

2005; Marrero et al., 2005]. Based on these performance characteristics, serum AFP 

may not be a suitable marker for HCC; a better predictive marker for HCC and cirrhosis 

is required. 

 

 

 



12 
 

 

 

 

 

 

 

 

 

 

Figure 1.5 : Possible fluctuating patterns of serum AFP in cirrhotic patients. About 16% 
of type 1, 23% of type 2 and 33% of type 3 groups developed HCC after 2-10 years 
[Imaeda and Doi, 1992].   
 

1.4.3 Serum iron and serum ferritin 

Iron may present as free iron, transferring-bound and albumin-bound form in serum. 

Ferritin is the main storage molecule for iron and mitigates the oxidative process caused 

by free iron [Theil, 2003]. Serum iron and serum ferritin are two markers usually used 

to assess body iron status. Liver is a major iron storage site. Stainable liver iron has 

been correlated positively with serum iron and serum ferritin in chronic hepatitis C 

[Fernández-Rodriguez et al., 2004]. Serum ferritin has been shown to be higher in 

patients with cirrhosis compared to those without cirrhosis [Büyükaşik et al., 2011]. 

Serum ferritin may predict severe hepatic fibrosis and hepatic liver iron deposition 

according to a HCV study [Metwally et al., 2004]. No HBV study has conducted such 

study before. High serum ferritin is a manifestation of haemochromatosis, an iron 

overload disease in which affected individuals are prone to HCC [Kowdley, 2004].  
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1.5 Molecular techniques 

Two molecular techniques were employed in this study, namely hemi-nested 

polymerase chain reaction (PCR) and chain termination sequencing.  

 

1.5.1 Hemi-nested polymerase chain reaction 

PCR is a molecular technique using heat-stable DNA polymerase to amplify DNA 

template exponentially. It usually involves using a pair of primers, a forward and 

reverse primer, for the amplification. A forward primer binds on negative-sense DNA 

and the reverse one binds on positive-sense DNA during the reaction. In nested PCR, 

two primer sets were used – outer primer set and inner primer set. Amplification starts 

with the outer set followed by the inner one. For hemi-nested PCR, one of the inner 

primers, either the forward or reverse, is similar with the respective outer primer. An 

example is shown in Figure 1.6. The amplification can be done simultaneously or 

separately (two-step). 

 

 

 

 

 

 

Figure 1.6 : An example of hemi-nested PCR. Two outer primers and one inner primer 
are used for amplification of a DNA template. 
 

1.5.2 Dye-terminator cycle sequencing 

DNA sequencing is a molecular technique used for determining the order of the 

nucleotide bases. Chain termination method is a PCR-based DNA sequencing method 

involving deoxynucleotide triphosphate (dNTPs) for elongation of a DNA strand and 

DNA 
template 

Outer forward primer 

Inner forward primer 

Outer reverse primer 
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dideoxynucleotide triphosphate (ddNTPs) to terminate elongation of the DNA strand. 

Dye-terminator cycle sequencing uses the method to decode a DNA template (See 

Figure 1.7). In this technique, the ddNTPs are labelled with four different fluorescent 

dyes, corresponding to four different bases present naturally in DNA – Adenine (A), 

Thymine (T), Guanine (G) and Cytosine (C) triphosphate. After a number of elongation 

and termination processes, the DNA template electrophoreses through a capillary, and 

the DNA sequence can be traced by an electronic chromatogram. 

 

 

 

 

 

 

 

Figure 1.7 : Dye-terminator sequencing is a PCR-based sequencing method uses 
fluorescent dye-labelled terminators, ddNTPs.  
Repeated elongation of DNA and termination cycle results in different lengths of DNA 
fragments. The DNA fragments are then separated through a capillary. This separation 
enables the reading of the DNA template sequence in order. ddNTPs, 
dideoxynucleoside triphosphate; PCR, polymerase chain reaction.  
(Source: http://www.appliedbiosystems.com/absite/us/en/home/applications-technologi-
es/dna-sequencing-fragment-analysis/overview-of-dna-sequencing/sequencing-chemist-
ries.html) 
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1.6 Objectives of the present study 

Cirrhosis and HCC take decades to develop. However, early detection is not often 

achieved due to the lack of reliable markers [Wright et al., 2007]. In addition, the 

markers may not be readily applicable in clinical settings and most are less 

manipulative, therefore have limited usefulness for preventing and improving the severe 

liver diseases. Meanwhile, viral marker for predicting chronicity has not been 

convincing despite several studies being conducted, mainly due to their limited sample 

size and the mainly focus on BCP and precore mutations. Therefore, the main objective 

of this study is to determine viral and/or host characteristics potentially predictive for 

various clinical outcomes.  The specific objectives of the study are: 

1. To identify candidate viral marker(s) of hepatitis B associated with cirrhosis and 

HCC. 

2. To study the polymorphism of the viral marker(s) in chronic hepatitis B individuals. 

3. To evaluate host iron marker(s) associated with cirrhosis and HCC. 

4. To identify independent risk factors for prediction of clinical complications. 

5. To identify candidate viral marker(s) of hepatitis B associated with chronicity of 

HBV infection. 

Objectives 1-4 were achieved with biochemical and molecular approaches, whereas 

objective 5 with an in silico approach. 
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Chapter 2 Methodology 

This study was divided into two sections. The first section was to determine the 

potential serum viral and host markers in association with cirrhosis and HCC. The 

second section was to determine the potential viral genomic mutations associated with 

chronicity based on in silico observation. Investigation on host factors was not possible 

on the latter. 

 

2.1 Identifying markers for chronic complications 

The present study intended to evaluate the potentials of viral and iron markers 

responsible for chronic complications, that is, liver cirrhosis and HCC.  

 

2.1.1 Study design 

This was a case–control study involving Malaysian subjects with chronic hepatitis B 

attending Medical Clinics in the University Malaya Medical Centre (UMMC), Kuala 

Lumpur. Approval for the study was obtained from the UMMC Medical Ethics 

Committee acting by the ethical standards of the Declaration of Helsinki. Between 

October 2007 and April 2010, all consecutive HBsAg positive patients attending the 

hepatitis clinic were invited to participate in the study. After obtaining informed 

consent, potential participants were interviewed with a preset questionnaire to obtain 

information on basic demographics, and personal and family history of illnesses. About 

5 ml of blood were then drawn into a plain tube from each of them. 

 A grand total of 376 participants were recruited. These participants were divided 

into 4 groups, namely controls (N = 216), cirrhosis (N = 78) and HCC (N = 39) cases. 

The diagnosis of HCC was based on typical features of HCC on dynamic radiological 

imaging, and liver histology or alpha-fetoprotein (AFP) > 200 ng/mL. The diagnosis of 

cirrhosis was based on liver histology or at least two of the following clinical features: 
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ultrasonographic and radiologic evidence of a nodular or shrunken liver, splenomegaly, 

ascites, presence of varices, or platelet counts of <100,000/ml. Those who had other 

possible causes of cirrhosis and HCC, including autoimmune hepatitis, 

hemochromatosis, Wilson’s disease, primary biliary cirrhosis, alpha-1 anti-trypsin 

deficiency and other types of diagnosed cancer, were excluded. General controls were 

defined as those who were without significant liver diseases, whereas stringent controls 

were defined with additional inclusion criteria: (i) had a family history of HBV 

infection, (ii) were at least 50 years old, and (iii) were treatment-naïve. Additional 

exclusion criteria for all groups included a history of chronic alcoholism, chronic 

hepatitis C co-infection and other possible non-hepatic causes of systemic 

inflammation.  

 To save cost and time, only those HBV genomes from stringent controls, 

cirrhosis and HCC cases were sequenced and compared to search for potential viral 

markers predictive of cirrhosis and HCC. Only sera collected from these selected 

participants tested positive for the presence of HBV DNA by polymerase chain reaction 

(PCR) were subjected to whole genome sequencing. Only participants, from whom all 

HBV DNA fragments could be amplified successfully and sequenced fully, were 

included in the final analysis. At the time of our first publication on viral markers for 

cirrhosis [Chook et al., 2011], HBV genomes for 20 stringent controls and 20 cirrhosis 

cases were sequenced successfully and compared. About 10 months later, HBV 

genomes for 21 cases of HCC were sequenced successfully. Because it has taken longer 

time for the collection of HCC cases, the sample size of HBV genomic sequences for 

stringent controls sequenced successfully has also increased to 24 cases accordingly for 

comparison. Only viral marker(s) with the highest accuracy for identification of 

cirrhosis and HCC cases were further evaluated in a larger population of chronic 
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hepatitis B (N = 376) mentioned earlier (Figure 2.1). For the larger population 

screening, those with either past or recent antiviral treatment were included. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 : Workflow encompassing study design from comparative sequence analysis 
of selected participants (to identify specific viral markers for cirrhosis and HCC) to 
screening of all chronic hepatitis B participants with the identified viral markers, which 
were potentially predictive of cirrhosis and HCC. General controls (inclusive of 
stringent controls) were all liver ultrasound normal chronic hepatitis B participants. 
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2.1.2 Routine laboratory assay 

In searching for potential predictive markers for cirrhosis and HCC, all selected 

stringent controls, cirrhosis and HCC cases were tested for serum ALT (Siemens 

Dimension®, Deerfield, IL, USA), serum alpha-fetoprotein (AFP; Siemens 

Dimension®), serum iron, serum ferritin (Roche Diagnostics, Pleasaton, CA, USA), 

HBsAg positivity and HBeAg positivity (Architect, Abbott Laboratories, Dublin, 

Ireland). Viral load was determined using Roche COBAS Taqman HBV Test (Roche 

Molecular Diagnostics, Branchburg, NJ, USA). Those laboratory assays determined to 

be predictive for development of cirrhosis and HCC were further applied in all the 

chronic hepatitis B participants. According to UMMC laboratory guidelines, the upper 

limit of normal (ULN) for serum ALT, AFP, iron and ferritin were set at 65 IU/L, 6.7 

IU/mL, 27.00 µmol/L and 291.0 µg/L respectively. 

 

2.1.3 Viral DNA extraction 

All sera collected were stored at -80ºC until use. Serum HBV DNA was extracted using 

Qiagen QIAamp DNA mini kit (Qiagen, Germany). It is a solid phase extraction using 

spin column. The extraction was done according to manufacturer’s instruction. The 

extraction process basically involved using a mildly acidic guanidine compound to 

dissolve the viral lipid envelope and to denature protein together with a protease to 

digest the viral protein. The mixture was then passed through a spin column by 

microcentrifugation. The guanidine compound already in the mixture would 

simultaneously enhance the binding of viral DNA to the column during the pass-

through. The column was then washed with a provided Qiagen wash buffer twice to 

remove the impurities that might inhibit PCR. The viral DNA captured in the column 

was then eluted out using a Qiagen elution buffer. The detailed procedure can be 

referred to the manufacturer’s instruction manual. 
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2.1.4 Hemi-nested polymerase chain reaction optimisation 

PCR amplification was performed using Qiagen HotStarTaq (Qiagen) with the six 

overlapping primer sets listed in Table 2.1. These primers were designed using Oligo 

Analyzer version 1.0.2 [Kuulasmaa, 2002] to collectively cover the entire genome of the 

virus with three hemi-nested PCR assays (using outer primer sets, namely 1441F-

2839R, 251F-1797R, and 2365F-275R), generating a total of six fragments. The melting 

temperatures and qualities of these primers are shown in Table 2.2. 

 

Table 2.1 : List of primer sets used in the amplification of HBV genome. 

Primer namea 5’-Oligonucleotide-3’ Nucleotide position 
(Region covered) 

Set 1  (Surface/X region)
251F GAY TCG TGG TGG ACT TCT C 251–269 
1262R GTT CCG CRG TRT GGA TCG 1,245–1,262 
   
Set 2  (Surface/X region)
596F ACY TGT ATT CCC ATC CCA TC 596-615 
1797R CCA ATT TAT GCC TAC AGC CT 1,797-1,778 
Sequencing Primer   
1709R GGA GTR NGC CTC AAG GTC G 1,709-1,691 
   
Set 3  (X/Core region)
1441F CTG AAT CCY GCG GAC GA 1,441-1,457 
Inner Primer   
1583F ACT TCG CYT CAC CTC TGC A 1,583-1,601 
2393R KGC GAG GYG AGR GAG TTC 2,393-2,376 
   
Set 4  (Core/Surface region)
1865F CAM GCC TCY RAG CTG TGC 1,865-1,882 
2839R TST TGT TCC CAA GWA TAT GG 2,839-2,820 
   
Set 5  (Core/Surface region)
2365F CCY TAG AAG AAG AAC TCC CTC 2,365-2,385 
275R AAA YTG AGA GAA GTC CAC CAC 275-255 
   
Set 6  (Surface region)
2826F TCY TGG GAA CAA GAG CTA CA 2,826-2,845 
649R AGA AAC GGR CTG AGG CC 649-633 
Sequencing Primer   
617R AYG ATG GGA YGG GAA TAC A 617-599 
HBV, hepatitis B virus. 
aSuffix -F indicates forward primer; suffix -R indicates reverse primer. Sequencing primer was used for 
repeated sequencing whenever sequencing failure was encountered for the particular primer set. 
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Table 2.2 : Properties of six primer sets used for HBV genomic amplification. 

Primer paira Predicted Tm, ºCb 
Self- and pair-

annealing, 
kcal/molc 

Loop, kcal/mold 

(a) First round of PCR    
      251F-1797R 58.0, 59.1 None; -2.16; -1.81 None, none 
    
      Second round of PCR  
      251F-1262R 58.0, 58.4 None, -1.41; -1.43 None, -1.31 
      596f-1797R 59.7, 59.1 None, -2.16; -2.65 None, none 
    
(b) First round of PCR    
      1441F-2839R 64.5, 56.7 -13.30, -1.81; -1.43 -1.31, -1.69 
    
      Second round of PCR    
      1583F-2393R 58.4, 62.8 -3.84, none; -3.03 None, none 
      1865F-2839R 63.3, 56.7 -3.13, -1.81; -0.69 -1.41, -1.69 
    
(c) First round of PCR    
      2365F-649R 57.3, 61.3 -0.95, -6.07; -3.03 None, -2.88 
    
      Second round of PCR    
      2365F-275R 57.3, 58.2 -0.95, -2.16; -0.33 None, none 
      2826F-649R 59.6, 61.3 -3.86, -6.07; -1.53 -3.74, -2.88 
HBV, hepatitis B virus; PCR, polymerase chain reaction; Tm, melting temperature. 
aSuffix -F indicates forward primer; suffix -R indicates reverse primer. 
bPrediction based on Nearest Neighbour (NN) method. 
cThe first two are the scores of self-annealing free energy for forward and reverse primers respectively. 
The third score is for pair-annealing free energy for both primers. The more negative the score, the higher 
the probability for the annealing to occur. Note that none indicates no secondary structure would be 
formed. 
dThe first score is the free energy of loop formation for forward primer whereas the second score is that 
for reverse primer. The more negative the score, the higher the probability for the formation to occur. 
Note that none indicates no secondary structure would be formed. 

 

First round of the nested PCR assays were carried out in 50 µl PCR mixture 

volumes consisting of 5 µl of 10x KCl buffer, 3 µl of 25 mM MgCl2, 4 µl of 10 µM of 

each primer, 2 µl of 10mM dNTPs, 0.2 µl of 5U/µl Qiagen HotStarTaq polymerase and 

5 µl of a HBV DNA concentration of about 104 copies virus per ml. Second round of 

the nested PCR assays were carried out in 50 µl PCR mixture volumes consisting of 5 

µl 10x KCl buffer, 3 µl of 25 mM MgCl2, 4 µl of 10 µM of each primer, 2 µl of 10mM 

dNTPs, 0.2 µl of 5U/µl Qiagen HotStarTaq polymerase and 1 µl of first round PCR-

amplified products. Annealing temperature of the PCR assays were optimised using 

gradient temperature setting in a MyCycler thermal cycler (Biorad, Hercules, CA, 

USA). The thermal profile used in both rounds of hemi-nested PCR are as follows: 
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Initial denaturing at 95ºC for 15 minutes; 40 cycles in 3 steps: 94ºC for 60 seconds, 

gradient annealing temperature of 55-64ºC for 90 seconds, 72ºC for 60 seconds; final 

extension at 72ºC for 10 minutes. The calculated annealing temperatures for the gradient 

setting were 55.0, 55.6, 56.7, 58.3, 60.4, 62.2, 63.3 and 64.0ºC. After the PCR 

amplification, the amplified PCR product was run under an agarose gel electrophoresis 

system (Easy-CastTM Electrophoresis System, Pittsburgh, PA, USA). 

For casting of gel, exactly 0.9 g of LE agarose (Seakem®, Rockland, ME) was 

topped up with 60 ml of 1x Tris-base-Borate-EDTA (TBE) buffer in a 200 ml Schott 

bottle. Next, the mixture was cooked in a microwave. After the cooking, the gel solution 

was let to cool down to around 60-70ºC (hotness bearable by handhold). Approximately 

3 µl of ethidium bromide (EtBr) was added into the bottle and the bottle was shook to 

ensure even mixing. The gel solution was then poured onto a gel-casting tray with a 14-

teeth comb and left to solidify for at least 30 minutes. Finally, the amplified product was 

visualised under UV transillumination (Fotodyne®, Hartland, WI, USA). Gel picture 

was taken using a digital camera (Sony Cybershot DSC-P10, Japan). The correct size of 

a respective fragment was compared with a 100 bp ladder (i-Lad3, i-DNA, Singapore) 

or a 100 bp ladder plus (i-Lad4, i-DNA, Singapore) where appropriate. Amplified 

fragments with single band size were sent for sequencing. 

 

2.1.5 Viral genomic sequencing 

Before proceeding to sequencing, the amplified fragments were purified using 

QIAquick® PCR Purification kit (Qiagen). The purified products were then sent to a 

commercial laboratory (First BASE Laboratories Pte. Ltd., Selangor, Malaysia) for 

bidirectional sequencing using ABI PRISM 3700 DNA Analyzer (Applied Biosystems, 

Foster City, CA). All 65 complete genomes of HBV were submitted to GenBank. 

Accession numbers for stringent controls were HM011465–HM011484 and JQ027310-
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JQ027313, cirrhosis cases were HM011485–HM011504 and HCC cases were 

JQ027314-JQ027334. 

 

2.1.6 Complete HBV genome sequence analysis to identify candidate viral markers 

HBV genotype was determined by applying HBV full genome in Viral Genotyping Tool 

available free (http://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi) on 

National Center for Biotechnology Information (NCBI) website. Sequence alignment 

was done using SECentral Align Plus version 4 (Scientific and Educational software, 

US). Nucleotide numbering was referenced to that reported by Okamoto et al. [1988]. 

Whole genomic sequence analysis of HBV was compared for differences between the 

cirrhosis and stringent control groups, and between the HCC and stringent control 

groups. Mononucleotide variations were screened across the HBV whole genomes. The 

comparison was done by using matemathical, logical and string functions in Microsoft 

Excel 2007 to calculate the frequency of candidate nucleotides responsible for cirrhosis 

and HCC. Candidate mononucleotide(s) that achieved the minimum power of 80% for 

the identification of cirrhosis and HCC were selected for codon analysis. Single codons 

that gave the highest accuracy were used subsequently to screen all the chronic hepatitis 

B sera collected to verify the relationship of the candidate marker(s) with cirrhosis and 

HCC. 

 

2.1.7 Screening of candidate viral markers associated with cirrhosis and HCC 

Based on the previous whole genome sequence analysis, the most potential candidate 

viral marker was found to fall within the precore region. A hemi-nested PCR assay was 

performed to amplify the region; three primers were designed: a forward primer 

(1776F), an inner reverse primer (2325R) and an outer reverse primer (2820R). 

Properties and quality of the primers are listed in Table 2.3 and 2.4. The hemi-nested 
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PCR amplification was conducted in a Veriti thermal cycler (Applied Biosystems, 

Foster City, CA, USA) instead of Biorad MyCycler. Optimisation of annealing 

temperature from 50ºC to 60ºC with a step of 2ºC was carried out. The thermal profile 

used in both rounds of hemi-nested PCR are as follows: initial denaturing at 95ºC for 15 

minutes; 40 cycles in 3 steps: 94ºC for 60 seconds, gradient annealing temperature of 

55-64ºC for 90 seconds, 72ºC for 60 seconds; final extension at 72ºC for 10 minutes. 

The calculated annealing temperatures for the gradient setting were 55.0, 55.6, 56.7, 

58.3, 60.4, 62.2, 63.3 and 64.0ºC. The first round of PCR generated a typical fragment 

size of 1045 nt and the second round 550 nt. The amplified products identified positive 

under agarose gel electrophoresis were then purified and sent for sequencing as 

previously described. Precore start codon and stop codon mutations were identified 

from the targeted sequencing. A precore wild-type is defined as a viral strain without 

both precore start codon and stop codon mutations, whereas a precore mutant is defined 

as that with either precore start codon or precore stop codon mutation. 

 

Table 2.3 : Properties of primers targeting precore region. 
Primer 
namea 5’-Oligonucleotide-3’ Nucleotide 

position 
Predicted 

Tm, ºC 
1776F GAGRCTGHASKYAYAAATTG 1776-1795 55.5
   
2820R (outer) TSTTGTTCCCAAGWATATGG 2801-2820 56.6
   
2325R (inner) RTKGAYARGATAGGGGCA 2308-2325 57.3
Nt, nucleotide; Tm, melting temperature. 
aSuffix -F indicates forward primer; suffix -R indicates reverse primer. 
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Table 2.4 : Secondary structure prediction of primers targeting precore region. 

Primer paira Self- and pair-annealing, 
kcal/molb Loop, kcal/molc 

First round of PCR   
1776F-2820R -7.04, -2.29; -2.03 None, -1.69 
   
Second round of PCR   
1776F-2325R -7.04, none; -2.77 None, none
HBV, hepatitis B virus; PCR, polymerase chain reaction; Tm, melting temperature. 
aSuffix -F indicates forward primer; suffix -R indicates reverse primer. 
bThe first two are the scores of self-annealing free energy for forward and reverse primers respectively. 
The third score is for pair-annealing free energy for both primers. The more negative the score, the higher 
the probability for the annealing to occur. Note that none indicates no secondary structure would be 
formed. 
cThe first score is the free energy of loop formation for forward primer whereas the second score is that 
for reverse primer. The more negative the score, the higher the probability for the formation to occur. 
Note that none indicates no secondary structure would be formed. 
 

2.2 Identification of markers for chronicity 

2.2.1 Retrieval of HBV genomes 

HBV genomes related to acute and chronic hepatitis B were identified by performing 

advanced search in National Centre for Biotechnology Information (NCBI) Nucleotide 

Database on 20 November 2011. The algorithm used to search HBV complete genomes 

was ‘("Hepatitis B virus" AND *complete genome* NOT chromosome) NOT Duck 

NOT Ross NOT Woodchuck NOT “Snow goose” NOT Heron NOT "Ground squirrel" 

NOT Sheldgoose NOT Stork NOT "Woolly monkey" NOT Orangutan’; only HBV 

genome sizes of 2,800-3,400nt were included. Under this search, 3,832 HBV genomes 

were successfully retrieved. The search was further refined by including those with 

acute or chronic hepatitis B only, and excluding gibbon, chimpanzee, other primate 

species and those with acute-on-chronic hepatitis, fulminant hepatitis or unknown liver 

conditions. Other exclusion criteria were age less than 12 years, non-serum/non-

plasma/non-blood tissue, HIV co-infection and immune suppression. Finally, a total of 

1,326 HBV genomes were obtained, being 177 from acute hepatitis and 1,149 from 

chronic hepatitis. Their accession numbers are listed in Appendix B and C respectively. 
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2.2.2 Complete HBV genome sequence analysis 

HBV genotype was determined by Viral Genotyping Tool [Rozanov et al., 2004] 

available free (http://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi) on 

National Center for Biotechnology Information (NCBI) website. Sequence alignment 

was carried out using SECentral Align Plus version 4. Nucleotide numbering was 

according to that reported by Okamoto et al. [1988]. Whole genomic differences of 

HBV between the acute and chronic hepatitis groups were compared. The comparison 

was done based on alignment by using matemathical, logical and string functions in 

Microsoft Excel 2007 to calculate the frequency of candidate nucleotides responsible 

for chronicity. 

 

2.3 Statistical analysis 

Statistical analyses were performed using the Statistical Program for Social Sciences 

(PASW Statistics 18 for windows, SPSS, Inc., Chicago, IL) and OpenEpi version 2.3 

[Dean et al., 2009]. Categorical data for a 2x2 table, such as gender and viral mutations, 

were compared by Chi-square exact test. Continuous data were compared by Mann-

Whitney U test; median and range were calculated. Odds ratio (OR), 95% confidence 

interval (CI) and Phi coefficient were calculated. Odds ratio of 1.0-1.5 indicates trivial 

positive association, >1.5-3.5 low positive association, >3.5-9.0 moderate positive 

association, >9.0 high positive association. Odds ratio of 0.7-1.0 indicates trivial 

negative association, 0.3-<0.7 low negative association, 0.1-<0.3 moderate negative 

association and 0.0-<0.1 high negative association. Phi coefficient was used to measure 

the strength of association (< 0.2 = small effect; 0.2–0.5 = moderate effect; > 0.5 = large 

effect); a positive sign for the coefficient indicates direct association, whereas a 

negative sign indicates inverse association. Where necessary, cutoff of continuous data 

was determined from receiver operating curve (ROC) analysis. Correlation between two 
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continuous variables was determined using scatter-plot and Spearman’s rho correlation 

test. Binary logistic regression analysis was performed to examine the independent 

association between different variables and dichotomous outcome, specifically to 

estimate the independent risk of cirrhosis and HCC associated with precore mutations 

and serum iron markers after adjusted with basic demographic factors and ALT; 

forward and backward stepwise ‘Conditional’ (Bayesian) methods were applied using 

Pentry < 0.05 and Premoval < 0.05 respectively to obtain adjusted odds ratios (AORs) of 

independent predictors for risk of developing cirrhosis and HCC and their 95% CIs. 

Two-tailed P values of < 0.05 were considered to be statistically significant, unless 

otherwise specified. 

Sensitivity was calculated by dividing the number of cases with marker over the 

total number of all cases, whereas specificity was calculated by dividing the number of 

controls without the marker over the total number of controls. Accuracy was calculated 

by dividing the total number of cases with marker and controls without marker over the 

grand total number of all cases and controls. In the study of cirrhosis and HCC, the 

cases were either cirrhosis or HCC, whereas the controls were stringent controls. The 

OpenEpi version 2.3 was used to calculate the minimum accuracy required for cirrhosis 

and HCC study to achieve at least 80% statistical power. For the comparison between 

acute and chronic hepatitis B, the cases were those with acute hepatitis, whereas the 

referents were those with chronic hepatitis. Binary logistic regression analysis was 

performed to examine the independent association between chronicity and viral 

genomic mutations; ‘Enter’ method was applied using Pentry < 0.05 and Premoval < 0.05 

respectively to validate the independent predictors for chronicity. Chronic cases were 

set as 0 and acute cases as 1. Simple sampling method was chosen and bootstrapping 

sample number was set at 1,000. The viral mutations were included progressively based 

on accuracy in a descending order until it reached a P value of more than 0.05 in the 
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multivariate analysis. The significant candidate nucleotides were then tested for the best 

combination based on improvement in accuracy. The selection of candidate nucleotides 

was further refined with the statistical significance level re-calculated by Bonferroni 

correction in order to reduce false positivity [Pearson and Manolio, 2008]. Taking an 

usual two-tailed P value as 0.05 and number of single nucleotide polymorphisms 

(SNPs) present in a typical HBV genome as 3,139 (typical size of HBV genome is 

3,215 nt; the SNP numbers were derived from 3,832 HBV complete genomes retrieved 

from GenBank), the two-tailed P value threshold was thus adjusted to 1.593 x 10-05 (= 

0.05 divided by 3139). 
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Chapter 3 Hemi-nested PCR Optimisation 

3.1 Overlapping PCR for HBV genomic sequencing 

Six overlapping primer sets were designed to cover completely the HBV genome. 

Hemi-nested PCRs were performed in two steps, 40 cycles for the first round (using 

outer primer sets) and 40 cycles for the second round (using inner primer sets). 

 

3.1.1 Optimisation of annealing temperature for outer primer sets 

All primer sets were optimised with annealing temperature ranging from 55-64ºC.  The 

gel pictures of the first round of hemi-nested PCRs are given in Figure 3.1. All primers 

seemed to be working well around 60ºC. Therefore, the annealing temperatures of all 

outer primer sets were synchronised to 60.4ºC. 
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3.1.2 Optimisation of annealing temperature for inner primer sets 

All primer sets were optimised with annealing temperature ranging from 55-64ºC.  The 

gel pictures of the second round of hemi-nested PCRs are given in Figure 3.2. Most 

primers seemed to be working well around 60ºC. The annealing temperatures of all 

primer sets, except for 1865F-2839R, were synchronised to 60.4ºC; the annealing 

temperature of the unsynchronised primer set was determined to be 58.3ºC. 
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3.2 Hemi-nested PCR for targeted precore fragment sequencing 

Two primer sets targeting precore region were optimised with annealing temperature 

ranging from 50-60ºC.  The gel pictures of the first and second rounds of hemi-nested 

PCR are given in Figure 3.3. The optimal annealing temperature was determined to be 

54ºC for both rounds of hemi-nested PCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 : Agarose gel (1.5%, w/v) pictures of first and second round hemi-nested 
PCR with annealing temperature optimisation for primer sets (A) 1776F-2820R 
(fragment size 1,045 bp) and (B) 1776F-2325R (fragment size 550 bp). 
Lane 1-9: 50, 52, 54, 56, 58, 60ºC and reagent control. 
Lane 10: i-DNA 100 bp plus ladder (100, 200, 300, 600, 1,000, 1,500, 2,000, 2,500, 
3,000 bp). 
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Chapter 4 In Search of Markers for HBV-related Cirrhosis and HCC 

4.1 Literature review 

Chronic HBV infection is a serious public health problem because of its worldwide 

distribution and severe complications. Cirrhosis and HCC are the most severe 

complications particularly prevalent in Asia, where HBV-infected individuals usually 

acquire infection at birth or during early childhood. Viral markers, such as HBeAg 

positivity and viral load, and host markers, such as smoking and serum ferritin, are 

among the risk factors for cirrhosis and HCC. Cirrhosis per se is a predisposing factor 

for HCC [Muroyama et al., 2006]. Regardless of disease etiology, about 80% of HCC 

patients have underlying cirrhosis. In those infected by HBV only, more than 90% may 

have cirrhosis [Yang et al., 2011]. The annual incidence of HBV-related HCC in 

cirrhotic patients is about 1-15% [Sanyal et al., 2010]. The focus on predictive markers 

of the complications is usually on either viral or host markers alone. Often, the use of 

either viral or host markers alone, is not adequate to predict cirrhosis and HCC with 

high accuracy, suggesting that the HBV-related complications could be multi-factorial 

in origin.  

 

4.1.1 Viral Markers 

(a) HBeAg 

Positivity for HBeAg usually indicates high viral replication. HBV-infected hepatocytes 

produce various viral antigens that can provoke host immune attack. When viral 

replication is high, more hepatocytes are expected to be infected. Subsequently these 

would provoke host immune attack on more liver tissues, resulting in a higher degree of 

liver damage. The interplay between the virus and the host immune response in long 

term leads to repeated hepatocyte injury and regeneration, and ultimately culminates in 

cirrhosis and HCC. In fact, chronic hepatic necro-inflammatory process has been 
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proposed as one of the mechanisms for HBV-related cirrhosis and HCC. In short, 

HBeAg might play a role in the development of liver complications.  

Published reports, however, have given conflicting evidence on the link between 

HBeAg and cirrhosis. A Taiwanese study estimated the incidence of cirrhosis in 

HBeAg-positive chronic hepatitis B patients to be 2-5 per 100 person-years [Liaw et al., 

1988]. In the same year, an Italian study demonstrated a much higher incidence of 

cirrhosis in those who were HBeAg-negative, 8-9 per 100 person-years [Fattovich et al., 

1988]. Again in France, the proportion of cirrhosis in HBeAg-negative patients was 

higher than that in the HBeAg-positive ones [Zarski et al., 2006]. However, another 

study did lend support to the hypothesis of HBeAg positivity being linked to cirrhosis. 

The study showed that the hazard ratio of cirrhosis was more than 17 for HBeAg-

seroconverted patients after age of 40 years compared to those before 30 years of age 

[Chen et al., 2010]. Overall, it seemed that HBeAg-negative patients, contrary to 

expectation, might have a higher risk for cirrhosis. Alternatively, the duration of 

exposure to HBeAg, but not age at visit, may influence the progression to cirrhosis. 

Hence, an age-adjusted or cohort analysis is required to further elucidate the link of 

HBeAg positivity with cirrhosis. 

 A large-scale cohort study involving more than 10,000 men found that the age-

adjusted incidence rate of HCC among HBeAg-positive cases was at least 3 times 

higher than that among HBeAg-negative cases [Yang et al., 2002]. A more recent case-

control study from India also showed the positive association of HBeAg with HCC 

[Asim et al., 2010]. The hazard ratio of HCC for HBeAg-seroconverted patients after 

age of 40 years compared to those before age of 30 years was more than 5 [Chen et al., 

2010]. It seemed that a longer period of exposure to HBeAg might confer a higher risk 

of developing HCC. As in the case of cirrhosis, however, another study reported that 

earlier HBeAg seroconversion did not reduce such a risk [Yuen et al., 2003]. Other 
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studies showing that more than 80% of the HBV-cirrhotic patients have negative serum 

HBeAg at the time of diagnosis of HCC [Xu et al., 2009] and lower prevalence of 

HBeAg in cirrhosis and HCC [Liaw et al., 1984; Lin et al., 2007] underscore the 

inconsistent relationship between HBeAg and risk of HCC. The usefulness of HBeAg as 

a predictor for complications of hepatitis B is further hampered by the fact that 

individuals carrying viral mutants capable of abrogating HBeAg expression could also 

be having high viral replication that predisposes an individual to the development of 

cirrhosis and HCC.  

 

(b) HBV DNA 

Viral load of HBV, also called HBV DNA, is currently the most important marker of 

viral replication. Active viral replication is one of the risk factors associated with 

progression to severe complications [Fung and Lok, 2005]. Chronic hepatitis B patients 

with high HBV DNA level (higher than 4 log copies/ml or 2,000 IU/ml) and active liver 

disease are recommended for antiviral treatment as they are at risk for progression to 

cirrhosis and HCC [Keeffe et al., 2008, Liaw et al., 2008].  

HBV DNA fluctuates during the course of chronic infection of HBV (shown in 

Figure 4.1). As such, a point estimate of HBV DNA level would be less accurate for 

predicting the development of cirrhosis and HCC. This is exemplified by the 

observation that the HBV DNA in children is usually high; yet, children are not at risk 

of the liver complications. It takes several decades for HBV-related cirrhosis and HCC 

to occur [Block et al., 2003]. Fluctuating or persistently high HBV DNA patterns are 

important in determining the risk [Harris et al., 2003; Kwon et al., 2010]. Many studies 

have been conducted to assess the capability of the HBV DNA marker to predict the 

development of liver diseases, especially HCC. The non-exhaustive lists of case-control 

and cohort studies on cirrhosis and HCC are summarised in Table 4.1 and 4.2 
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respectively. Most studies supported that chronic hepatitis B individuals with viral load 

≥ 10,000 copies virus/mL were at higher risk for cirrhosis and HCC. A cohort study 

from Hong Kong indicated that a trough viral load more than 6.31 x 104 copies/mL was 

predictive for the development of HCC (trough viral load was defined as the lowest 

level of HBV DNA during follow-up) [Chan et al., 2009]. In addition, viral loads more 

than 10,000 copies/mL (>2,000 IU/mL) have a higher rate of HCC recurrence after liver 

resection [Hung et al., 2008], radiofrequency ablation [Goto et al., 2011] and liver 

transplantation [Li et al., 2011]. A large-scale case-control study from China showed 

that high viral load was a risk factor for HCC, but not for cirrhosis [Yin et al., 2011]. In 

contrast, some studies showed no association of a higher viral load (≥100,000 

copies/mL) with risk of cirrhosis [Tsai et al., 2009] and HCC [Fattovich et al., 2002; Liu 

et al., 2006]. Another study found that 15% of HCC patients have low viral load, <1,000 

copies/mL [Fung et al., 2007]. Chronic hepatitis B individuals with low viral load can 

still progress to the severe liver complications [Kim et al., 2010; Mendy et al., 2010]. 

Overall, elevated viral load is associated with a higher risk for progression to cirrhosis 

and HCC, but those with low viral load are also at risk. Multiple points or years of viral 

load estimation before diagnosis of cirrhosis and HCC, instead of single point 

determinations, are probably better for the prediction of liver complications. 
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Figure 4.1 : Possible trends of HBV DNA levels.  
a.) a persistently high pattern; b.) a fluctuating pattern; c.) a decreasing pattern; d.) an 
increasing pattern; e.) a persistently low pattern. Reference: Kwon et al. (2010). The 
value of 4 log10 copies/mL is equivalent to 10,000 copies/mL. 
 

 

Table 4.1 : Serum HBV DNA levels in case-control and cohort studies of cirrhosis. 
Author (year) Sample size 

(Cirrhosis, controla)
HBV DNA level 

(copies/mL)
OR/RR/HR 

Case-control    
Yuan et al. (2005) 79, 158 10,000-99,999 1.5
  100,000-999,999 3.1
   
Cohort   
Chen et al. (2006b) 367, 1,316 1,600-99,999 1.5
  ≥100,000 2.7
Iloeje et al. (2006) 365, 3,217 ≥10,000 2.5
  ≥100,000 5.9
Mendy et al. (2010) 53, 60 >10,000 17.3
HR, hazard ratio; OR, odds ratio; RR, relative risk. 
Note: all results are significant (P < 0.05). 
aControl indicates non-cirrhosis and non-HCC control. 
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Table 4.2 : Serum HBV DNA levels in case-control and cohort studies of HCC. 
Author (year) Sample size 

(HCC, controla) 
HBV DNA level 

(copies/mL) 
OR/RR/HR 

Case-control    
Yu et al. (2005) 154, 316 17,000-79,400 2.5
  ≥81,200-794,000 2.4
Liu et al. (2006) 44, 45 ≥100,000 2.6
Tong et al. (2007) 101, 67 >100,000 80.8
Liu et al. (2008) 170, 276 10,000-99,999 2.8
  100,000-999,999 48.4
Mendy et al. (2010) 126, 60 >10,000 38.8
Yin et al. (2011) 846, 190 ≥10,000 4.5
   
Cohort   
Ohata et al. (2004) 21, 52 ≥1000,000 3.1
Chen et al. (2006a) 164, 3489 10,000-99,999 2.3
  100,000-999,999 6.6
Yang et al. (2008) 153, 2,609 10,000-99,999 1.8
  100,000-999,999 3.4
HR, hazard ratio; OR, odds ratio; RR, relative risk. 
Note: all results are significant (P < 0.05). 
aControl indicates non-cirrhosis and non-HCC control. 

 

 (C) Viral genotype and mutations 

Studies in the possible influence of viral genotype, BCP and precore mutations in HBV-

related diseases have mushroomed over the past decade. Newly observed viral 

mutations, including X gene mutations and pre-S deletions, have emerged in the past 

few years. Viral genetics are less prone to fluctuation compared to viral load and other 

liver function parameters [Chu et al., 2012]. Hence, they may be more suitable for the 

determination of potential predictors for chronic liver complications in case-control 

studies compared to other parameters.  

 Viral genotype C is frequently associated with development of cirrhosis and 

HCC when compared to genotype B [Yin et al., 2011]. Nonetheless, some studies 

showed inconsistent findings [Lin et al., 2007; Yuan et al., 2007]. Viral genotypes A 

and D are less common in Malaysia. A study from India demonstrated no association 

between genotypes A and D with HCC [Asim et al., 2010]. Certain sub-genotypes, for 

example, sub-genotype C2, have been claimed to have higher disease-inducing capacity 

than C1 [Tanaka et al., 2006]. Viral genotyping and sub-genotyping are difficult to 
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apply in the clinical setting because for an accurate classification of the viral strains, 

complete genomic sequencing is required; this approach is labour-intensive and not 

cost-effective. The analysis of single or a few nucleotides is more practical. The 

genotyping method is further complicated by viral genetic recombination. For example, 

a HBV C/B recombinant, GQ377594 [Xu et al., 2010], when classified according to the 

genotype definitions [Okamoto et al., 1988; Kramvis et al., 2008], can be either 

genotype B or C. In fact, the problems of inadequate differentiation of HBV strains 

according to the conventional definition of genotyping have been brought up recently 

[Zhou et al., 2012]. Obviously, a new standard for classifying such viral sequences is 

warranted.  

 BCP is known to be the binding site for some liver transcription factors and may 

be responsible for differential viral gene regulation [Zheng et al., 2004]. V1753, T1762, 

A1764, T1766, A1768 and G1799 are some of the BCP mutations. As listed in Table 

4.3-4.6, the BCP double mutations (T1762/A1764) have been intensively reported in 

various clinical association studies. However, no in vitro study has yet provided any 

evidence concerning the hepatocarcinogenic effects of the BCP mutations [Pollicino et 

al., 2011]. The mutations suppress HBeAg expression and additional BCP mutations, 

such as those at nucleotide position 1753 and 1766, could affect rate of viral replication 

[Jammeh et al., 2008]. Taken that HBeAg is one of the major antigen inducing liver 

injury [Frelin et al., 2009], it would be expected that BCP mutations imposed lesser 

extent of immune-mediated liver injury as a result of reduced HBeAg expression. 

Surprisingly, most studies supported a positive association of T1762/A1764 with 

cirrhosis and HCC. Also, quite a number found no association. However, in a large 

sample-sized cohort study, the BCP mutations did show a strong negative association 

with HCC [Yang et al., 2008]. Although associated significantly with cirrhosis and 

HCC, the BCP mutations can still be either less sensitive or less specific (<70%) for 
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prediction of progression to cirrhosis and HCC [Wang et al., 2007; Mendy et al., 2008; 

Utama et al., 2009; Cho et al., 2011; Kao et al., 2012]. Collectively, these association 

data point to the inconsistent biological relevance of T1762/A1764 mutations affecting 

disease pathogenesis.  

 A1896 is a common precore stop codon mutation interrupted in the middle of 

precore ORF; A1897 is the less common stop codon mutation. These mutations totally 

abrogate HBeAg expression [Jammeh et al., 2008]. Because HBeAg is harmful to 

hepatocytes [Frelin et al., 2009], one would expect that the termination of HBeAg 

expression by A1896 was probably hepatoprotective. This is indeed in agreement with 

two huge population age-adjusted studies [Tanaka et al., 2006], showing strong negative 

association of the mutation with HCC. Intriguingly, much evidence argues against the 

association of A1896 with cirrhosis and HCC (listed in Table 4.3 and 4.5 respectively). 

Even more suprisingly, some found positive association [Song et al., 2006; Kao et al., 

2012].  

Pre-S may be divided into pre-S1 and pre-S2, which are responsible for 

production of LHBsAg and MHBsAg respectively. Pre-S mutations may include 

deletions at the 3’ terminus of pre-S1 region, at the 5’ terminus of pre-S2 region and at 

the pre-S2 start codon, and point mutations at the pre-S2 start codon [Yeung et al., 

2011]. Both pre-S1 and pre-S2 deletions could cause overproduction and accumulation 

of the envelope proteins in endoplasmic reticulum (ER), resulting in ER stress that may 

promote oxidative DNA damage and genomic instability [Fan et al., 2001; Hsieh et al., 

2004]. This would indeed induce more liver damage and hepatocarcinogenesis. In 

addition, pre-S2 mutations may induce formation of ground glass hepatocytes, an 

indication of liver injury [Wang et al., 2003]. In addition, truncated pre-S2 sequence 

might either act as a gene transactivator integrated into the human genome [Hildt and 

Hofschneider, 1998; Wang et al., 2005] or induce uncontrolled cell cycle progression 
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via degradation of cyclin-dependent kinase inhibitors [Hsieh et al., 2007]. Clinical 

association of pre-S deletions with cirrhosis and HCC was inconsistent (see Table 4.4 

and 4.6). Further, positions and lengths of pre-S deletions were variable, making 

interpretation and evaluation difficult. Besides the deletions, pre-S mutations like 

C2964, C3116 and pre-S2 start codon mutations have rarely been reported. 

 Less well-reported markers, like BCP mutations (such as V1753 and 

T1766/A1768), precore mutations (such as T1858 and A1899), core mutations (such as 

G1914) and X mutations (such as T1653 and A1689), have also gained some attention 

recently. The underlying mechanisms of these mutations in hepatocellular necrosis and 

carcinogenesis have been largely unknown. The risks of these mutations for cirrhosis 

and HCC are listed in Table 4.4 and 4.6 respectively.  
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Table 4.3 : Common HBV mutations in studies of cirrhosis. 

Author (year) Sample size 
Cirrhosis, controla OR/RR/HR P value 

T1762/A1764   
Positive association   
Lin et al. (2005) 30, 50 5.0 0.005
Chen et al. (2006b) 46, 18 38.9 <0.050
Song et al. (2006) 40, 40 4.8 <0.001
Chen et al. (2007) 28, 113 3.3 0.005
Wang et al. (2007) 32, 132 2.6 0.030
Yuan et al. (2007) 14, 17 8.8 0.016
Mendy et al. (2008) 43, 21 3.6 0.040
Utama et al. (2009) 62, 61 6.0 <0.001
Cho et al. (2011) 65, 60 3.5 0.004
Yin et al. (2011) 188, 235 (CHB)/846 (ASC) 2.9 0.001
No association   
Preikschat et al. (2002) 14, 24 0.2 0.354
Tsai et al. (2009) 13, 38 1.2 1.000
Malik et al. (2012) 30, 116 1.7 0.267
   
A1896   
Positive association   
Chen et al. (2006b) 46, 18 3.2 <0.050
Song et al. (2006) 40, 40 6.8 <0.001
No association   
Lin et al. (2005) 31, 57 0.9 1.000
Chen et al. (2007) 28, 113 0.8 0.570
Wang et al. (2007) 32, 132 0.6 0.450
Mendy et al. (2008) 43, 21 2.3 0.200
Tsai et al. (2009) 13, 38 0.9 1.000
Malik et al. (2012) 30, 116 1.4 0.590
   
V1753, S1753 or C1753b   
Positive association   
Chen et al. (2007) 28, 113 2.9 0.009
Utama et al. (2009) 62, 61 4.0 0.001
No association   
Song et al. (2006) 40, 40 0.3 0.060
Wang et al. (2007) 32, 132 2.1 0.272
Malik et al. (2012) 30, 116 2.1 0.154
ASC, asymptomatic hepatitis B surface antigen carrier; BCP, basal core promoter; CHB, chronic hepatitis 
B; HR, hazard ratio; NA, not available; OR, odds ratio; RR, relative risk. 
aControl indicates non-cirrhotic non-HCC control. 
bNucleotide V = A, C or G; S = C or G. All studies used V1753, except for Malik et al. (2012) that used 
S1753 and Guo et al. (2008) that used C1753. 
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Table 4.4 : Rarely reported HBV mutations in studies of cirrhosis. 

Author (year) Sample size 
Cirrhosis, controla OR/RR/HR P value 

M1386   
Cho et al. (2011) 65, 60 4.2 0.004
   
T1653   
Wang et al. (2007) 32, 132 2.1 0.962
Cho et al. (2011) 65, 60 3.0 0.028
   
A1726/Y1727b   
Utama et al. (2009) 62, 61 0.2 0.001
   
T1764/G1766   
Malik et al. (2012) 30, 116 0.59 0.528
   
T1766/A1768   
Chen et al. (2007) 28, 113 6.5 <0.001
   
A1768   
Yin et al. (2011) 188, 235 (CHB)/846 (ASC) 3.1 0.009
   
G1799   
Chen et al. (2007) 28, 113 0.4 0.009
   
A1846   
Yin et al. (2011) 188, 235 (CHB)/846 (ASC) 1.9 0.029
   
T1858  
Wang et al. (2007) 32, 132 1.1 0.980
   
A1899   
Song et al. (2006) 40, 40 9.8 0.029
Wang et al. (2007) 32, 132 2.6 0.287
Malik et al. (2012) 30, 116 2.3 0.078
   
C2964   
Yin et al. (2010) 119, 603 10.0 <0.001
   
C3116   
Yin et al. (2010) 119, 603 3.4 0.005
   
Pre-S deletions   
Chen et al. (2006b) 46, 18 0.3 1.000
Chen et al. (2007) 28, 113 3.1 0.003
BCP, basal core promoter; HR, hazard ratio; NA, not available; OR, odds ratio; RR, relative risk. 
aControl indicates non-cirrhotic non-HCC control. 
bNucleotide Y = C or T. 
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Table 4.5 : Common HBV mutations in studies of HCC. 

Author (year) Sample size 
HCC, controla OR/RR/HR P value 

T1762/A1764   
Positive association   
Nakashima et al. (2004) 36, 38 58.7 <0.001
Lin et al. (2005) 25, 50 7.3 0.002
Chen et al. (2006b) 50, 46 7.2 <0.001
Liu et al. (2006) 44, 45 4.5 0.003
Tanaka et al. (2006) 180, 148 3.3 <0.001
Tong et al. (2007) 101, 67 12.9 <0.001
Wang et al. (2007) 47, 132 11.4 <0.001
Yuan et al. (2007) 8, 17 25.7 0.009
Chen et al. (2008) 80, 160 2.8 0.002
Mendy et al. (2008) 114, 21 3.4 0.024
Yang et al. (2008) 153, 2609 1.7 0.013
Kim et al. (2009) 135, 135 4.7 <0.001
Utama et al. (2009) 48, 61 4.8 <0.001
Asim et al. (2010) 150, 136 6.9 0.001
Cho et al. (2011) 69, 60 9.2 <0.001
Jang et al. (2012) – T1762 75, 75 11.7 0.034
Kao et al. (2012) 112, 56 6.3 <0.001
Malik et al. (2012) 30, 116 3.9 0.002
No association   
Muroyama et al. (2006) 39, 36 0.8 0.782
Livingston et al. (2007) 45, 43 1.3 0.670
Shinkai et al. (2007) 80, 80 2.9 >0.050
Elkady et al. (2008) 23, 25 1.1 1.000
Guo et al. (2008) 58, 71 0.7 0.448
Jang et al. (2012) – A1764 75, 75 NA 0.430
All are case-control studies, except for Muroyama et al. (2006) and Yang et al. (2008). 
BCP, basal core promoter; HCC, hepatocellular carcinoma; HR, hazard ratio; NA, not available; OR, 
odds ratio; RR, relative risk. 
aControl indicates non-cirrhotic non-HCC control. 
bNucleotide V = A, C or G; S = C or G. All studies used V1753, except for Malik et al. (2012) that used 
S1753 and Guo et al. (2008) that used C1753. 
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Table 4.5, continued. 

Author (year) Sample size 
HCC, controla OR/RR/HR P value 

A1896   
Positive association   
Chen et al. (2006b) 50, 46 3.7 0.007
Tong et al. (2007) 101, 67 2.0 0.040
Kao et al. (2012) 112, 56 2.4 0.013
Malik et al. (2012) 30, 116 2.7 0.030
No association   
Park et al. (1999) 58, 16 2.1 0.473
Nakashima et al. (2004) 36, 38 0.3 0.073
Lin et al. (2005) 25, 50 0.8 0.860
Liu et al. (2006) 44, 45 1.9 0.260
Muroyama et al. (2006) 39, 36 1.6 0.358
Livingston et al. (2007) 45, 43 0.6 0.408
Shinkai et al. (2007) 80, 80 0.7 >0.050
Wang et al. (2007) 47, 132 0.7 0.336
Yuan et al. (2007) 8, 17 1.2 1.000
Chen et al. (2008) 80, 160 1.4 0.353
Elkady et al. (2008) 23, 25 2.0 0.444
Mendy et al. (2008) 119, 21 0.6 0.492
Kim et al. (2009) 135, 135 1.0 0.889
Asim et al. (2010) 150, 136 1.8 >0.050
Jang et al. (2012) 75, 75 NA 0.438
Negative association   
Tanaka et al. (2006) 180, 148 0.5 0.009
Yang et al. (2008) 153, 2,609 0.3 <0.001
  
V1753, S1753 or C1753b   
Positive association   
Tanaka et al. (2006) 180, 148 2.5 <0.001
Shinkai et al. (2007) 80, 80 8.0 <0.001
Wang et al. (2007) 47, 132 10.4 <0.001
Chen et al. (2008) 80, 160 2.1 0.041
Asim et al. (2010) 150, 136 3.7 0.041
Cho et al. (2011) 69, 60 7.8 <0.001
Jang et al. (2012) 75, 75 5.3 <0.001
Malik et al. (2012) 30, 116 3.7 0.005
No association   
Guo et al. (2008) 58, 71 1.9 0.108
Kim et al. (2009) 135, 135 0.6 0.106
All are case-control studies, except for Muroyama et al. (2006) and Yang et al. (2008). 
BCP, basal core promoter; HCC, hepatocellular carcinoma; HR, hazard ratio; NA, not available; OR, 
odds ratio; RR, relative risk. 
aControl indicates non-cirrhotic non-HCC control. 
bNucleotide V = A, C or G; S = C or G. All studies used V1753, except for Malik et al. (2012) that used 
S1753 and Guo et al. (2008) that used C1753. 
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Table 4.6 : Rarely reported HBV mutations in studies of HCC. 

Author (year) Sample size 
HCC, controla OR/RR/HR P value 

   
A7   
Yin et al. (2010) 231, 603 7.2 <0.001
   
C53  
Yin et al. (2010) 231, 603 2.2 0.022
   
M1386   
Cho et al. (2011) 69, 60 3.9 0.002
   
T1485   
Muroyama et al. (2006) 91, 87 4.9 0.001
   
T1504/T1505   
Asim et al. (2010) 150, 136 7.6 0.012
   
A1613/T1653   
Tatsukawa et al. (2011) 40, 52 7.2 0.016
   
T1653   
Tanaka et al. (2006) 180, 148 2.2 0.001
Shinkai et al. (2007) 80, 80 4.4 0.006
Wang et al. (2007) 47, 132 15.4 <0.001
Guo et al. (2008) 58, 71 1.6 0.323
Kim et al. (2009) 135, 135 4.3 0.037
Asim et al. (2010) 150, 136 3.0 >0.050
Cho et al. (2011) 69, 60 4.4 <0.001
Jang et al. (2012) 75, 75 4.2 0.001
   
A1689   
Kim et al. (2009) 135, 135 3.1 0.026
  
A1726/Y1727b   
Utama et al. (2009) 48, 61 0.5 0.104
   
T1764/G1766   
Elkady et al. (2008) 23, 25 1.7 0.615
Guo et al. (2008) 58, 71 1.2 1.000
Malik et al. (2012) 30, 116 2.2 0.119
   
T1846   
Chen et al. (2008) 80, 160 2.0 0.018
Jang et al. (2012) 75, 75 6.5 <0.001
   
T1858   
Wang et al. (2007) 47, 132 3.0 0.004
Kim et al. (2009) 135, 135 0.8 0.463
   
All are case-control studies, except for Muroyama et al. (2006), Yang et al. (2008) and Yin et al. (2010).  
aa, amino acid; BCP, basal core promoter; HCC, hepatocellular carcinoma; HR, hazard ratio; NA, not 
available; OR, odds ratio; RR, relative risk. 
aControl indicates non-cirrhotic non-HCC control. 
bNucleotide Y = C or T. 
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Table 4.6, continued. 
Author (year) Sample size 

HCC, controla 
OR/RR/HR P value 

A1899   
Wang et al. (2007) 47, 132 0.2 0.006
Chen et al. (2008) 80, 160 2.2 0.017
Asim et al. (2010) 150, 136 1.3 >0.050
Jang et al. (2012) 75, 75 NA 0.690
Malik et al. (2012) 30, 116 1.5 0.435
   
G1914   
Asim et al. (2010) 150, 136 8.2 0.002
Malik et al. (2012) 30, 116 15.0 <0.001
   
C2189   
Zhu et al. (2010) 103, 103 4.0 0.003
   
W2203   
Zhu et al. (2010) 103, 103 9.7 0.035
   
A2964   
Yin et al. (2010) 231, 603 25.7 <0.001
   
T3116   
Yin et al. (2010) 231, 603 3.8 <0.001
   
Pre-S deletions   
Chen et al. (2006b) 46, 50 NA 1.000
Lin et al. (2007) 64, 202 3.7 0.007
Chen et al. (2008) 80, 160 2.2 0.021
Yin et al., (2010) – Pre-S1 231, 603 7.3 <0.001
Yeung et al. (2011) 69, 69 5.1 0.012
   
Pre-S2 aa1-6 deletion   
Kao et al. (2012) 112, 56 136.4 0.039
   
Pre-S2 start codon mutation   
Yin et al. (2010) 231, 603 5.3 <0.001
All are case-control studies, except for Muroyama et al. (2006), Yang et al. (2008) and Yin et al. (2010).  
aa, amino acid; BCP, basal core promoter; HCC, hepatocellular carcinoma; HR, hazard ratio; NA, not 
available; OR, odds ratio; RR, relative risk. 
aControl indicates non-cirrhotic non-HCC control. 
bNucleotide Y = C or T. 
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4.1.2 Host Markers 

(a) Age, gender and ethnicity 

It is generally accepted that as a person gets older, the person is at a higher risk for 

cancer. This is also true in HBV-related HCC. The annual incidence of HCC in HBV-

infected Asians was reported to be 0.5%, increasing to 2-fold at age of 70 years [Bruix 

and Sherman, 2005]. As the Asian population usually acquired HBV infection at birth 

or during early childhood, it is plausible that most of them are exposing to HBV 

antigens for a long period, and thus have a much higher risk of progression to HCC. 

Knowing that HBV antigens cause immune-mediated liver injury [Frelin et al., 2009], it 

is conceivable that long-term exposure to such antigens may induce significant liver 

damage (possibly lead to cirrhosis) and continual regeneration of hepatic cells. As a 

result of the rapid cellular renewal, accumulation of cellular replication errors may 

occur, and subsequently would lead to HCC. In reality, it is not feasible to obtain data 

on duration of infection. Most, if not all, studies reported age at visit [Cho et al., 2011; 

Kao et al., 2012]. Hence, the patients’ family history of chronic HBV infection could be 

the best indication of childhood infection. There is little doubt that individuals of older 

age are more likely to develop cirrhosis [Fung and Lok, 2005; Zarski et al., 2006] and 

HCC [Yin et al., 2011]. A non-exhaustive list of publications on age in relation to 

cirrhosis and HCC is shown in Table 4.7. The evidence for the linking of older age with 

cirrhosis and HCC is strong. Most studies have shown that chronic HBV individuals 

developed cirrhosis and HCC at an average age of 45 years and above. 

 

 

 

 

 



51 
 

Table 4.7 : Age in studies of HBV-related cirrhosis and HCC. 

Author (year) 
Disease, controla 

P value Sample size Mean/Median age or 
age cutoff (OR) 

Disease: cirrhosis   
Song et al. (2006) 40, 40 54.2, 34.7 <0.001
Yin et al. (2010) 119, 603 51.6, 30.0 <0.001
Cho et al. (2011) 65, 60 51.6, 35.6 <0.001
Yin et al. (2011) 188, 235 (CHB)/846 (ASC) 50.9, 40.3/29.2 (1.1) <0.001
   
Disease: HCC   
Liu et al. (2006) 44, 45 46.2, 44.8  0.590
Tanaka et al. (2006) 180, 148 ≥50, <50 (2.9) <0.001
Tong et al. (2007) 101, 67 53.3, 45.4 0.002
Yin et al. (2010) 231, 603 49.9, 30.0  <0.001
Cho et al. (2011) 69, 60 55.8, 35.6  <0.001
Wang et al. (2007) 47, 132 ≥50, <50 (14.3) <0.001
Chen et al. (2008) 80, 160 50.7, 48.9 0.210
Asim et al. (2010) 150, 136 >45, ≤45 (4.0) 0.001
Kao et al. (2012) 112, 56 46.3, 42.9 0.385
ASC, asymptomatic hepatitis B surface antigen carrier; CHB, chronic hepatitis B; HCC, hepatocellular 
carcinoma; OR, odds ratio. 
aSub-heading of this table indicated (in bold) whether the disease was cirrhosis or HCC. Control indicates 
non-cirrhotic non-HCC control. 
 
 
 Males tend to develop HCC at a younger age [Gonzalez and Keefee, 2012]. In 

most publications, a predominance of cirrhosis and HCC in male has been described, 

with male-to-female ratios ranging from 1.8:1.0 to 9.2:1.0 (shown in Table 4.8). In 

Peninsular Malaysia, age-standardised incidences of liver cancer in males and females 

were 7.2 and 2.7 per 100,000 persons respectively [National Cancer Registry, 2006]. 

Other Southeast Asian countries like Indonesia and Vietnam have the ratio of about 4:1 

[El-Serag, 2012]. The male predominance is strengthened by the clinical observations of 

the more rapid progression to cirrhosis in males than females; hence cirrhosis that leads 

to HCC development is usually considered to be the disease of men and postmenopausal 

women [Shimizu, 2007]. The striking gender disparity findings have initiated in vitro 

and in vivo studies from time to time to explore the importance of sex hormones in 

HCC. Androgen has been long known to induce or at least promote 

hepatocarcinogenesis [De Maria et al., 2002], but some studies showed no correlation of 

histopathologic types of HCC with androgen receptor expression [Nagasue et al., 1989]. 
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Hepatic androgen receptor increases the HBV viral titer by enhancing the viral RNA 

transcription through direct binding to the androgen response element near the viral core 

promoter [Wu et al., 2010]. Meanwhile, estrogen could be either protective [Wang et 

al., 2011; Zhang et al., 2012] or carcinogenic [Farinati et al., 2002; Trauner and 

Halilbasic, 2011], or having no effect at all [Manesis et al., 1995; Nagasue et al., 2009] 

in the liver. In addition, a recent study found that estrogen may repress transcription of 

HBV genes via interaction with a hepatocyte nuclear factor [Wang et al., 2012]. This 

may account for the lower viral load, and hence lower incidence of cirrhosis and HCC 

in HBV-infected females compared to males. The evidence on sex hormones related 

progression to cirrhosis and HCC is inconsistent. Other ‘sex-dependent’ factors like 

menstrual blood loss and smoking habit should be taken into consideration as well. The 

effects of these factors in chronic hepatitis B diseases will be described in later sections. 

   

Table 4.8 : Male gender in studies of HBV-related cirrhosis and HCC. 

Author (year) Sample size 
Disease, controla OR P value 

Disease: cirrhosis   
Song et al. (2006) 40, 40 6.0 <0.001
Yin et al. (2010) 119, 603 1.8 0.008
Cho et al. (2011) 65, 60 2.3 0.064
Yin et al. (2011) 188, 235 (CHB)/846 (ASC) 1.9 0.044
   
Disease: HCC 
Liu et al. (2006) 44, 45 4.4 0.020
Tanaka et al. (2006) 180, 148 2.3 0.014
Wang et al. (2007) 47, 132 0.8 0.810
Tong et al. (2007) 101, 67 6.5 <0.001
Asim et al. (2010) 150, 136 3.3 0.001
Yin et al. (2010) 231, 603 2.5 <0.001
Cho et al. (2011) 69, 60 0.6 0.270
Kao et al. (2012) 112, 56 9.2 <0.001
ASC, asymptomatic hepatitis B surface antigen carrier; CHB, chronic hepatitis B; OR, odds ratio. 
aSub-heading of this table indicated (in bold) whether the disease was cirrhosis or HCC. Control indicates 
non-cirrhotic non-HCC control. 
 

 Ethnicity may represent the genetic constituent of an individual. According to a 

Centre for Disease Control (CDC) report in HCC cases between 2001-2006, the 

incidences of HCC for Asian, Caucasian, African and America Indian/Alaska Native 
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populations were 7.8, 2.6, 4.2 and 3.2 per 100,000 persons respectively. The age-

adjusted incidence of HCC has been reported to be 18–35 per 100,000 in Asian men and 

3–10 per 100,000 in European men [Fung and Lok, 2005]. Asian countries like China, 

Korea and Thailand have higher prevalence of HBV infection (2.6-12% versus 0.5-

1.0%) and higher incidence of HCC (11.4-47.1% versus 1.4-4.2%) than Western 

countries like USA, UK, Canada and Germany. It is possible that each ethnic group may 

have a unique genetic trait that would affect the progression of liver diseases. For 

example, certain human leukocyte antigen (HLA) genes like HLA-A, HLA-B, HLA-DP 

and HLA-DRB are ethnic-dependent [Easteal et al., 1989; Miao et al., 2007]. Genetic 

polymorphisms in such gene regions have been reported to be associated with either 

persistence [Ramezani et al., 2008; Gao et al., 2011] or clearance of HBV infection 

[Ramezani et al., 2008; Cho et al., 2008]. Those who are likely to have longer duration 

of infection would have higher risk of cirrhosis and HCC and vice versa. Another 

example is that Caucasians seems to have a higher frequency of the mutated HFE gene 

that predisposes them to develop haemochromatosis, an iron overload disease that 

would progress to cirrhosis and HCC [McLaren and Gordeuk, 2009]. However, Asians 

generally have higher body iron status than Caucasians [Harris et al., 2007]. In addition, 

each ethnic group may have dietary and living habits that would impact on their disease 

pathogenesis. For example, in some parts of China, the peanut and corn consumed were 

often contaminated by fungal toxin due to the humid weather [Yu, 1992], whereas the 

East African Bantu population consumes food highly contaminated with iron metal 

[Senba et al., 1989]. In addition, people in some Asian countries, like India, Sri Lanka, 

Taiwan, Malaysia and Myanmar, practice chewing betel quid which increases liver 

cancer risk [Wen et al., 2010]. Therefore, certain ethnic groups are prone to the 

development of cirrhosis and HCC. In general, Asians are more likely to develop liver 
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complications than other ethnic groups, largely due to the higher prevalence of HBV 

infection compared to the West.  

The annual incidence of cirrhosis and HCC in Malaysia is 2-10% and 1-6% 

respectively [Merican et al., 2000]. The Chinese have the highest incidence of HCC 

among all ethnic groups. In UMMC, the prevalence of cirrhosis was highest in HBV 

infection (46.1%), followed by HCV infection (18.5%), cryptogenic (15.4%), alcoholic 

(12.6%) and autoimmune (2.0%); HBV-related cirrhosis was predominant in Malay 

(47.9%) and Chinese (58.8%) compared to Indian (5.6%) [Qua and Goh, 2011]. 

Unfortunately, data on the association of Malaysian ethnic groups (especially Malay and 

Chinese) with HBV-related cirrhosis and HCC are lacking in the aforementioned study. 

 

(b) Cigarette/Tobacco smoking 

About 22% of the world’s populations are smokers [WHO, 2011]. Cigarette smoke 

contains over 4000 chemicals that not only predispose smokers to lung cancer, but also 

other cancers as well [American Lung Association, 2010]. Nicotine, carbon monoxide, 

heavy metals (lead, arsenic, and cadmium) and polycyclic aromatic hydrocarbons are 

among the carcinogens found in cigarette smoke [National Toxicology Program, 2005]. 

The liver is the primary site for detoxification of such compounds. Chronic exposure to 

the compounds induces hepatic oxidative stress to the liver [Altamirano and Bataller, 

2010], resulting in alterations in liver histology [Canales et al., 2012; Wong et al., 

2012]. Initial evidence arose from two retrospective studies proposing that cigarette 

smoking may increase prevalence and severity of alcoholic [Klatsky and Armstrong, 

1992] and HBV-related cirrhosis [Yu et al., 1997]. It has also been associated with 

progression to advanced liver fibrosis in fatty liver patients [Zein et al., 2012]. Nicotine, 

in particular, induces fibrogenic changes in human liver [Soeda et al., 2012]. In fact, 

cigarette smoking has been long reported to increase the risk of developing HCC; 
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smokers had about 2.1 times higher risk than non-smokers [Yu et al., 1991]. Many 

studies supported the risk of HCC in smoking with relative risk ranging from 1.5 to 9.6 

[Zhu et al., 2007; Di Costanzo et al., 2008; Altamirano and Bataller, 2010]. A HBV 

cohort study observed no increased risk of HCC in cigarette smokers [Yang et al., 

2008], but another two large sample-sized cross-sectional studies demonstrated about 5 

times higher likelihood of HCC developing in smokers compared to non-smokers [Chen 

et al., 2005a] and showed prospectively higher risk of mortality from HCC in HBV-

infected men only [Jee et al., 2004]. Smoking may also cause early onset of HCC [Wan 

et al., 2011]. Many HBV mutation studies have not included cigarette smoking as part 

of their risk evaluation in cirrhosis and HCC [To name a few: Yin et al., 2010; Cho et 

al., 2011; Kao et al., 2012]. It may be necessary to include cigarette or tobacco smoking 

to be included in future viral mutational studies as part of the confounding factors in 

chronic HBV infection. 

 

(c) Family history of cirrhosis/HCC 

The influence of genetic inheritance, lifestyles and dietary behaviours from parents to 

children may alter the clinical course of chronic HBV infection. Genetic variations in 

host genes, such as cytokine and DNA repair genes were shown to contribute to 

susceptibility of HBV-related HCC [Chen et al., 2005a]. Those having family members 

who practice smoking or consume contaminated food may also have higher risk of 

cirrhosis and HCC overall as discussed in previous sections. In addition, specific HBV 

strains capable of inducing cirrhosis or HCC, if they ever exist, may also be acquired 

through parental transmission. In fact, family history of HCC has been included in 

Asian and American clinical guidelines as an important risk factor for surveillance of 

HCC [Gonzalez and Keeffe, 2012]. Risk Evaluation of Viral Load Elevation and 

Associated Liver Disease/Cancer-Hepatitis B Virus (HBV-REVEAL) study involving 
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23,820 chronic hepatitis B participants found that even those with no alcohol 

consumption possessed 45% and 72% 10-year risk of getting cirrhosis and HCC 

respectively [Chen and Yang, 2011]. In a US study, those with first degree family 

history of liver cancer in either HBV or HCV infection had over 60-fold higher risk for 

HCC than those without [Hassan et al., 2009], whereas a study from Taiwan, involving 

4471 HBsAg positive participants, reported a higher odds ratio of suffering from 

cirrhosis if the individuals had family history of HCC [Yu et al., 2002]. In contrast, 

another Taiwan study showed no association of familial HCC history between chronic 

HBV carriers and non-cirrhotic HCC patients [Liu et al., 2006]. According to the latest 

meta-analysis, based on nine case-control and four cohort studies, for a total of 

approximately 3,600 HCC cases, the combination of family history of liver cancer and 

hepatitis B/C virus infection is associated with an over 70-fold elevated HCC risk 

[Turati et al., 2012]. In addition, those with strong family history of HCC have been 

associated with early onset of HCC [Wan et al., 2011; Park et al., 2012a].  

 

(d) Serum ALT 

Clinically, serum ALT has been used as a marker to assess disease activity in the liver. 

Serum ALT has been known to fluctuate during the course of chronic HBV infection; 

HBeAg-negative patients, during immune clearance and viral reactivation, frequently 

present fluctuating patterns in ALT levels (given in Figure 4.2) [Hadziyannis and 

Papatheodoridis, 2006].  
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Figure 4.2 : Phases of chronic HBV infection. ALT is fluctuating during HBeAg 
clearance and viral reactivating phases [Hadziyannis and Papatheodoridis, 2006].  
ALT, alanine aminotransferase; HBV, hepatitis B virus. 

 

 In a Taiwan HBV-REVEAL study, serum HBV DNA and ALT levels at both 

study entry and regular follow-up examinations were associated significantly with the 

risk of cirrhosis and HCC showing a dose-response relationship [Chen and Yang, 2011]. 

The current guidelines of the European Association for the Study of the Liver (EASL) 

and the American Association for the Study of Liver Diseases (AASLD) recommend 

initiation of antiviral treatment when ALT is elevated [Keeffe et al., 2008; EASL, 

2009]. However, the reports on the relationship of serum ALT with cirrhosis and HCC 

were highly variable (Listed in Table 4.9). Surprisingly, quite a number of studies 

showed negative association of ALT with HCC. This may be due to the fact that lower 

serum ALT levels occur at a later stage of severe liver diseases as well as older age 

[Huo et al., 2006]. A recent large population histology study demonstrated that an 

elevated ALT did not accurately predict liver fibrosis in HBeAg-positive and –negative 

individuals [Seto et al., 2012]. Chronic hepatitis B patients with persistently normal 

ALT (PNALT) but high viral load were still at high risk of HCC [Nakazawa et al., 

2011]. HBeAg-negative patients with ALT more than 0.5 times ULN were still at high 
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risk of cirrhosis [Wong et al., 2008]. Significant fibrosis and inflammation of liver was 

detected in 37% of patients with PNALT and thus the investigators suggested that a 

liver biopsy should be performed in patients older than 40 who had high normal ALT 

[Lai et al., 2007b]. Significant liver fibrosis was also found in 18% of patients with 

normal ALT in another study [Göbel et al., 2011]. A large cohort Chinese study showed 

an increased risk of liver complications in those with ALT of 0.5x-2.0x ULN but 

decreased risk in those of ALT >6x ULN [Yuen et al., 2005]. In brief, clinical 

application of high ALT level for the prediction of cirrhosis and HCC is difficult 

because the associations have been inconsistent. 

 

Table 4.9 : ALT in studies of HBV-related cirrhosis and HCC. 

Author (year) 
Disease, controla 

P value Sample size Mean/Median ALTb or 
ALT cutoff (OR) 

Disease: cirrhosis   
Positive association   
Yin et al. (2010) 119, 603 ≥45, <45 (7.6) <0.001
Yin et al. (2011) 188, 235 (CHB)/846 (ASC) ≥45, <45 (2.9) <0.001
Negative association   
Cho et al. (2011) 65, 60 89.9, 267.9  <0.001
   
Disease: HCC   
Positive association 
Tong et al. (2007) 101, 67 92.9, 19.9 <0.001
Asim et al. (2010) 150, 136 70.2, 51.8 0.001
Negative association   
Wang et al. (2007) 47, 132 63.9, 201.7 <0.001
Chen et al. (2008) 80, 160 84.2, 180.9 0.068
Cho et al. (2011) 69, 60 106.9, 267.9  <0.001
Jang et al. (2012) 75, 75 36.0, 45.0 0.028
No association   
Tanaka et al. (2006) 180, 148 ≥50, <50 (1.8) >0.050
Yin et al. (2010) 231, 603 ≥45, <45 (NA) >0.050
ALT, alanine aminotransferase; ASC, asymptomatic hepatitis B surface antigen carrier; CHB, chronic 
hepatitis B; HCC, hepatocellular carcinoma; NA, not available; OR, odds ratio. 
aSub-heading of this table indicated (in bold) whether the disease was cirrhosis or HCC. Control indicates 
non-cirrhotic non-HCC control. 
bAll ALT values were measured in U/L. 
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(e) Serum iron and serum ferritin 

As mentioned in the previous section, male predominance in liver complications has 

been linked with sex hormonal difference, but this difference is not necessarily the only 

explanation. Dietary iron overload has been reported to be a risk factor for development 

of HCC [Mandishona et al., 1998]. Males are at higher risk of iron overload than 

females because women suffer monthly menstrual blood loss and men do not have a 

normal physiologic mechanism of significant iron excretion. In fact, iron excess has 

been associated with cirrhosis [Morrison et al., 2003; Clark et al., 2010] and HCC 

[Hellerbrand et al., 2003] because it accelerates hepatocyte proliferation [An et al., 

2012] and induces hepatic DNA damage [Tanaka et al., 2008].  

Body iron status is routinely assessed by serum iron and serum ferritin. The 

current most accurate method for quantification of iron in the liver is Magnetic 

Resonance Imaging (MRI) [Alústiza Echeverría et al., 2012]. However, this method is 

still undergoing universal standardisation. In a Poland chronic liver disease study, serum 

iron and serum ferritin levels exceeded the normal limits in 49% and 71% of liver 

complication cases respectively [Sikorska et al., 2003]. In a non-alcoholic-

steatohepatitis-related cirrhosis study, iron deposits were more frequent in HCC patients 

than in controls [Sorrentino et al., 2009]. Another HCV-related study also showed a 

similar finding of iron deposits [Chapoutot et al., 2000]. The mean serum ferritin of 

cirrhosis cases (161-366 ng/mL for Child-Pugh stage A-C) was higher than that in 

hepatitis cases (68 ng/mL) and controls (80 ng/mL) but mean serum iron was lower in 

cirrhosis cases (72-89 µg/dL) than in hepatitis cases (120 µg/dL) and controls (110 

µg/dL) [Büyükaşik et al., 2011].  

The risk of HCC in iron overload patients is about 20-fold higher than in the 

general population [Dragani, 2010]. In a rat model study, deprivation of liver iron using 

an iron chelator suppresses the growth of HCC tissue through triggering cell cycle arrest 
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and apoptosis [Ba et al., 2011]. An earlier HBV study detected liver ferritin and 

stainable liver iron in more than 75% and 65% of 40 HCC patients respectively [Zhou et 

al., 1987]. HCC is almost always associated with iron overload and chronic viral 

infection in Myanmar; however, only 8 HBV-related HCC cases were studied – a rather 

small sample size [Win et al., 2000]. Since then, attention to iron has been fading in the 

field of HBV-related liver complications; much attention has been given to viral 

mutations solely. The importance of mild-to-moderate iron overload has been neglected 

in the disease progression of chronic hepatitis B. Perhaps, both viral mutations and iron 

status have roles to play in the pathogenesis of HBV-related cirrhosis and HCC. Hence, 

the main aim of the present study is to examine the influence of HBV mutations and 

serum iron markers in cirrhosis and HCC. 

 

4.2 Identification of viral markers for cirrhosis 

A total of 40 HBVs from the serum of 20 cirrhosis cases and 20 controls managed in the 

UMMC were successfully amplified, sequenced and assembled. These complete 

genome data were used for analysis. The selection of controls in this section was based 

on stringent control criteria mentioned previously in Chapter 2. Clinical and virological 

data of the participants are given in Table 4.10. There was no significant difference 

between cirrhosis cases and controls in age, gender, ethnicity, ALT, HBeAg positivity, 

viral load and viral genotype. By conducting comparative sequence analysis using 

SECentral Align Plus, six candidate nucleotides associated with cirrhosis were 

identified to have power more than 80%: one in the core region (G1896), two in the 

surface region (A87 and C2964), two in the polymerase region (A1359 and T2753) and 

one in the X region (C1799). Their corresponding codons are shown in Table 4.11. 

Three out of the six candidate nucleotides were in concordance with previous reports, 

one being associated positively (C2964) and two negatively (G1799 and A1896), as 



61 
 

shown in Table 4.12. Codon TGG (nt 1,895–1,897) gave the highest accuracy of 77.5% 

(31/40) followed by AAC (nt 86–88), AAA (nt 1,357–1,359), GTC (nt 1,797–1,799), 

CAT (nt 2,751–2,753), and RAC (nt 2,962–2,964), all with 75% accuracy (Table 4.11). 

A combination of codons ATG (nt 1,814–1,816) and TGG (nt 1,895–1,897) gave an 

even better accuracy of 80%. In contrast, accuracy was not improved by the 

combination of the other five codons in the surface, polymerase and X genes with their 

respective start codons. Hence, precore wild-type was the best viral marker for the 

identification of cirrhosis. 

 

Table 4.10 : Comparison of clinical and virological characteristics between cirrhosis and 
control groups. 

Characteristics Cirrhosis (n = 20) Control (n = 20) P valued 
    
Age of visit, median year ( range) 57 (35-78) 57.5 (50-70) 0.787
   
Gender (Male:Female) 10:10 5:15   0.191
   
Ethnicity (C:M:O)a 13:5:2 19:1:0 0.083
   
ALT 52.5 (22-140) 44 (32-130)  0.194
   
HBeAg positive:negative 5:15 1:19   0.182
   
Viral loadb 17:3 12:8 0.155
   
Genotype C:B:Ac 10:9:1 5:15:0 0.191
    
ALT, alanine aminotransferase; NA, not applicable;  
aC, Chinese; M, Malay; O, Other ethnic groups;  Other ethnic groups were not included for the calculation of 
statistical significance. 
bViral load >2,000 IU/ml: ≤2,000 IU/ml, which is equivalent to >10,000 copies/ml: ≤10,000 copies/ml. 
cIncluding recombinants B/C grouped as genotype B and C/A grouped as genotype C; genotype A was not included 
in the calculation of statistical significance.  Five B/C recombinants were found in control participants whereas 2 
were in cases of cirrhosis.  There was one C/A recombinant in each group. 
dMann-Whitney U test for continuous data and Chi-square exact test for categorical data. 
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Table 4.11 : Accuracy of specific codons for the identification of cirrhosis. 

Codon 
(nucleotide position) Gene 

Cirrhosis 
n = 20 

(%Sensitivity)

Control 
n = 20 

(%Specificity) 
Accuracya 

(%) 

     
TGG (nt 1895-1897) Core     13 (65%)    2 (90%) 77.5
     
AAC (nt 86-88) Surface     17 (85%)    7 (65%) 75.0
     
AAA (nt 1357-1359) Polymerase     16 (80%)    6 (70%) 75.0
     
GTC (nt 1797-1799) X     16 (80%)    6 (70%) 75.0
     
CAT (nt 2751-2753) Polymerase     17 (85%)    7 (65%) 75.0
     
RAC (nt 2962-2964) Surface     17 (85%)    7 (65%) 75.0
     
ATG (nt 1814-1816) … 
TGG (nt 1895-1897) 

Core    13 (65%)     1 (95%) 80.0

     
a%Accuracy = (20 x %sensitivity + 20 x %specificity) / (20 + 20) 

 
Table 4.12 : Association of reported HBV nucleotides with cirrhosis. 

Nucleotide(s)a 
Cirrhosisd 

n = 20 
(%Sensitivity) 

Controld 
n = 20 

(%Specificity) 
OR (95% CI, Phi) P 

valuee 

     
M1386 15 (75) 19 (95) 0.16 (0.02-1.50, -0.280) 0.182 
T1653 8 (40) 2 (90) 6.00 (1.08-33.27, 0.346) 0.065 
A1726/Y1727 0 (100) 2 (90) 0.45 (0.038-5.392, -0.101) 0.481 
C1753 5 (25) 4 (80) 1.33 (0.30-5.93, 0.060) 1.000 
V1753 7 (35) 4 (80) 2.15 (0.52-9.00, 0.168) 0.480 
T1762/A1764 13 (65) 6 (70) 4.33 (1.15-16.32, 0.350) 0.056 
T1764/G1766 0 (0) 0 (100) 1.00 (0.058-17.12, 0.000) 1.000 
C1766 2 (10) 1 (95) 2.11 (0.18-25.35, 0.095) 1.000 
T1766/ A1768  1 (5) 0 (100) 1.1 (0.06-18.05, 0.006) 1.000 
A1768 1 (5) 0 (100) 1.1 (0.06-18.05, 0.006) 1.000 
G1799 4 (20) 14 (30) 0.11 (0.03-0.46, -0.503) 0.004
A1846 11 (55) 11 (45) 1.00 (0.288-3.476, 0.000) 1.000 
T1858  14 (70) 19 (5) 0.12 (0.01-1.14, -0.329) 0.091 
A1899 8 (40) 5 (75) 2.00 (0.52-7.72, 0.160) 0.501
C2964 17 (85) 7 (65) 10.52 (2.27-48.76, 0.510) 0.003 
C3116 19 (95) 20 (0) 0.95 (0.06-16.29, -0.006) 1.000 
Pre-S deletionsb 1 (5) 1 (95) 1.00 (0.06-17.18, 0.000) 1.000 
G1896  13 (65) 3 (85) 10.52 (2.27-48.76, 0.510) 0.003 
G1896/G1897 13 (65) 2 (90) 16.71 (2.98-93.89, 0.568) 0.001 
A1814/T1815c/
G1896/G1897 13 (65) 1 (95) 35.29 (3.87-321.93,  0.629) <0.001 

     
CI, confidence interval; HBV, hepatitis B virus; NA, not applicable; OR, odds ratio. 
aM = A or C; V = A, C or G. 
bInclusive of pre-S1 and pre-S2 regions. 
cThese are the first 2 nucleotides of the precore start codon; the third nucleotide, G, is conserved in all participants. 
dValue of zero was adjusted to 0.5 for calculation of odds ratio. 
eChi-square exact test. 
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4.3 Identification of viral markers for HCC 

Complete HBV genomes from 45 chronic hepatitis B participants consisting of 21 HCC 

cases and 24 controls were included for analysis. The control in this section was based 

on stringent selection criteria mentioned previously in Chapter 2. Clinical and 

virological data of the participants are given in Table 4.13. Male gender, ALT, HBeAg 

positivity and viral genotype were associated significantly with HCC. There was no 

significant difference between cirrhosis cases and controls in age, ethnicity and viral 

load. Nucleotides G1896 and C1347 gave the highest accuracy (75.6%) for the 

identification of HCC, followed by T966, T1500 and C1799, each with an accuracy of 

73.3%. Their corresponding codons are shown in Table 4.14. Two out of the five 

candidate nucleotides were in concordance with previous reports; these nucleotides 

were located at nucleotide position 1799 and 1896 respectively, as shown in Table 4.15. 

The corresponding codons were TGG (nt 1895-1897) with the highest accuracy of 

77.8%, GTC (nt 1345-1347) with 75.6% accuracy, followed by GTC (nt 1797-1799), 

TCT (nt 1500-1502) and TMG (nt 966-968), all with 73.3% accuracy (Table 4.14). A 

combination of the TGG precore codon with its ATG start codon, designated as the 

precore wild-type (A1814/T1815/G1816 … T1895/G1896/G1897), gave an even better 

accuracy of 82.2%. In contrast, accuracy was not improved by the combination of the 

other four codons in the polymerase and X genes with their respective start codons. As 

in cirrhosis, precore wild-type was again the best viral marker for identification of HCC.  
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Table 4.13 : Comparison of clinical and virological characteristics between HCC and 
controls. 

Characteristics HCC (n = 21) Control (n = 24) P valuec

    
Age of visit, median yr ( range) 56 (30-74) 58 (50-69) 0.166
   
Gender (Male:Female) 17:4 6:18 <0.001
   
Ethnicity (Chinese:Malay) 15:6 22:2 0.121
   
ALT, median IU/L (range) 73 (28-305) 44 (26-130) <0.001
   
HBeAg positive:negative 7:14 1:23 0.017
   
Viral loada 16:5 13:11 0.212
   
Genotype C:Bb 13:8 6:18 0.017
    
ALT, alanine transaminase; HBeAg, hepatitis B early antigen; HCC, hepatocellular carcinoma. 
a Viral load >2,000 IU/ml: ≤2,000 IU/ml, which is equivalent to >10,000 copies/ml: ≤10,000 copies/ml. 
bControl: 6 B/C, 1 C/A, 1 C/B; HCC: 5 B/C, 3 C/A/D, 2 C/A, 1 C/A/B. 
cMann-Whitney U test for continuous data and Chi-square exact test for categorical data. 
 
 
 
 
 
Table 4.14 : Accuracy of specific codons for the identification of HCC. 

Codon 
(nucleotide position) Gene HCC, n = 21 

(%sensitivity) 
Control, n = 24 
(%specificity) 

Accuracya

(%) 
  
TGG (nt 1895-1897) Core 14 (66.7) 3 (87.5) 77.8
     
GTC (nt1345-1347) Polymerase 17 (81.0) 7 (70.8) 75.6
     
TMG (nt 966-968) Polymerase 15 (71.4) 6 (75.0) 73.3
     
TCT (nt 1500-1502) X 16 (76.2) 7 (70.8) 73.3
     
GTC (nt 1797-1799) X 16 (76.2) 7 (70.8) 73.3
     
ATG (nt 1814-1816) … 
TGG (nt 1895-1897) Core 14 (66.7) 1 (4.2) 82.2 
     
HCC, hepatocellular carcinoma 
a%Accuracy = (21 x %sensitivity + 24 x %specificity)/(21+24) 
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Table 4.15 : Association of reported HBV nucleotides with HCC. 

Nucleotidea 
HCCc

n = 21 
(%Sensitivity) 

Controlc

n = 24 
(%Specificity) 

OR (95% CI, Phi) P valued

     
A7 3 (14) 3 (88) 1.17 (0.21-6.51, 0.026) 1.000 
C53 4 (19) 4 (83) 1.18 (0.26-5.43, 0.031) 1.000 
M1386 18 (86) 22 (8) 0.55 (0.08-3.63, -0.094) 0.652 
T1485 4 (19) 0 (100) 5.64 (0.58-55.08, 0.241) 0.163 
T1504/T1505 4 (19) 10 (58) 0.33 (0.09-1.28, -0.244) 0.121 
A1613/T1653 3 (14) 0 (100) 4.00 (0.38-41.70, 0.182) 0.318 
T1653 8 (38) 3 (88) 4.31 (0.97-19.24, 0.297) 0.081 
A1689 21 (100) 24 (0) 0.88 (0.05-14.87, -0.013) 1.000 
A1726/Y1727 0 (0) 2 (92) 0.52 (0.04-6.22, -0.077) 1.000 
V1753 7 (33) 7 (71) 1.214 (0.343-4.298, 0.045) 1.000 
T1762 14 (67) 8 (67) 4.000 (1.155-13.855, 0.333) 0.038 
A1764 14 (67) 8 (67) 4.000 (1.155-13.855, 0.333) 0.038 
T1762/A1764 14 (67) 6 (75) 8.000 (2.237-28.605, 0.470) 0.001 
T1764/G1766 0 (0) 0 (100) 1.14 (0.07-19.42, 0.013) 1.000 
T1846 11 (52) 12 (50) 1.10 (0.34-3.55, 0.024) 1.000 
T1858 15 (71) 23 (4) 0.109 (0.012-0.995, -0.336) 0.039 
A1899 6 (29) 7 (71) 0.97 (0.27-3.54, -0.007) 1.000 
G1914 0 (0) 0 (100) 1.14 (0.07-19.42, 0.013) 1.000 
C2189 6 (29) 6 (75) 1.20 (0.32-4.51, 0.040) 1.000
W2203 0 (0) 2 (92) 0.52 (0.04-6.22, -0.077) 1.000 
A2964 5 (24) 15 (63) 0.19 (0.05-0.69, -0.388) 0.016 
T3116 0 (0) 0 (100) 1.14 (0.07-19.42, 0.013) 1.000 
Pre-S deletionsb 4 (19) 1 (96) 5.41 (0.55-52.87, 0.236) 0.169 
Pre-S2 aa1-6 
deletion 2 (10) 0 (100) 2.53 (0.21-30.01, 0.111) 0.585 

Pre-S2 start 
codon mutation 7 (33) 2 (92) 4.42 (0.82-23.79, 0.254) 0.140 

G1896 14 (67) 4 (17) 10.000 (2.542-40.778, 0.509) 0.001 
G1896/G1897 14 (67) 3 (13) 14.000 (3.086-63.510, 0.557) <0.001 
A1814/T1815/
G1816 … 
T1895/G1896/
G1897 

14 (67) 1   (4) 46.000 (5.107-414.363,  0.661) <0.001 

     
aa, amino acid; CI, confidence interval; HCC, hepatocellular carcinoma; OR, odds ratio. 
aM = A or C; V = A, C or G; W = A or T. 
bInclusive of pre-S1 and pre-S2 regions. 
cValue of zero was adjusted to 0.5 for calculation of odds ratio. 
dChi-square exact test. 
 

4.4 Clinical and virological characteristics in chronic hepatitis B participants 

Due to the high accuracy of precore wild-type (A1814/T1815/G1816 … 

T1895/G1896/G1897) for the identification of cirrhosis and HCC cases, the precore 

marker was further used to screen for larger chronic hepatitis B populations at the 

UMMC. A total of 333 chronic hepatitis B participants were recruited, including 216 

general controls (without clinical evidence of cirrhosis or HCC), 78 with cirrhosis and 

39 with HCC. The clinical and virological data of these chronic hepatitis B participants 



66 
 

in HCC and cirrhosis were given in Table 4.16 and 4.17 respectively (Raw data are 

tabulated in Appendix A). Older age and male predominance was found in HCC and 

cirrhosis cases when compared to general controls. Ethnicity did not seem to be 

important in determining clinical outcome. In contrast, smoking increased risk of HCC 

but not cirrhosis when compared to general controls. Family history of cirrhosis/HCC 

was not a significant risk factor for all groups. ALT was significantly higher in all 

diseased groups with respect to general controls. AFP was significantly high in cirrhosis 

and HCC. The HCC participants have relatively higher frequency of HBeAg positivity 

than that of other groups. Overall, by comparing with the general control group, serum 

iron was somewhat significantly lower in HCC but higher in cirrhosis, whereas serum 

ferritin was significantly higher in all diseased groups. 

 

Table 4.16 : Comparison of clinical and virological characteristics in HCC. 
Characteristicsa General control 

N = 216 
HCC 

N = 39 P valued 

Age, year 50 (18-78) 57 (30-74) <0.001 
Gender (male:female) 93:123 29:10 <0.001 
Ethnicity (C:M:O)b 171:41:4 26:11:2 0.149
Smoker:Non-smoker 21:195 16:23 <0.001 
Family history of HBV infection 
(Y:N:U)c 139:49:28 23:7:9 0.249 

Family history of cirrhosis/HCC 
(Y:N:U)c 60:137:19 14:18:7 0.081 

ALT, IU/L 42 (10-403) 73 (26-305) <0.001 
AFP, IU/mL 2.0 (<0.5-32.0) 379.0 (2.0-546300.0) <0.001 
HBeAg positive:negative 45:171 15:24 0.023 
Precore wild-type:mutant:mixed 64:138:14 21:15:3 0.012 
Serum iron 17.30 (1.70-44.68) 14.30 (2.31-49.10) 0.011 
Serum ferritin 146.0 (3.8-1192.0) 422.2 (42.0-3383.0) <0.001 

ALT, alanine aminotransferase; HBV, hepatitis B virus; HCC, hepatocellular carcinoma. 
aContinuous variables were expressed in median (range). 
bC, Chinese; M, Malay; O, other ethnicity. 
cY, yes; N, no; U, unknown. 
dMann-Whitney U test for continuous data and Chi-square exact test for categorical data. 
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Table 4.17 : Comparison of clinical and virological characteristics in cirrhosis. 
Characteristicsa General control 

N = 216 
Cirrhosis 

N = 78 P valued 

Age, year 50 (18-78) 57 (32-80) <0.001 
Gender (male:female) 93:123 48:30 0.006 
Ethnicity (C:M:O)b 171:41:4 59:16:3 0.562 
Smoker:Non-smoker 21:195 13:65 0.100 
Family history of HBV infection 
(Y:N:U)c 139:49:28 44:23:11 0.435 

Family history of cirrhosis/HCC 
(Y:N:U)c 60:137:19 22:48:8 0.918 

ALT, IU/L 42 (10-403) 51 (22-1090) <0.001 
AFP, IU/mL 2.0 (<0.5-32.0) 4.0 (<0.5-69.0) <0.001
HBeAg positive:negative 45:171 23:55 0.158 
Precore wild-type:mutant:mixed 64:138:14 33:40:5 0.124 
Serum iron (µmol/L) 17.30 (1.70-44.68) 20.35 (4.93-48.22) <0.001
Serum ferritin (µg/L) 146.0 (3.8-1192.0) 184.6 (8.9-1842.0) 0.040 

ALT, alanine aminotransferase; HBV, hepatitis B virus; HCC, hepatocellular carcinoma. 
aContinuous variables were expressed in median (range). 
bC, Chinese; M, Malay; O, other ethnicity. 
cY, yes; N, no; U, unknown. 
dMann-Whitney U test for continuous data and Chi-square exact test for categorical data. 
 
 
4.5 Prevalence of precore mutations in chronic hepatitis B participants 

Generally, 35.4% precore wild-type, 58.0% precore mutations and 6.6% both were 

detected in this study. Precore mutations were further divided into precore start codon 

and stop codon mutations. Precore start codon mutation was rarely present, being 7.8%, 

inclusive of mixed infection. CTG, TTG and ACG were the predominant precore start 

codon mutations (See Table 4.18). Precore stop codon mutation was the major precore 

mutation (See Table 4.19). TAG was the predominant precore stop codon mutation 

(54.7%) whereas the minor mutation was TGA (0.6%).  
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Table 4.18 : Frequency of precore start codon variants (nt 1814-1816). 

nt 1814-1816a Frequency 
N = 333 Percentage 

Wild-type   
 ATG 307 92.2 
Mutant   
 CTG 5 1.5 
 TTG 5 1.5 
 ACG 3 0.9 
 AAG 1 0.3 
 AGG 1 0.3 
 ATA 1 0.3 
 ATT 1 0.3 
Mixedb   
 AYG 5 1.5 
 MTG 2 0.6 
 AYS 1 0.3 
 WTG 1 0.3 

nt, nucleotide;  
aMixed indicates mixed infection of multiple HBV precore strains. 
bY = C or T; M = A or C; W = A or T. 
 

Table 4.19 : Frequency of precore stop codon variants (nt 1895-1897). 

Nt 1895-1897a Frequency 
N = 333 Percentage 

Wild-type   
 TGG 130 39.0 
Mutant   
 TAG 180 54.1 
 TGA 2 0.6 
Mixedb   
 TRG 20 6.0 
 TGR 1 0.3 

nt, nucleotide. 
aMixed indicates mixed infection of multiple HBV precore strains. 
bR= A or G 
 

4.5.1 Precore mutations of stringent control and diseased groups  

To recap, stringent control was applied based on family history of HBV infection, age 

of above 49 years and normal ultrasound findings. A total of 111 stringent control 

participants were available for analysis. The distribution of stringent control, NAFLD, 

cirrhosis and HCC is depicted in Figure 4.3. Stringent control has at least 3-fold lower 

frequency of precore wild-type compared to precore mutant, whereas the HCC group 

has at least 1.5-fold higher frequency of precore wild-type. Both cirrhosis and NAFLD 
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(A) Precore wild-type 

 

 

 

 

 

 

 

 

 

 

(B) Precore mutant 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 : Histogram of age in (A) precore wild-type and (B) precore mutant. 
The distributions of both (A) and (B) were near to normal with the curve slightly 
skewed to left. The mean age of precore mutant was higher than precore wild-type (P = 
0.001). 
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4.5.3 Precore mutations and HBeAg positivity 

The Chi-square exact test was performed to examine the effects of precore mutations 

(inclusive of start and stop codon only) on HBeAg expression (given in Table 4.20). 

There was a significant difference in the distribution of precore mutations in HBeAg 

positivity (P < 0.001). Precore wild-type was more or less equal in HBeAg-positive and 

–negative chronic hepatitis B participants, whereas precore mutations were almost 

completely absent in the HBeAg-positive participants. These findings supported the 

facts that (1) the precore mutations abrogate HBeAg expression [Buti et al., 2005], and 

(2) expression of HBeAg can be affected by other mutations, such as BCP mutations 

[Jammeh et al., 2008]. 

 

Table 4.20 : Comparison of precore wild-type and mutant with HBeAg positivity 

Precorea 
HBeAg (%) 

Positive Negative 
   
Wild-type, N = 118 51 (43.2) 67 (56.8) 
   
Mutant, N = 193 5 (2.6) 188 (97.4) 
   
Mixed, N = 22 11 (50.0) 11 (50.0) 
   

HBeAg, hepatitis B e antigen. 
Note: Chi-square exact test, P < 0.001. 
aPrecore wild-type means ATG (nt 1814-1816) … TGG (nt 1895-1897); Mixed indicates mixed infection 
of precore wild-type and  mutant. 
 

4.5.4 Familial transmission of precore mutations 

Those with family history of HCC may be at higher risk of cirrhosis and HCC. Precore 

wild-type appeared to be the most likely the HBV hepatocarcinogenic strain in this 

study. However, whether the carcinogenic strain of HBV found is ‘inheritable’ has not 

been shown. This is important because it could explain why those with family history of 

HCC were at higher risk of severe liver complications. This study investigated the 

familial transmission of HBV precore strains in first degree relatives. Three families 
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were available for analysis. The precore data are given in Table 4.21. From family1 and 

family2, the data indicated that precore wild-type was likely to be ‘inheritable’ from the 

mother; four out of 5 siblings (80%) were infected with the same viral strain from their 

mothers. Yet, the quasispecies nature of HBV infection was observed in the mothers of 

family2 and family3. In family2, the two siblings were infected by precore wild-type 

and mutant respectively. The siblings in family3 were infected by HBV of two different 

precore mutations, one being stop codon mutation and another one start codon mutation. 

The transmission of precore variants among family members was heterogeneous. This 

showed that the viral strain was possibly, but not absolutely, ‘inheritable’.  

 

Table 4.21 : Familial transmission of HBV precore variants. 

 Label 
Precorea 

Age, year Genderb Relationship 
Start codon Stop codon 

Family1 
HB471 ATG TGG 30 M Son
HB472 ATG TGG 59 F Mother
HB473 ATG TGG 25 F Daughter
HB525 ATG TGG 36 M Son

Family2 
HB483 ATG TGR 51 F Mother
HB484 AYG TAG 30 M Son
HB485 ATG TGG 26 F Daughter

Family3 
HB213 ATG TAG 65 M Brother
HB506 ATA TGG 61 F Sister

aR = A or G; Y = C or T. 
bM indicates male, F indicates female. 
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specificity was 81.0%. This cutoff is slightly lower than that used as the upper limit of 

normal reference range in UMMC (ULN = 291.0 µg/L). Meanwhile, serum ALT at an 

optimum cutoff of 54.5 U/L produced sensitivity and specificity of 71.8% and 77.3% 

respectively. This cutoff is much lower than that used as the upper limit of normal 

reference range by UMMC (ULN = 65 U/L). Age at cutoff of 56.5 years was most 

potentially predictive for HCC with sensitivity of 56.4% and specificity of 71.3%. 

Serum iron, which was determined to be a negative marker for HCC, had sensitivity of 

55.1% and specificity of 66.7% at the optimum cutoff of 16.54 µmol/L. As most of the 

HCC participants had serum iron level under ULN of 27 µmol/L, the interpretation for 

this cutoff would be that those over 16.54 µmol/L but lower than 27.00 µmol/L had a 

decreased risk of HCC, whereas those below 16.54 µmol/L had an increased risk of 

HCC. For comparison with logistic regression model later (which was highly specific 

for HCC), the sensitivity was recalculated with respect to about 97% specificity. The 

data are given in Table 4.22. When adjusted to such high specificity, the sensitivity of 

all serum markers was less than 31%. 
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Figure 4.7 : ROC curves of age, serum ALT, serum AFP, serum iron, serum ferritin for 
identification of HCC. 
AFP, alpha-fetoprotein; ALT, alanine aminotransferase; HCC, hepatocellular 
carcinoma; ROC, receiver operating characteristic.  
 

 

Table 4.22 : Sensitivity of age and serum markers for identification of HCC. 
Characteristics %Sensitivity %Specificity 

   
Age 5.1 97.2 
  
Serum ALT 17.9 96.8 
  
Serum iron 7.7 96.8 
  
Serum ferritin 30.8 96.8 
  
ALT, alanine aminotransferase; HCC, hepatocellular carcinoma. 
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(b) Cirrhosis 

This section has included 78 cirrhotic cases and 216 general controls for ROC curve 

analysis. Serum AFP was included as a reference only. As shown in Figure 4.8, age has 

the highest AUC value for detecting cirrhosis (0.680; P < 0.001) when compared with 

serum iron (0.645; P < 0.001), serum ALT (0.644; P < 0.001) and serum ferritin (0.578; 

P = 0.040). Using the cutoff of 56.5 years, age had the highest accuracy for 

identification of cirrhosis; the sensitivity was 56.4% and the specificity was 71.3%. At 

cutoff of 22.82 µmol/L, serum iron had the highest potential for predicting cirrhosis 

with sensitivity of 43.6% and specificity of 81.9%. Serum ALT at an optimum cutoff of 

53.5 U/L produced sensitivity of 46.2% and specificity of 75.5%. Lastly, serum ferritin 

at best cutoff of 198.9 µg/L had sensitivity of 47.4% and specificity of 65.3%. For 

comparison with logistic regression model later (which was highly specific for 

cirrhosis), the sensitivity was recalculated with respect to about 92% specificity. The 

data are given in Table 4.23. When adjusted to such high specificity, the sensitivity of 

all serum markers was less than 29%. 

 

Table 4.23 : Sensitivity of age and serum markers for identification of cirrhosis. 
Characteristics %Sensitivity %Specificity 

   
Age 12.8 92.6 
  
Serum ALT 6.4 92.1 
  
Serum iron 28.2 92.1 
  
Serum ferritin 16.7 92.1 
  
ALT, alanine aminotransferase. 
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Figure 4.8 : ROC curves of age, serum ALT, serum AFP, serum iron, serum ferritin for 
identification of cirrhosis. 
AFP, alpha-fetoprotein; ALT, alanine aminotransferase; ROC, receiver operating 
characteristic.  
 
 

4.6.2 Correlation with age and ALT 

Scatter-plots of serum iron and ferritin with age and serum ALT are given in Figure 4.9 

and 4.10. Age was weakly associated with serum ferritin (rho = 0.343; P < 0.001), and 

serum iron (rho = 0.176; P = 0.001). Serum ALT was weakly associated with serum 

ferritin (rho = 0.341; P < 0.001) and trivially with serum iron was observed (rho = 

0.139; P = 0.011). 
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Figure 4.9 : Scatter-plot of (A) serum iron and (B) serum ferritin with age.  
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Figure 4.10 : Scatter-plot of (A) serum iron and (B) serum ferritin with ALT.  
ALT, alanine aminotransferase. 
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4.6.3 Association with gender, ethnicity and smoking 

Serum iron of male patients (19.25 µmol/L; range 2.31-49.10 µmol/L) was significantly 

higher than that of female patients (15.90 µmol/L; range 1.70-44.68 µmol/L; P < 0.001). 

Similar significant result was also found in serum ferritin, with male having 238.6 µg/L 

(range 10.2-3383.0 µg/L) and female 102.2 µg/L (range 3.8-1601.8 µg/L; P < 0.001). 

Chinese ethnicity (18.20 µmol/L; range 1.70-49.10 µmol/L), was significantly 

associated with higher serum iron than non-Chinese (predominantly Malay; 15.05 

µmol/L; range 2.31-37.29 µmol/L; P = 0.008). Similarly, Chinese had significantly 

higher serum ferritin level (187.9 µg/L, range 6.4-3383.0 µg/L) compared to non-

Chinese 112.4 µg/L (range 3.8-1587.0 µg/L) (P = 0.008). Smokers (264.6 µg/L; range 

25.7-3383 µg/L) had higher serum ferritin than non-smokers (155.2 µg/L; range 3.8-

1842 µg/L; P < 0.001). This difference was not observed with serum iron (P = 0.099). 

 

4.7 Potential independent predictors for cirrhosis and HCC 

To investigate further whether the precore wild-type and serum iron markers were 

independently associated with cirrhosis and HCC, forward stepwise conditional binary 

logistic regression analyses were performed by comparing HCC (N = 39) and cirrhosis 

(N = 78) groups with general control group (N = 216) respectively. All clinical and 

virological factors were taken into consideration for the modeling. In initial steps of the 

modeling, only relevant factors were included step-by-step for analysis. At classification 

cutoff of 0.5, the accuracy, sensitivity and specificity of this prediction model for HCC 

were 89.0%, 46.2% and 96.8% respectively and those for cirrhosis were 76.5%, 33.3% 

and 92.1% respectively. The predictive values of each factor for HCC and cirrhosis are 

shown in Table 4.24 and 4.25 respectively. Backward stepwise modeling was also 

performed and the same results were generated. In initial steps of the modeling, 

irrelevant factors were excluded step-by-step for analysis. 
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According to the regression model, precore wild-type, high serum ferritin, older 

age, smoker and positive family history of cirrhosis/HCC were associated independently 

with HCC. Intriguingly, serum iron was an independent negative predictive factor for 

HCC, whereas precore wild-type, older age, male gender, non-Chinese ethnicity and 

high serum ALT were associated independently with cirrhosis. In contrast to the HCC 

model, serum iron was a positive predictive factor of cirrhosis. Unlike HCC, high serum 

ferritin, cigarette smoking and positive family history of cirrhosis/HCC did not seem to 

be a risk factor of cirrhosis. Precore wild-type and older age were the most robust 

predictive factor for cirrhosis and HCC. 
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Table 4.24 : Logistic regression analysis of clinical and virological variables with 
independent predictive value for HCC in 39 HCC participants and 216 general controls. 

Factor B score AOR (95% CI) P value
   
Age, year 0.076  0.001
1  1.08 (1.03-1.13) 
10  2.14 (1.37-3.36) 
18 (Maturation)  3.95 (1.76-8.87) 
20  4.60 (1.87-11.30) 
30  9.87 (2.56-38.00) 
40  21.17 (3.51-127.74) 
50  44.70 (4.83-429.45) 
   
Smoker 1.387  0.012
No  1.00 (referent) 
Yes  4.00 (1.36-11.75) 
   
Family history of cirrhosis/HCC   0.011
No  1.00 (referent) 
Yes 1.567 4.79 (1.66-13.82) 0.004
Unknown 1.360 3.90 (0.85-17.76) 0.079
 
Precore wild-type 1.437  0.002
Absence  1.00 (referent) 
Presence  4.21 (1.68-10.57) 
   
Serum iron (µmol/L) -0.089  0.005
1.00  0.92 (0.86-0.97) 
10.00  0.41 (0.22-0.77) 
20.00  0.17 (0.05-0.59) 
27.00 (ULN)  0.09 (0.02-0.49) 
30.00  0.07 (0.01-0.45) 
40.00 0.03 (0.00-0.34)
50.00  0.01 (0.00-0.26) 
   
Serum ferritin (µg/L) 0.005  <0.001
1.0  1.00  (1.00-1.01) 
50.0  1.27 (1.15-1.40) 
100.0 1.61 (1.32-1.96)
150.0  2.03 (1.51-2.74) 
200.0  2.58 (1.73-3.83) 
250.0  3.27 (1.99-5.36) 
291.0 (ULN)  3.97 (2.23-7.07) 
300.0  4.14 (2.28-7.51) 
400.0  6.64 (3.00-14.70) 
500.0  10.67 (3.95-28.77) 
   
ALT, alanine aminotransferase; AOR, adjusted odds ratio; CI, confidence interval; HCC, hepatocellular 
carcinoma; HBeAg, hepatitis B e antigen; ULN, upper limit of normal. 
Note that gender, ethnicity, family history of HBV infection, ALT and HBeAg were not the independent 
predictive factors for HCC according to the multivariate analysis. 
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Table 4.25 : Logistic regression analysis of clinical and virological variables with 
independent predictive value for cirrhosis in 78 cirrhosis participants and 216 general 
controls. 

Factor B score AOR (95% CI) P value
   
Age, year 0.081  <0.001
1 1.08 (1.05-1.12)
10  2.25 (1.68-3.00) 
18 (Maturation)  4.30 (2.55-7.24) 
20  5.05 (2.83-9.02) 
30  11.36 (4.76-27.11) 
40  25.53 (8.00-81.43) 
50  57.39 (13.46-244.62) 
   
Gender 0.618  0.045
Female  1.00 (referent) 
Male  1.85 (1.01-3.40) 
 
Ethnicity 1.208  0.002
Chinese  1.00 (referent) 
Non-Chinesea  3.35 (1.54-7.28) 
   
Precore wild-type 1.211  <0.001
Absence  1.00 (referent) 
Presence  3.36 (1.78-6.34) 
   
Serum iron (µmol/L) 0.067  0.001
1.00  1.07 (1.03-1.11) 
10.00  1.96 (1.31-2.94) 
20.00  3.85 (1.71-8.63) 
27.00 (ULN)  6.16 (2.07-18.36) 
30.00  7.54 (2.24-25.37) 
40.00  14.80 (2.94-74.53) 
50.00  29.02 (3.84-218.99) 
   
Serum ALT (U/L) 0.004  0.039
1.0  1.00 (1.00-1.01) 
10.0  1.04 (1.00-1.08) 
20.0 1.08 (1.00-1.16)
30.0  1.12 (1.01-1.25) 
40.0  1.17 (1.01-1.35) 
50.0  1.21 (1.01-1.45) 
60.0  1.26 (1.01-1.57) 
65.0 (ULN)  1.28 (1.01-1.63) 
130.0 (2x ULN) 1.65 (1.03-2.64)
325.0 (5x ULN)  3.48 (1.07-11.36) 
   
ALT, alanine aminotransferase; AOR, adjusted odds ratio; CI, confidence interval; ULN, upper limit of 
normal. 
aFor non-Chinese, majority were Malays (89%); about 11% were Indian and indigenous populations. 
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4.8 Discussion 

Despite strong epidemiological link of HBV with cirrhosis and HCC [Beasley et al., 

1981], no consistent viral mutation was found to be adequate for predicting the 

development of these liver diseases. Hence, the continued search for other potential 

markers that might enhance the use of viral mutations for this purpose. In this study, 

precore wild-type and serum ferritin were associated closely with HCC whereas precore 

wild-type and serum iron with cirrhosis in chronic hepatitis B participants. Age was an 

important factor in determining the clinical outcome. Other factors like cigarette 

smoking and family history of HCC/cirrhosis would predispose chronic hepatitis B 

individuals to HCC, whereas male gender, non-Chinese ethnicity and high serum ALT 

to cirrhosis. Viral load at the time of diagnosis was not associated significantly with 

cirrhosis and HCC in this case-control study. The serial viral load data were not 

available. It has been reported that the mean viral load at the time of diagnosis of HCC 

could be lower than before the development of HCC [Yu et al., 2005]. Therefore, single 

measurement of viral load may not be useful to predict risk of HCC. 

 In the study design, special attention was given to the selection of stringent 

controls. It takes decades for the development of HCC in chronic hepatitis B patients, 

and patients often present with cirrhosis and HCC after the age of 40-50 years [refer 

Table 4.7]. Therefore, one criterion for the selection of stringent controls was age of at 

least 50 years. Secondly, only participants with a family history were included, 

suggesting that the infection occurred at an early age (and hence, long duration of 

infection). The binary logistic regression analysis showed that chronic hepatitis B 

Malaysians already had a high risk (OR > 9.0) of developing cirrhosis and HCC by 30 

years of age. However, the current international standard of age for HCC screening in 

chronic hepatitis B is above 40-50 years. Perhaps, the age cutoff for HCC screening in 
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Malaysia should be revised to be lower than 40 years so as not to miss out those who 

might be at high risk for cirrhosis and HCC. 

Precore mutations totally abrogate HBeAg expression. Precore mutations can be 

divided into start codon mutation (at nucleotide position 1814-1816) or newly 

introduced stop codon mutations (at nucleotide position 1895-1897). Precore start codon 

mutation was rare, being 7.8% in this study. Precore stop codon mutation was the most 

common, being 54.1% in TAG form and 0.6% in TGA form. On the other hand, precore 

wild-type may express HBeAg. Precore wild-type was associated with HBeAg 

positivity in this study. The ability of HBV antigens to induce long-term immune-

mediated liver injury has been proposed as one of the possible mechanisms of inducing 

cirrhosis and HCC. Several lines of evidence pointed out that precore wild-type may 

have higher disease-inducing capacity than precore mutant: (i) HBeAg positivity was 

associated with HCC [Yang et al., 2002]; (ii) transgenic mice with HBeAg positive 

phenotype produced more liver injury than those without [Frelin et al., 2009]; and (iii) 

individuals with delayed HBeAg seroconversion presented with more severe liver 

pathology [Lin and Kao, 2008; Chan et al., 2009; Chen et al., 2010]. In this study, 

HBeAg was not associated with cirrhosis and HCC. This could be due to low levels of 

HBeAg expression that were not detected by the diagnostic assay used. Such low level 

of expression is probably due to BCP mutation rather than precore mutation. More 

importantly, the low undetectable HBeAg level might still be able to induce liver injury. 

It was also observed that precore wild-type had a co-linearity relationship with HBeAg 

and was predominant over HBeAg in the logistic regression analysis. Owing to this, 

HBeAg was excluded as a predictive factor during the stepwise logistic regression 

analysis process. This observation also indicated that precore wild-type was the better 

predictor of cirrhosis and HCC than HBeAg. 
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BCP double mutation (T1762/A1764) may reduce HBeAg expression, but not 

terminate HBeAg expression. One less known finding is that other BCP mutations like 

V1753 (coupled with T1762/A1764) and T1766/A1768 may actually increase HBeAg 

expression [Jammeh et al., 2008]. T1762/A1764 has been commonly reported in clinical 

association studies, especially in HCC. The inconsistent association of the BCP 

mutation with cirrhosis and HCC might be partly due to the capability of BCP mutations 

to either up- or down-regulate HBeAg expression. This study did lend support to the 

relationship of T1762/A1764 with HCC, but not with cirrhosis. On the other hand, 

another BCP mutation, G1799, was associated with cirrhosis and HCC in this study. 

Precore wild-type, A1814/T1815/G1816 … T1895/G1896/G1897, appeared to be the 

top and consistent viral marker related to cirrhosis and HCC in this study. As reported 

by two large sample size, age-adjusted studies [Tanaka et al., 2006; Yang et al., 2008], 

precore wild-type was a much stronger predictor of liver complications than BCP 

mutation. However, many other previous investigations reported otherwise [Tsai et al., 

2009; Kao et al., 2012; Malik et al., 2012]. Owing to such inconsistent associations of 

precore wild-type with cirrhosis and HCC, a recent large sample size study excluded the 

precore wild-type in their clinical investigation [Yin et al., 2011]. The inconsistency 

could be because most, if not all, of the studies reporting discordant results have not 

controlled or adjusted for age in the selection of controls or in the analysis. It is 

generally accepted that older age is linked to higher occurrence of cirrhosis and HCC, as 

was observed in this study. In addition, the presence of precore wild-type was age-

dependent as also shown in this study, where patients harbouring the precore wild-type 

were 5 years younger than those with the precore mutation. Perhaps, age-adjustment is 

required to show the association between precore wild-type with cirrhosis and HCC. 

Besides precore wild-type and BCP mutations, pre-S mutation may also affect 

the pathogenesis of HBV infection. Accumulation of pre-S1/S2 antigens may induce 
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oxidative stress and DNA damage in hepatocytes, predisposing the infected persons to 

cirrhosis and HCC [Hsieh et al., 2004]. A pre-S variation previously related to cirrhosis 

and HCC were also shown in this study. The pre-S variations were located at nucleotide 

position 2964. In this study, C2964 was associated positively (OR = 10.5) with cirrhosis 

in agreement with a previous study (Yin et al., 2010), whereas A2964 was associated 

negatively (OR = 0.19) with HCC in contrast to the previous study. However, the 

sequence change from A2964 to C2964 at pre-S1 codon 39 does not cause any amino 

acid change; both encode for proline. The likely explanation is that the synonymous 

change might affect gene expression level via codon usage bias during protein 

translation. However, further studies are warranted to prove such a hypothesis. 

Dietary intake of iron has been overlooked in studies on HBV-related liver 

diseases. Hepatic iron accumulation has been well reported in HCV-related liver 

damage [Hézode et al., 1999; Thorborn et al., 2002]. Recently, hepatic iron overload 

was found to be common in chronic hepatitis B, especially in males [Sebastiani et al., 

2012]. Experimentally, excess iron deposition in liver is hepatotoxic and may worsen 

liver injury. Firstly, iron may facilitate viral replication [Kakizaki et al., 2000; Theurl et 

al., 2004; Park et al., 2012b]. Secondly, iron catalyses free hydroxyl radical formation 

via biochemical processes like lipid peroxidation, leading to progressive liver damage 

and thus increased risk of cirrhosis and HCC. Iron deposition in chronic hepatitis B may 

also be simply the result of iron released from damaged hepatocytes – a vicious cycle of 

iron accumulation. In addition, interferon treatment, an immune-booster, was not 

effective in chronic hepatitis B individuals with elevated serum ferritin levels 

[Bayraktar et al., 1998]. This is also true for interferon/ribavirin treatment in chronic 

hepatitis C [Fujita et al., 2007]. High serum ferritin might have somehow cause failure 

of the immune response to clear the virus. This stresses the important role of body iron 

status in immune control/clearance of the virus. High viral load has been known to 
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increase the risk of developing cirrhosis and HCC. By impeding the viral replication 

through iron reduction procedures like phlebotomy and dietary iron restriction, it may 

reduce the risk of progression to such complications. Therefore, one of the aims of this 

study was to address the clinical significance of serum iron markers in the course of 

chronic hepatitis B. 

Moderately elevated serum iron markers were detected in cirrhotic and HCC 

participants in this study, a finding consistent with the belief that mild-to-moderate iron 

overload may be adequate to aggravate HBV-related liver damage. Serum ferritin 

correlates well with hepatic iron deposition in chronic hepatitis B [Sebastiani et al., 

2012]. To more accurately assess effects of the iron input on HBV-related disease 

outcomes, serum iron and serum ferritin tests were carried out. From ROC analysis, 

serum ferritin level of ≥274.5 µg/L most accurately correlated with HCC and serum iron 

level of ≥22.82 µmol/L with cirrhosis. The ferritin level was comparable to the ULN of 

serum ferritin (291.0 µg/L) used in the UMMC but the serum iron level was much lower 

than the 27.0 µmol/L ULN in UMMC. According to logistic regression analysis, high 

serum ferritin was associated independently with HCC and high serum iron with 

cirrhosis. Chronic hepatitis B participants with serum ferritin level near ULN had a 

moderate risk of HCC (AOR > 3.5), whereas those with serum iron level as low as 20 

µmol/L had a similar risk of cirrhosis. The high serum ferritin in HCC was unlikely to 

be due to liver inflammation because its relationship with serum ALT was rather weak. 

In addition, it was observed that serum ferritin surpassing the ULN only accounted for 

about 60% of the HCC participants, leaving 40% with normal level of serum ferritin. 

Further logistic regression ‘enter’ method adjusted for age and ALT was also conducted 

and the analysis showed that serum ferritin was independently associated with HCC 

regardless of the serum ALT level (Not shown in results). Serum iron was not correlated 

with serum ALT, indicating the high serum iron is probably not from liver 
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inflammation. The observation that elevated serum ferritin associated with HCC also 

explained the high male-to-female ratio (= 1.6) in HCC as Asian men generally have 

higher serum ferritin than Asian women [Harris et al., 2007]. High serum ferritin was 

not universally found in participants with cirrhosis because some of them could have 

encountered blood loss from liver complications prior to the time of diagnosis, and 

therefore serum ferritin could have dropped by the time the blood sample was collected 

for testing. Another interesting result was that low serum iron was independently 

associated with HCC. This might be due to the high demand of iron for supporting 

cellular proliferation in HCC tissues, making less iron available in the serum. Serum 

ferritin increased significantly with age, indicating that the serum marker could be 

accumulative during lifetime. However, such relationship was weak with serum iron. 

Overall, these observations highlight the possible role of serum iron markers affecting 

the disease outcome of chronic HBV infection. 

It is well known that cigarette contains thousands of carcinogenic compounds 

that could increase the risk of various cancers. The logistic regression analysis showed 

that cigarette smoking was independently associated with HCC, but not male gender. 

Cigarette smoking could have diminished the contribution of male gender to risk of 

HCC in the multivariate analysis because male gender was associated significantly with 

cigarette smoking in univariate analysis (P < 0.001, Chi-square exact test). Smokers 

were four times more likely to develop HCC than non-smokers. However, cigarette 

smoking was not related to cirrhosis in this study. In the present study, men were twice 

more likely to have cirrhosis than women as have been shown in other studies (refer 

Table 4.8). In logistic regression analysis, non-Chinese ethnicity was a significant 

independent predictive factor for cirrhosis. This may be partly because non-Chinese 

ethnicity, mainly Malays, was associated significantly with cigarette smoking (P = 

0.007, Chi-square exact test). 
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 Chronic hepatitis B individuals with strong family history of HCC are prone to 

develop cirrhosis and HCC [Hassan et al., 2009; Chen and Yang, 2011]. This is 

supported by the evidence provided in this study that those with family history of 

cirrhosis/HCC were about 5 times more likely to develop HCC than those without, 

provided in this study. However, this was not true in cirrhosis. Genetic inheritance of 

HCC-susceptibility genes, fungal poisoning, dietary habits and misuse of hepatotoxic 

medicines could have accounted for the familial aggregation of HCC [Yu et al., 2000]. 

This study added new knowledge that precore wild-type could have accounted for the 

familial aggregation of HCC. Given that precore wild-type was associated with HBeAg 

positivity and HCC in this study plus an estimation of 31%–85% of the babies born to 

HBeAg-positive mothers becoming infected by the virus [Beasley et al., 1977], 

‘inheritance’ of precore wild-type was highly possible and probably accounted for the 

familial aggregation of HCC. According to data on familial transmission in this study, 

both precore wild-type and mutant could be transmitted fairly vertically. In brief, family 

history of cirrhosis/HCC is a risk factor for progression to HCC, but not cirrhosis. Host 

and environmental factors might dilute the effect of familial predisposition on the 

progression to cirrhosis. 

 Point estimate of serum ALT is not always an accurate predictor for severe liver 

diseases. Although a dose-response relationship of serum ALT with risks of HCC and 

cirrhosis was observed in univariate analyses, elevated serum ALT was associated 

independently with cirrhosis only in multivariate analyses. Having said that, elevated 

serum ALT was probably the least important risk factor for cirrhosis because a chronic 

hepatitis B person with serum ALT raised to 2x ULN has merely a weak association 

with cirrhosis (OR = 1.65). In addition, by the time serum ALT is high, the liver 

damage has already occurred. A much earlier serum marker is preferred. 
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4.9 Conclusion 

The present study showed that older age, cigarette smoking, family history of 

cirrhosis/HCC, HBV precore wild-type, serum iron and serum ferritin were associated 

independently with HCC, whereas older age, male gender, Malay ethnicity, precore 

wild-type, serum iron and serum ALT were associated independently with cirrhosis. 

This study suggested that those with precore wild-type or high body iron status should 

be given special attention because they are probably at a much higher risk of 

progression to cirrhosis and HCC. They should be carefully assessed for suitability of 

specific hepatitis B treatments which may lower the risk for developing the liver 

complications. 

 

4.10 Limitations 

Firstly, as bidirectional sequencing instead of clonal sequencing was done, the presence 

of quasispecies or certain deletion mutants may be missed. Secondly, the rise of serum 

free iron in liver cirrhosis might be due to the reduced synthesis of serum transferrin in 

the cirrhotic liver. Certain infections and systemic inflammatory diseases may increase 

serum ferritin level. The possibility of elevated serum ferritin being due to systemic 

inflammatory diseases cannot be excluded in this study due to the lack of relevant 

clinical information in the participants. However, systemic inflammatory diseases are 

rare. Lastly, serum transferrin saturation test has not been done to confirm the true 

elevation of serum ferritin partly because many of the participants were not fasting at 

the time of blood collection.  
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Chapter 5 In Search of HBV Markers for Chronicity 

5.1 Literature review 

Acute HBV infection is defined as a sudden elevation of serum ALT and increased titre 

of anti-HBc IgM [Lok et al., 1985; Chen et al., 2006c]. Recovery from the acute 

infection is marked by disappearance of HBsAg and presence of anti-HBs, together with 

normalisation of liver function tests [Krugman et al., 1979; Hoofnagle, 1981]; this is so-

called acute self-limited hepatitis. However, viremia may still be detected in some of the 

patients [Akahane et al., 2002]. The majority of acute infections are self-limiting 

[Juszczyk, 2000]. Less than 10% of children and 30-50% of adults with acute HBV 

infection will have icteric disease [WHO, 2002]. The acute infection may progress to 

either chronicity (where HBsAg persists) in <5% of adults or fulminant hepatitis (where 

massive hepatic necrosis occurs) in about 0.5% of patients [Heathcote J et al., 2003; 

Han, 2009].  

Both host immunity and viral characteristics may influence chronicity of HBV 

infection. Age at acquiring infection determines whether an acute infection will progress 

to chronic carriage. Babies and children of early age with under-developed immunity 

often fail to resolve the viral infection. Chronicity develops in 25-50% of children 

infected at 1-5 years of age but <5% in older children and adults [WHO, 2002]. The 

age-related chronicity reflects the importance of host immune control. In addition, 

human leukocyte antigen (HLA)-DP genes have been associated with immune clearance 

and chronicity. HLA-DP genes are class II HLA genes that encode proteins expressed 

on the surface of antigen-presenting cells and thereby play a critical role in inducing 

clonal expansion of viral antigen-specific CD4+ T-helper lymphocytes. According to a 

latest meta-analysis on genome-wide association study (GWAS), HLA-DPA1 rs3077 

and HLA-DPB1 rs9277542 SNPs were associated with protective effects against 

persistency and clearance of HBV infection in East Asian populations [Nishida et al., 
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2012]. The associations were further strengthened by the finding of decreased 

expression of HLA-DPA1 and HLA-DPB1 mRNAs in chronically HBV-infected 

persons [O’Brien et al., 2011]. 

 HBeAg is a truncated protein product of HBV precore protein; it is secreted out 

from viral-infected hepatocytes into bloodstream [Ahn et al., 2003]. Most, if not all, 

acute hepatitis B patients are serum HBeAg-positive [WHO, 2002]. HBeAg is one of 

the immune evasion strategies of HBV. HBeAg may act as a tolerogen, protecting 

HBV-infected hepatocytes from host immune attack and thereby fostering persistent 

infection [Chen et al., 2005b]. This is supported by the evidence that HBeAg may 

disrupt innate immune signaling, thereby compromising host capability to clear the 

virus [Bauer et al., 2011]. The viral antigen properties have given the virus an 

opportunity to avoid the immune clearance. There were very few clinical reports on 

HBV mutations associated with chronicity. Ogawa and colleagues (2002) found the 

predominance of precore wild-type (92%) and BCP wild-type (76%) among patients 

with acute hepatitis B. In fact, BCP (A1762/G1764) and precore (G1896) wild-types 

were the two most common HBV variants reported to be associated positively with 

acute hepatitis, in other words, lower rate of chronicity (given in Table 5.1); however, 

one study reported negative association of BCP with acute hepatitis [Liu et al., 2010] 

and another reported no association of precore wild-type with acute hepatitis [Chu et al., 

1996]. Contrary to expectation, these reports implied that HBeAg did not provide an 

advantage to persistency of HBV infection in host. 
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Table 5.1 : Common HBV variants associated with acute and chronic hepatitis. 
Author (year) Acute, chronic OR P value 

A1762/G1764   
Kobayashi et al. (2004) 43, 203 13.53 <0.001
Kusumoto et al. (2008) 36, 36a 23.80 <0.001
Liu et al. (2010) 182, 325 0.317 <0.001
   
G1896  
Chu et al. (1996) 12, 60 0.43 0.280
Kobayashi et al. (2004) 43, 203 15.19 <0.001
Kusumoto et al. (2008) 36, 36a 17.16 <0.001
Liu et al. (2010) 182, 325 4.35 <0.001
HBV, hepatitis B virus; OR, odds ratio. 
aAll the chronic cases in the study were acute-on-chronic hepatitis B. 

 

 Most of the acute hepatitis studies have focused only on precore and BCP 

regions. Further, these associations have been inconsistent. The importance of other 

viral genes contributing to chronicity might have been overlooked. Therefore, the 

present study intended to investigate whether certain viral genetic variations were 

associated with either higher or lower rate of chronicity in HBV-infected patients based 

on large-scale in silico observation. 

 

5.2 In silico observation of viral markers associated with chronicity 

Sequence data from 1,326 HBV complete genomes comprising 177 acute hepatitis and 

1,149 chronic hepatitis cases were successfully identified from NCBI website. About 

75% of the acute cases were self-limited (HBsAg clearance was not indicated in the 

rest), whereas chronic cases encompassed a wide range of clinical conditions, such as 

chronic hepatitis, cirrhosis and HCC. The majority were from East Asian countries with 

acute cases from China (74.01%), Belgium (18.64%), Japan (3.39%) and others, and 

chronic cases from China (46.91%), Japan (14.10%), South Korea (5.92%), Taiwan 

(2.52%), Belgium (2.44%) and others. Both acute and chronic cases were more or less 

geographical similar; about 77% of acute and 72% of chronic cases were from East 

Asian countries. The distribution of HBV genotypes in acute and chronic cases is given 
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in Table 5.2. Genotype A were prevalent in acute cases, genotypes B, E-G and I in 

chronic cases and genotype C almost equally in both acute and chronic cases. 

 

Table 5.2 : Genotype distribution in 177 acute and 1,149 chronic hepatitis B viral 
genomes retrieved from NCBI. 

Genotype Acute (%) Chronic (%) 

A 35 (19.77) 59 (5.13) 

B 30 (16.95) 262 (22.80) 

C 102 (57.63) 637 (55.44) 

D 8 (4.52) 85 (7.40) 

E 0 (0.00) 17 (1.48) 

F 0 (0.00) 49 (4.26) 

G 0 (0.00) 11 (0.96) 

H 1 (0.56) 8 (0.70) 

I 1 (0.56) 20 (1.74) 

J 0 (0.00) 1 (0.09) 
NCBI: National Center for Biotechnology Information. 
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Seventeen HBV nucleotides were identified to be potentially distinguishable 

between acute and chronic cases. Internal validation was carried out by performing 

binary logistic regression analysis bootstrapped 1,000 times to select the nucleotides 

independently associated with chronicity, as given in Table 5.3. Nine candidate 

nucleotides were found to be associated with lower rate of chronicity but none with 

higher rate of chronicity. The one with the highest accuracy was A1786, followed in 

descending order by G1171, T1785, T3112, C504, C2398, G2669, A382 and A2341. 

These nucleotides were then one-by-one combined in the descending order of accuracy 

to see if there were degradations in accuracy. The combination of A1786/ G1171/ 

T1785/ T3112/ A382/ A2341 improved the accuracy from 88.39% to 90.72%; C504, 

C2398 and G2669 were excluded as they degraded the accuracy when combined with 

the others. Bonferroni correction was further applied in order to reduce false positives 

resulting from the analysis of large sample size data; as a result, two nucleotides, A382 

and A2341, were excluded (given in Table 5.4), leaving A1786/ G1171/ T1785/ T3112 

which gave a high accuracy (90.1%) for predicting lower rate of chronicity (Table 5.3). 
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Table 5.3 : Candidate nucleotides associated significantly with acute and chronic 
hepatitis using logistic regression analysis set for 1,000 bootstrapped samples. The 
selection was carried out based on a descending order of accuracy. The significant 
candidate nucleotides were then combined progressively based on the order of accuracy 
again. The candidate nucleotides that showed degraded accuracy in combination were 
excluded from further assessment. 

Nucleotide 
Acute

n = 177 
(%sensitivity)

Chronic
n = 1149 

(%specificity)
%Accuracya P value 

A1786 26 (14.69) 3 (99.74) 88.39 0.001 

G1171 18 (10.17) 2 (99.83) 87.86 0.001 

T1785 13 (7.34) 0 (100.00) 87.59 0.001 

T3112 32 (18.08) 20 (98.26) 87.56 0.001 

C504 18 (10.17) 7 (99.39) 87.48 0.024 

C801 12 (6.78) 2 (99.83) 87.41 0.708 

C2398 32 (18.08) 23 (98.00) 87.33 0.003 

T1499 21 (11.86) 15 (98.69) 87.10 0.082 

G2669 34 (19.21) 28 (97.56) 87.10 0.001 

A382 5 (2.82) 0 (100.00) 87.03 0.001 

A2215 31 (17.51) 26 (97.74) 87.03 0.073 

A2341 5 (2.82) 0 (100.00) 87.03 0.001 

C2659 31 (17.51) 26 (97.74) 87.03 0.364 

G1784 4 (2.26) 0 (100.00) 86.95 0.848 

G2239 31 (17.75) 27 (97.65) 86.95 0.670 

A2245 33 (18.64) 29 (97.48) 86.95 0.118 

A2662 32 (18.08) 28 (97.56) 86.95 0.354 
     
Combinations of significant nucleotides   

A1786 or G1171 40 (22.60) 5 (99.56) 89.29 <0.001 

A1786 or G1171 or T1785 40 (22.60) 5 (99.56) 89.29 <0.001 
A1786 or G1171 or T1785 or 
T3112 70 (39.55) 25 (97.82) 90.05 <0.001 

A1786 or G1171 or T1785 or 
T3112 or C504 73(41.24) 31 (97.30) 89.82 <0.001 

Excluded C504b     
A1786 or G1171 or T1785 or 
T3112 or C2398 71 (40.11) 31 (97.30) 89.67 <0.001 

Excluded C2398b     
A1786 or G1171 or T1785 or 
T3112 or G2669 72 (40.68) 50 (95.65) 88.31 <0.001 

Excluded G2669b     
A1786 or G1171 or T1785 or 
T3112 or A382 75 (42.37) 25 (97.82) 90.42 <0.001 

A1786 or G1171 or T1785 or 
T3112 or A382 or A2341c 79 (44.63) 25 (97.82) 90.72 <0.001 

a% Accuracy = (177 x %sensitivity + 1149 x %specificity)/(177 + 1149). Accuracy of random guess was 
calculated to be (1149/1327 x 100% =) 86.58%. This was used as accuracy cutoff. 
bC504, C2398 and G2669 were excluded as they decreased the overall accuracy when combined. 
cThis was the best combination where it gave the highest accuracy. Hence, they were included for next 
step analysis. 
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Table 5.4 : Refined selection of candidate nucleotides independently associated with 
acute and chronic hepatitis B based on a Bonferroni-corrected P value to reduce false 
positivity.  

Nucleotide OR (95% CI)a Phi P valueb 

A1786 65.78 (19.67-219.93) 0.335 8.663E-21

G1171 64.93 (14.92-282.44) 0.279 1.236E-14

T1785 91.08 (11.84-700.82) 0.242 3.536E-11

T3112 12.46 (6.94-22.36) 0.286 9.461E-17

A382c 33.40 (3.88-287.61) 0.139 2.150E-04

A2341c 33.40 (3.88-287.61) 0.139 2.150E-04
CI, confidence interval; HBV, hepatitis B virus; NA, not applicable; OR, odds ratio. 
aValue of zero was adjusted to 0.5 for calculation of odds ratio. 
bChi-square exact test; P value of 1.593E-05 is equivalent to 1.593 x 10-05. 
cA382 and A2341 were excluded because their P values exceeded the threshold P value, 1.593E-05; the 
threshold P value was determined based on 3139 SNPs in 3832 complete genomes of HBV [Pearson and 
Manolio et al., 2008]. 
 
 

5.3 Discussion 

More than 70% of circulating HBVs are from Asia. From all complete genomes of HBV 

retrieved in the present study, about 70-80% were from East Asian countries; this is true 

for acute and chronic cases. From this in silico observation, viral genotype A was 

prevalent in acute cases, in accordance with other studies [Kobayashi et al., 2004; 

Suzuki et al., 2005]; however, genotype C was present equally in both acute and chronic 

cases, contrasting with the aforementioned studies. Under rigorous selection procedure, 

four candidate nucleotides, namely A1786, G1171, T1785 and T3112, were associated 

strongly with acute hepatitis (mostly self-limited), suggesting the existence of viral 

strains potentially responsible for a lower rate of chronicity in HBV-infected 

individuals. 

 Several lines of evidence indicated that HBx is essential for initiating and 

maintaining viral replication and antigen expression after infection [Lucifora et al., 

2011]. Firstly, HBx increases deoxyribonucleotide synthesis which is essential for 

optimal activity of viral polymerase [Cohen et al., 2010]. Secondly, HBx is required for 
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establishment of chronicity in a woodchuck model [Zoulim et al., 1994]. Furthermore, 

HBx restores replicative activity of X-defective HBV strains in vitro and in vivo 

[Keasler et al., 2009] and blocking HBx activity inhibits viral replication [Carmona et 

al., 2009; Xie et al., 2012]. Small interfering RNA targeting HBx inhibits the expression 

of HBsAg, HBeAg and the replication of HBV DNA [Xie et al., 2011]. T1785 and 

A1786 are located near the 3’ end of X gene (corresponding to C-terminal of HBx), 

which is the region critical for stability and function of HBx; truncated C-terminal HBx 

was not able to stimulate viral replication in a woodchuck and mouse model [Lizzano et 

al., 2011; Luo et al., 2012]. HBV possessing both T1785 and A1786 variants form a 

stop signal (TAG) of translation at codon 138 of X gene. If translated, this would 

produce a C-terminal truncated HBx protein that is non-functional for viral replication, 

similar to that reported in the aforementioned study. The substitution of A1786 with 

G1786 causes switching of arginine to lysine. An arginine-rich domain in a protein may 

work as a nuclear localisation signal, whereas a lysine-rich domain may function as a 

nuclear export signal [Demart et al., 2003; Michaud et al., 2008]. The switch may 

favour the cytoplasmic-over-nuclear distribution of HBx, as evidenced in the HBV core 

protein [Garcia et al., 2009]. Truncation and cytoplasmic localisation of HBx could lead 

to inefficient viral replication, reducing viral capability to compete with host vigourous 

immune clearance, thereby lowering rate of chronicity.  

 G1171 falls within the viral EnhI-X promoter complex (nt 950-1,350) [Guo et 

al., 1991]. EnhI mutation has been known to reduce viral replication [Bock et al., 2000], 

whereas X promoter, located upstream of X gene, may affect transcription of X mRNA 

which is required for HBx production. Deletion of EnhI greatly reduces the activity of X 

promoter, indicating that EnhI may be required for maximal activity of X promoter; 

deletion of nt 970-1,116 partially inactivates X promoter, but deletion of nt 964-1,217 

completely abolishes X promoter activity [Treinin and Laub, 1987]. G1171 is located in 
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the sequence region of the latter, which is critical for regulating the viral X promoter 

activity. Therefore, G1171 variant may down-regulate expression of HBx, resulting in 

lower rate of chronicity. 

 T3112 is located within the polymerase region, overlapping with pre-S1 and S 

promoter. Pre-S1 (nt 2848-3204) and S promoter (nt 3045-3180) share a large 

overlapping region. In fact, most S promoter mutations coincide with pre-S1 mutations 

but the inverse is not true. T3112 is unlikely to have an impact on the polymerase gene 

regulation because it falls within the spacer region which is non-functional [Bock et al., 

1997]. T3112 switches proline to serine in the pre-S1 region. The amino acid change is 

probably not causing any secondary protein structure alteration as both proline and 

serine are frequently encountered in loops and turns structures. T3112 is also positioned 

near CCAAT motif (nt 3,137-3,141) within the S2 promoter region which regulates 

MHBsAg and SHBsAg (also called HBsAg) production [Bock et al., 1999]. S promoter 

deletion variants may lead to predominant expression of pre-S1 mRNA over pre-S2/S 

mRNA, and intracellular accumulation of surface proteins, especially the LHBsAg [Xu 

and Yen, 1996; Melegari et al., 1997; Lin et al., 2012]. Several S2 promoter mutations 

at 5’ and 3’ terminus of CCAAT-box, like C3007, A3008, C3039, G3103, T3105, 

C3126 and A3127, have also been reported to affect surface protein expression [Kimbi 

et al., 2004]. Retention of LHBsAg within hepatocytes may induce endoplasmic 

reticulum stress, producing oxidative damage that may cause genomic instability or self-

destruction of hepatocytes, and thus lead to less suitable or fewer factories for virion 

production [Hsieh et al., 2004]. S promoter mutations may also inhibit virion secretion 

[Melegari et al., 1997]; however, two other studies did not support such findings [Xu 

and Yen, 1996; Bock et al., 1997]. T3112 could be another novel S2 promoter variant 

potentially capable of reducing MHBsAg and SHBsAg secretion and over-producing 

LHBsAg that may inhibit virion production. If this holds true, it would confer a negative 
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impact on viral immune-escape strategy and viral replication. Host immune defense 

may eventually wipe off the inferior virus strain, resulting in acute self-limited 

infection. Further experimental studies are needed to confirm this hypothesis. 

 

5.4 Conclusion 

The present study discovered several novel viral variants that might predispose a HBV-

infected individual to a lower rate of chronicity. They are located within X gene, EnhI-

X promoter complex and S promoter region. They are highly specific but insufficiently 

sensitive, indicating the possible involvement of other factors in the development of 

acute hepatitis. As this is an in silico observation study, further in vitro and in vivo 

experiments are required to decipher the clinical importance of these specific viral 

variants and their effects on viral replication and release. 

 

5.5 Limitations 

1. Rigour classification of hepatitis cases is not possible in this in silico observation 

study as many of the publications sourced did not provide sufficient details for the 

definition of acute hepatitis. 

2. The imbalanced sample size could lead to false high accuracy. To resolve this, 

accuracy cutoff of random guess was adjusted from 50% to >85%. 

3. The influence of HBV quasispecies on the development of chronicity could not be 

investigated as most of the HBV sequences published were not cloned sequences. 
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Appendix A: Raw Data of Cirrhosis and HCC Study 

Label 
Pc 

start 
Pc 

stop iron ferritin age sex eth smo fhx fhcc eAg alt afp cond 

HB003 ATG TGG 6.90 18.1 41 0 0 0 0 0 0 35 2.0 N 

HB006 ATG TGG 21.50 67.5 24 1 0 0 1 0 1 40 2.0 N 

HB007 ATG TAG 13.20 11.1 45 0 0 0 1 1 0 82 0.5 N 

HB008 ATG TGG 10.90 227.8 34 0 0 0 0 0 1 38 4.0 N 

HB009 ATG TAG 23.40 88.7 43 1 1 0 1 1 0 47 5.0 C 

HB015 ATG TAG 14.40 201.3 55 1 0 0 0 0 0 51 0.5 N 

HB021 ATG TAG 19.30 215.8 26 1 1 1 2 2 0 57 5.0 N 

HB022 ATG TGG 14.10 89.3 30 0 2 0 0 0 1 84 2.0 N 

HB028 ATG TAG 16.90 174.7 62 1 0 1 0 0 0 39 2.0 N 

HB031 ATG TAG 12.40 66.4 44 0 0 0 0 0 0 27 4.0 N 

HB033 ATG TAG 20.20 332.9 67 1 0 0 0 0 0 40 2.0 C 

HB034 ATG TGG 15.60 300.4 50 1 0 0 1 1 1 68 5.0 C 

HB038 ATG TAG 19.00 310.8 58 0 0 0 0 0 1 42 10.0 C 

HB039 ATG TAG 21.90 40.9 74 1 0 1 0 0 0 40 0.5 N 

HB043 ATG TAG 31.90 182.8 43 1 1 1 1 1 0 47 4.0 C 

HB044 ATG TGG 22.10 31.3 21 0 0 0 1 1 1 30 3.0 N 

HB045 TTG TGG 34.10 124.2 41 1 1 0 1 0 0 58 4.0 C 

HB047 ATG TGG 30.60 625.0 57 0 0 0 0 1 1 76 3.0 N 

HB049 ATG TGG 24.90 137.5 34 1 0 1 1 0 1 186 3.0 C 

HB053 ATG TGG 24.31 280.6 66 0 0 0 2 0 0 41 3.0 H 

HB056 ATG TGG 23.20 70.8 50 1 0 0 1 1 1 51 2.0 N 

HB057 ATG TGG 10.57 218.6 78 0 0 0 0 0 0 36 2.0 C 

HB059 ATG TGG 21.10 115.5 46 1 0 1 1 1 0 41 3.0 N 

HB060 ATG TGG 8.40 77.3 28 0 0 0 0 0 1 10 4.0 N 

HB062 ATG TAG 13.50 41.4 34 0 0 0 1 0 0 28 4.0 N 

HB063 ATG TAG 22.30 267.6 65 1 0 0 2 0 0 43 2.0 N 

HB066 ATG TAG 3.90 158.7 65 1 1 0 0 0 0 62 2.0 N 

HB073 ATG TGG 11.90 118.7 55 0 0 0 1 1 0 37 3.0 N 

HB075 ATG TRG 14.80 292.4 66 0 0 0 0 0 0 34 2.0 N 

HB077 ATG TGG 14.60 28.9 57 1 0 0 1 0 0 31 2.0 N 

HB079 AYG TGG 20.20 314.9 40 1 0 0 1 0 1 102 3.0 N 

HB082 ATG TAG 13.70 13.4 38 0 0 0 1 0 0 40 2.0 N 

HB083 ATG TGG 24.80 251.0 40 1 0 0 1 0 0 54 3.0 N 

HB084 ATG TAG 23.10 146.4 31 1 0 0 1 0 0 115 2.0 N 

HB088 ATG TRG 13.90 101.3 50 0 0 0 1 1 1 34 2.0 N 

HB091 ATG TGG 5.50 5.8 25 0 1 0 0 0 1 129 6.0 N 

HB093 ATG TAG 15.90 30.0 34 0 1 0 2 2 0 35 0.5 N 

HB095 ATG TAG 20.50 100.4 65 0 0 0 2 2 0 32 4.0 C 

HB099 ATG TAG 15.90 950.8 46 1 0 0 0 0 0 379 5.0 N 
Pc start, precore start codon variant; Pc stop, precore stop codon variant; eth, ethnicity; smo, smoker; fhx, 
family history of infection; fhcc, family history of HCC; eAg, HBeAg; alt, alanine aminotransferase; afp, 
alpha-fetoprotein; cond, disease condition. 
Sex: 0 = female, 1 = male; eth: 0 = Chinese, 1 = Malay, 2 = others; smo: 0 = non-smoker, 1 = smoker; 
fhx: 0 = no, 1 = yes, 2 = unknown; fhcc: 0 = no, 1 = yes, 2 = unknown; eAg: 0 = negative, 1 = positive; 
cond: N = control without significant liver disease, C = cirrhosis and H = HCC. 
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Appendix A, continued 

Label 
Pc 

start 
Pc 

stop iron ferritin age sex eth smo fhx fhcc eAg alt afp cond 

HB103 ATG TGG 21.30 90.7 78 1 2 0 0 0 1 72 5.0 N 

HB104 ATG TAG 21.80 197.9 56 0 0 0 1 0 0 48 0.5 N 

HB106 ATG TGG 14.80 99.1 20 0 1 0 0 0 1 43 2.0 N 

HB107 ATG TRG 9.30 24.6 28 0 0 0 1 0 0 63 5.0 N 

HB109 ATG TGG 14.50 528.2 55 1 0 0 0 0 0 54 3.0 N 

HB110 TTG TAG 5.80 10.2 44 0 1 0 1 0 0 37 2.0 N 

HB114 ATG TAG 17.30 162.4 51 1 0 0 0 0 0 41 3.0 N 

HB118 ATG TAG 13.17 260.7 78 1 0 0 0 0 0 48 4.0 C 

HB129 ATG TGG 36.11 278.1 65 1 0 1 0 0 0 55 15.0 H 

HB131 ATG TAG 10.30 93.6 25 0 0 0 1 1 0 54 0.5 N 

HB133 ATG TAG 20.20 43.1 50 0 1 0 0 1 0 35 8.0 N 

HB134 ACG TGG 17.00 210.7 58 0 0 0 1 0 0 45 2.0 N 

HB136 ATG TAG 29.60 98.4 41 1 0 0 1 0 0 47 0.5 N 

HB137 ATG TAG 15.47 109.8 51 0 0 0 1 1 0 49 3.0 N 

HB139 ATG TAG 17.40 441.7 26 1 0 1 0 0 0 48 0.5 N 

HB141 ATG TGG 21.90 193.1 44 0 0 0 1 0 0 42 0.5 N 

HB142 ATG TGG 24.90 60.1 48 0 0 0 1 2 0 42 2.0 C 

HB143 ATG TGG 15.70 67.7 27 0 0 0 0 0 0 30 6.0 N 

HB145 ATG TAG 20.80 198.8 64 1 1 1 1 0 0 51 2.0 N 

HB146 ATG TGG 14.50 83.4 27 1 0 0 1 0 1 60 0.5 N 

HB148 ATG TAG 10.80 118.4 49 0 1 0 1 1 0 27 2.0 N 

HB151 ATG TGG 16.68 423.7 73 1 0 0 1 0 0 51 8.0 C 

HB152 CTG TGG 18.90 146.4 53 0 0 0 1 1 0 36 0.5 N 

HB155 ATG TRG 11.00 13.0 37 0 1 0 0 0 1 101 5.0 N 

HB156 ATG TAG 14.00 213.3 34 1 0 0 1 0 0 86 4.0 F 

HB158 ATG TGG 12.80 46.1 40 0 0 0 1 0 0 32 4.0 N 

HB166 ATG TGG 14.70 97.8 23 1 0 0 0 0 1 46 3.0 N 

HB171 ATG TAG 30.40 478.4 41 1 1 0 0 0 0 67 7.0 C 

HB172 ATG TAG 14.88 288.8 54 0 0 0 1 0 0 44 3.0 N 

HB173 ATG TRG 3.77 4.6 26 0 1 0 0 0 1 141 3.0 N 

HB174 ATG TAG 23.20 137.3 26 1 1 1 1 0 0 46 5.0 N 

HB177 ATG TAG 15.60 198.6 63 0 0 0 0 0 0 48 2.0 N 

HB178 ATG TGG 7.06 11.3 71 0 1 0 0 0 1 22 3.0 C 

HB181 ATG TGG 17.42 120.9 52 0 0 1 1 1 1 46 3.0 C 

HB182 ATG TGG 26.90 199.4 58 0 0 0 2 0 1 53 4.0 N 

HB185 ATG TAG 18.40 119.0 56 0 1 0 1 1 0 37 0.5 N 

HB187 ATG TAG 14.10 153.3 39 1 1 1 2 0 0 30 3.0 N 

HB188 ATG TGG 17.50 237.3 55 1 0 0 1 0 0 34 8.0 N 

HB192 ATG TAG 20.79 279.1 57 0 0 0 1 1 0 47 2.0 N 

HB193 ATG TAG 20.61 165.7 64 1 0 0 1 0 0 32 2.0 N 
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Appendix A, continued 

Label 
Pc 

start 
Pc 

stop iron ferritin age sex eth smo fhx fhcc eAg alt afp cond 

HB197 ATG TAG 13.50 377.3 65 0 0 0 1 1 0 41 4.0 C 

HB198 ATG TAG 15.40 238.6 57 1 0 0 0 0 0 67 0.5 N 

HB199 ATG TRG 16.20 57.0 32 1 1 0 0 0 0 59 3.0 N 

HB200 ATG TRG 13.80 38.8 36 0 1 0 1 0 0 70 3.0 N 

HB201 ATG TGG 14.10 94.1 50 0 0 0 2 0 0 41 4.0 N 

HB202 ATG TGG 11.50 46.9 19 0 0 0 1 0 1 30 2.0 N 

HB205 ATG TAG 13.10 270.7 66 0 0 0 0 0 0 43 2.0 N 

HB206 ATG TGG 23.90 210.7 59 1 0 0 1 2 1 43 2.0 C 

HB209 ATG TAG 13.90 55.5 35 0 0 0 1 1 0 41 0.5 N 

HB212 ATG TAG 13.50 48.3 49 0 1 0 2 0 0 34 3.0 N 

HB213 ATG TAG 12.70 165.5 65 1 0 0 1 0 0 37 2.0 N 

HB215 ATG TAG 18.09 249.8 49 0 0 0 1 1 0 49 5.0 N 

HB217 ATG TAG 22.68 251.8 61 0 0 0 1 2 0 130 4.0 N 

HB219 ATG TAG 18.20 204.5 53 1 0 0 0 0 0 36 2.0 N 

HB220 ATG TAG 21.70 69.7 31 1 1 0 0 0 0 37 2.0 N 

HB221 ATG TAG 14.40 28.0 22 0 1 0 1 0 0 39 0.5 N 

HB223 ATG TRG 17.80 486.1 51 1 0 0 1 1 0 58 5.0 C 

HB225 ATG TAG 36.70 870.0 67 1 0 1 2 0 0 403 3.0 N 

HB228 ATG TAG 31.62 167.0 65 0 0 0 0 0 0 46 10.0 C 

HB229 ATG TAG 15.20 297.4 31 1 1 0 1 2 0 45 3.0 N 

HB231 ATG TRG 18.40 187.8 36 1 0 0 1 0 0 74 3.0 N 

HB232 ATG TGG 3.43 59.4 65 1 0 0 2 0 0 37 4.0 N 

HB233 ATG TGG 14.20 155.2 22 1 1 0 2 0 0 52 3.0 N 

HB234 ATG TGG 13.30 18.4 26 0 1 0 1 0 1 39 0.5 N 

HB239 ATG TAG 21.80 129.0 64 0 0 0 0 0 0 46 2.0 N 

HB240 ATG TAG 24.90 90.4 56 0 1 0 1 0 0 35 6.0 N 

HB241 ATG TAG 8.40 12.4 42 0 0 0 1 0 0 35 15.0 N 

HB242 ATG TAG 19.40 86.8 56 0 1 0 1 1 0 35 2.0 N 

HB243 ATG TAG 22.60 345.1 57 0 0 0 0 0 0 36 2.0 N 

HB246 ATG TAG 15.51 125.4 60 0 0 0 1 2 0 84 4.0 N 

HB247 ATG TAG 17.00 241.1 30 1 0 1 0 2 0 48 6.0 N 

HB248 ATG TAG 24.90 110.9 61 0 1 0 0 0 0 49 5.0 C 

HB250 ATG TGG 18.61 320.3 63 0 0 0 2 0 1 84 4.0 N 

HB251 ATG TGA 15.97 122.8 69 0 0 0 1 0 0 40 5.0 N 

HB253 ATG TGG 13.60 94.8 23 1 0 0 1 0 1 44 2.0 N 

HB254 AAG TGG 15.10 167.8 47 1 0 0 1 0 0 22 6.0 N 

HB256 ATG TAG 24.90 13.0 41 0 0 0 1 1 0 32 4.0 N 

HB257 AYG TAG 15.24 225.5 51 1 0 0 1 1 0 48 4.0 N 

HB258 ATG TRG 21.10 302.8 31 1 1 1 1 1 1 108 3.0 N 

HB259 ATG TGG 24.60 501.6 24 1 1 0 1 1 1 129 3.0 N 

HB260 ATG TGG 8.80 76.0 44 1 1 1 2 0 1 37 6.0 N 

HB264 ATG TGG 4.93 15.1 41 0 0 0 0 0 1 38 3.0 C 

HB266 ATG TAG 18.40 298.4 61 0 0 0 1 1 0 43 2.0 N 

HB267 ATG TAG 20.10 338.7 48 1 1 1 1 1 0 57 3.0 N 
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Appendix A, continued 

Label 
Pc 

start 
Pc 

stop iron ferritin age sex eth smo fhx fhcc eAg alt afp cond 

HB268 ATG TGG 29.10 33.2 22 0 1 0 0 0 1 48 2.0 N 

HB269 ATG TAG 15.10 103.8 31 0 1 0 0 0 0 30 2.0 N 

HB271 ATG TAG 19.20 246.1 70 0 0 0 0 0 0 41 3.0 N 

HB273 ATG TGG 33.30 290.2 37 1 0 0 1 1 1 34 2.0 N 

HB281 CTG TGG 15.56 42.0 52 0 0 0 1 0 0 35 3.0 N 

HB284 ATG TAG 31.48 223.8 62 1 0 0 1 1 0 42 4.0 N 

HB285 ATG TAG 13.79 106.2 56 0 1 0 0 0 0 63 6.0 C 

HB286 ATG TGG 20.59 269.3 35 1 1 0 1 0 1 77 3.0 C 

HB287 ATG TRG 12.90 213.5 40 1 0 0 1 0 1 82 2.0 N 

HB289 ATG TAG 26.20 385.8 63 1 0 1 2 0 0 79 4.0 C 

HB291 MTG TRG 27.40 252.1 52 1 0 0 1 0 0 42 2.0 N 

HB294 ATG TAG 30.71 305.3 61 1 2 0 0 0 1 58 4.0 C 

HB298 ATG TGG 37.29 106.9 46 1 1 0 0 0 1 58 5.0 C 

HB299 ATG TAG 21.59 309.6 57 1 0 0 1 0 0 86 407.0 H 

HB301 ATG TGG 34.60 193.5 64 1 0 0 0 0 0 62 22.0 C 

HB302 ATG TAG 16.60 100.2 57 0 0 0 2 0 0 48 0.5 N 

HB304 ATG TAG 19.73 26.4 39 0 0 0 1 1 0 1,090 3.0 C 

HB310 ATG TGG 4.63 1,006.0 38 1 1 0 0 0 1 88 39,235.0 H 

HB312 ATG TAG 13.60 117.0 60 1 2 0 1 1 0 39 3.0 C 

HB315 ATG TGG 2.31 1,587.0 60 1 1 1 1 0 0 132 71.0 H 

HB316 ATG TGG 21.20 338.4 66 1 0 1 1 0 0 34 3.0 N 

HB317 ATG TAG 15.80 152.5 56 0 0 0 1 0 0 34 2.0 N 

HB318 ATG TRG 15.50 34.3 58 1 0 0 1 1 0 60 0.5 C 

HB319 ATG TAG 17.10 187.9 58 0 0 0 1 1 0 38 0.5 N 

HB322 ATG TAG 5.40 161.9 49 0 0 0 1 1 0 40 2.0 H 

HB326 ATG TAG 9.50 25.6 51 0 0 0 1 0 0 39 2.0 N 

HB328 ATG TGG 19.10 330.8 54 1 0 0 0 0 0 64 69.0 C 

HB332 ATG TGG 20.00 57.8 51 0 0 0 1 1 1 40 6.0 C 

HB333 ATG TAG 20.30 264.4 57 1 0 0 1 0 0 63 19.0 C 

HB335 ATG TAG 17.30 310.9 46 1 0 1 1 1 0 35 2.0 N 

HB336 MTG TAG 18.80 1,192.0 58 1 0 0 0 0 0 34 5.0 N 

HB337 ATG TGG 21.30 117.4 69 0 0 0 1 1 1 37 2.0 N 

HB338 ATG TAG 17.70 337.4 42 1 0 0 1 1 0 57 5.0 N 

HB339 ATG TAG 13.20 80.7 58 1 1 0 0 0 1 45 2.0 C 

HB341 ATG TAG 21.40 25.7 61 1 0 1 1 0 1 55 4.0 C 

HB343 ATG TRG 14.80 132.2 36 1 2 1 2 0 1 66 0.5 N 

HB345 TTG TAG 17.10 189.2 60 1 0 0 0 0 0 66 32.0 N 

HB347 CTG TGG 28.34 103.4 61 1 0 0 0 0 0 43 4.0 C 

HB348 ATG TAG 14.30 168.4 57 0 0 0 1 1 0 30 3.0 H 

HB349 ATG TGG 5.20 9.7 44 0 0 0 1 0 1 39 2.0 N 

HB350 ATG TGG 22.20 368.1 48 1 0 0 1 0 0 62 0.5 N 

HB363 ATG TAG 24.68 150.2 60 1 0 0 1 0 0 49 2.0 N 
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Appendix A, continued 

Label 
Pc 

start 
Pc 

stop iron ferritin age sex eth smo fhx fhcc eAg alt afp cond 

HB365 ATG TGG 28.26 422.2 56 1 0 1 0 0 1 43 2.0 H 

HB370 ATG TAG 12.75 209.7 63 0 0 0 1 0 0 44 2.0 N 

HB371 ATG TAG 28.80 238.5 45 1 0 0 2 0 0 65 0.5 N 

HB374 TTG TGG 5.31 1,842.0 59 1 0 0 1 0 0 54 2.0 C 

HB378 ATG TGG 28.90 238.2 59 1 0 1 1 0 1 56 5.0 C 

HB380 ATG TGG 49.10 318.6 61 1 0 1 1 1 1 214 8.0 H 

HB381 ATG TGG 32.70 181.5 51 0 0 0 1 1 0 34 0.5 C 

HB383 ATG TAG 16.40 409.7 60 1 0 1 1 0 0 56 4.0 H 

HB385 ATG TAG 13.70 91.8 54 0 0 0 1 0 0 89 4.0 N 

HB386 ATG TAG 27.58 18.3 52 0 0 0 1 0 0 40 3.0 C 

HB388 ATG TAG 6.30 460.8 55 1 0 0 1 0 0 51 2,980.0 H 

HB390 ATG TAG 19.90 376.2 66 1 0 0 0 0 0 32 2.0 C 

HB391 ATG TGG 22.30 186.4 48 1 0 1 1 0 0 78 47.0 C 

HB392 ATG TGG 22.90 1,614.7 55 1 0 0 1 0 1 52 14.0 C 

HB393 ATG TGG 17.20 304.1 25 1 0 0 0 0 0 40 2.0 N 

HB397 ATG TGG 7.70 37.8 39 0 1 0 1 2 1 42 0.5 N 

HB400 ATG TGG 29.58 113.9 54 0 1 0 2 0 0 40 48.0 C 

HB403 ATG TAG 20.41 12.9 47 0 1 0 1 1 0 30 0.5 C 

HB404 ATG TGG 6.80 209.3 62 1 0 0 1 0 0 67 5.0 H 

HB405 ATG TAG 17.40 340.5 63 1 2 0 2 2 0 61 31.0 C 

HB406 ATG TAG 9.40 25.3 32 0 1 0 2 0 0 34 4.0 C 

HB409 ATG TGG 5.20 10.2 44 1 0 0 1 2 1 31 2.0 N 

HB410 ATG TGG 23.41 256.2 55 0 0 0 1 2 1 57 3.0 C 

HB413 ATG TAG 17.83 308.2 64 1 0 1 2 2 0 67 5.0 C 

HB415 ACG TAG 20.50 155.4 56 0 0 0 1 0 0 77 5.0 N 

HB419 ATG TGG 27.90 386.5 38 1 0 0 1 0 0 76 5.0 C 

HB420 ATG TGG 29.98 219.8 57 1 0 0 1 0 0 77 11.0 C 

HB423 AYS TGG 18.70 143.0 55 0 0 0 1 1 0 42 5.0 C 

HB424 ATG TAG 21.09 201.8 53 0 0 0 1 2 0 47 4.0 N 

HB425 ATG TAG 28.12 306.2 63 1 0 0 1 0 0 227 3.0 N 

HB428 ATG TGG 18.60 61.0 63 0 0 0 1 1 1 49 9.0 C 

HB430 ATG TRG 28.74 269.0 60 1 0 0 1 1 1 54 14.0 C 

HB433 ATG TGG 19.55 91.7 57 1 1 0 0 0 1 71 28.0 H 

HB434 ATG TGG 15.38 129.4 57 0 0 0 1 1 0 44 3.0 C 

HB438 ATG TAG 18.19 139.6 61 1 0 0 1 1 0 35 2.0 N 

HB439 ATG TGA 17.20 260.9 53 1 0 0 2 0 0 31 5.0 N 

HB444 ATG TGG 16.15 42.0 47 0 1 0 1 1 1 28 228.0 H 

HB445 ATG TAG 26.30 297.2 59 0 0 0 1 0 0 57 3.0 N 

HB448 ATG TAG 10.98 350.4 57 0 0 0 1 1 0 81 8.0 C 

HB450 ATG TAG 14.10 144.6 56 0 0 0 0 0 0 33 2.0 N 

HB451 ATG TAG 14.06 181.2 50 1 1 0 1 1 0 50 2.0 N 

HB452 ATG TAG 18.20 313.2 53 1 0 0 1 0 0 35 2.0 N 

HB454 ATG TAG 25.86 495.3 56 1 0 0 1 1 0 42 6.0 C 

HB455 ATG TAG 15.56 150.8 62 0 0 0 1 1 0 33 2.0 N 
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Appendix A, continued 

Label 
Pc 

start 
Pc 

stop iron ferritin age sex eth smo fhx fhcc eAg alt afp cond 

HB456 ATG TAG 29.00 150.6 61 1 0 1 1 0 0 42 2.0 N 

HB461 ATG TAG 19.40 215.2 38 1 0 0 2 2 0 53 0.5 N 

HB463 ATG TAG 4.89 3.8 48 0 1 0 1 0 0 36 3.0 N 

HB464 ATG TAG 12.90 61.9 33 0 1 0 2 2 0 127 0.5 N 

HB465 ATG TAG 8.10 97.7 35 0 0 0 1 1 0 30 2.0 N 

HB467 ATG TAG 29.70 159.3 56 0 0 0 1 0 0 61 2.0 C 

HB468 ATG TGG 14.06 513.7 53 1 0 1 1 1 0 74 7.0 N 

HB469 ATG TAG 16.10 45.4 80 0 0 0 0 0 0 35 5.0 C 

HB470 ATG TAG 18.01 225.8 50 1 0 0 1 0 0 40 2.0 N 

HB471 ATG TGG 21.40 109.2 30 1 0 0 1 1 1 40 2.0 N 

HB472 ATG TGG 23.60 158.1 59 0 0 0 0 1 1 48 2.0 N 

HB473 ATG TGG 26.90 91.2 25 0 0 0 1 1 1 42 0.5 N 

HB475 ATG TGG 29.50 85.8 47 0 0 0 1 0 1 46 3.0 C 

HB477 ATG TAG 19.50 270.6 52 1 0 0 2 0 0 34 2.0 N 

HB478 ATG TAG 31.60 131.3 69 0 0 0 1 1 0 36 3.0 N 

HB484 AYG TAG 20.60 89.1 30 1 0 0 1 1 0 68 13.0 N 

HB485 ATG TGG 10.60 14.2 26 0 0 0 1 1 1 47 4.0 N 

HB487 ATG TGG 25.40 138.1 55 1 0 0 1 1 0 40 0.5 N 

HB488 ATG TAG 17.70 162.2 48 1 0 0 1 0 0 43 2.0 N 

HB490 ATG TAG 32.90 186.8 52 1 0 1 1 0 0 31 3.0 N 

HB492 ATG TGG 11.29 8.9 51 0 0 0 1 1 0 59 2.0 C 

HB496 ATG TAG 17.40 417.7 53 1 0 0 2 0 0 53 2.0 N 

HB501 ATG TAG 20.60 9.6 48 0 0 0 1 1 0 41 3.0 N 

HB502 ATG TAG 42.40 634.1 60 0 0 0 2 2 1 73 17.0 H 

HB503 ATG TGG 14.97 478.1 54 1 0 0 1 1 0 188 270.0 H 

HB505 ATG TAG 20.90 175.5 52 1 0 0 1 0 0 63 2.0 N 

HB506 ATA TGG 17.96 248.6 61 0 0 0 1 0 0 26 3.0 N 

HB507 ATG TAG 22.73 172.2 55 1 0 0 1 0 0 36 2.0 N 

HB508 ATG TAG 24.30 219.4 56 0 0 0 1 0 0 40 2.0 N 

HB510 ATG TGG 40.05 140.4 49 1 0 0 0 0 0 81 0.5 C 

HB511 ATG TGG 3.51 7.4 43 0 0 0 1 1 0 33 0.5 N 

HB513 ATG TAG 18.50 27.4 18 0 0 0 1 1 0 45 0.5 N 

HB519 ATG TAG 18.40 143.9 59 1 0 0 1 0 0 40 4.0 N 

HB521 ATG TAG 23.59 137.3 69 0 0 0 1 1 0 34 0.5 N 

HB522 ATG TGG 16.48 276.4 66 1 0 0 1 1 1 67 23,249.0 H 

HB523 ATG TGR 13.90 393.5 77 0 0 0 0 0 0 40 5.0 N 

HB524 ATG TAG 35.70 289.0 53 1 0 0 1 0 0 46 0.5 N 

HB526 ATG TGG 16.38 94.0 50 1 0 0 1 1 1 78 6.0 C 

HB528 ATG TAG 7.39 49.3 60 0 0 0 1 0 0 28 2.0 N 

HB531 ATG TAG 25.76 520.4 65 1 0 0 1 0 0 42 5.0 N 

HB532 ATG TAG 45.51 1,552.0 62 1 0 1 0 0 0 51 2.0 C 

HB534 ATG TGG 18.55 916.1 67 1 0 1 0 0 1 60 8,541.0 H 

HB535 ATG TAG 11.60 138.2 64 0 1 0 1 0 0 33 0.5 N 
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Appendix A, continued 

Label 
Pc 

start 
Pc 

stop iron ferritin age sex eth smo fhx fhcc eAg alt afp cond 

HB536 AYG TAG 18.10 272.5 70 0 0 0 1 0 0 32 0.5 N 

HB537 ATG TGG 6.26 426.1 74 1 0 1 2 2 0 50 5.0 H 

HB540 ATG TGG 24.54 456.4 51 1 1 0 1 1 1 82 6.0 H 

HB541 ATG TAG 44.68 110.1 56 0 0 0 1 1 0 49 6.0 N 

HB547 ATG TAG 22.14 112.1 57 0 0 0 1 1 0 44 4.0 N 

HB548 ATG TAG 17.92 99.0 62 0 0 1 1 1 0 47 133.0 H 

HB551 ATG TRG 14.60 615.9 53 1 0 1 2 0 1 88 34,451.5 H 

HB556 ATG TGG 7.71 636.5 68 1 1 0 2 0 1 26 6,290.7 H 

HB559 ATG TGG 11.29 100.9 70 1 1 1 2 2 0 74 546,300.0 H 

HB560 ATG TGG 12.34 251.0 61 1 1 1 1 2 1 73 3,062.0 H 

HB562 ATG TAG 25.86 138.5 58 0 0 0 1 1 0 54 2.0 N 

HB565 ATG TAG 16.30 320.2 64 1 0 0 2 2 0 95 5.0 C 

HB567 ATG TAG 16.92 70.6 51 0 0 0 1 0 0 43 1.0 N 

HB568 ACG TGG 4.50 6.5 41 0 0 0 2 0 0 41 9.0 N 

HB571 ATG TAG 21.59 566.8 60 1 0 1 1 1 0 45 2.0 N 

HB572 ATG TRG 26.90 591.8 62 1 0 1 1 0 1 54 17.0 C 

HB574 ATG TAG 10.12 33.7 65 1 1 1 2 0 0 54 5.0 C 

HB576 ATG TAG 10.20 62.3 49 0 0 0 1 0 0 32 0.5 N 

HB581 ATG TAG 48.22 33.0 66 1 0 1 0 0 0 48 7.0 C 

HB582 ATG TAG 36.61 162.9 61 1 0 0 2 0 0 48 5.5 C 

HB586 ATG TGG 13.47 754.4 67 1 0 0 2 0 0 29 20.0 C 

HB587 ATG TAG 29.44 253.8 48 1 0 0 1 1 0 53 5.0 N 

HB588 ATG TAG 18.51 199.0 58 0 0 0 1 0 0 130 17.0 C 

HB589 TTG TAG 27.10 211.3 57 1 0 0 1 0 0 82 4.0 C 

HB594 ATG TAG 21.41 406.9 68 0 0 0 2 0 0 28 4.0 N 

HB597 ATG TAG 14.24 361.2 44 0 1 0 2 2 0 115 6.0 N 

HB600 ATG TGG 15.80 457.9 50 0 0 0 0 0 0 114 3.0 N 

HB601 ATG TAG 20.80 193.4 58 1 1 1 1 2 0 63 3.0 N 

HB605 ATG TAG 11.98 23.5 53 0 0 0 1 1 0 27 5.0 N 

HB608 ATG TGG 16.80 313.1 56 0 2 0 1 2 0 26 2.0 N 

HB613 ATG TGG 9.65 102.2 58 0 0 0 1 1 1 255 355.0 H 

HB617 ATG TGG 22.60 29.3 23 0 0 0 1 0 0 175 1.0 N 

HB620 ATG TAG 15.90 14.4 46 0 0 0 1 1 0 33 2.0 N 

HB622 ATG TAG 26.90 95.3 36 1 1 0 2 2 0 41 2.0 C 

HB624 ATG TGG 18.60 71.0 24 0 0 0 0 0 0 31 0.5 N 

HB626 ATG TAG 9.60 135.0 45 0 1 0 0 0 0 37 2.0 N 

HB628 ATG TAG 21.20 299.4 32 1 0 0 1 0 0 42 0.5 N 

HB630 ATG TGG 16.10 183.9 30 1 1 0 1 0 1 80 3.0 N 

HB642 ATG TAG 27.30 42.5 45 1 0 0 2 2 0 40 2.0 N 

HB643 ATG TGG 2.40 6.4 32 0 0 0 2 2 1 26 2.0 N 

HB652 ATG TGG 6.80 192.3 44 1 0 0 1 1 1 80 0.5 N 

HB655 ATG TAG 8.50 54.4 47 0 1 0 1 1 0 44 5.0 N 
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Appendix A, continued 

Label 
Pc 

start 
Pc 

stop iron ferritin age sex eth smo fhx fhcc eAg alt afp cond 

HB662 ATG TGG 21.90 47.6 21 0 0 0 0 0 1 66 4.0 N 

HB665 ATG TAG 13.10 63.2 49 0 0 0 1 1 0 32 0.5 N 

HB668 ATG TAG 3.70 8.6 38 0 0 0 2 2 0 34 1.0 N 

HB669 ATG TAG 18.70 107.8 63 0 0 0 1 0 0 30 3.0 N 

HB676 ATG TGG 21.20 171.1 67 0 0 0 0 0 0 36 0.5 N 

HB681 ATG TAG 12.80 177.1 44 1 0 0 1 2 0 40 0.5 N 

HB693 ATG TRG 24.10 242.2 35 1 0 0 2 0 1 293 5.0 N 

HB695 ATG TAG 21.40 597.8 52 1 0 0 2 2 0 74 6.0 N 

HB707 ATG TGG 25.50 21.1 45 0 0 0 1 0 1 43 3.0 N 

HB708 ATG TGG 26.20 285.5 59 1 0 0 1 0 1 70 7.0 N 

HB709 ATG TAG 14.80 205.5 46 0 0 0 1 0 0 32 2.0 N 

HB714 ATG TGG 15.00 93.1 21 0 1 0 1 1 1 51 2.0 N 

HB716 CTG TGG 17.20 278.5 60 1 0 0 0 0 0 45 0.5 C 

HB718 ATG TAG 12.92 89.8 63 0 0 0 0 0 0 41 2.0 N 

HB720 ATG TAG 19.50 83.6 55 0 0 0 1 0 0 37 1.0 N 

HB724 ATG TAG 1.70 7.2 49 0 0 0 1 1 0 41 0.5 N 

HB725 ATG TAG 5.30 508.2 30 0 1 0 1 1 0 48 534,637.0 H 

HB728 ATG TAG 21.40 211.7 70 0 0 0 0 0 0 42 0.5 N 

HB734 ATG TGG 34.00 292.5 26 1 0 0 0 0 0 35 2.0 N 

HB740 ATG TGG 7.10 92.5 18 1 0 0 1 0 1 34 0.5 N 

HB743 AGG TGG 13.40 1,601.8 51 0 0 0 1 2 0 67 3,052.0 H 

HB749 ATG TRG 10.90 438.4 50 1 0 1 1 1 1 90 2,574.0 H 

HB753 ATG TAG 8.20 3,383.0 53 1 0 1 0 0 0 103 4,720.1 H 

HB756 ATT TGG 18.50 56.5 58 0 0 0 1 1 0 128 778.0 H 

HB762 ATG TAG 14.40 281.4 63 1 0 0 2 2 0 107 577.0 H 

HB763 ATG TGG 30.80 118.2 69 0 0 0 1 1 1 50 5.0 C 

HB777 ATG TAG 31.40 471.5 65 0 0 0 1 1 0 47 3.0 N 

HB780 ATG TGG 19.20 199.9 47 1 1 1 0 0 1 45 8.0 C 

HB781 ATG TAG 12.70 1,340.0 49 1 0 0 2 2 0 165 54.5 H 

HB785 ATG TGG 10.50 195.2 40 1 0 0 1 1 0 85 28,534.1 H 

HB794 ATG TAG 13.20 236.4 57 1 0 0 1 0 0 34 4.0 C 

HB795 ATG TGG 16.00 211.5 61 0 0 0 1 1 0 88 2.0 C 

HB798 ATG TAG 18.60 211.0 56 0 0 0 1 1 0 37 4.0 N 

HB802 ATG TGG 25.40 145.5 52 0 0 0 1 1 0 29 2.0 N 

HB804 ATG TRG 21.20 996.1 56 1 1 0 1 0 0 215 2,333.0 H 

HB805 ATG TAG 14.60 25.8 50 0 0 0 1 0 0 25 4.0 N 

HB806 ATG TGG 5.40 713.8 35 1 0 1 1 0 0 96 227,935.0 H 

HB807 ATG TAG 8.60 477.6 62 1 2 1 2 0 0 76 379.0 H 

HB808 ATG TAG 7.40 655.9 49 1 0 0 0 0 0 305 131.5 H 

HB809 ATG TGG 20.60 422.0 62 1 1 1 1 1 1 38 1,730.0 H 
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Appendix B: Accession Numbers for Acute Hepatitis B 

AB078032.1 GQ377519.1 GQ377569.1 GQ377619.1 
AB116266.1 GQ377520.1 GQ377570.1 GQ377620.1 
AB120308.1 GQ377521.1 GQ377571.1 GQ377621.1 
AB231908.1 GQ377522.1 GQ377572.1 GQ377622.1 
AB266536.1 GQ377523.1 GQ377573.1 GQ377623.1 
AB298720.1 GQ377524.1 GQ377574.1 GQ377624.1 
AY233274.1 GQ377525.1 GQ377575.1 GQ377625.1 
AY233279.1 GQ377526.1 GQ377576.1 GQ377626.1 
AY233283.1 GQ377527.1 GQ377577.1 GQ377627.1 
AY233287.1 GQ377528.1 GQ377578.1 GQ377628.1 
AY233292.1 GQ377529.1 GQ377579.1 GQ377629.1 
DQ991753.2 GQ377530.1 GQ377580.1 GQ377630.1 
EU859898.1 GQ377531.1 GQ377581.1 GQ377631.1 
EU859899.1 GQ377532.1 GQ377582.1 GQ377632.1 
EU859900.1 GQ377533.1 GQ377583.1 GQ377633.1 
EU859901.1 GQ377534.1 GQ377584.1 GQ377634.1 
EU859902.1 GQ377535.1 GQ377585.1 GQ377635.1 
EU859903.1 GQ377536.1 GQ377586.1 GQ377636.1 
EU859904.1 GQ377537.1 GQ377587.1 GQ377637.1 
EU859905.1 GQ377538.1 GQ377588.1 GQ377638.1 
EU859906.1 GQ377539.1 GQ377589.1 GQ377639.1 
EU859907.1 GQ377540.1 GQ377590.1 GQ377640.1 
EU859908.1 GQ377541.1 GQ377591.1 GQ377641.1 
EU859909.1 GQ377542.1 GQ377592.1 GQ377642.1 
EU859910.1 GQ377543.1 GQ377593.1 GQ377643.1 
EU859911.1 GQ377544.1 GQ377594.1 GQ377644.1 
EU859912.1 GQ377545.1 GQ377595.1 HPBADRM 
EU859913.1 GQ377546.1 GQ377596.1   
EU859914.1 GQ377547.1 GQ377597.1
EU859915.1 GQ377548.1 GQ377598.1
EU859916.1 GQ377549.1 GQ377599.1   
EU859917.1 GQ377550.1 GQ377600.1   
EU859918.1 GQ377551.1 GQ377601.1   
EU859919.1 GQ377552.1 GQ377602.1   
EU859920.1 GQ377553.1 GQ377603.1
EU859921.1 GQ377554.1 GQ377604.1
EU859922.1 GQ377555.1 GQ377605.1   
EU859923.1 GQ377556.1 GQ377606.1   
EU859924.1 GQ377557.1 GQ377607.1   
EU859925.1 GQ377558.1 GQ377608.1   
EU859926.1 GQ377559.1 GQ377609.1
EU859927.1 GQ377560.1 GQ377610.1
EU859928.1 GQ377561.1 GQ377611.1   
FJ349229.1 GQ377562.1 GQ377612.1   
FJ349232.1 GQ377563.1 GQ377613.1   
GQ377514.1 GQ377564.1 GQ377614.1   
GQ377515.1 GQ377565.1 GQ377615.1
GQ377516.1 GQ377566.1 GQ377616.1
GQ377517.1 GQ377567.1 GQ377617.1   
GQ377518.1 GQ377568.1 GQ377618.1   
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Appendix C: Accession Numbers for Chronic Hepatitis B 

AB048702.1 AB078033.2 AB116093.1 AB219426.1 AB367393.1 
AB048703.1 AB090268.1 AB116094.1 AB219427.1 AB367394.1 
AB048704.1 AB090269.1 AB117758.1 AB219428.1 AB367395.1 
AB048705.1 AB090270.1 AB117759.1 AB219429.1 AB367396.1 
AB056513.1 AB091255.1 AB119251.1 AB219430.1 AB367397.1 
AB056514.1 AB091256.1 AB119252.1 AB219529.1 AB367398.1 
AB056515.1 AB106884.1 AB119253.1 AB219530.1 AB367399.1 
AB056516.1 AB106885.1 AB119254.1 AB219531.1 AB367400.1 
AB073821.1 AB109475.1 AB119255.1 AB219532.1 AB367401.1 
AB073822.1 AB109476.1 AB119256.1 AB219533.1 AB367402.1 
AB073823.1 AB109477.1 AB176642.1 AB219534.1 AB367403.1 
AB073824.1 AB109478.1 AB176643.1 AB241109.1 AB367404.1 
AB073825.1 AB109479.1 AB188241.1 AB241110.1 AB367405.1 
AB073826.1 AB110075.1 AB188242.1 AB241111.1 AB367406.1 
AB073827.1 AB111112.1 AB188243.2 AB241112.1 AB367407.1 
AB073828.1 AB111113.1 AB188244.1 AB241113.1 AB367408.1 
AB073829.1 AB111114.1 AB188245.2 AB241114.1 AB367409.1 
AB073830.1 AB111115.1 AB195930.1 AB241115.1 AB367410.1 
AB073831.1 AB111116.1 AB195931.1 AB241116.1 AB367411.1 
AB073832.1 AB111117.1 AB195932.1 AB241117.1 AB367412.1 
AB073833.1 AB111118.1 AB195933.1 AB246317.1 AB367413.1 
AB073834.1 AB111119.1 AB195934.1 AB246335.1 AB367414.1 
AB073835.1 AB111120.1 AB195935.1 AB246336.1 AB367415.1 
AB073836.1 AB111121.1 AB195936.1 AB246337.1 AB367416.1 
AB073837.1 AB111122.1 AB195937.1 AB246338.1 AB367417.1 
AB073838.1 AB111123.1 AB195938.1 AB246339.1 AB367418.1 
AB073839.1 AB111124.1 AB195939.1 AB246340.1 AB367419.1 
AB073840.1 AB111125.1 AB195940.1 AB246341.1 AB367420.1 
AB073841.1 AB113875.1 AB195941.1 AB246342.1 AB367421.1
AB073842.1 AB113876.1 AB195942.1 AB246343.1 AB367422.1
AB073843.1 AB113877.1 AB195943.1 AB246344.1 AB367423.1 
AB073844.1 AB113878.1 AB195944.1 AB246345.1 AB367424.1 
AB073845.1 AB115551.1 AB195945.1 AB246346.1 AB367425.1 
AB073846.1 AB116076.1 AB195946.1 AB246347.1 AB367426.1 
AB073847.1 AB116077.1 AB195947.1 AB246348.1 AB367427.1
AB073848.1 AB116078.1 AB195948.1 AB247916.1 AB367428.1
AB073849.1 AB116079.1 AB195949.1 AB250109.1 AB367429.1 
AB073850.1 AB116080.1 AB195950.1 AB288026.1 AB367430.1 
AB073851.1 AB116081.1 AB195951.1 AB298362.1 AB367431.1 
AB073852.1 AB116082.1 AB195952.1 AB353764.1 AB367432.1 
AB073853.1 AB116083.1 AB195953.1 AB365445.1 AB367433.1
AB073854.1 AB116084.1 AB195954.1 AB365446.1 AB367434.1
AB073855.1 AB116085.1 AB195955.1 AB365447.1 AB367435.1 
AB073856.1 AB116086.1 AB195956.1 AB365448.1 AB485808.1 
AB073857.1 AB116087.1 AB195957.1 AB365449.1 AB485809.1 
AB073858.1 AB116088.1 AB202071.1 AB365450.1 AB485810.1 
AB074047.1 AB116089.1 AB202072.1 AB365451.1 AB486012.1
AB074755.1 AB116090.1 AB205010.1 AB365452.1 AB493827.1
AB074756.1 AB116091.1 AB210819.1 AB365453.1 AB493828.1 
AB076678.1 AB116092.1 AB210820.1 AB367392.1 AB493829.1 
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Appendix C, continued 

AB493830.1 AF223965.1 AY206386.1 AY233289.1 AY739674.1 
AB493831.1 AF297619.1 AY206387.1 AY233290.1 AY739675.1 
AB493832.1 AF297620.1 AY206388.1 AY233291.1 AY741794.1 
AB493833.1 AJ309371.1 AY206389.1 AY233293.1 AY741795.1 
AB493834.1 AJ344115.1 AY206390.1 AY233294.1 AY741796.1 
AB493835.1 AJ344116.1 AY206391.1 AY233295.1 AY741797.1 
AB493836.1 AJ344117.1 AY206392.1 AY233296.1 AY741798.1 
AB493837.1 AY033072.1 AY206393.1 AY247030.1 AY796030.1 
AB493838.1 AY033073.1 AY217355.1 AY247031.1 AY796031.1 
AB493839.1 AY057947.1 AY217356.1 AY247032.1 AY796032.1 
AB493840.1 AY057948.1 AY217357.1 AY293309.1 AY800249.1 
AB493841.1 AY090452.1 AY217358.1 AY373428.1 AY817509.1
AB493842.1 AY090453.1 AY217359.1 AY373429.1 AY817510.1 
AB493843.1 AY090454.1 AY217360.1 AY373430.1 AY817511.1 
AB493844.1 AY090455.1 AY217361.1 AY373431.1 AY817512.1 
AB493845.1 AY090456.1 AY217362.1 AY373432.1 AY817513.1 
AB493846.1 AY090457.1 AY217363.1 AY596102.1 AY817514.1 
AB493847.1 AY090458.1 AY217364.1 AY596103.1 AY817515.1
AB493848.1 AY090459.1 AY217365.1 AY596104.1 AY935700.1 
AB549213.1 AY090460.1 AY217366.1 AY596105.1 DQ078791.1 
AF043593.1 AY090461.1 AY217367.1 AY596106.1 DQ089756.1 
AF043594.1 AY167089.1 AY217368.1 AY596107.1 DQ089757.1 
AF068756.1 AY167090.1 AY217369.1 AY596108.1 DQ089758.1 
AF121239.1 AY167091.1 AY217370.1 AY596109.1 DQ089759.1
AF121240.1 AY167092.1 AY217371.1 AY596110.1 DQ089760.1 
AF121241.1 AY167093.1 AY217372.1 AY596111.1 DQ089761.1 
AF121242.1 AY167094.1 AY217373.1 AY596112.1 DQ089762.1 
AF121243.1 AY167095.1 AY217374.1 AY641558.1 DQ089763.1 
AF121244.1 AY167096.1 AY217375.1 AY641559.1 DQ089764.1 
AF121245.1 AY167097.1 AY217376.1 AY641560.1 DQ089765.1 
AF121246.1 AY167098.1 AY217377.1 AY641561.1 DQ089766.1 
AF121247.1 AY167099.1 AY217378.1 AY641562.1 DQ089767.1 
AF121248.1 AY167100.1 AY220697.1 AY641563.1 DQ089768.1 
AF121249.1 AY167101.1 AY220698.1 AY721605.1 DQ089769.1 
AF121250.1 AY167102.1 AY220699.1 AY721606.1 DQ089770.1 
AF121251.1 AY179734.1 AY220700.1 AY721607.1 DQ089771.1 
AF160501.1 AY179735.1 AY220701.1 AY721608.1 DQ089772.1 
AF182802.1 AY206373.1 AY220702.1 AY721609.1 DQ089773.1 
AF182803.1 AY206374.1 AY220703.1 AY721610.1 DQ089774.1 
AF223954.1 AY206375.1 AY220704.1 AY721611.1 DQ089775.1 
AF223955.1 AY206376.1 AY233275.1 AY721612.1 DQ089776.1 
AF223956.1 AY206377.1 AY233276.1 AY738139.1 DQ089777.1 
AF223957.1 AY206378.1 AY233277.1 AY738140.1 DQ089778.1 
AF223958.1 AY206379.1 AY233278.1 AY738141.1 DQ089779.1 
AF223959.1 AY206380.1 AY233280.1 AY738142.1 DQ089780.1 
AF223960.1 AY206381.1 AY233281.1 AY738143.1 DQ089781.1 
AF223961.1 AY206382.1 AY233282.1 AY738144.1 DQ089782.1 
AF223962.1 AY206383.1 AY233285.1 AY738145.1 DQ089783.1 
AF223963.1 AY206384.1 AY233286.1 AY738146.1 DQ089784.1 
AF223964.1 AY206385.1 AY233288.1 AY738147.1 DQ089785.1 
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Appendix C, continued 

DQ089786.1 DQ478895.1 EU579441.1 FJ032354.1 FJ386590.1 
DQ089787.1 DQ478896.1 EU579442.1 FJ032355.1 FJ386591.1 
DQ089788.1 DQ478897.1 EU579443.1 FJ032356.1 FJ386592.1 
DQ089789.1 DQ478898.1 EU589335.1 FJ032357.1 FJ386593.1 
DQ089790.1 DQ478899.1 EU589336.1 FJ032358.1 FJ386594.1 
DQ089791.1 DQ478900.1 EU589337.1 FJ032359.1 FJ386595.1 
DQ089792.1 DQ478901.1 EU589338.1 FJ032360.1 FJ386596.1 
DQ089793.1 DQ536410.1 EU589339.1 FJ032361.1 FJ386597.1 
DQ089794.1 DQ536412.1 EU589340.1 FJ349205.1 FJ386598.1 
DQ089795.1 DQ776247.2 EU589341.1 FJ349206.1 FJ386599.1 
DQ089796.1 DQ890381.1 EU589342.1 FJ349207.1 FJ386600.1 
DQ089797.1 DQ995801.1 EU589343.1 FJ349208.1 FJ386601.1
DQ089798.1 DQ995802.1 EU589344.1 FJ349209.1 FJ386602.1 
DQ089799.1 DQ995803.1 EU589345.1 FJ349210.1 FJ386603.1 
DQ089800.1 DQ995804.1 EU589346.1 FJ349211.1 FJ386604.1 
DQ089801.1 EF137802.1 EU595030.1 FJ349212.1 FJ386605.1 
DQ089802.1 EF137803.1 EU595031.1 FJ349213.1 FJ386606.1 
DQ089803.1 EF464097.1 EU796066.1 FJ349214.1 FJ386607.1
DQ089804.1 EF464098.1 EU796067.1 FJ349216.1 FJ386608.1 
DQ377158.1 EF464099.1 EU796068.1 FJ349217.1 FJ386609.1 
DQ463787.1 EF473971.1 EU796069.1 FJ349218.1 FJ386610.1 
DQ463788.1 EF473972.1 EU796070.1 FJ349219.1 FJ386611.1 
DQ463789.1 EF473973.1 EU796071.1 FJ349220.1 FJ386612.1 
DQ463790.1 EF473974.1 EU796072.1 FJ349221.1 FJ386613.1
DQ463791.1 EF473975.1 EU833889.1 FJ349222.1 FJ386614.1 
DQ463792.1 EF473976.1 EU833890.1 FJ349223.1 FJ386615.1 
DQ463793.1 EF473977.1 EU833891.1 FJ349225.1 FJ386616.1 
DQ463794.1 EU305540.1 FJ032331.1 FJ349227.1 FJ386617.1 
DQ463795.1 EU305541.1 FJ032332.1 FJ349234.1 FJ386618.1 
DQ463796.1 EU305542.1 FJ032333.1 FJ349235.1 FJ386619.1 
DQ463797.1 EU305543.1 FJ032334.1 FJ349236.1 FJ386620.1 
DQ463798.1 EU305544.1 FJ032335.1 FJ349240.1 FJ386621.1 
DQ463799.1 EU305545.1 FJ032336.1 FJ356715.1 FJ386622.1 
DQ463800.1 EU305547.1 FJ032337.1 FJ356716.1 FJ386623.1 
DQ463801.1 EU305548.1 FJ032338.1 FJ386574.1 FJ386624.1 
DQ463802.1 EU366116.2 FJ032339.1 FJ386575.1 FJ386625.1 
DQ478881.1 EU366118.2 FJ032340.1 FJ386576.1 FJ386626.1 
DQ478882.1 EU366129.2 FJ032341.1 FJ386577.1 FJ386627.1 
DQ478883.1 EU366132.2 FJ032342.1 FJ386578.1 FJ386628.1 
DQ478884.1 EU366133.2 FJ032343.1 FJ386579.1 FJ386629.1 
DQ478885.1 EU410079.1 FJ032344.1 FJ386580.1 FJ386630.1 
DQ478886.1 EU410080.1 FJ032345.1 FJ386581.1 FJ386631.1 
DQ478887.1 EU410081.1 FJ032346.1 FJ386582.1 FJ386632.1 
DQ478888.1 EU410082.1 FJ032347.1 FJ386583.1 FJ386633.1 
DQ478889.1 EU547558.1 FJ032348.1 FJ386584.1 FJ386634.1 
DQ478890.1 EU547559.1 FJ032349.1 FJ386585.1 FJ386635.1 
DQ478891.1 EU547560.1 FJ032350.1 FJ386586.1 FJ386636.1 
DQ478892.1 EU547561.1 FJ032351.1 FJ386587.1 FJ386637.1 
DQ478893.1 EU547562.1 FJ032352.1 FJ386588.1 FJ386638.1 
DQ478894.1 EU547563.1 FJ032353.1 FJ386589.1 FJ386639.1 
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Appendix C, continued 

FJ386640.1 FJ518810.1 FJ562264.1 FJ562314.1 FJ787452.1 
FJ386641.1 FJ518811.1 FJ562265.1 FJ562315.1 FJ787453.1 
FJ386642.1 FJ518812.1 FJ562266.1 FJ562316.1 FJ787454.1 
FJ386643.1 FJ518813.1 FJ562267.1 FJ562317.1 FJ787455.1 
FJ386644.1 FJ562218.1 FJ562268.1 FJ562318.1 FJ787456.1 
FJ386645.1 FJ562219.1 FJ562269.1 FJ562319.1 FJ787457.1 
FJ386646.1 FJ562220.1 FJ562270.1 FJ562320.1 FJ787458.1 
FJ386647.1 FJ562221.1 FJ562271.1 FJ562321.1 FJ787459.1 
FJ386648.1 FJ562222.1 FJ562272.1 FJ562322.1 FJ787460.1 
FJ386649.1 FJ562223.1 FJ562273.1 FJ562323.1 FJ787461.1 
FJ386650.1 FJ562224.1 FJ562274.1 FJ562324.1 FJ787462.1 
FJ386651.1 FJ562225.1 FJ562275.1 FJ562325.1 FJ787463.1
FJ386652.1 FJ562226.1 FJ562276.1 FJ562326.1 FJ787464.1 
FJ386653.1 FJ562227.1 FJ562277.1 FJ562327.1 FJ787465.1 
FJ386654.1 FJ562228.1 FJ562278.1 FJ562328.1 FJ787466.1 
FJ386655.1 FJ562229.1 FJ562279.1 FJ562329.1 FJ787467.1 
FJ386656.1 FJ562230.1 FJ562280.1 FJ562330.1 FJ787468.1 
FJ386657.1 FJ562231.1 FJ562281.1 FJ562331.1 FJ787469.1
FJ386658.1 FJ562232.1 FJ562282.1 FJ562332.1 FJ787470.1 
FJ386659.1 FJ562233.1 FJ562283.1 FJ562333.1 FJ787471.1 
FJ386660.1 FJ562234.1 FJ562284.1 FJ562334.1 FJ787472.1 
FJ386661.1 FJ562235.1 FJ562285.1 FJ562335.1 FJ787473.1 
FJ386662.1 FJ562236.1 FJ562286.1 FJ562336.1 FJ787474.1 
FJ386663.1 FJ562237.1 FJ562287.1 FJ562337.1 FJ787475.1
FJ386664.1 FJ562238.1 FJ562288.1 FJ562338.1 FJ787476.1 
FJ386665.1 FJ562239.1 FJ562289.1 FJ562339.1 FJ787477.1 
FJ386666.1 FJ562240.1 FJ562290.1 FJ562340.1 FJ787478.1 
FJ386667.1 FJ562241.1 FJ562291.1 FJ589065.1 FJ787479.1 
FJ386668.1 FJ562242.1 FJ562292.1 FJ589067.1 FJ787480.1 
FJ386669.1 FJ562243.1 FJ562293.1 FJ657519.1 FJ787481.1 
FJ386670.1 FJ562244.1 FJ562294.1 FJ657522.1 FJ787482.1 
FJ386671.1 FJ562245.1 FJ562295.1 FJ657525.1 FJ787483.1 
FJ386672.1 FJ562246.1 FJ562296.1 FJ657528.1 FJ787484.1 
FJ386673.1 FJ562247.1 FJ562297.1 FJ657529.1 FJ787485.1 
FJ386674.1 FJ562248.1 FJ562298.1 FJ787436.1 FJ787486.1 
FJ386675.1 FJ562249.1 FJ562299.1 FJ787437.1 FJ787487.1 
FJ386676.1 FJ562250.1 FJ562300.1 FJ787438.1 FJ787488.1 
FJ386677.1 FJ562251.1 FJ562301.1 FJ787439.1 FJ787489.1 
FJ386678.1 FJ562252.1 FJ562302.1 FJ787440.1 FJ787490.1 
FJ386679.1 FJ562253.1 FJ562303.1 FJ787441.1 FJ882610.1 
FJ386680.1 FJ562254.1 FJ562304.1 FJ787442.1 FJ882611.1 
FJ386681.1 FJ562255.1 FJ562305.1 FJ787443.1 FJ882612.1 
FJ386682.1 FJ562256.1 FJ562306.1 FJ787444.1 FJ882613.1 
FJ386683.1 FJ562257.1 FJ562307.1 FJ787445.1 FJ882614.1 
FJ386684.1 FJ562258.1 FJ562308.1 FJ787446.1 FJ882615.1 
FJ386685.1 FJ562259.1 FJ562309.1 FJ787447.1 FJ882616.1 
FJ386686.1 FJ562260.1 FJ562310.1 FJ787448.1 FJ882617.1 
FJ386687.1 FJ562261.1 FJ562311.1 FJ787449.1 FJ882618.1 
FJ386688.1 FJ562262.1 FJ562312.1 FJ787450.1 GQ227692.1 
FJ386689.1 FJ562263.1 FJ562313.1 FJ787451.1 GQ227693.1 
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Appendix C, continued 

GQ227694.1 GQ475346.1 HM011497.1 
GQ227695.1 GQ475347.1 HM011498.1 
GQ227696.1 GQ475348.1 HM011499.1 
GQ227697.1 GQ475349.1 HM011500.1 
GQ259588.1 GQ475350.1 HM011501.1 
GQ331046.1 GQ475351.1 HM011502.1 
GQ331047.1 GQ475352.1 HM011503.1 
GQ331048.1 GQ475353.1 HM011504.1 
GQ372968.1 GQ475354.1 HM585187.1 
GQ475305.1 GQ475355.1 HM585188.1 
GQ475306.1 GQ475356.1 HM585189.1 
GQ475307.1 GQ475357.1 HM585190.1 
GQ475308.1 GQ872210.1 HM585191.1 
GQ475309.1 GU357842.1 HM585192.1 
GQ475310.1 GU357843.1 HM585193.1 
GQ475311.1 GU357844.1 HM585194.1 
GQ475312.1 GU357845.1 HM585195.1 
GQ475313.1 GU357846.1 HM585196.1 
GQ475314.1 HM011465.1 HM585197.1 
GQ475315.1 HM011466.1 HM585198.1 
GQ475316.1 HM011467.1 HM585199.1 
GQ475317.1 HM011468.1 HM585200.1 
GQ475318.1 HM011469.1 HM590471.1 
GQ475319.1 HM011470.1 HM590472.1 
GQ475320.1 HM011471.1 HM590473.1 
GQ475321.1 HM011472.1 HM590474.1 
GQ475322.1 HM011473.1 HM622135.1 
GQ475323.1 HM011474.1 HM627320.1 
GQ475324.1 HM011475.1 HPBADW1 
GQ475325.1 HM011476.1 HPBADW2 
GQ475326.1 HM011477.1 HPBADW3 
GQ475327.1 HM011478.1 HQ231877.1 
GQ475328.1 HM011479.1 HQ231878.1 
GQ475329.1 HM011480.1 HQ231879.1 
GQ475330.1 HM011481.1 HQ231880.1 
GQ475331.1 HM011482.1 HQ231881.1 
GQ475332.1 HM011483.1 HQ231882.1 
GQ475333.1 HM011484.1 HQ231883.1 
GQ475334.1 HM011485.1 HQ231884.1 
GQ475335.1 HM011486.1 HQ231885.1 
GQ475336.1 HM011487.1 HQ236014.1 
GQ475337.1 HM011488.1 HQ378247.1 
GQ475338.1 HM011489.1 HQ622095.1 
GQ475339.1 HM011490.1 NC_003977.1 
GQ475340.1 HM011491.1 X59795.1 
GQ475341.1 HM011492.1 Y18855.1 
GQ475342.1 HM011493.1 Y18856.1 
GQ475343.1 HM011494.1 Y18857.1 
GQ475344.1 HM011495.1 Y18858.1 
GQ475345.1 HM011496.1   
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