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1.1. Introduction 

Over the past decades, milk yield of modern high-producing dairy cows has reached to 

on average 9,000 kg per lactation due to genetic selection, nutritional strategies, and 

improved farm management [1,2]. In early lactation, milk yield typically peaks in 

approximately lactation week 7 [3,4], however, the maximum feed intake is reached 

between lactation week 9 and 15 [5,6]. As a result, dairy cows usually experience a 

negative energy balance (NEB) in early lactation due to the rapid increased energy 

requirements for milk production and limited energy intake from feed [7,8]. Negative 

energy balance and related metabolic status are associated with a greater risk of 

metabolic disorders [9], disordered fat metabolism in the liver [10-12], infectious 

diseases [8], reduced fertility [13,14], immune response of mammary gland [15,16], and 

a short productive lifespan of dairy cows [17].  

On farm, early and reliable screening of energy balance and metabolic status could 

identify dairy cows with an increased risk for health and fertility problems. Currently, 

energy balance could be estimated by milk characteristics, such as milk yield, fat, protein, 

lactose, days in milk [18], and body characteristics, such as, body weight change and 

body condition score (BCS) of dairy cows [19]. In addition, those variables combined 

with ketone bodies in plasma or milk are also used to indicate metabolic status of dairy 

cows in early lactation [20-22]. The current screening methods, however, have 

limitations in practice. For example, milk characteristics have good capability to estimate 

energy balance of cows at herd level (R2 = 0.90, proportion of the variance in the energy 

balance that is estimated from the milk characteristics), but a limited capability to 

estimate the energy balance of individual cows (R2 = 0.40) [21,23]. Although plasma 

biomarkers are more precise to indicate metabolic status than milk characteristics [24], 

blood collection is invasive and labour intensive [25,26]. An alternative method is to 

estimate energy balance and metabolic status of dairy cows with on-farm cow data or 

milk characteristics that are easily obtained in practice. Moreover, a clear metabolic 

pathway related to energy balance and the alteration of metabolic status helps to 

understand health and metabolism of dairy cows during NEB. Understanding 

metabolism of dairy cows during NEB could facilitate development of strategies to 

manage health and metabolism of dairy cows in early lactation. 
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This chapter will first describe the NEB of dairy cows in early lactation, and how the 

NEB is related to altered metabolic status. Secondly, knowledge on indicators for energy 

balance and metabolic status in dairy cows is reviewed. Subsequently, metabolomics, 

proteomics, and machine learning techniques are briefly introduced as well as their 

applications in dairy cows. Lastly, the aim and outline of this thesis is presented. 

1.2. Negative Energy Balance and Metabolic Status of Dairy Cows in 

Early Lactation 

In dairy cows, elevated energy requirements for milk production combined with a 

relatively low energy intake from feed result in a NEB in early lactation [27,28]. During 

NEB, dairy cows mobilize body reserves to meet the energy requirement for maintenance 

and milk production (Fig. 1.1). Mobilized body reserves includes mainly body fat (74% 

to 93%) and for a small proportion also body protein (6% to 7%) [29,30]. Subsequently, 

body reserve mobilization is associated with an altered concentration of plasma 

metabolites and metabolic hormones, such as, increased free fatty acids (FFA), β-

hydroxybutyrate (BHB), and growth hormone; and decreased glucose, insulin, and 

insulin-like growth factor 1 (IGF-1) (Fig. 1.2). Therefore, a NEB status of dairy cows is 

related to an altered metabolic status in early lactation, including carbohydrate, lipid, and 

protein metabolism, and is associated with an altered hormonal regulation.  

 

Fig. 1.1. Energy requirements for milk yield and body maintenance, energy from feed intake, and body 

energy stores of dairy cows during lactation [31]. 
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Fig. 1.2. Body reserve mobilisation and changes in metabolic status during negative energy balance of 

dairy cows in early lactation. 

Abbreviations: BHB, β-hydroxybutyrate; FFA, free fatty acids; IGF-1, insulin-like growth factor 1. 

1.3. Estimation of Energy Balance and Metabolic Status 

In early lactation, precise estimation of energy balance and metabolic status of dairy 

cows could facilitate in optimization of dairy cow management and improve animal 

health and welfare. Measuring energy balance using indirect calorimetry based on in 

respiration chambers is considered as the golden standard approach to determine energy 

balance of dairy cows [32], but has limited applications even under experimental 

conditions due to high requirements for equipment, and budget and limitations 

concerning animal numbers which can be included in the experiment. Alternatively, 

energy balance can be estimated from either the difference between net energy intake 

and net energy requirement for maintenance and milk production [33], or the change in 

body condition, or the change in body weight [34]. However, both methods have 

limitations in practice. For example, input-output measure is hard to apply on 

commercial farms due to limited or no possibilities to measure individual energy intake; 

and body condition measure is not well studied to assess short-term change in energy 

status due to the relative insensitivity of body condition score. An alternative approach 

is to estimate energy balance with data from milk characteristics and farm management 

(Table 1.1). In these previous studies on estimating energy balance with data from milk 
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characteristics and farm management, 5 out of 8 studies estimated the energy balance of 

cows at a herd level; 4 out of 8 studies estimated the energy balance of individual cows. 

The performance to estimate energy balance at herd level is generally higher than the 

performance at individual level. At herd level, up to 94.0% variation of energy balance 

could be explained [18], or up to 0.80 correlation was found between estimated energy 

balance and calculated energy balance [35]. At individual level, up to 40.0% variation 

of energy balance (body condition measure) and up to 50.0% variation of energy balance 

(input-output measure) could be explained by milk yield, fat, protein, lactose, and days 

in milk [18]. Up to 75.0% of variation of energy balance could be estimated by full range 

mid-infrared spectrometry of milk samples [36], which is the best performance of an 

indicator for energy balance so far. Nevertheless, mid-infrared spectrometry will not 

reveal alterations in metabolic pathways related to the energy balance.  

Table 1.1. Studies on indicators for energy balance of dairy cows in early lactation. 

Author, year (number of cows) 
Lactation  

(wk/d) 
Estimator/indicator and data sources 

Grieve et al., 1986 [37] (236) 5-12 wk Milk fat and protein 

Heuer et al., 2000 [38] (72) 2-12 wk Lactation week, parity, milk yield, fat and protein 

Heuer et al., 2001 [35] (264) 2-12 wk Lactation week, parity, milk yield, fat, protein and body weight 

Reist et al., 2002 [39] (90) 1-10 wk Lactation week, milk yield, fat, protein, lactose, and milk acetone 

Friggens et al., 2007 [18] (299) NA Milk yield, fat, protein, lactose, days in milk 

Mäntysaari et al., 2010 [19] (146) 0-305 d Milk fat, body weight, and BCS. 

McParland et al., 2011 [36] (288) 5-305 d Mid-infrared spectrometry  

Alphonsus et al., 2015 [40] (60) 4-305 d Milk yield, fat, protein and lactose 

Stoop et al., 2009 [41] (1933) 63-282 d Milk fat C16:0, C18:0 ↑, odd chain C5:0 to C15:0 ↓ 

Gross et al., 2011 [42] (30) 1-12 wk 
Milk short- and medium-chain FFA (up to C16) ↓ 

Milk long-chain FFA, especially C18:1 cis-9 ↑ 

Ducháček et al., 2013 [43] (27) 7-119 d Milk fat, C14:0, C16:0, C18:0, C18:1, C18:2, and C16:1 ↑ 
 

Abbreviations: BCS, body condition score; FFA, free fatty acids; NA, Not available. 

Besides studies to estimate energy balance, 3 studies have reported the relationship 

between negative energy balance and altered milk fat profiles, including decreased 

proportion of short-chain fatty acids, and increased proportion of medium- and long-

chain fatty acids in milk fat [41-43]. The different relationship between energy balance 

and milk fat profiles among those studies could be explained by methods to estimate 

energy balance, either by changed BCS [43], or by milk fat-to-protein ratio [41], or by 

different between energy intake and energy expenditure [42]. 
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Compared with studies to estimate energy balance, more studies have used plasma or 

milk metabolites to indicate the metabolic status of dairy cows in early lactation (Table 

1.2). In total 22 studies have established indicators of subclinical ketosis or 

hyperketonemia, including plasma BHB (>1.0 mM to >1.4 mM), FFA (>0.26 mM), and 

milk BHB (>0.07 mM), acetone (>0.15 mM), and urea BHB (>0.14 mM). The variation 

in cut-off values, for example plasma BHB as an indicator for hyperketonemia ranged 

from 1.0 mM to 1.4 mM among studies, is possibly due to difference in animal breed 

[44], lactation stage [42], and parity [45]. Clinical ketosis is generally defined as clinical 

signs combined with a much higher concentration of plasma BHB (>2.5 mM) [46,47]. 

Other reported indicators for clinical ketosis are milk fat to protein ratio [48], 

concentration of acetone [44] milk acetoacetate [49] or feeding behaviour-relate 

variables [50]. Metabolic status related to hepatic lipidosis were indicated by plasma 

BHB (>0.78 mM), FFA (>0.57 mM), and liver enzyme aspartate aminotransferase (>120 

U/L). Moreover, metabolic status of dairy cows with limited reports is not shown in the 

Table 1.2. For example, protein metabolism of dairy cows is indicated by the urea 

concentration in blood or milk [51-53]. 

Currently, widely used indicators for metabolic status include blood BHB, FFA, and 

milk BHB. These indicators were established with high correlation between metabolites 

and metabolic status, such as, subclinical ketosis and hepatic lipidosis. Those metabolites, 

however, have not been used to estimate energy balance of dairy cows. A model to 

estimate energy balance is expected to include those metabolites, which are related to 

energy metabolism of cows. Over the past decade, increasing low-abundant metabolites 

in blood and milk have been detected through metabolomics technique to reveal the 

metabolic profiles of dairy cows, which have been correlated with subclinical ketosis 

[54-56], heat stress [57], hepatic dysfunction [58], and lipidosis [59]. To our knowledge, 

however, no study has estimated energy balance of individual dairy cow through plasma 

or milk metabolomics data. 

1.4. New Potential Approaches to Estimate Energy Balance and 

Metabolic Status 

In previous studies, plasma metabolites and hormones were used as an indicator for 

metabolic status [60], but blood sampling is invasive and labour intensive. Therefore, a 

non-invasive approach to estimate energy balance or metabolic status using milk samples 
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or on-farm cow data could be interesting. In this thesis, we hypothesize that energy 

balance and metabolic status could be estimated by i), milk characteristics combined 

with detected milk metabolites by metabolomics approach in reduced models; and ii), 

on-farm cow data, including milk characteristics, based on machine learning techniques. 

1.4.1. Metabolomics and proteomics 

Metabolomics is a high-throughput technique that can identify, quantify and characterize 

hundreds to thousands of metabolites from bio-samples using targeted or global 

analytical approaches [61,62]. Compared with studies that focus on one or two metabolic 

pathways, metabolomics studies can describe a broad range of metabolites involved in 

different metabolic pathways. In dairy cows, milk metabolomics profiles described by 

metabolomics studies have been related to metabolic disorders, diseases, and productive 

lifespan in dairy cows [57,63]. Milk phosphocholine and phosphatidylcholine were 

related to ketosis [64] and heat stress [57]. Compared with healthy cows, less carnitine, 

citrate, and hippurate were detected in milk of cows with clinical mastitis [63]. In 

addition, milk metabolites would be expected to be associated with metabolism in the 

synthesis of milk production. Milk citrate is involved in milk fat synthesis [65], and milk 

phosphate sugars are intermediates in milk lactose synthesis [66]. To our knowledge, 

however, metabolomics techniques have not been applied to estimate energy balance of 

individual cows. We hypothesize that milk metabolites detected through metabolomics 

techniques can estimate energy balance of individual cows in early lactation. 

Proteomics techniques aim to systematically detect, quantify, and characterize proteins 

from biological samples [67]. In bovine milk, more than 90% of protein composes of 

three major proteins, αs1-casein (30%), β-casein (30%), and β-lactoglobulin (30%) [68]. 

Several hundreds of low-abundant proteins in milk are in addition present [69]. These 

low-abundant proteins make milk proteomics studies complicated, especially when 

combined with post-translational modifications [70]. Despite this fact, milk proteomics 

can be used to study changes in metabolic pathways of dairy cows through the expression 

or modification of proteins [71,72]. Through milk proteomics studies, researchers have 

investigated the metabolic pathways of lipid synthesis and protein secretion in the 

mammary gland of dairy cows [71], and identified biomarkers of mastitis due to the 

association between milk proteins and intra-mammary host defence mechanisms [73,74]. 

To our knowledge, however, no proteomics study has been executed to reveal the 
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metabolic pathway related to energy metabolism in the mammary gland of dairy cows. 

It can be hypothesized that milk proteomics data could not only confirm our findings of 

milk metabolomics studies, but also reveal the metabolic pathways related to energy 

balance of dairy cows through the altered protein expression or modification. 

1.4.2. Machine learning techniques 

With the increased calculating capability of computers, the analysis of large and complex 

datasets could be realized through various flexible algorithms using machine learning 

techniques. Machine learning techniques can estimate cow performance or disease 

events using statistical methods to handle datasets with high dimensional variables 

[75,76]. In early lactation, energy expenditure of dairy cows is associated with milk yield 

components, parity, and BCS [77,78], which are available data on most dairy farms. 

Therefore, those on-farm cow data can be expected to estimate metabolic status of cows. 

Available on-farm cow data, however, usually include a series of correlated variables, 

for example, fat yield and milk yield are correlated [79]. Therefore, it is difficult to define 

a specific function (e.g., linear, quadratic, etc.) with conventional statistical methods. 

Machine learning techniques can deal with complicated correlations caused by ever 

increasing number of variables [80]. During the past decade, machine learning 

techniques were used to estimate milk yield [81], breeding values [75], calving time [82], 

reproductive performance [76,83], and even to identify mastitis [84,85] in dairy cows. It 

can be hypothesized that on-farm cow data can estimate energy balance and metabolic 

status of dairy cows using machine learning techniques. 

1.5. Aim and Outline of this Thesis 

The aims of this thesis are, first to estimate energy balance and metabolic status of dairy 

cows using metabolomics and machine learning techniques; and second to investigate 

the metabolic pathway related to energy metabolism of dairy cows in early lactation 

using metabolomics and proteomics techniques. 

To study the first aim, data were collected from two earlier studies: study I [86], and 

study II [87]. In study I, 168 cows were assigned randomly to 3 groups with 0-d, 30-d or 

60-d dry period length (DPL). After one lactation within the experiment, 130 cows were 

monitored for a second lactation within study I [88]. In study II, 127 cows were assigned 

randomly to 2 groups with either a 0-d or 30-d DPL. To study the second aim, milk and 
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blood samples obtained from study II are analysed in a metabolomics and proteomics 

study. The specific aims and methods in each chapter in this thesis are briefly introduced 

here. 

Chapter 2 describes a metabolomics approach to estimate the energy balance of dairy 

cow using milk characteristics and milk metabolites detected by liquid chromatography 

mass spectrometry (LC-MS). In addition, the metabolic pathways related to energy 

metabolism are discussed. 

Chapter 3 describes a metabolomics approach to reveal more complex metabolic 

pathways related to energy balance in mammary gland of dairy cows using milk 

metabolites detected either by LC-MS or nuclear magnetic resonance spectroscopy 

(NMR). 

Chapter 4 describes a metabolomics approach to investigate the relation between milk 

metabolites and plasma metabolites using milk and blood metabolites detected by LC-

MS and NMR. 

Chapter 5 describes a preliminary study on a proteomics approach related to the energy 

balance of cows in early lactation. 

Chapter 6 describes how on-farm cow data can be used to estimate metabolic status of 

dairy cows in early lactation using machine learning algorithms. 

Chapter 7 describes how on-farm cow data can be used to estimate hyperketonemia of 

dairy cows in early lactation using machine learning algorithms. 

Finally, Chapter 8 is the general discussion chapter reviewing all data obtained in this 

thesis with metabolic pathways related to energy metabolism, the performance of 

machine learning algorithms in practice as well as future perspectives.
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Table 1.2. Studies on indicators for metabolic status of dairy cows in early lactation.  

 

Abbreviations: BCS, body condition score; BHB, β-hydroxybutyrate; CK, clnical ketosis; FFA, free fatty acids; 

HYK, hyperketonemia; GPC, glycerophosphocholine; NA, Not available; PC, phosphocholine; SCK, subclinical 

ketosis.

Author, year (number of cows) 
Lactation 

(wk/d) 
Indicators or methods 

Hepatic lipidosis and function 

Acorda et al. 1995 [89] (158) NA Digital analysis and ultrasonography 

Starke et al., 2010 [90] (151) 35±5 d Liver ultrasonographic images 

Mostafavi et al., 2013 [91] (506) NA 
Plasma BHB >0.78 mM, FFA >0.57 mM, FFA/cholesterol 

ratio >0.2, AST >120 U/L 

Imhasly et al., 2014 [92] (28) 1-6 wk Plasma glycine, glutamine, PtC derivatives and SM derivatives 

Mostafavi et al., 2015 [10] (506) NA Plasma fructosamine <0.22 mM 

Xu et al., 2016 [59] (171) 14-21 d Plasma BHB, glucose, and total 13 metabolites 

Huber et al., 2016 [58] (19) -7 to 15 wk Plasma spermidine, carnitine, and acylcarnitines 

Hyperketonemia, subclinical ketosis and clinical ketosis 

Filar, 1979 [93] (NA) NA CK: plasma BHB >1.00 mM 

Erhardt et al., 1982 [94] (NA) NA SCK: milk citrate 

Whitaker et al., 1983 [95] (3000)  NA SCK: plasma BHB >1.00 mM 

Simensen et al., 1990 [49] (NA) 0-6 wk CK: milk acetoacetate >0.10 mM  

Nielen et al., 1994 [96] (185) 0-9 wk SCK: milk BHB >1.40 mM; urine BHB >1.40 mM 

Dirksen et al., 1995 [97] (NA)  Milk BHB >0.10 mM  

Gustafsson et al., 1996 [44] (11690) 1-2, 5-6 wk CK: milk acetone >1.4 mM  

Steen et al., 1996 [98] (2168) 1-11 wk SCK: milk fat/protein ratio >1.4 to >2.0 

Geishauser et al., 1998 [99] (266) 1-3, 6, 9 wk SCK: milk BHB >0.10 mM 

Hünniger, 1998 [100] (NA) NA Milk acetone >0.25 mM  

Hansen, 1999 [101] (310) 1-6 wk Prognostic ketosis: milk acetone >0.27 mM 

Dobbelaar et al., 1998 [102] (NA) NA HYK: change of milk fat 

Heuer et al., 1999 [48] (1335) NA CK: milk fat/protein ratio >1.5 

Geishauser et al., 2000 [103] (469) 1 wk SCK: milk acetoacetate >0.10 mM 

Enjalbert et al., 2001 [22] (60) NA SCK: milk BHB >0.07 mM  

Carrier et al., 2004 [104] (2500) 2-15 d SCK: milk BHB >0.10 mM  

Clark et al., 2005 [105] (23) 1-4 wk SCK: milk acetone >0.14 mM for SCK 

de Roos et al., 2007 [106] (1080) NA SCK: milk acetone >0.15 mM; milk BHB >0.10 mM 

Van Haelst et al., 2008 [107] (16) 3-5 wk SCK: milk fatty acids C18:1 cis-9 ↑ 

González et al., 2008 [50] (NA) NA CK: feed intake, feeding time, and feeding rate ↓ 

Goldhawk et al., 2009 [108] (101) -3 to 3 wk SCK: feed intake, feeding time, and visits to the feeder ↓ 

Asl et al., 2011 [109] (100) 2, 4, 6 wk SCK: plasma FFA >0.26 mM 

Gross et al., 2011 [42] (20) 1-12 wk 
Milk short- and medium-chain FFA (up to C16) ↓ 

Milk long-chain FFA, especially C18:1 cis-9 ↑ 

Klein et al., 2012 [64] (321) NA Prognostic ketosis: milk ratio GPC/PC >2.50 

Sun et al., 2014 [56] (81) 7-21 d SCK: plasma choline, glutamine, and total 25 metabolites 

Zhang et al., 2013 [55] (76) 1 d CK: plasma citrate, glycine, and total 40 metabolites 

Vanholder et al., 2015 [110] (1715) 7-14 d 
Colostrum at first milking ↑, BCS >3.25, parity >2, high in 

Jan-Sept, high milk yield and fat, but low milk protein  

Xu et al., 2015 [111] (40) NA CK: 39 peptide peaks differed, 26 identified peptides in urine 

Mann et al., 2016 [112] (70) 1-2 wk HYK: cis-9 C16:1, cis-9 C18:1, C6/8/10/12/14/15:0 

Zhang et al., 2017 [113] (26) time series 
CK: plasma lysine, and 24 plasma metabolites differs before, 

during and after ketosis 
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2.1. Abstract 

In early lactation, dairy cows typically have a negative energy balance which has been 

related to metabolic disorders, compromised health and fertility, and reduced productive 

lifespan. Assessment of the energy balance, however, is not easy on the farm. Our aims 

were to investigate the milk metabolic profiles of dairy cows in early lactation, and to 

obtain models to estimate energy balance from milk metabolomics data and milk 

production traits. Milk samples were collected in week 2 and 7 after calving from 31 

dairy cows. For each cow, the energy balance was calculated from energy intake, milk 

production traits and body weight. A total of 52 milk metabolites were detected using 

LC-QQQ-MS. Data from different lactation weeks was analysed by partial least square 

(PLS), the top 15 most relevant variables from the metabolomics data related to energy 

balance were used to develop reduced linear models to estimate energy balance by 

forward selection regression. Milk fat yield, glycine, choline and carnitine were 

important variables to estimate energy balance (adjusted-R2: 0.53 to 0.87, depending on 

the model). The relationship of these milk metabolites with energy balance is proposed 

to be related to their roles in cell renewal.
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2.2. Introduction 

In early lactation, the elevated energy requirements for milk production combined with 

a relatively low energy intake results in an energy deficit or negative energy balance 

(NEB) in dairy cows [27,28]. Lipid, glycogen and protein reserves are mobilized to 

compensate for this energy deficit [114]. A severe NEB is related to a greater risk of 

metabolic disorders [115], compromised health and fertility [116] and a reduced 

productive lifespan of dairy cows after calving [17]. Therefore, a reliable and early 

screening of dairy cows with a severe NEB can identify animals with an increased risk 

for health and fertility problems. Traditionally, the energy balance of dairy cows can be 

estimated by the difference between energy input by feed intake and energy output, based 

on milk production traits and body weight of the cows [18,117]. On commercial farms, 

however, feed intake of individual cows is not available. Moreover, calculation of energy 

balance requires detailed information on net energy derived from feed sources. An 

alternative way is to estimate energy balance from milk constituents, because a milk 

sample is easily obtained and milk composition can be daily monitored [35,39]. In 

previous studies, daily records for milk production traits, including fat yield, protein 

yield, and fat-to-protein ratio, had a good capability to estimate the energy status at herd 

level when using partial least square models (PLS), however, they had limited 

performance (R2 = 0.40) to estimate the energy balance of individual cows [18,23]. 

Metabolomics studies, either untargeted or targeted depending on the type of sample, the 

type of instrumentation and the approach used, aim to detect and analyse small molecules 

from bio-fluids. The application of metabolomics techniques and multivariate analysis 

allows new insights into the metabolic fingerprint of individual animals [118-120]. Milk 

metabolites are supposed to be derived primarily from the activity of the mammary 

epithelial cells [121]. Although the biological processes responsible for the milk 

metabolites is not always completely clear, milk metabolites have been used to study the 

metabolism of dairy cows or mammary gland function [57,64,122-125]. Milk pyruvate 

concentration and lactate dehydrogenase activity in milk are suggested to be correlated 

with mammary infections [122,123], while acetate, butyrate and lactate are related to 

somatic cell count [124,125]. Milk phosphocholine and phosphatidylcholine have been 

related to ketosis [64] and heat stress [57] in dairy cows. So, milk metabolic profiles 

have been identified from dairy cows with different metabolic status. To our knowledge, 
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however, milk metabolomics data have not been used to estimate the energy balance of 

individual dairy cows. 

In this study, we considered milk metabolomics data, acquired using LC-QQQ-MS, from 

31 dairy cows with two different dry period lengths (DPL, 0 or 30 days) and different 

parity (2nd or 3rd parity). Milk samples were collected from these cows in week 2 and 7 

after calving to include a week when cows suffer from severe NEB and a week when 

cows recover from NEB, respectively. Energy balance of individual cows at week 2 and 

7 was calculated based on energy intake, body weight and milk energy output. Our first 

aim was to investigate metabolic profiles in milk of individual dairy cows and to identify 

the important metabolites that estimate energy balance using partial least square (PLS) 

modelling. The second aim was to obtain reduced models to estimate the energy balance 

of individual cows by a limited number of selected milk metabolites. 

2.3. Material and Methods 

2.3.1. Animals and experimental design 

The experimental protocol for the study was approved by the Institutional Animal Care 

and Use Committee of Wageningen University and was conducted at Dairy Campus 

research farm (WUR Livestock Research, Lelystad, the Netherlands). The experimental 

design was described previously [126]. Briefly, 31 high-yielding Holstein-Friesian dairy 

cows averaging 637.4±67.1 kg of body weight (in week 2 after calving) participated in 

this study. Cows were selected from two parities (2nd or 3rd parity) and randomly 

assigned to one of two DPL (0 or 30 days) before calving. Prepartum, cows with a 0 day 

DPL received a lactation ration based on grass silage and corn silage (6.4 MJ net energy 

for lactation (NE)/kg dry matter (DM)). Cows with a 30 days DPL received a dry cow 

ration based on grass silage, corn silage and wheat straw (5.4 MJ NE/kg DM). 

Postpartum, all cows received the same basal lactation ration as provided to lactating 

cows prepartum plus additional concentrates. Postpartum, concentrate supply increased 

stepwise with 0.3 kg/d till 8.5 kg/d on 28 DIM. Body weight, milk yield and feed intake 

were recorded daily. During lactation, cows were milked twice daily at ~0600 hours and 

~1800 hours. 
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2.3.2. Milk samples 

Milk samples for analysis of fat, protein and lactose percentage (ISO 9622, Qlip, Zutphen, 

the Netherlands) were collected four times per week (Tuesday afternoon, Wednesday 

morning, Wednesday afternoon, and Thursday morning), Milk samples were analysed 

as a pooled sample per cow per week and used to calculate average fat, protein and 

lactose yield per week. Milk samples for metabolomics studies were collected at Friday 

morning each week. All samples were collected and stored at -20 °C until analysis. Milk 

production traits were averaged per week for week 2 and 7. Four milk samples were 

omitted because the dairy cows were suffering from mastitis in sampling week, three 

cows in week 2 and one cow in week 7. 

2.3.3. Energy intake and energy balance 

Roughage and concentrate were supplied separately and daily intakes were recorded per 

individual cow using roughage intake control troughs (Insentec, Marknesse, the 

Netherlands). Energy balance was calculated per week according to the Dutch net energy 

evaluation (VEM) system, as the difference between net energy intake and the estimated 

net energy requirements for maintenance, and milk yield (1,000 VEM = 6.9 MJ of NE) 

[33]. 

2.3.4. Mass spectrum measurement and data processing 

For quantification of metabolites, a targeted, standardized and quality controlled 

metabolic phenotyping was performed based on LC-QQQ-MS analysis. Milk serum was 

transferred to an Eppendorf tube. Lipid was removed by chloroform extraction, after 

centrifuge (12,000 rpm, 15 min). The aqueous solution was filtered to remove protein 

using a Pall 0.5 mL 10-kDa cut-off spin filter with centrifugation at 12,000 rpm for 15 

min. The aqueous solution was diluted as appropriate and simultaneous analysed with a 

triple quadrupole mass spectrometer (Shimadzu LC-QQQ-MS; LCMS-8040) using the 

PFPP method as described earlier [127,128]. The sample injection volume used was 1 

μL, and a single analysis took 25 minutes. 

2.3.5. Statistical analyses 

Multivariate analysis: the data obtained from LC-MS and milk production traits were 

first log transformed, then centered and scaled to unit variance. Principle component 

analysis (PCA) was performed on the processed data first for identifying outliers and 
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observing general trends. Partial least square discriminant analysis (PLS-DA) was 

applied to discriminate lactation weeks Briefly, lactation week (week 2 and 7) was used 

as categorical variable Y, and milk yield, fat yield, protein yield, lactose yield, urea, fat- 

and protein- corrected milk (FPCM) as well as 52 milk metabolites were used as 

predictor variables X. Repeated double-cross validation was used to determine the 

optimal number of PLS components. Permutation test (5,000 permutations) was used 

asses the validity of PLS discriminant model and to avoid overfitting [129]. Partial least 

square (PLS) regression was used to investigate the association between energy balance 

and milk metabolites and milk production traits. The energy balance of dairy cows was 

continuous variable Y, and milk yield, fat yield, protein yield, lactose yield, urea, fat- 

and protein- corrected milk (FPCM) as well as 52 milk metabolites in week 2 (or week 

7) were used as observable variables X. Double-crossed validation was used to determine 

the optimal number of PLS components. Permutation test (5,000 permutations) was used 

to assess the validity of PLS regression model and to avoid overfitting. Variable 

importance in projection (VIP) score were used to select the most contributing variable 

to the PLS model [130]. 

Mixed models: To analyse the effect of energy balance, DPL and parity, top 15 variables 

with the highest VIP scores in each dataset (week 2 or 7) were analysed using a Mixed 

Model approach, and DPL, parity, and their two-way interactions were included in the 

model as fixed effects. The statistical model used for milk metabolites and milk 

production traits was as follows:  

Mjk = μ + Energy balance + DPLj +Parityk + Interactionsjk+ εjk 

where M represents the observed level of milk metabolites and milk production traits. The 

mean is represented by μ. DPLj represents the fixed class effect of DPL (j = 0 day, 30 days). 

Parityk represents the fixed class effect of parity (k = 2nd parity, 3rd parity). Interactionsjk are 

presented as significant effect from Energy balance × DPLj + Energy balance × Parityk + 

DPLj × Parityk, + Energy balance × DPLj × Parityk. Non-significant interactions were 

excluded from the model via backward stepwise elimination if P-value was more than 0.10. 

Stepwise regression: For obtaining reduced models with a maximum of 4 variables to 

estimate energy balance, top 14 variables from milk in week 2 (or week 7) with highest 

VIP scores in the PLS model were analysed using ten-fold crossed validation. Briefly, 

an F-test was constructed based on forward selection approach. R2 increases with the 

increased estimator in the model, however, the adjusted-R2 increases only if the new term 
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improves the model more than would be expected by chance. The model would be 

selected only with higher adjusted-R2. The statistical model used to estimate energy 

balance is as follows: 

Energy balance ijk..q = intercepti + Mj + Mk +.... + Mq + e 

where Energy balance ijk..q represents the sum of squares of estimated energy balance, 

intercepti represents the sum of squares of intercept, Mjk…q represents the sum of squares of 

milk metabolites and milk production traits, e represents the sum of squares of error in the 

model. 

Multivariate analysis was performed with the R environment (version 3.3.2), PLS-DA 

and PLS regression were performed with using the package “MixOmics” [131], double-

cross validation was executed with package “chemometrics” [132]. The correlation plots 

of data in week 2 (or week 7) were drawn with package “corrplot”. The Mixed Model 

was performed through PROC MIXED of SAS version 9.3 (SAS Institute, Inc., Cary, 

NC). The 10 fold crossed validation for obtaining reduced models was performed in R-

project with package “DAAG” [133]. 

2.4. Results and Discussion 

2.4.1. Characterization of metabolomics profiles and multivariate analysis 

In the current study, 52 milk metabolites could be identified. The exact origin of milk 

metabolites is not clear, and they may be secreted from mammary epithelial cells, leaked 

from damaged somatic cells in the mammary gland or even be transferred from blood 

[125,134]. 

Combined with data from milk production traits, the metabolomics data were subjected 

to multivariate analysis. Principal component analysis (PCA), on the 52 milk metabolites 

plus 6 milk production traits showed that the metabolomics profiles can be separated by 

lactation week but not by dry period length or parity (Fig. 2.1-A and Appendix Fig. 2.1). 

Partial least square discriminant analysis (PLS-DA) confirmed that data could be 

discriminated by lactation week (Fig. 2.1-B) with a discriminant power of Q2 = 0.85, (P-

value = 2.0×10-4 obtained using a permutation test). 

Given the data could be separated by lactation week, further analysis was performed 

considering data for lactation week 2 and 7 separately. Using PLS regression, energy 

balance was used as the dependent variable Y, and milk yield, fat yield, protein yield, 
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lactose yield, urea, fat- and protein- corrected milk (FPCM) and 52 milk metabolites 

were used as predictor variables X. The capability of the PLS models to estimate the 

energy balance were Q2 = 0.72 and Q2 = 0.84, for the PLS models for week 2 and 7 

respectively, and both models were statistically significant (P-value = 2.0×10-4 obtained 

using a permutation test). The variable importance in projection (VIP) scores of all 

variables in the first component of PLS for week 2 and 7 are shown in Fig. 2.2. Five milk 

production traits (milk yield, fat yield, protein yield, lactose yield and FPCM) and five 

milk metabolites (glycine, choline carnitine, citrulline and proline) were selected from 

top 15 variables with the highest VIP scores in both lactation weeks. In week 2, the five 

unique milk metabolites were creatinine, cystine, cytidine monophosphate (CMP), 

hydroxyproline and citrate. In week 7, the five unique milk metabolites were 

pantothenate, creatine, acetyl-choline, serine and tyrosine. 

Fig. 2.1. The combined data of milk metabolomics profiles and milk production traits were separated 

by lactation week in principal component analyses (A), and were further discriminated by lactation 

week with a discriminant power of Q2 = 0.86 in partial least squares discriminant analysis (B). Numbers 

in parentheses is the percentage of explainable variation of milk metabolomics profiles and milk 

production traits due to separation between week 2 and week 7. 

2.4.2. Correlation analysis 

In the current study, the energy balance of dairy cows was measured, and correlations 

between energy balance and milk metabolites were analysed. Fig. 2.3 shows Pearson 

correlations among the top 15 variables with the highest VIP scores for the first principal 

component in the PLS model to estimate energy balance of dairy cows in lactation week 

2 and 7. The complete correlation matrix of 52 milk metabolites and 6 milk production 
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traits with energy balance is shown for lactation week 2 and 7 separately in Appendix 

Fig. 2.2. All top 15 variables in the PLS model were correlated with energy balance in 

lactation week 2, the correlation coefficient (r) ranged from -0.88 to -0.55, or 0.56 to 

0.71 (Fig. 2.3-A). The same trend was observed in lactation week 7 (Fig. 2.3-B). In 

earlier studies, milk metabolites were identified as indicators for milk characteristics and 

metabolic status of dairy cows. Choline, carnitine, citrate and lactose in milk were 

correlated with coagulation properties of milk [135]. Increased β-hydroxybutyrate 

concentration in milk was related to subclinical ketosis of dairy cows [22]. In addition, 

an observed correlation between an amino acid, lysine, and protein content in milk was 

proposed to relate to the limiting nature of amino acids for protein production [54]. In 

our study, five milk production traits, milk yield, fat yield, protein yield, lactose yield 

and FPCM, were clearly correlated (P-value < 5.0×10-2) with each other in both lactation 

weeks. The correlation between top 15 variables in milk and energy balance indicated a 

biological relationship between these milk variables and energy balance, which will be 

discussed in more detail below. 

 

Fig. 2.2. Variable importance in projection (VIP) scores in the first principal component calculated by 

partial least squares (PLS) to estimate the energy balance of dairy cows in lactation week 2 (A) and 

week 7 (B). The top 15 metabolites with relatively higher VIP score are shown. The relatively higher 

VIP score means that variable has higher capability to estimate energy balance in PLS analysis. Black 

line and text represent milk production traits, blue line and text represent milk metabolites with 

relatively higher VIP score, and red line and text represent milk metabolites which were in the top 15 

in one week, but not in the other week. 

Abbreviations: FPCM, fat- and protein-corrected milk production. 
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2.4.3. The effect of dry period length, parity and energy balance on milk 

metabolites and milk production traits analysis 

The effect of DPL, parity and energy balance on milk metabolites and milk production 

traits of dairy cows in lactation week 2 and 7 was analysed with a mixed model. Briefly, 

DPL, parity, energy balance and their two-way interactions were included in the model. 

Significant two-way interactions (P-value < 5.0×10-2) were kept in the model (Appendix 

Fig. 2.3 and 2.4). 

Dairy cows with a 0-d dry period had a lower lactose and protein yield than cows with a 

30-d dry period in week 2 after calving (Table 2.1), which is in line with earlier studies 

[86,136]. The lower lactose and protein yield was probably due to the lower milk yield 

of cows with a 0-d dry period, compared with cows with a 30-d dry period [86]. The 

effect of DPL on milk yield depended on the energy balance (P-value = 3.1×10-3) of 

cows, cows with a 30-d had a higher milk yield than cows with a 0-d dry period only 

when the energy balance was more than -125.0 kJ/kg0.75∙d. Also, protein yield, lactose 

yield and FPCM were affected by an interaction between DPL with energy balance of 

cows (Appendix Fig. 2.3). In week 7, dairy cows with a 0-d dry period had a higher 

concentration of acetyl-choline, pantothenate and tyrosine than cows with a 30-d dry 

period (Table 2.2). The two-way interaction between DPL and energy balance affected 

citrulline, glycine, protein yield and FPCM. The effect of DPL had the same direction to 

milk metabolites or milk production traits on different energy balance states in lactation 

week 2 and 7 (Appendix Fig. 2.3 and 2.4). In earlier studies, the lower milk yield after 

shortening (28 to 30-d) or omitting (0-d) dry period improved energy balance and 

metabolic status in dairy cows in early lactation, compared with a conventional dry 

period of (56 to 60-d) [86,137]. Also, in the current study, cows with a 0-d dry period 

had a better energy balance than cows with a 30-d dry period (-77.2 vs. -276.8 kJ/kg0.75 

per day for 0-d vs. 30-d dry period in week 2, P-value = 6.7×10-3; and 112.7 vs. -27.3 

kJ/kg0.75∙d for 0-d vs. 30-d dry period in week 7, P-value = 2.5×10-2). In lactation week 

2, milk yield, protein yield, lactose yield and FPCM were affected by DPL, but this effect 

was depended on its two-way interaction with energy balance of cows. In week 7, only 

FPCM and protein yield were affected by DPL, related to its two-way interaction with 

energy balance of cows. 
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Table 2.1. The effect of dry period length (DPL), parity and energy balance (EB), on 10 milk 

metabolites and 5 milk production traits obtained through partial least squares analysis (PLS) in 

lactation week 2. These 15 variables had a relatively higher VIP score 1 in week 2. 

 
DPL Parity  EB Two-way interaction 

FC a  P-value  FC b  P-value  P-value EB*DPL EB*Parity DPL*Parity 

Milk metabolites 

Carnitine 1.19 0.80 1.28 0.52 <0.01 NM NM NM 

Choline 1.41 0.35 1.51 <0.01 <0.01 NM 0.05 NM 

Citrate 0.80 0.12 0.93 0.94 <0.01 NM NM 0.08 

Citrulline 0.69 0.92 0.90 0.12 <0.01 NM NM NM 

Creatinine 0.86 0.94 0.85 0.43 <0.01 NM NM 0.02 

Cystine 0.70 0.68 0.78 0.84 <0.01 NM NM NM 

CMP 0.62 0.77 0.74 0.14 0.02 NM 0.08 NM 

Glycine 0.54 0.33 0.71 0.13 <0.01 0.08 <0.01 0.10 

HYP 0.65 0.73 0.90 0.54 <0.01 NM 0.10 NM 

Proline 0.94 0.65 0.98 0.88 <0.01 NM NM NM 

Milk production traits 

Fat (kg) 0.81 0.39 0.85 0.20 <0.01 0.07 NM 0.01 

FPCM (kg) 0.85 0.07 0.83 0.55 <0.01 <0.01 NM 0.08 

Lactose (kg) 0.87 0.05 0.87 0.14 <0.01 <0.01 NM NM 

Milk yield (kg) 0.88 0.13 0.82 0.84 <0.01 <0.01 NM NM 

Protein (kg) 0.86 <0.01 0.89 0.12 <0.01 <0.01 NM 0.06 
 

a Fold change in the metabolite concentration (DPL 0/30). 
b Fold change in the metabolite concentration (parity 2/3). 
1 Variable importance in projection score in partial least squares analysis.  
Abbreviations: CMP, cytidine monophosphate; FPCM, fat- and protein-corrected milk production; HYP, 

hydroxyproline; NM, not included in model. 

Parity had an effect on milk metabolites and milk production traits of dairy cows in both 

lactation weeks. In week 2, young cows (parity 2) had a higher choline concentration 

than older cows (parity 3). In week 7, young cows had higher choline, carnitine and 

pantothenate concentration, but lower glycine concentration, milk yield and lactose yield, 

compared with older cows. Therefore, parity affected more milk metabolites of dairy 

cows in week 7 than in week 2. Young cows had a different energy balance than older 

cows in week 2 (-93.8 vs. -249.1 kJ/kg0.75∙d for young vs. older cows, P-value = 3.3×10-

2). Both young and older cows recovered from NEB in week 7 (67.9 vs. 17.5 kJ/kg0.75∙d 

for young vs. older cows, P-value = 4.1×10-1). The different energy balance of young 

cows in week 2 is explained by the lower milk production (FPCM), compared with older 

cows (29.6 vs. 35.9 kg/d for young vs. older cows, P-value = 1.7×10-2) at a similar energy 

intake (120.15 vs. 118.04 MJ/d for young vs. older cows, P-value = 0.67).  
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Table 2.2. The effect of dry period length (DPL), parity and energy balance (EB), on 10 milk 

metabolites and 5 milk production traits obtained through partial least squares analysis (PLS) in 

lactation week 7. These 15 variables had a relatively higher VIP score 1 in week 7. 

 
DPL Parity  EB Two-way interaction 

FC a  P-value  FC b  P-value  P-value EB*DPL EB*Parity DPL*Parity 

Milk metabolites 

Acetyl-choline 1.73 <0.01 1.07 0.94 0.15 NM NM NM 

Carnitine 1.21 0.19 1.17 0.03 <0.01 NM NM NM 

Choline 1.23 0.15 1.27 0.01 <0.01 NM NM NM 

Citrulline 0.83 0.21 0.97 0.99 <0.01 <0.01 NM 0.03 

Creatine 1.17 0.05 1.13 0.05 0.05 NM NM NM 

Glycine 0.70 0.12 0.76 0.02 <0.01 <0.01 <0.01 NM 

Pantothenate 1.32 <0.01 1.18 0.04 0.10 NM NM NM 

Proline 0.88 0.35 0.85 0.22 0.02 NM NM NM 

Serine 0.87 0.93 0.87 0.36 0.02 NM NM NM 

Tyrosine 1.03 0.03 1.05 0.13 <0.01 0.02 <0.01 <0.01 

Milk production traits 

Fat (kg) 0.84 0.52 0.92 0.47 <0.01 NM NM NM 

FPCM (kg) 0.86 0.69 0.88 0.15 <0.01 0.02 NM NM 

Lactose (kg) 0.82 0.86 0.85 0.03 <0.01 0.09 NM NM 

Milk yield (kg) 0.84 0.95 0.83 <0.01 <0.01 NM NM NM 

Protein (kg) 0.91 0.25 0.89 0.08 <0.01 <0.01 NM NM 
 

a Fold change in the metabolite concentration (DPL 0/30). 
b Fold change in the metabolite concentration (parity 2/3). 
1 Variable importance in projection score in partial least squares analysis. 
Abbreviations: FPCM, fat- and protein-corrected milk production; NM, not included in model. 

In each one of lactation week 2 and 7, 10 milk metabolites and 5 milk production traits 

with the highest VIP scores were related to the energy balance in the PLS models. It 

could be expected that the severity in NEB is related to the metabolic profile in milk of 

dairy cows, although little information has been available hitherto on this relationship. 

In an earlier study, we proposed that the presence of sugar phosphates in milk of cows 

during severe NEB indicated leakage of these components from mammary epithelial 

cells into milk due to apoptosis [66]. 

Model 2, 5 and 8 using both milk metabolites and milk production traits had the highest 

capacity to estimate the energy balance of dairy cows. In both week 2 and 7, models 

based on milk metabolites had limited estimating capacity than models based on milk 

production traits (adjusted-R2 = 0.68 vs. 0.78 in week 2; adjusted-R2 = 0.65 vs. 0.80 in 

week 7). In earlier work, milk production traits, including, milk yield, fat, protein and 

lactose yield, were highly related to the energy output of dairy cows [138,139]. In week 
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2, dairy cows were suffering from severe NEB, energy balance was -177.0 kJ/kg0.75∙d, 

while cows were recovering from NEB in week 7, energy balance was 42.7 kJ/kg0.75∙d 

(P-value = 1.5×10-5). The difference in energy balance between lactation weeks indicate 

that dairy cows were also in different metabolic status in lactation week 2, compared 

with week 7. A relative higher amount of body reserves can be hypothesized to be 

mobilized for milk synthesis in week 2 than in week 7, which may explain why the 

capacity of milk production traits to estimate the energy balance only in week 2 is greater 

than when both weeks are combined. In earlier studies, milk production traits were used 

as promising indicators for energy balance at herd level and subclinical ketosis of 

individual cows [21,140]. Milk fat-to-protein ratio increased coefficients by 19.0% to 

52.0% when it was used to estimate herd-level energy balance at herd level [37]. Also in 

this study, fat yield contributed significantly to the estimation of the energy balance of 

individual cows (Table 2.3). Fat yield accounted for 65.8% and 63.9% the variation of 

energy balance in Model 2 and 5, respectively. Increasing fat yield resulted in greater 

energy output of dairy cows in early lactation [18,27], which accounted for the lower 

energy balance and the role of fat yield in reduced models to estimate the energy balance 

where milk production traits were involved. Fat yield in model 8 accounted for 48.8% 

explained variation for energy balance. Glycine, carnitine and citrate together accounted 

for more explained variation to estimate energy balance, 34.1%, 8.6% and 8.5%, 

respectively, than fat yield alone. Compared with Model 2 and 5, the explained variation 

by fat yield decreased in Model 8. The lower variation by fat yield in Model 8 was in 

line with the low coefficient to estimate energy balance in Model 9 by milk production 

traits only. Glycine was an important metabolite to estimate the energy balance in all 

models with milk metabolites, next to carnitine, choline, tyrosine and citrate. The 

possible biological relationship between glycine and the energy balance in early lactation 

is discussed in more detail below. Moreover, reliable and practical tests should be 

developed to detect these milk metabolites to estimate the energy balance under practical 

conditions. 

2.4.4. Energy balance and biological pathways 

In early lactation, dairy cows mobilize their body reserves to meet the energy 

requirement for milk synthesis and secretion in the mammary gland [141,142]. Therefore, 

the energy balance of individual cows could be expected to be reflected in metabolic 

patterns in milk. In previous studies, metabolic changes were observed in early lactation 
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of cows as compared with late lactation [143,144]. Klein et al. (2013) observed that 19 

amino acids, glucose and a number of carboxylic acids were related to ketosis in dairy 

cows [143]. Ketosis indicates the NEB in cows, but its relationship with milk metabolites 

is not fully clear. Klein et al. (2013) observed a positive correlation of plasma glycine-

to-alanine ratio to milk ketone bodies, acetone (r = 0.77) and BHB (r = 0.64), suggesting 

an excessive protein mobilization and a shortage in glucose supply, and it could be the 

reason for these biological effect on a shortage of vitamin B6 in these animals [143]. 

Meijer et al. (1995) observed large changes in amino acids in muscle and plasma of high 

yielding dairy cows in early lactation, suggesting that protein was degraded for the 

supply of amino acids to the udder [144]. It was proposed that glutamine is potentially 

limiting for protein synthesis. Although these and similar studies have been done 

carefully, they do not provide a clear biological relationship of energy balance with 

metabolism of individual cows. In our study, we measured both energy balance and 

metabolic variables in milk of individual cows. 

Table 2.3. Reduced models to estimate the energy balance of dairy cows in lactation week 2 and 7. The 

reduced models were selected by multivariate linear regression. 

Model No. Model (Equation) R2 1 ad-R2 2 

Dataset of dairy cows in week 2   

M3 1 EB = -357.2 - 1.9*glycine (60.0%) + 0.5*choline (21.6%) + 1.6*carnitine (18.4%) 0.72 0.68 

M+P4 2 EB = 222.0 - 288.2*fat (65.8%) + 0.3*choline (18.0%) - 1.2*glycine (16.1%) 0.85 0.83 

P5 3 EB = 580.7 - 532.4*fat 0.79 0.78 

Dataset of dairy cows in week 7   

M 4 EB = -204.3 - 3.2*glycine (60.7%) + 1.9*carnitine (29.9%) + 35.2*tyrosine (9.4%) 0.69 0.65 

M+P 5 EB = 591.3 - 334.2*fat (63.9%) - 2.4*glycine (30.3%) + 28.7*tyrosine (5.9%)  0.89 0.88 

P 6 EB = 632.2 - 331.4*fat (46.4%) - 14.9*milk yield (37.8%) + 338.9*protein (15.8%) 0.81 0.80 

Dataset of dairy cows in both week 2 and week 7 

M 7 EB = -178.5 - 2.6*glycine (56.8%) + 2.1*carnitine (43.2%) 0.77 0.76 

M+P 8 
EB = 222.9 - 301.3*fat (48.8%) - 1.7*glycine (34.1%) + 1.1*carnitine (8.6%) +                 

         5.2*citrate (8.5%) 
0.88 0.87 

P 9 EB = 613.4 - 648.0*fat (82.6%) + 653.4*lactose (11.4%) - 21.6*milk yield (6.0%)  0.55 0.53 
 

1 R2 was obtained through 10-fold cross-validation. 
2 ad-R2 considered the number of independent regressors in a model, and it was obtained through formula, ad-R2 = 

1 - [(1 - R2)(n-1)/(n-k-1)], n is the number of sample size, k is the number of independent regressors, excluding the 

constant. 
3 M: only milk metabolites are used in the model. 
4 M + P: both milk metabolites and milk production traits are used in the model. 
5 P: only milk production traits are used in the model. 
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Fig. 2.4. As a major methyl donor from diet, choline transfers its methyl-group to S-adenosyl 

methionine via betaine with a concomitant formation of glycine in this process. The figure was adapted 

from Friesen et al. (2007) [145]. 

Abbreviations: THF, tetrahydrofolate; DMG, dimethylglycine. 

Of the milk metabolites observed in our study, a large number of metabolites were 

correlated, either positively or negatively, to the energy balance of the individual cows 

(Fig. 2.2). Some of these metabolites could be involved in the same metabolic pathway 

which can be extrapolated from the strong correlations between some components as 

observed in Fig. 2.3. We therefore created reduced models in order to include metabolites 

with a limited interdependence (Table 2.3). Of the metabolites in our reduced models, 

glycine, choline, carnitine, citrate and tyrosine were the ones which were most clearly 

related to the energy balance. Glycine was found to be the most important metabolite in 

all models. In previous studies, both plasma and milk glycine concentrations were 

increased during early lactation of cows, compared with late lactation [143,144]. In the 

current study, milk glycine was negatively related to energy balance in both lactation 

week 2 (r = -0.80) and week 7 (r = -0.74) (Fig. 2.3). Besides glycine also choline is 

related to energy balance (Table 2.3). These two metabolites, glycine and choline, are 

both important in the one carbon metabolism (Fig. 2.4). In the one carbon metabolism 

dietary choline is a methyl donor for important biological processes involving the folate 

cycle, redox balance status and cell renewal [145,146]. Choline is regarded as a limiting 

nutrient for transition dairy cows [147,148]. In early studies, dairy cows supplied with 

rumen-protected choline had increased milk production [149], but the decreased 

incidence of diseases, including fatty liver [150], ketosis and mastitis [151]. Those early 

studies tested the positive effect of choline on animal healthy and production, however, 

no energy balance was shown. Our finding that choline deficiency in severe NEB cows 

could explain the low production and high disease incidence in early lactation of cows. 
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In our study, choline is not only negatively correlated with glycine, but also positively 

correlated with carnitine (Fig. 2.3). The question is how these three small metabolites, 

glycine, choline and carnitine are mechanistically related to energy balance. Cows with 

severe negative energy balance have high concentrations of glycine in milk, and these 

cows have low levels of choline and carnitine in milk (Appendix Fig. 2.3). In cows with 

high energy balance the opposite is observed for these three metabolites, low levels of 

glycine and high levels of choline and carnitine. Carnitine is a quaternary ammonium 

salt as is choline. Carnitine is involved in fatty acid metabolism (Fig. 2.5) and is not 

directly involved in one carbon metabolism. However, as carnitine is synthesized in the 

liver from lysine and methionine a possibly relationship to one carbon metabolism could 

exist. On the other hand, it has been proposed that a major source of carnitine originates 

from protein lysine N-trimethylation on release from proteins by protein hydrolysis [152]. 

The low levels of carnitine in negative energy balance cows could therefore be the result 

of low carnitine synthesis in the liver or from low levels of protein hydrolysis. However, 

low levels of carnitine could be also the result of high levels of acyl-carnitines. Formed 

in lipid and amino acid oxidation processes, acyl-carnitines are intermediates in the 

breakdown processes of lipids and amino acids. Giesbertz et al. (2015) quantitatively 

measured the concentration of 56 acyl-carnitines in mice with a metabolic syndrome 

[153]. Unfortunately, we did not measure acyl-carnitines in our study and no relationship 

between acetyl-carnitine, carnitine or energy balance was found. It can be expected that 

more lipid metabolism occurs in cows with NEB, which consumed carnitine and 

generated various acyl-carnitines. Future studies have to show if the low levels of 

carnitine in negative energy balance cows are related to low levels of biosynthesis of 

carnitine or high levels of acyl-carnitines. From our findings that in severe negative 

energy balance glycine levels are relatively high in concentration and methylated 

metabolites as choline, and carnitine are low in concentration, we conclude that severe 

NEB cows have a need for methyl donor compounds. This observation mimics 

observations made in cancer cells, where there is a high demand for methyl donors 

[154,155]. Labuschagne et al. (2014) observed that in cancer cells there is a high demand 

for methyl donors and that these methyl groups are used in nucleic acid synthesis [154]. 

Interestingly, glucose was observed in our study to be related to energy balance (low 

levels of glucose in NEB cows) and we propose that glucose is used additionally as 

methyl donor via the glucose-serine pathway, rather than only for lactose production 
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[155]. Glucose and glucogenic amino acids were regarded as the precursor of milk 

production via propionate in early lactation of cows [87,156]. 

 

Fig. 2.5. Fatty acid transportation mechanism in the cell. The inner mitochondrial membrane is 

impermeable to fatty acids and a specialized carnitine carrier system operates to transport activated 

fatty acids from cytosol to mitochondria. Carnitine is converted to acyl carnitine for fatty acid 

transportation. The figure was adapted from Nelson et al. (2008) [157]. 

Abbreviations: CoA, coenzyme A; CPT I, carnitine palmitoyltransferase I; CPT II, carnitine palmitoyltransferase II.  

Finally, we also observed relationships between amino acids and negative energy 

balance. These amino acids are highly correlated and in our reduced model tyrosine was 

selected. In the current study, cows with a NEB had low levels of tyrosine in milk. As 

the energy balance was negatively correlated with protein yield in both lactation week 2 

and 7, we propose that the lower levels of amino acids in milk are related to higher levels 

of protein synthesis. 

2.5. Conclusions 

In the current study, 52 milk metabolites of dairy cows during a status of negative energy 

balance were detected through LC-QQQ-MS. The energy balance had a high correlation 

with specific milk metabolites and milk production traits in both lactation week 2 and 7. 

Nine reduced models were composed to estimate the energy balance of dairy cows in 

lactation week 2 and 7, with a range from 53% to 88% predicting power. Both milk 

metabolites and milk production traits had an important role in these models, in particular 

glycine, choline, carnitine and fat yield. The strong relationship of these metabolites with 

energy balance of dairy cows in early lactation could be related to their roles in cell 

renewal.
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3.1. Abstract 

Milk production of dairy cows increases progressively in the weeks after calving. 

Consequently, dairy cows experience a negative energy balance (NEB) in early lactation 

because feed intake is too low to meet energy requirements for body maintenance and 

milk production. A NEB is expected to affect the metabolism in the mammary gland, 

which could be reflected by the metabolic profile of milk. In this study our aims were to 

measure the metabolic profile of milk of dairy cows in lactation week 2 using liquid 

chromatography mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) 

and to investigate the effect of energy balance on the metabolism in the mammary gland. 

Nuclear magnetic resonance and LC-MS techniques are complimentary techniques that 

enabled a comprehensive overview of milk metabolites in our study. Energy balance and 

milk samples were obtained from 87 dairy cows. A total of 67 milk metabolites were 

detected. Of these 67 milk metabolites, 15 were positively correlated to energy balance 

and 26 were negatively correlated to energy balance. Cows in more serious NEB 

produced more milk with increased milk fat yield and higher concentrations of citrate, 

cis-aconitate, creatinine, glycine, phosphocreatine, galactose-1-phosphate, glucose-1-

phosphate, UDP-N-acetyl-galactosamine, UDP-N-acetyl-glucosamine and 

phosphocholine, but lower concentrations of choline, ethanolamine, fucose, N-acetyl-

neuraminic acid, N-acetyl-glucosamine and N-acetyl-galactosamine. We conclude, 

based on these observations, that the metabolic processes in the mammary gland during 

NEB are related to the leakage of cellular content, the synthesis of nucleic acids, the 

synthesis of cell membrane phospholipids, protein glycosylation, an increase in one-

carbon metabolic processes as well as an increase in lipid-triglyceride anabolism. Overall, 

we concluded that both apoptosis combined with cell renewal are paramount in the 

mammary gland in cows in NEB, which might be related to the high milk yield of the 

cows during NEB.
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3.2. Introduction 

In early lactation of dairy cows, elevated energy requirements for milk production 

combined with a relatively low dry matter intake (DMI) result in an energy deficit or 

negative energy balance (NEB) [27,28]. A severe NEB is related to an increased risk of 

metabolic disorders and diseases, such as fatty liver and ketosis [158,159]. In previous 

studies it was shown that body reserves were mobilized to meet the nutritional demand 

of the mammary gland for milk production with concurrent changes in metabolic 

hormones and plasma metabolites [105,160]. In the mammary gland, the basic metabolic 

patterns related to the synthesis of milk fat, protein, and lactose are known [161,162]. 

However, the modifications of metabolic pathways, especially in the relation to negative 

energy balance, have not been described yet. 

Metabolomics studies aim to detect and quantify small molecules from bio-fluids 

through several metabolomics techniques, such as mass spectrometry (MS) and nuclear 

magnetic resonance (NMR). Integrating the results of different metabolomics techniques 

allows new insights into the metabolic profiles [118-120]. Liquid chromatography mass 

spectrometry (LC-MS) is a powerful technique with high sensitivity and selectivity [163]. 

High resolution NMR is a very stable technique with better reproducibility than LC-MS 

but NMR suffers, relative to LC-MS, from limited sensitivity [164]. In recent years, 

integrated analyses that combines results from LC-MS and NMR have been applied to 

detect and quantify a wide range of metabolites in bio-fluids, such as urine, plasma and 

milk [57,143,165,166]. The integration of data from different techniques supports cross-

assigning signals from the techniques on the same samples [166]. In dairy cows, the 

integration of MS and NMR data identified biomarkers of heat stress in plasma [57], and 

investigated the correlation of plasma and milk metabolites [143]. In the past decade, 

new developments with hydrophilic columns make analysis of polar metabolites possible 

using LC-MS. We used a recently introduced pentafluorophenylpropyl column to 

separate polar metabolites with subsequent identification and quantification using a 

triple-quadrupole-MS. These results combined with high resolution NMR measurements 

of the same samples has the potency to detect and quantify more metabolites in milk than 

in any study before. 

With the combined NMR and LC-MS datasets we were able to better understand 

biological pathways affected by NEB and associated alterations in metabolic status of 
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dairy cows. In our study, 87 dairy cows were studied. In lactation week 2, milk yield, 

milk composition (fat, protein, and lactose), DMI, and energy balance of individual cows 

were recorded, as well as milk samples were collected. From our data we could obtain a 

detailed metabolic pattern occurring in cows with severe negative energy balance. 

3.3. Materials and Methods 

3.3.1. Animals and experimental design 

The experimental protocol for the study was approved by the Institutional Animal Care 

and Use Committee of Wageningen University and was conducted at Dairy Campus 

research farm (WUR Livestock Research, Lelystad, the Netherlands). Cows and samples  

in the current study originated from an experiment studying effects of dry period length 

and dietary energy level on milk yield and energy balance including 123 cows, which 

was described previously [126]. Earlier, we reported the relation of energy balance and 

metabolites detected in milk samples of 31 dairy cows in lactation week 2 and 7 through 

LC-MS measurement (Chapter 2), those 31 cows were not included in the current study. 

Samples and data of 91 dairy cows were available for the current study. Of these 91 cows, 

4 cows were omitted from the analysis because 2 cows suffered from clinical mastitis, 1 

cow suffered from metritis, and 1cow had locomotion problems in sampling week. 

Resulting in total 87 high-yielding Holstein-Friesian dairy cows averaging 663.5±67.6 

kg of body weight (in lactation week 2 after calving) participated. Dairy cows were 

blocked for parity, expected calving period and expected milk yield. Within blocks, cows 

were randomly assigned to one of two dry period length (DPL, 0 day, 2/3 of the cows; 

or 30 days: 1/3 of the cows) before calving. Prepartum, cows with a 0 day DPL received 

a lactation ration based on grass silage and corn silage (6.4 MJ net energy for lactation 

(NE)/kg dry matter (DM)). Cows with a 30 days DPL received a dry cow ration based 

on grass silage, corn silage and wheat straw (5.4 MJ NE/kg DM). Postpartum, all cows 

received the same basal lactation ration as provided to lactating cows prepartum plus 

additional concentrates. Postpartum, concentrate supply increased stepwise with 0.3 kg/d 

till 8.5 kg/d on 28 DIM. Body weight, milk yield and feed intake were recorded daily. 

During lactation, cows were milked twice daily at ~0600 hours and ~1800 hours.  
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3.3.2. Milk samples 

Milk samples for fat, protein, and lactose percentage (ISO 9622, Qlip, Zutphen, The 

Netherlands) were collected four times per week (Tuesday afternoon, Wednesday 

morning, Wednesday afternoon, and Thursday morning), and then stored at -20 °C until 

analysis. Milk samples were analysed as a pooled sample per cow per week and used to 

calculate average fat, protein and lactose yield in this week. Milk samples for 

metabolomics analysis were collected at Wednesday morning in lactation week 2. Milk 

production traits were averaged per week. Four milk samples were omitted from the 

analysis because two cows suffered from clinical mastitis, one cow suffered from 

metritis, and one cow had locomotion problems in sampling week. Fat- and protein-

corrected milk was calculated as: 

FPCM (kg) = [0.337 + 0.116 × fat (%) + 0.06 × protein (%)] × milk yield (kg) [167]. 

3.3.3. Energy intake and energy balance 

Roughage and concentrate were supplied separately, daily intakes were recorded per 

individual cow using roughage intake control troughs (Insentec, Marknesse, the 

Netherlands). Energy balance was calculated per week according to the Dutch net energy 

evaluation (VEM) system, as the difference between net energy intake and the estimated 

net energy requirements for maintenance, and milk yield (1,000 VEM = 6.9 MJ of NE) 

[33,168].  

3.3.4. NMR measurement and data pre-processing 

Sample preparation and NMR measurement were performed as earlier described 

[66,169]. Briefly, milk samples were first thawed to room temperature. The fat layer of 

milk was removed by addition of deuterated chloroform and centrifugation (12,000 rpm, 

15 min, Centrifuge 5424, Eppendorf). Subsequently 175 μL of milk serum was mixed 

with 175 μL of phosphate buffer (pH = 7.0) and these samples were filtered to remove 

protein using a Pall 0.5 mL 10-kDa cut-off spin filter with centrifugation at 12,000 rpm 

for 15 min. Samples were measured with a 3 mm NMR tube (Bruker matching system) 

using a Bruker NMR spectrometer Avance III with a 600 MHz/54 mm UltraShielded 

Plus magnet equipped with a CryoPlatform cryogenic cooling system, a BCU-05 cooling 

unit and an ATM automatic tuning and matching unit. Measurements were done at 300 

K. 1D nuclear Overhauser enhancement spectroscopy (NOESY) spectra were obtained. 
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Baseline corrections, alignment to the resonance of alanine (1.484 ppm) and calibration 

to internal maleic acid were done for all spectra. Assignment of metabolites resonances 

was performed using published literature, the Human Metabolome Database version 2.0 

online library (http://hmdb.ca/) as well as internal standards. 

3.3.5. LC-MS measurements 

For quantification of metabolites, a targeted, standardized and quality controlled 

metabolic phenotyping was performed based on LC-QQQ-MS analysis. The sample as 

prepared for NMR was also used for analysis with the triple quadrupole mass 

spectrometer (Shimadzu LC-QQQ-MS; LC-MS-8040) using the PFPP method as 

described earlier [127,128]. The sample injection volume used was 1 μL, and a single 

analysis took 25 minutes. From LC-QQQ-MS spectra, metabolites were regarded as 

reliably identified, when more than 60% observations in all samples showed a reliable 

value for a certain metabolite. 

3.3.6. Integrated analysis and software 

The NMR datasets were aligned, the water region was removed before calculating the 

intensity of the NMR spectra into 0.01 ppm bins. The NMR data (intensity of the bins) 

were subsequently correlated to energy balance variables. Bins which correlated well to 

energy balance were selected and the corresponding NMR resonances (peaks) were 

specifically integrated by carefully selecting peaks that did not show overlap in the NMR 

spectra. The correlation matrix of NMR and LC-MS datasets was subsequently analysed 

and edited. In case a metabolite could be identified from both LC-MS and NMR, the 

intensity of this metabolite was quantified based on its NMR spectrum. Integrated 

analysis was done as described earlier [166,170]. Pearson correlation coefficient (r) and 

corresponding P value were obtained by function “cor.test ()” in R environment (version 

3.3.3). All figures were plotted in R environment (version 3.3.3) with package “ggplot2”. 

3.4. Results and Discussion 

3.4.1. Measurement by LC-MS and NMR and integrated analysis 

Milk samples of 87 dairy cows were measured using both LC-MS and NMR. In LC-MS 

spectra of milk, 97 metabolites were initially targeted. Overall 39 milk metabolites were 

detected in LC-MS (Appendix Table 3.1). In the NMR spectra of milk, lactose dominated 
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the region around 3.52 to 3.95 ppm, which masked the signal of other metabolites in this 

region (Fig. 3.1). Therefore, glycine is impossible to be detected by NMR of milk 

samples at its chemical shift is at 3.54 ppm [171]. Nevertheless, many NMR resonances 

could be clearly observed resulting in 35 milk metabolites to be detected using NMR 

(Appendix Table 3.1). 

Fig. 3.1. Proton nuclear magnetic resonance spectrum of a milk sample. 

Abbreviations: BHB, β-hydroxybutyrate; CMP, cytidine monophosphate; Gal-1-P, galactose-1-phosphate; Glu-1-P, 

glucose-1-phosphate; GPC, glycerophosphocholine; Nac-Gal, N-acetyl-glucosamine; Nac-Glu, N-acetyl-

glucosamine; Nac-Na, N-acetyl-neuraminic acid; PC, phosphocholine; P-creatine, phosphocreatine; phosphocholine; 

TMAO, trimethylamine N-oxide; UDP-Nac-Gal, uridine diphosphate-N-acetyl-galactosamine; UDP-Nac-Glu, 

uridine diphosphate-N-acetyl-glucosamine. 

A number of milk metabolites have been reported before using LC-MS or NMR 

[54,64,125]. We integrated LC-MS and NMR datasets. Milk metabolites detected both 

by NMR and LC-MS had a high correlation between the two measurements, i.e. acetyl-

carnitine (r = 0.90), choline (r = 0.92), cytidine monophosphate (CMP, r = 0.90), 

glutamate (r = 0.94), α-ketoglutarate (r = 0.90), uridine (r = 0.93), and valine (r = 0.90). 

The consistency between two measurements methods indicated that data obtained were 

reliable. 

Through the integration of LC-MS and NMR, 67 metabolites were detected from milk 

samples of 87 dairy cows in lactation week 2. Of these 67 milk metabolites, 26 were 

negatively correlated to energy balance (Fig. 3.2), and 15 were positively correlated to 

energy balance (Fig. 3.3). 
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Fig. 3.2. Pearson correlations matrix among milk production traits, metabolites detected either in NMR, 

or in LC-MS with energy balance (EB) of dairy cows in lactation week 2. Total 26 milk metabolites 

were negatively correlated to energy balance. 

Abbreviations: Acetyl-Car, acetyl-carnitine; cAMP, 3',5'-cyclic adenosine monophosphate; CMP, cytidine 

monophosphate; FMN, flavin mononucleotide; Gal-1-P, galactose-1-phosphate; Glu-1-P, glucose-1-phosphate; 

HYP, hydroxyproline; P-Choline, phosphocholine; P-Creatine, phosphocreatine; TMAO, trimethylamine N-oxide; 

UDP-Nac-Gal, uridine diphosphate-N-acetyl-galactosamine; UDP-Nac-Glu, uridine diphosphate-N-acetyl-

glucosamine. 
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Fig 3.3. Pearson correlations matrix among milk production traits, metabolites detected either in NMR, 

or in LC-MS with energy balance (EB) of dairy cows in lactation week 2. Total 15 milk metabolites 

were positively correlated to energy balance. 

Abbreviations: Met (O), methionine sulfoxide; Nac-Gal, N-acetyl-galactosamine; Nac-Glu, N-acetyl-glucosamine; 

Nac-NA, N-acetyl-neuraminic acid. 

3.4.2. Cell apoptosis and proliferation 

Glucose-1-phosphate (Glu-1-P) and galactose-1-phosphate (Gal-1-P), two intermediates 

in lactose synthesis, were negatively correlated with energy balance, r was -0.51 and r 

was -0.64, respectively (Fig. 3.2). The final step in lactose synthesis is a process confined 

to the Golgi apparatus [172]. Lactose concentration in milk is always very constant 

because the water uptake into the secretory vessels within the Golgi apparatus  is driven 

by osmotic force related to the lactose concentration within the vessels [173]. The 

presence of high concentrations of intermediates in the lactose biosynthesis process in 
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milk indicates that in the mammary gland some cells are leaking cellular content into the 

milk pool due to apoptosis [66]. Apoptosis in the mammary gland could be related or 

even caused by low plasma IGF-1 concentrations in dairy cows in NEB [174]. In 

mammals, IGF-1 is a cell survival factor and an anti-apoptotic factor [175,176]. In dairy 

cows, the apoptotic index in the mammary gland has been reported be up to 4-fold greater 

in early lactation than in later lactation [177]. After calving, the substantially increased 

milk production could result in excessive metabolic stress resulting in apoptosis of 

epithelial cells in the mammary gland [178,179]. The elevated apoptosis could also be 

due to discarding non-functional or senescent cells or to removal of a surplus of newly 

synthesized cells [179]. Besides metabolites related to lactose synthesis, a series of 

intermediates used for nucleic acids synthesis, present in high concentrations, were 

observed to have negative correlations with energy balance, such as, uridine (r = -0.28), 

3',5'-cyclic adenosine monophosphate (r = -0.43), CMP (r = -0.58), and glycine (r = -

0.66) as shown in Fig. 3.2. Cell renewal requires extensive DNA and RNA synthesis and 

a negative correlation between intermediates in nucleic acids synthesis and energy 

balance could indicate accelerated cell proliferation in dairy cows in NEB. In the 

mammary gland of dairy cows, the total DNA content increases by 65% around 10 days 

pre- and post-partum [180]. The process of cell proliferation increases the number of 

mammary epithelial cells critical for the increase in milk production in early lactation 

[161] which is a main contributor to the NEB status of dairy cows during this phase of 

lactation. 

In an eukaryotic membrane, phosphatidylcholine (PtC) and phosphatidylethanolamine 

(PtE) account for more than 50% of the total phospholipids [181]. The pathway of PtC 

synthesis from choline and PtE synthesis from ethanolamine using cytidine coenzymes 

is referred to as the Kennedy pathway [182]. In our study, energy balance was positively 

correlated with choline (r = 0.63) and ethanolamine (r = 0.49) as shown in Fig. 3.3. In 

contrast phosphocholine (PC) was observed to be negatively correlated with energy 

balance (r = -0.59, Fig. 3.2). The rate limiting step in PtC synthesis is the formation of 

CDP-choline from PC by CTP-phosphocholine cytidylyltransferase (PCT) [183]. The 

low amounts of choline and the high amounts of PC in dairy cows in NEB indicates that 

PtC biosynthesis is increased. Remarkably, we observed that PC and choline 

concentrations were strongly correlated to several metabolites involved in the 

glycosylation of proteins, N-acetyl-galactosamine (Nac-Gal), N-acetyl-glucosamine 
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(Nac-Glu), UDP-N-acetyl-galactosamine (UDP-Nac-Gal), UDP-N-acetyl-glucosamine 

(UDP-Nac-Glu), and N-acetyl-neuraminic acid (Fig 3.4). In phospholipid membrane 

synthesis proteins present in the membrane need to be glycosylated in order to obtain 

cellular stability, for signal transduction processes and for viral or microbial defence. In 

the current study, high amounts of UDP-Nac-Gal, and UDP-Nac-Glu, and low amounts 

of fucose, N-acetyl-neuraminic acid, Nac-Gal and Nac-Glu were detected in milk of 

cows in NEB. Milk proteins are heavily glycosylated with fucose, N-acetyl-neuraminic 

acid, Nac-Gal and Nac-Glu residues as major substituents [184]. UDP-N-acetyl-

galactosamine and UDP-Nac-Glu are activated substrates used for protein glycosylation. 

Apparently, the increased amounts of UDP-Nac-Gal and UDP-Nac-Glu in dairy cows in 

NEB indicates that there is a high demand for protein glycosylation. The observation that 

these two UDP-derivatives used for glycosylation are strongly correlated with choline 

and PC suggests that not only synthesis of membrane phospholipids, but also 

glycosylation of membrane proteins are of high importance for cows in NEB. 

Glycosylation of milk serum proteins could be related to glycosylation of membrane 

proteins as the protein concentration in milk was observed to be strongly correlated with 

Nac-Gal, Nac-Glu, fucose, N-acetyl-neuraminic acid and choline. Possibly the 

glycosylation of membrane proteins is the driving force for glycosylation of cytosolic 

milk proteins. It has been observed that glycosylation of milk proteins is varying 

depending on lactation week postpartum [185,186], but differences in glycosylation 

patterns of cytosolic and membrane proteins of individual cows related to energy status 

has not been studied in detail. 

The synthesis of PtC from PC is the rate limiting step in PtC synthesis, possibly because 

cytidine triphosphate (CTP) is a rate-limiting metabolite in this process (Fig. 3.4). 

Cytidine triphosphate is not only used for the formation of PtC and PtE in the Kennedy 

pathway, but is also used to synthesize nucleic acids. In addition, CTP is synthesized 

from uridine diphosphate (UTP) which is an intermediate in the synthesis of lactose. 

Dairy cows in NEB had a greater overall lactose yield (r = -0.59), which indicates that 

large amounts of UTP were used to synthesize lactose, competition with the formation 

of CTP from UTP. Finally, CTP and UTP can be used for DNA and RNA synthesis 

during cell proliferation [187] creating a huge demand for both UTP and CTP for cows 

in NEB. 
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Fig. 3.4. The composition of head groups of a phospholipid bilayer of a cellular membrane. Choline 

and ethanolamine are two main substrates for the synthesis of phosphatidyl-choline (PtC) and 

phosphatidyl-ethanolamine (PtE), respectively. Phosphatidyl-choline can be degraded via GPC to 

choline. The surface proteins of a cellular membrane are glycosylated. 

Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate; CDP, cytidine diphosphate; CKI, 

choline kinase; CMP, cytidine monophosphate; CPT, 1,2-diacylglycerol cholinephosphotransferase; CTP, cytidine 

triphosphate; DAG, diglyceride; ECT phosphoethanolamine cytidylyltransferase; EK, ethanolamine kinase; EPT, 

ethanolaminephosphotransferase; GPC, glycerophosphocholine; LPL, lysophospholipase; P-Choline, 

phosphocholine; PCT, phosphocholine cytidylyltransferase; PD, glycerophosphocholine phosphodiesterase; P-Eta, 

phosphoethanolamine; PLA, phospholipase A2; PPi, pyrophosphate. 

3.4.3. Fatty acids metabolism 

For the synthesis of phospholipids diglycerides are needed (Fig. 3.4). A diglyceride 

molecule (DAG) contains 2 molecules of fatty acids and 1 molecule of glycerol. In cows 

in NEB a competition between DAG used for the synthesis of milk triglycerides and 

DAG used for the synthesis of phospholipids can occur, as triglycerides amounts in milk 

of dairy cows in NEB are increased. Glycerophosphocholine (GPC) is a product from 

the breakdown of PtC (Fig. 3.4). A low GPC-to-PC (GPC/PC) ratio was observed for 

cancer cells in humans [188,189] A low GPC/PC ratio was used to indicate a risk of 

ketosis in dairy cows [64]. In our study the GPC/PC ratio is positively correlated to 

energy balance (r = 0.41) indicating low levels of GPC/PC in NEB. However this ratio 
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is more the consequence of the high correlation of PC to the energy balance (r = -0.59, 

indicating high amounts of PC in NEB) than the correlation of GPC to energy balance 

where a very weak relationship was observed (r = 0.18, P = 0.09). The low amounts of 

GPC, as well as the low amounts of fucose, N-acetyl-neuramic acid, Nac-Gal, Nac-Glu 

are in our view related to the reprocessing of cellular components through the lysosome 

enabling cell proliferation. Therefore, the correlation of GPC/PC to energy balance is 

related to the process of cell membrane synthesis during cell proliferation in the 

mammary gland leading to high concentrations of PC. 

Citrate detected from NMR spectra was negatively correlated with energy balance (r = -

0.71, Fig. 3.2). Citrate is an important metabolite involved in the energy metabolism of 

cell. In mitochondria, citrate is an intermediate in the tricarboxylic acid cycle where 

citrate can be isomerized into cis-aconitate. Cis-aconitate is also very well correlated 

with energy balance (r = -0.74). These observations indicate that citrate is also used 

extramitochondrial to form acetyl-CoA, and acetyl-CoA can be used for fatty acids 

synthesis [190]. Mammary epithelial cells are impermeable to citrate in both directions, 

indicating that citrate is produced intracellular [191]. In the current study, energy balance 

was negatively correlated with milk fat yield (r = -0.78) and milk fat yield was positively 

correlated to citrate levels (r = -0.53), indicating that citrate is primarily used for milk 

fat synthesis in cows in NEB. Citrate levels could be an indicator of energy status 

[65,192]. Citrate in milk is easily detected. The concentration of milk citrate has a wide 

variation throughout lactation [193]. Dairy cows have a greater concentration of milk 

citrate in early lactation than in mid lactation [65], which could be explained by the 

improved energy balance due to lower milk and milk fat synthesis in mid lactation. 

3.5. Conclusions 

In this study, 67 metabolites were detected and reliably quantified from milk serum of 

dairy cows in lactation week 2, using NMR and LC-MS through an integrated analysis. 

A large number of metabolites (26) were negatively and 15 metabolites were positively 

related to the energy balance of cows. Based on these data we concluded that apoptosis 

and cellular proliferation occurs in cows with NEB with increases in the synthesis of 

nucleic acids, cell membrane phospholipids, protein glycosylation, one-carbon 

metabolism as well as lipid metabolism.
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4.1. Abstract 

Alteration of metabolic status of dairy cows in early lactation is related to negative 

energy balance (NEB). In our study we show that metabolomics data can provide 

detailed information about energy balance and metabolic status. Little is known, 

however, about the relation between the metabolic profile of blood plasma and milk 

samples of dairy cows in NEB in early lactation. In this study, our aims were, i) to reveal 

metabolic profiles of plasma and milk samples by integrating results of nuclear magnetic 

resonance (NMR) and liquid chromatography triple quadrupole mass spectrometry (LC-

QQQ-MS); ii) to investigate the relationship between energy balance and metabolic 

profiles of plasma and milk samples. For this study 24 individual dairy cows were studied 

in lactation week 2. Body weight, feed intake, and milk yield were monitored daily. Milk 

composition (fat, protein, and lactose) and net energy balance were calculated on a 

weekly basis. Plasma and milk samples were collected weekly and analysed through 

NMR and LC-QQQ-MS. From all plasma metabolites measured, 27 metabolites in 

plasma were correlated (P < 0.05) with energy balance. These plasma metabolites are 

related to body reserve mobilization from body fat, muscle, and bone, increased blood 

flow, and gluconeogenesis. From all milk metabolites measured, 30 metabolites in milk 

were correlated (P < 0.05) with energy balance. These milk metabolites are related to 

cell apoptosis and cell proliferation. The metabolites detected in plasma and milk are to 

a limited extent interrelated, 9 metabolites in milk and plasma were correlated to each 

other and were correlated (P < 0.05) with energy balance. These metabolites are mainly 

related to hyperketonemia, β-oxidation of fatty acids, and one carbon metabolism either 

in the body, or in the mammary gland, or in both. In conclusion, metabolic profiles of 

plasma and milk clearly reflect the metabolism in the body or in the mammary gland of 

dairy cows in NEB in early lactation.
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4.2. Introduction 

In early lactation of dairy cows, the elevated energy requirements for milk production 

combined with a relatively low energy intake can result in a negative energy balance 

(NEB) [27,28]. A severe NEB is associated with a greater risk of metabolic disorders 

[115], and compromised health and fertility [8,116]. To compensate for the energy deficit 

in early lactation, dairy cows mobilize body reserves [8], such as, body fat and muscle 

protein [194]. Traditionally, the concentration of metabolites in plasma and in milk have 

been used to diagnose a NEB status and associated metabolic disorders. For example, 

changed profiles of free fatty acids in plasma are related to a NEB status [42], and BHB 

in plasma or in milk is a biomarker for subclinical ketosis in dairy cows [99,195]. 

In the past decade, the combination of metabolomics techniques and advanced statistical 

methods makes it possible to identify and quantify low abundant molecules from bio-

fluids. Using an integrated analysis complex correlation matrices can be obtained by 

combining results from NMR and LC-MS measurements with complementary data from 

plasma, milk, or urine [170,196]. In dairy cows, Klein et al. (2013) reported the detection 

of amino acids and carboxylic acids in plasma and milk using gas chromatography mass 

spectrometry and NMR and discussed only the metabolites related to ketosis [143]. 

Maher et al. (2013) reported that the majority of milk metabolites were not correlated to 

their concentration in plasma [170]. The biomarkers for heat stress of cows were 

identified through the spectra of LC-MS and NMR in plasma [57]. To our knowledge, 

the correlation between metabolic profiles of plasma and milk samples has only been 

studied to a limited extend [143,170]. In addition, the differences or similarities in 

metabolic profiles of cows based on plasma and milk samples that are associated with 

energy balance have not been studied systematically. 

In the current study, we hypothesize that metabolic profiles of cows based on plasma and 

milk might differ concerning their relation with energy balance. Aims of this study were 

to reveal metabolic profiles of cows based on plasma and milk samples by combining 

results of NMR and LC-QQQ-MS and to investigate the relation between energy balance 

and metabolic profiles of cows based on plasma and milk samples. 
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4.3. Materials and Methods 

4.3.1. Animals and sample collection 

The experimental protocol of the study was approved by the Institutional Animal Care 

and Use Committee of Wageningen University and was conducted at Dairy Campus 

research farm (WUR Livestock Research, Lelystad, the Netherlands). The experimental 

design was described previously [126]. In the current study, we focus on cows with 100 

percent energy level, and parity 2 or 3, as well as cows come from same batch. Earlier 

we reported the relation between milk metabolites identified through LC-QQQ-MS and 

energy balance of 31 dairy cows in lactation week 2 and 7 (Chapter 2), the LC-QQQ-

MS data obtained from milk samples of 24 cows in lactation week 2 were used again in 

the current study. These 24 dairy cows were randomly assigned to one of two DPL (0 or 

30 days) before calving. Prepartum, cows with a 0 day DPL received a lactation ration 

based on grass silage and corn silage (6.4 MJ net energy for lactation (NE)/kg dry matter). 

Cows with a 30 days DPL received a dry cow ration based on grass silage, corn silage 

and wheat straw (5.4 MJ NE/kg DM). Postpartum, all cows received the same basal 

lactation ration as provided to lactating cows prepartum plus additional concentrates. 

Postpartum, concentrate supply increased stepwise with 0.3 kg/d till 8.5 kg/d on 28 DIM. 

Body weight, milk yield, and feed intake were recorded daily. During lactation, cows 

were milked twice daily at ~0600 hours and ~1800 hours.  

Milk samples for analysis of fat, protein and lactose percentage (ISO 9622, Qlip, Zutphen, 

the Netherlands) were collected four times per week (Tuesday afternoon, Wednesday 

morning, Wednesday afternoon, and Thursday morning). Milk samples were analysed 

as a pooled sample per cow per week and used to calculate average fat, protein and 

lactose yield per week. Plasma samples for metabolomics studies were collected on 

Thursday after the morning milking, between 3 and 1 hours before the morning feeding. 

Milk samples for metabolomics studies were collected at Friday morning each week. All 

samples were collected and stored at -20 °C until analysis. Milk production traits were 

averaged per week. 

4.3.2. Energy intake and energy balance 

Roughage and concentrate were supplied separately and daily intakes were recorded per 

individual cow using roughage intake control troughs (Insentec, Marknesse, the 

Netherlands). Energy balance was calculated per week according to the Dutch net energy 
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evaluation (VEM) system, as the difference between energy intake and the estimated net 

energy requirements for maintenance and milk yield [33,168]. According to the VEM 

system, the daily requirement for maintenance is 42.4 VEM/kg0.75 of BW, the 

requirement for milk yield is 442 VEM/kg of fat- and protein-corrected milk. Energy 

intake and energy balance are expressed in kJ/kg0.75∙d, where kg0.75 indicates metabolic 

body size [33]. 

4.3.3. Sample preparation 

Sample preparation using in LC-MS and NMR was performed as described earlier by 

[66]. Briefly, the fat layer of milk was removed by addition of deuterated chloroform 

and subsequent centrifugation (12,000 rpm, 15 min, Centrifuge 5424, Eppendorf). Blood 

plasma and milk samples were first thawed to room temperature. Subsequently 175 μL 

of milk serum or blood plasma was mixed with 175 μL of phosphate buffer (pH = 7.0) 

and these samples were subsequently filtered to remove protein using a Pall 0.5 mL 10-

kDa cut-off spin filter (Millipore Corp., Billerica, MA) with centrifugation at 12,000 rpm 

for 15 min. 

4.3.4. Measurement in LC-QQQ-MS and data pre-processing 

Quantification of metabolites was described previously (Chapter 2). The fat layer of milk 

was removed by addition of deuterated chloroform and subsequent centrifugation 

(12,000 rpm, 15 min, Centrifuge 5424, Eppendorf). Measurements were performed with 

a triple quadrupole mass spectrometer (Shimadzu LC-QQQ-MS; LCMS-8040) using the 

PFPP method as described earlier [127,128]. The sample injection volume used was 1 

μL, and a single analysis took 25 minutes. From LC-QQQ-MS spectra, metabolites were 

regarded as reliably identified, when more than 60% observations in all samples showed 

a reliable value for a certain metabolite. 

4.3.5. Measurement in NMR and data pre-processing 

Prepared samples were measured using a Samples were measured using a Bruker NMR 

spectrometer Avance III with a 600 MHz/54 mm UltraShielded Plus magnet equipped 

with a CryoPlatform cryogenic cooling system, a BCU-05 cooling unit and an ATM 

automatic tuning and matching unit. Measurements were done at 300 K. 1D nuclear 

Overhauser enhancement spectroscopy (NOESY) spectra were obtained. Baseline 

corrections, alignment, and calibration to internal maleic acid was done for all spectra. 
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Assignment of metabolites resonances was performed using published literature, the 

Human Metabolome Database version 2.0 online library (http://hmdb.ca/), as well as 

internal standards. 

4.3.6. Integrated analyses and software 

If a metabolite could be identified by LC-MS as well as NMR, the intensity of this 

metabolite was quantified based on the NMR spectra. NMR is a very reliable technique 

with high reproducibility. Integrated analysis was applied as described earlier [166,170]. 

Briefly, Pearson correlation was applied to any two columns in a matrix. Pearson 

correlation coefficient (r) and corresponding P value were obtained by function “cor.test 

()” in R environment (version 3.3.3). 

4.4. Results 

4.4.1. Milk production and energy balance 

In lactation week 2, average (SD in parentheses) BW of 24 dairy cows was 627.4 (56.4) 

kg, milk yield was 28.1 (6.7) kg/d, fat- and protein-corrected milk production (FPCM) 

was 32.3 (7.3) kg/d, milk fat yield was 1.4 (0.4) kg/d, milk protein yield was 1.1 (0.2) 

kg/d, and milk lactose yield was 1.3 (0.3) kg/d. Energy balance of dairy cows was -180.0 

(219.1) kJ/kg0.75∙d, which was negatively correlated with milk yield and milk production 

traits, r ranged from -0.78 to -0.91 (Fig. 4.1). 

  

Fig. 4.1. The correlation of energy balance (EB) with milk yield, fat- and protein-corrected milk 

production (FPCM), milk fat yield, milk protein yield, and milk lactose yield.   
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Fig. 4.2. Metabolites identified from nuclear magnetic resonance spectra in plasma (A) and milk (B) of 

dairy cows in early lactation. Metabolites correlated with energy balance are labelled with red. 

Abbreviations: BHB, β-hydroxybutyrate; CMP, cytidine monophosphate; Gal-1-P, galactose-1-phosphate; Glu-1-P, 

glucose-1-phosphate; GPC, glycerophosphocholine; Nac-Gal, N-acetyl-glucosamine; Nac-Glu, N-acetyl-

glucosamine; Nac-Na, N-acetyl-neuraminic acid; PC, phosphocholine; P-creatine, phosphocreatine; phosphocholine; 

TMAO, trimethylamine N-oxide; UDP-Nac-Gal, uridine diphosphate-N-acetyl-galactosamine; UDP-Nac-Glu, 

uridine diphosphate-N-acetyl-glucosamine. 

4.4.2. Measurement by LC-MS and NMR and integrated analysis 

Plasma and milk samples of 24 dairy cows in lactation week 2 were measured using both 

LC-QQQ-MS and NMR. In LC-QQQ-MS spectra, 97 metabolites were initially targeted 

for both plasma and milk samples, and in LC-MS spectra of plasma 43 metabolites and 

of milk 41 metabolites could be reliably detected (Appendix Table 3.1 and 4.1). In the 

NMR spectra (0.01 ppm), bins which were correlated to energy balance were selected 

and the corresponding NMR resonances (peaks) were specifically integrated by carefully 

selecting peaks that did not show overlap in the NMR spectra (Appendix Table 3.1 and 

4.1). Through the combination of LC-MS and NMR (Fig. 4.2), a total of 53 and 65 

metabolites were identified from plasma and milk samples, respectively. Of these 

metabolites, 38 metabolites were detected in both blood plasma and milk. In NMR 
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spectra of blood, isobutyrate 1,2-propanediol, α-ketoisovalerate were tentatively labelled 

in NMR spectra of blood. In milk β-alanine was tentatively assigned. Detailed 

information of these metabolites in blood plasma and milk is presented in Appendix 

Table 3.1 and 4.1, respectively. 

4.4.3. Relation of energy balance with metabolic profiles in plasma and in milk 

Energy balance was correlated with several metabolites either in milk, or in plasma, or 

in both (P < 0.05). In total 9 detected metabolites were correlated with energy balance 

both in plasma and in milk, r ranged from -0.42 to -0.80 and from 0.43 to 0.59 (Fig. 4.3-

A). Many of these 9 metabolites showed a correlation between their concentrations in 

plasma and in milk, with r ranging from 0.49 to 0.92. Of the 53 detected and identified 

metabolites in plasma, 24 were correlated with energy balance of dairy cows (Fig. 4.3-

A, 4.3-B and 4.3-D), r ranging from -0.80 to -0.43, and from 0.43 to 0.84. Of the 65 

detected and identified metabolites in milk, 30 were correlated with energy balance of 

dairy cows (Fig. 4.3-A, 4.3-C and 4.3-D), r ranging from -0.79 to -0.42, and from 0.43 

to 0.71. In total 10 and 12 metabolites correlated with energy balance that were uniquely 

detected from plasma and milk samples, respectively (Fig. 4.3-D). 

Based on their correlation with energy balance, metabolites were grouped as one of three 

groups, i), energy balance correlated with metabolites both in plasma and in milk (Fig. 

4.3-A); ii), energy balance correlated with metabolites only in plasma (Fig. 4.3-B and 

4.3-D); iii), energy balance correlated with metabolites only in milk (Fig. 4.3-C and 4.3-

D). 

4.5. Discussion 

4.5.1. Metabolites in plasma and in milk related to energy balance  

In the current study, 9 metabolites detected in both plasma and milk were related to 

energy balance of dairy cows in early lactation and had a correlation between their 

concentration in plasma and milk. These metabolites were acetone, acetyl-carnitine, 

aspartate, BHB, carnitine, creatinine, glycine, hydroxyproline, and thymidine. 
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Fig. 4.3. Pearson correlations of energy balance with metabolites in lactation week 2. A, metabolites in 

both plasma and milk present a correlation with energy balance; B, metabolites in plasma, but not in 

milk present a correlation with energy balance; C, metabolites in milk, but not in plasma with a 

correlation with energy balance; D, unique metabolites in plasma or in milk present a correlation with 

energy balance. Cyan bar presents a positive correlation; red bar presents a negative correlation. 

Metabolites detected by NMR are marked by an asterisk. Value within brackets is coefficient of Pearson 

correlations. Value in middle of milk metabolites and plasma metabolites is r of metabolites between 

its concentration in plasma and in milk. 

Abbreviations: BHB, β-hydroxybutyrate; cAMP, 3',5'-cyclic adenosine monophosphate; CMP, cytidine 

monophosphate; FMN, Flavin mononucleotide; Glu-1-P, glucose-1-phosphate; Gal-1-P, galactose-1-phosphate; 

GPC, glycerophosphocholine; Nac-Gal, N-acetyl-galactose; Nac-Glu, N-acetyl-glucosamine; 3-methyl-KIV, 3-

methyl-2-oxovaleric acid; UDP-Nac-Gal, uridine diphosphate-N-acetyl-galactosamine; UDP-Nac-Glu, uridine 

diphosphate-N-acetyl-glucosamine. 
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Of all detected amino acids and their derivatives, glycine presents the most striking 

correlation with energy balance in both plasma (r = -0.80) and milk (r = -0.79). This was 

consistent with previous studies where dairy cows had an increased glycine 

concentration in plasma [197] and in milk [54] around calving. In dairy cows in NEB, 

an increased glycine concentration in plasma could be explained by the breakdown of 

muscle protein [197], or alternatively the de novo synthesis of glycine from threonine 

and serine was also suggested [155]. In our study, glycine in plasma had a positive 

correlation with its concentration in milk (r = 0.68). Plasma glycine, can be absorbed by 

the mammary gland of dairy cows [198]. Based on the results of our study we propose 

that the increased concentration of glycine in milk is due to one carbon processes in 

which choline is converted into glycine. Choline can provide methyl groups for the 

process of cell proliferation in the mammary gland [199]. Glycine in both plasma and 

milk (Chapter 2) has the potential to be used as an indicator for the energy balance and 

metabolic status of dairy cows [200]. As will be discussed in more detail below, we 

propose that the increased concentration of glycine in both plasma and milk is due an 

increase in one carbon metabolic processes in which choline is converted into glycine. 

Choline can provide methyl groups for the process of cell proliferation in the mammary 

gland [199]. In our study, energy balance was negatively correlated with Gly/Ala in 

plasma (r = -0.72) and in milk (r = -0.82), the correlation between Gly/Ala in plasma 

and Gly/Ala in milk was 0.85. The ratio of glycine to alanine (Gly/Ala) in plasma was 

used as a biomarker for mal-nutritional status of dairy cows in early lactation [200]. 

However, alanine itself was not correlated to energy balance (P < 0.05), probably 

because of the dual nature of alanine in the glucose-alanine cycle in muscle and 

hepatocytes. Based on our observations, we conclude that the previously proposed 

Gly/Ala ratio is more dependent on the fluctuation of the glycine levels than of the 

changes in the concentration of alanine and that monitoring glycine levels is more 

indicative of changes in energy balance than monitoring the Gly/Ala ratio. 

Energy balance was negatively correlated with thymidine in both plasma (r = -0.47) and 

milk (r = -0.51). Thymidine plays an important role in DNA synthesis [201]. The 

thymidine in the mammary gland can be speculated to originate from plasma, which is 

supported by the positive correlation (r = 0.72) between thymidine in plasma and in milk.  

Energy balance was negatively correlated with hydroxyproline (HYP) in both plasma (r 

= -0.45) and milk (r = -0.59). In early lactation, dairy cows are suffering from low 
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calcium and magnesium levels [202]. Therefore, dairy cows mobilize minerals from 

bone to maintain the mineral balance in plasma [202]. Released from bone degradation, 

HYP in plasma could indicate the balance between bone formation and degradation [203]. 

Moreover, the high concentration of HYP in milk of dairy cows in NEB indicates that 

HYP could be used for cell renewal in the mammary gland. During cell proliferation, 

HYP and proline are the major amino acids in collagen that is the main structural protein 

in connective tissues [204]. Both HYP and proline detected were present in high amounts 

in milk of cows in NEB (r = -0.61). The high concentration of hydroxyproline and proline 

in milk of cows in NEB indicates that the compounds could be used for forming 

connective tissues for cell renewal, possibly also in the uterus, rumen, and muscle. 

Epithelial cells of mammary gland are permeable to plasma HYP, which is supported by 

the strong positive correlation (r = 0.74) between HYP in plasma and in milk. 

Energy balance was negatively correlated with acetone and BHB in both plasma and 

milk. In addition, the correlation between acetone in plasma and in milk was 0.92, and 

between BHB in plasma and in milk was 0.80. In early lactation, the high requirement 

for glucose coincides with high plasma concentrations of ketone bodies [205]. Plasma 

ketone bodies (acetone and BHB) are well known to be related to the incomplete β-

oxidation of mobilized body fat [150,206], resulting in ketosis. Acetone and BHB, either 

in plasma, or in milk, were used to diagnose ketosis or subclinical ketosis of cows in 

early lactation [207,208], which is line with our result that energy balance is correlated 

with ketone bodies in both plasma and milk. In plasma, acetone and BHB could be used 

not only for energy supply [209], but also for the synthesis of short- and milk medium-

chain fatty acids in the mammary gland [77]. Results of current study could indicate a 

direct relation between ketone bodies in plasma and in milk, which is supported by the 

arteriovenous difference of BHB and acetoacetate plus acetate in the mammary gland 

[210]. This confirms the value of milk ketone body levels as an indicator for incomplete 

oxidation of fatty acids and ketosis at systemic level. 

The correlation of carnitine in plasma with its concentration in milk was 0.49, and the 

correlation of acetyl-carnitine in plasma with its concentration in milk was 0.65, which 

is suggested to be related to the role of carnitine and acetyl-carnitine in fat metabolism 

[157]. Carnitine and acetyl-carnitine play important roles to transport activated long-

chain fatty acids from cytosol into mitochondria, which happens both in liver and in the 

mammary gland [211]. The correlation of carnitine, acetyl-carnitine, BHB, and acetone 
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in plasma with their concentration in milk, and their positive correlation with energy 

balance indicates the oxidation of fatty acids in the liver, and the use of fatty acids as 

energy source and for milk fat synthesis in the mammary gland of dairy cows in NEB 

status. 

Energy balance was negatively correlated with citrate in milk (r = -0.74). Citrate not only 

plays a role in the TCA cycle, but also forms one of the main products in buffer systems 

in milk [191]. In our previous study, milk citrate was an indicator of energy balance of 

dairy cows (Chapter 2). In the mammary gland, epithelial cells are impermeable to citrate 

[191], we thus speculate that the concentration of citrate in milk can reflect the fat 

metabolism in the mammary gland itself. 

4.5.2. Metabolites in plasma related to energy balance  

In the current study, a number of plasma metabolites were related to energy balance, but 

no such relationship was observed in milk samples. These plasma metabolites were 

arginine, pantothenate, allantoin, glucose, and epinephrine. 

Energy balance was positively correlated with arginine in plasma (r = 0.59), but not in 

milk (P > 0.05). In the urea cycle (Fig. 4.4), arginine metabolism is not only related to 

nitrogen metabolism but also related to nitric oxide (NO) production. Nitric oxide is a 

major vasodilator factor [212]. The low level of arginine in dairy cows in NEB indicates 

that NO in plasma increases with a concomitant increase in blood flow for an increased 

supply of nutrients to support milk production in the mammary gland. The increased 

blood flow also facilitates the absorption of nutrients from the small intestine [213]. In 

the current study, energy balance was negatively correlated with plasma pantothenate (r 

= -0.62) and plasma allantoin (r = -0.70). Both pantothenate and allantoin are nutrients 

for dairy cows, which are derived from feed sources or produced by ruminal microbes 

[117,214]. Further identification of the plasma metabolites from rumen microbes may 

give insights into rumen function and its effect on milk composition of dairy cows. 
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Fig. 4.4. The nitric oxide (NO) production from the urea cycle, and the association between urea cycle 

and tricarboxylic acid (TCA) cycle. 

Abbreviations: Arg-S, argininosuccinate; ATP, adenosine triphosphate; CPS I, carbamoyl phosphate synthetase I. 

Energy balance was positively correlated with plasma glucose (r = 0.80), which is in line 

with earlier studies that plasma glucose decreases after parturition [215,216]. Dairy cows 

use glucose not only as an energy source [217], but also as the precursor to synthesize 

lactose in milk [218] and as methyl donor via one-carbon metabolism in DNA and 

histone methylation during cell renewal in the mammary gland [155,219]. Plasma 

glucose concentration is regulated by insulin that is low for dairy cows in NEB [126]. A 

low insulin concentration decreases the uptake of glucose by peripheral tissue and thus 

facilitates uptake of glucose by the mammary gland which has insulin-independent 

glucose transporters [220]. In the mammary gland, one molecule glucose is converted to 

galactose, which is combined with another molecule of glucose to synthesize lactose 

[172]. In our study, low glucose concentration in plasma during NEB could mirror the 

high priority of mammary gland for glucose [160,221]. 

The shortage of glucose could be compensated by gluconeogenesis. For example, 

branched-chain amino acids (BCAAs, isoleucine, leucine, and valine) can be used for 

gluconeogenesis in liver [222]. In the current study, however, none of BCAAs in plasma 

was correlated with energy balance in the current study (P < 0.05).  

Body fat metabolism accounts for the most of energy lost or gained of dairy cows [223], 

however, muscle protein is also mobilized [223,224]. In plasma, energy balance was 

negatively correlated with plasma creatine (r = -0.57) and plasma creatinine (r = -0.76), 

which indicates that energy balance is associated with the mobilization of muscle protein 
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in dairy cows in NEB. Our results are in line with a previous study that the mobilized 

muscle protein is related to the greater plasma creatine and creatinine in cows with low 

energy balance [225]. Energy balance was correlated with creatinine both in plasma (r = 

-0.51) and in milk (r = -0.60). Energy balance was correlated with creatine only in plasma 

(r = -0.56), and the permeability of mammary epithelium cells to creatine is still 

unknown. In the process of protein mobilization, the released amino acids in plasma are 

intensively used for milk protein synthesis or gluconeogenesis where not all amino acids 

are used to the same extent [144].  

Epinephrine in plasma is one of hormone presenting a correlation with energy balance 

(r = -0.43), which is consistent with that infusion of epinephrine could cause increased 

free fatty acids (FFA) and glucose in plasma [226,227]. The plasma glucose is low in 

dairy cows in NEB, which could be regarded as the hormonal regulation for ruminants 

during the adaptation period [226]. Besides its role to stimulate body fat mobilization in 

early lactation [11], epinephrine is known to stimulate gluconeogenesis in the liver 

thereby compensating the low levels of glucose to some extent [228]. In mammals, 

epinephrine could be synthesized via tyrosine in adrenal gland [229]. Tyrosine in plasma, 

however, was not correlated with energy balance (P > 0.05). 

4.5.3. Metabolites in milk related to energy balance 

Milk metabolites can originate from several sources, including being transferred from 

blood, being leaked from damaged somatic cells and bacteria present in milk, or being 

secreted from mammary epithelial cells [125,230]. The correlation between energy 

balance and metabolites in milk, rather than in plasma could indicate the metabolism in 

the mammary gland of dairy cows in lactation week 2. 

Energy balance was negatively correlated with galactose-1-phosphate (Gal-1-P, r = -0.57) 

and glucose-1-phosphate (Glu-1-P, r = -0.54) in milk. Both Gal-1-P and Glu-1-P are two 

intracellular intermediates in lactose synthesis [134]. Great levels of Gal-1-P and Glu-1-

P of dairy cows in NEB were suggested as the leakage of cellular content due to cell 

apoptosis in the mammary gland in early lactation [66]. Cell apoptosis happens in 

coordination with cell proliferation, which is indicated by the 65% increased total DNA 

used for meiosis around 10 days pre- and post-partum [180]. The increased nucleotides 

metabolism could also explain the positive correlation of energy balance with milk 

cytidine monophosphate (CMP, r = -0.66) and thymidine (r = -0.51). The positive 
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correlation between thymidine in plasma and its concentration in milk (r = 0.72) 

indicates that the source of thymidine in the mammary gland is plasma. Besides the 

synthesis of nucleotides, the correlation of energy balance with milk ethanolamine (r = 

0.52) and milk GPC (r = 0.40, P = 0.05), could be related to the process of cell membrane 

synthesis [182]. Further studies are expected to detect more correlation of energy balance 

with metabolites related to cell membrane synthesis, such as, phosphocholine (PC, r = -

0.39, P = 0.06). In the context of cell membrane synthesis, the correlation of energy 

balance with detected acetyl-derivatives including N-acetyl-galactosamine (r = 0.54), N-

acetyl-glucosamine (r = 0.69), and UDP-N-acetyl-galactosamine (r = -0.66), could be 

explained by their roles in the glycosylation of proteins. 

If the ratio of GPC-to-PC in milk is less than 2.5, dairy cows have a great risk for 

developing ketosis [64]. In our study, energy balance was positively correlated with the 

ratio of GPC-to-PC (r = 0.49, P = 0.02), which indicates that dairy cows in NEB have 

an increased risk for ketosis. Therefore, the correlation between energy balance and 

metabolites in milk could indicate the apoptosis and proliferation of cell in the mammary 

gland of dairy cows in NEB. 

Energy balance was correlated with choline in milk (r = 0.71), but not with choline in 

plasma. Choline acts as a methyl donor for biological processes involving the folate cycle, 

redox balance status and cell renewal [145], and choline is regarded as a limiting nutrient 

for transition dairy cows [147]. The supplementation of rumen-protected choline (RPC) 

can increase milk production [231,232], which is possible due to the facilitating effect 

of choline to export fat into plasma from the liver in cows [150,233]. Based on this 

hypothesis, dairy cows supplemented with RPC should have low plasma BHB and FFA. 

In our study, choline in plasma is not correlated with plasma BHB or acetone (P > 0.05), 

which is supported by studies that supplemented PRC is not correlated with a decreased 

plasma BHB and FFA of dairy cows [231,234]. We speculate that the majority of choline 

is consumed in the mammary gland to facilitate the cell proliferation in early lactation, 

which might be related to the start of a new lactation and increase in milk production. 

4.5.4. Integrated analysis by combination of NMR and LC-MS  

A series of metabolites in plasma and in milk, for example, plasma BHB and milk citrate, 

have been reported in previous studies using either mass spectrometry, or NMR, or both 

[54,125,235]. A total of 12 metabolites (either in plasma, or in milk) were detected both 
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in NMR and in LC-MS. These metabolites showed a correlation r more than 0.85 

between NMR and LC-QQQ-MS measurements, in plasma, alanine (r = 0.95), choline 

(r = 0.87), creatine (r = 0.87), creatinine (r = 0.85), glutamine (r = 0.85), glycine (r = 

0.96), lactate (r = 0.95), and valine (r = 0.95); in milk, acetyl-carnitine (r = 0.97), choline 

(r = 0.98), CMP (r = 0.99), and uridine (r = 0.97). The high correlations of intensity of 

these metabolites between NMR and LC-MS indicated that both NMR and LC-QQQ-

MS measurements were performed with the desired quality and that the datasets were 

reliably interpreted. 

In general, to our knowledge, our study is the first that reports the metabolic profiles in 

plasma and in milk, and their correlation with energy balance of dairy cows in early 

lactation. Of all metabolites related to energy balance, the majority of metabolites either 

in plasma, or in milk, could be related to the metabolic pathways either in body, or in the 

mammary gland, or in both. 

4.6. Conclusion 

In this study, we revealed metabolic profiles in plasma and milk of 24 dairy cows in 

lactation week 2 through the combined measurement of NMR and LC-MS. A total 53 

and 65 metabolites were identified in plasma and in milk, respectively. In total, 27 

metabolites in plasma were correlated with energy balance. These plasma metabolites 

are related to body reserve mobilization from body fat, skeleton muscle, and bone, 

increased blood flow, and gluconeogenesis. In total, 30 metabolites in milk were 

correlated with energy balance. These milk metabolites are related to the apoptosis and 

proliferation of cells in the mammary gland. In total, 9 metabolites were related to energy 

balance both in plasma and in milk. These metabolites can reflect the metabolic pathways 

of dairy cows either in body, or in the mammary gland, or in both, which are mainly 

related to the hyperketonemia, β-oxidation of fatty acids, and one carbon metabolism 

during cell proliferation in early lactation.
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5.1. Abstract 

Due to increased milk production in early lactation dairy cows normally have a negative 

energy balance (NEB). In our metabolomics studies as discussed in this thesis, we 

observed that in the mammary gland of dairy cows in NEB both cell apoptosis and cell 

renewal are paramount. As a consequence of these cellular processes differences in milk 

protein composition as well as differences in post translational modifications of milk 

proteins can be expected to occur. In a bottom-up proteomics study using a nano-LC-

Orbitrap FT-MS system, we focused on differences in post translational modifications 

with special emphasis on protein methylation as well as differences in protein 

concentration. Immunoglobulin and β-lactoglobulin had a decreased methylation level 

for cows in NEB, supporting the results obtained from our metabolomics studies that 

mammary gland cells of cows in NEB have a lack of methyl-donors. Legumain, α-2-HS-

glycoprotein, vitamin D binding protein, glycoprotein 2, folate receptor alpha, peptidyl-

prolyl cis-trans isomerase B and apolipoprotein A-IV were upregulated in milk of cows 

in NEB. Two proteins, IGK and an immunoglobulin-like protein, were downregulated 

in NEB.
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5.2. Introduction 

In early lactation of dairy cows, elevated energy requirements for milk production result 

in an energy deficit or negative energy balance (NEB) [27,28]. A severe NEB is related 

to a great risk of metabolic disorders and related diseases, such as fatty liver and ketosis 

[158,159]. Ketosis in dairy cows was observed to be related to the concentration of 

metabolites in plasma or in milk [64]. In our studies we could relate energy balance to 

the alteration of metabolic profiles both in plasma and in milk (Chapter 2, 3, and 4). 

There are very few milk proteomics studies related to cows in NEB [66]. An improved 

proteomic profile of milk could result in a better understanding of biological processes 

involved in negative energy balance. 

For the past decades, proteomics techniques have identified and characterized a 

numerous amount of proteins in milk [69,236,237]. Proteins present in milk have been 

related to functions important for the immune and digestive systems of calves [238] as 

well as for differences between Holstein and Jersey breeds of dairy cows [236]. There 

have been limited studies on studies on post-translational modifications of proteins in 

milk and most of these studies are focusing on glycosylation patterns. Glycosylation 

patterns of milk proteins are considered important for the stability and the biological 

function of the proteins involved. Based on our metabolomics studies as discussed 

chapter 2, 3 and 4 we expect changes to occur in important metabolic pathways in cells 

in the mammary gland in cows in early lactation. One of the pathways directly related to 

NEB was the folate cycle, a metabolic process related to DNA/RNA synthesis and redox 

control. The amount of choline in milk was decreased in cows in NEB. Choline is the 

major methyl donor for the one carbon cycle and we expect that differences in milk 

protein methylation might occur in relation to energy balance of the dairy cows. Protein 

methylation is a posttranslational modification that occurs predominantly on arginine 

and lysine residues [239,240]. 

The objective of this (preliminary) study is to apply advanced proteomic techniques to 

reveal differences in methylation of milk proteins and to reveal differences in protein 

composition. Based on this study we could establish a relationship between energy 

balance and the methylation status of some important proteins in milk. 
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5.3. Materials and Methods 

5.3.1. Animals and energy balance 

The experimental protocol for the study was approved by the Institutional Animal Care 

and Use Committee of Wageningen University and was conducted at Dairy Campus 

research farm (WUR Livestock Research, Lelystad, the Netherlands). The experimental 

design was described previously [87]. In Chapter 2, we reported the correlation between 

milk metabolites identified through LC-MS and energy balance of 31 dairy cows in 

lactation week 2, of these 31 cows milk samples of 5 cows were used in the current study. 

Energy balance of individual dairy cows was calculated as discussed before in Chapter 

2. 

5.3.2. Milk serum separation 

Milk samples were centrifuged at 1,500 g for 10 min (Eppendorf centrifuge). The pellet 

was removed and the obtained supernatant was ultra-centrifuged at 100,000 g for 90 min 

at 30 °C (Beckman L-60, rotor 70Ti). After ultracentrifugation, samples were separated 

into three phases. The top layer was milk fat, the middle layer was milk serum, and the 

bottom layer was casein. Milk serum was used for the protein concentration 

determination (BCA assay) and filter aided sample preparation (FASP) as described 

below. 

5.3.3. BCA assay 

Milk protein concentration was determined by BCA Protein Assay Kit 23225 (Thermo 

Scientific Pierce), according to the manufacturer’s instructions. Bovine serum albumin 

(BSA) was used as standard for making a calibration curve. Subsequently, the milk 

serum protein concentration was determined, based on the standard curve, which covers 

the protein concentration from 0.02–2μg/μL. 

5.3.4. Filter aided sample preparation 

The methods of proteomics analysis are based on two previous articles [238,241]. Milk 

serum samples (20 μL) were diluted in SDT-lysis buffer (100 mM Tris/HCl pH 8.0+0.1 

M Dithiotreitol) to get a 1 μg/μL protein solution. Then, 20 μL of sample was transferred 

to a low binding Eppendorf tube with 180 μL 100mM Tris/HCl pH 8.0+8 M urea 

containing acrylamide. The low binding Eppendorf tube was then incubated for 10 min 
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while mildly shaking at room temperature. All of the sample was transferred to a Pall 3K 

Omega filter (10-20 kDa cutoff, OD003C34; Pall, Washington, NY, USA) without 

touching the filters poly-propylene side, and centrifuged at 12,000 rpm for 30 min. To 

the sample 100 μL 50 mM NH4HCO3 was added. Digestion was done overnight by 

adding trypsin while mildly shaking at room temperature. Finally, the sample was 

centrifuged at 12,000 rpm for 30 min, and 3.5 μL 10% trifluoroacetic acid (TFA) was 

added to the filtrate to adjust the pH value of the sample to around 2. 

5.3.5. Measurement in LC-MS/MS and data analyses 

Trypsin digested milk serum samples (18 µL) was injected on a 0.10*30 mm Magic 

C18AQ 200A 5 µm beads (Bruker Nederland B.V.) pre-concentration column (prepared 

in house) at a maximum pressure of 800 bar. Peptides were eluted from the pre-

concentration column onto a 0.10*200 mm ReproSil-Pur 120 C18-AQ 1.9 µm beads 

analytical column with an acetonitrile gradient at a flow of 0.5 µL/min, using a gradient 

elution from 9% to 34% acetonitrile in water with 0.1 v/v% formic acid in 50 min. The 

column was washed using an increase in the percentage acetonitrile to 80% (with 20% 

water and 0.1 v/v% formic acid in the acetonitrile and the water) in 3 min. An Upchurch 

micro-cross was positioned between the pre-concentration and analytical column. An 

electrospray potential of 3.5 kV was applied directly to the eluent via a stainless-steel 

needle fitted into the waste line of the micro-cross. Full scan positive mode FTMS 

spectra in LTQ-Orbitrap XL (Thermo electron, San Jose, CA, USA) were measured 

between m/z of 380 and 1400. CID fragmented MSMS scans of the four most abundant 

2 and 3+ charged peaks in the FTMS scan were recorded in data-dependent mode in the 

linear trap (MSMS threshold = 5,000). 

Each run with all MSMS spectra obtained was analysed with Maxquant with Andromeda 

search engine[242]. Acrylamide modification of cysteine was set as fixed modification. 

Oxidation of methionine, N-terminal acetylation, de-amidation of asparagine or 

glutamine and methylation of lysine or arginine were set as variable modification for 

both identification and quantification. The bovine reference database for peptides and 

protein searches was downloaded as FASTA files from Uniprot 

(https://www.uniprot.org/) with reverse sequences generated by Maxquant. A set of 31 

protein sequences of common contaminants was added including Trypsin (P00760, 

bovine), Trypsin (P00761, porcine), Keratin K22E (P35908, human), Keratin K1C9 
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(P35527, human), Keratin K2C1 (P04264, human), and Keratin K1C1 (P35527, human). 

A maximum of two missed cleavages were allowed and mass deviation of 0.5 Da was 

set as limitation for MS/MS peaks and maximally 4.5 ppm deviation on the peptide m/z 

during the main search. The length of peptides was set to at least seven amino acids. 

Finally, proteins were displayed based on minimally 2 distinct peptides of which at least 

one unique. 

The function of the identified proteins was checked in the UniprotKB database released 

(http://www.uniprot.org/). To select the milk proteins that significantly correlated with 

energy balance, a Pearson correlation was calculated using the Log LFQ intensities from 

the MaxQuant filtered protein groups output table. 

5.4. Results and Discussion 

In lactation week 2, the average body weight of the 5 dairy cows was 640.1 (56.4) kg, 

milk yield was 28.1 (6.7) kg/d, FPCM was 32.3 (7.3) kg/d, milk fat yield was 1.4 (0.4) 

kg/d, milk protein yield was 1.1 (0.2) kg/d, and milk lactose yield was 1.3 (0.3) kg/d. 

The energy balance of 5 dairy cows was -326.7, -49.6, 80.4, 102.8 and 177.2 kJ/kg0.75∙d, 

respectively. 

The protein concentration in milk serum of dairy cow 1, 2, 3, 4, and 5 was 1.0, 1.3, 1.9, 

1.4, and 1.3 μg/mL, respectively.  

A total of 219 proteins were identified and quantified after strict filtering (see materials 

and methods). From these 219 proteins, the methylation sites of 32 proteins could be 

identified and quantified. Lysine or arginine methylation is a well-known post-

translational modification found on both nuclear and cytoplasmic proteins [243,244]. 

The methylation of lysine and arginine residues is catalysed by methyltransferases. For 

protein methylation processes S-adenosylmethionine is required. Proteins that are 

methylated are involved in a number of different cellular processes, including 

transcriptional regulation, RNA metabolism and DNA damage repair [245]. In dairy 

cattle in NEB there is a heavy demand for S-adenosylmethionine for processes related to 

DNA/RNA synthesis and redox balance. In our metabolomics studies we reported a 

choline deficiency in cows in NEB. We expected that this choline deficiency could be 

reflected in post translational modifications of proteins. Of these 32 proteins, 2 milk 

proteins, immunoglobulin and β-lactoglobulin were observed to have post-translational 
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methylation differences that were related to energy balance (Fig. 5.1). Immunoglobulin 

and β-lactoglobulin are two abundant proteins in milk. Differences in methylation status 

of lower abundant proteins could not be established with certainty and will require more 

extensive studies with either higher concentrations of proteins or more sensitive 

instrumentation. 

Fig. 5.1. The scatter plots of energy balance of 5 individual cows with 2 milk proteins with altered 

methylation level. Each cow has triplication in proteomics measurement. The outlier is not presented 

in the plot. 

We also observed differences in concentrations of proteins in the samples measured. 

Based on the Pearson correlation analysis of energy balance and LFQ intensities, energy 

balance was negatively correlated with 7 milk proteins legumain, alpha-2-HS-

glycoprotein, vitamin D binding protein, glycoprotein 2, folate receptor alpha, peptidyl-

prolyl cis-trans isomerase B, and apolipoprotein A-IV. It should be noted that also some 

keratins (which are likely contaminants) correlated with energy balance. Energy balance 

was positively correlated with 2 proteins related to the immune system, an 

immunoglobulin-like and immunoglobulin-kappa like protein (Fig. 5.2). 

The 7 proteins shown to be upregulated in negative energy balance are corroborating our 

metabolic studies. Apolipoprotein A-IV has a role in VLDL secretion and catabolism. 

Plasma free fatty acids (FFA) that are mobilized from adipose tissue are negatively 

correlated with energy balance as discussed in chapter 4. Free fatty acids are incorporated 

into very-low density lipoproteins (VLDL) which can be transported to the mammary 

gland and used for milk fat synthesis. Energy balance was negatively correlated with 

folate receptor alpha in milk (r = -0.92). Folate receptor alpha is related to folate 

metabolism [246,247]. In Chapter 2, 3, and 4, we have indicated that there is an increased  
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Fig. 5.2. The scatter plots of the correlation of the amount of 9 milk proteins with energy balance for 5 

individual cows. 

in DNA synthesis in the mammary gland of dairy cows in NEB due to an increase in cell 

proliferation. The negative correlation between energy balance and milk protein folate 

receptor alpha could further supports our findings on the protein level. Alpha-2-HS-

glycoprotein, increased in cows in NEB, is reported to be promoting endocytosis and is 

important for regulation of bone mineralization (calcium). Legumain which is 

upregulated in cows in NEB is reported to have a cysteine-type endopeptidase activity 

and could play a role in cell division and regulation. Vitamin D binding protein is a 

multifunctional protein, involved in vitamin D binding and transport from plasma into 

the mammary gland cells. Glycoprotein 2 is an integral membrane protein, important in 

the innate immune response by binding pathogens such as enterobacteria. Peptidyl-prolyl 

cis-trans isomerase B is a protein involved in cis-trans isomerization of proline peptide 
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bonds, a process important for protein folding of type I collagen. We proposed based on 

our metabolomics data (Chapter 2, 3 and 4) that proline and hydro-proline are 

upregulated in the mammary gland because of cell renewal with build-up of collagen for 

connective tissues. The upregulation of peptidyl-prolyl cis-trans isomerase B supports 

our hypothesis. 

The down-regulation of two immunoglobulin-like proteins in NEB is surprising. In 

previous studies by Lu et al. (2013) it was shown that milk of cows in severe NEB 

showed higher concentrations of acute phase proteins related to the innate immune 

system [66]. Possibly the two immunoglobulin-like proteins are part of the adaptive 

immune system part of which might be downregulated in cows in NEB. Future studies 

will hopefully reveal in more detail the mechanistic relationship between the innate and 

adaptive immune system in cows in NEB. 

5.5. Conclusions 

This preliminary study is the first to show the correlation of energy balance of the 

methylation level of milk proteins and with the amount of milk proteins of individual 

dairy cows. Cows in negative energy balance had lower methylation status of two major 

abundant proteins in milk, immunoglobulin and β-lactoglobulin, which fits with the 

metabolomics data of cows in NEB, where we observed a decrease and a possible 

limitation in methyl donors for one carbon processes.
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6.1. Abstract 

Metabolic status of dairy cows in early lactation can be evaluated through the 

concentrations of plasma β-hydroxybutyrate (BHB), free fatty acids (FFA), glucose, 

insulin, and insulin-like growth factor 1 (IGF-1). These plasma metabolites and 

metabolic hormones, however, are difficult to measure on farm. Instead, easily obtained 

on-farm cow data, such as milk production traits, have a potential to predict metabolic 

status. Here we aim, i) to investigate whether metabolic status of individual cows in early 

lactation could be clustered based on their plasma values, and ii) to evaluate machine 

learning algorithms to predict metabolic status using on-farm cow data. Through 

lactation week 1 to 7, plasma metabolites and metabolic hormones of 334 cows were 

measured weekly and used to cluster each cow into one of 3 clusters per week. The 

cluster with the greatest plasma BHB and FFA, and the lowest plasma glucose, insulin 

and IGF-1 was defined as a relatively poor metabolic status; the cluster with the lowest 

plasma BHB and FFA, and the greatest plasma glucose, insulin and IGF-1 was defined 

as a relative good metabolic status; the intermediate cluster was defined as a relative 

average metabolic status. Most dairy cows were attributed to an average or good 

metabolic status, limited number of cows were attributed to a poor metabolic status (10 

to 50 cows per lactation week). On-farm cow data, including dry period length, parity, 

milk production traits, and body weight, were used to predict metabolic status with a 

good or an average metabolic status with 8 machine learning algorithms. Random Forest 

(error rate ranging from 12.4% to 22.6%) and Support Vector Machine (SVM, error rate 

ranging from 12.4% to 20.9%) are top 2 best performing algorithms to predict metabolic 

status using on-farm cow data. Random Forest had a higher sensitivity (range 67.8% to 

82.9% during week 1 to 7) and negative predictive value (range: 89.5% to 93.8%), but 

lower specificity (range: 76.7% to 88.5%) and positive predictive value (range: 58.1% 

to 78.4%) than SVM. In Random Forest, milk yield, fat yield, protein percentage, and 

lactose yield had important roles in prediction, but their rank of importance differed 

across lactation weeks. In conclusion, dairy cows could be clustered for metabolic status, 

based on plasma metabolites and metabolic hormones. Moreover, on-farm cow data can 

predict cows in a good or an average metabolic status with best performance for Random 

Forest and SVM of all algorithms. 
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6.2. Introduction 

In early lactation, high-yielding dairy cows suffer from body fat mobilization [28,248], 

and drastic metabolic changes [115,249]. Effective and accurate detection of metabolic 

status of dairy cows could benefit cow health and welfare by application of dietary and 

management strategies. Plasma metabolites and metabolic hormones have been used to 

indicate metabolic status of cows [20,250,251]. A poor metabolic status is related not 

only to increased plasma concentration of BHB and free fatty acids (FFA), and a 

decreased concentration of metabolic hormones, such as plasma insulin and insulin-like 

growth factor 1 (IGF-1) [252,253], but also to an increased incidence of metabolic 

disorders like ketosis and fatty liver [17,115,158]. Moreover, a poor metabolic status in 

early lactation, indicated by elevated plasma FFA or elevated BHB concentration, was 

associated with an increased risk for displaced abomasum, culling and reduced 

reproductive success, as reviewed by McArt et al. (2013) [254]. In addition, incidence 

of metabolic problems in early lactation has been related to an altered lactation curve 

with a lower peak milk yield and reduced 305-d milk production [255]. Blood sampling, 

however, is an invasive method, with limited applicability on the farm. A possible 

alternative is to predict metabolic status with on-farm cow data that are easily obtained, 

for example, body weight (BW), milk production traits, and parity. Milk production traits 

have been used to predict plasma BHB [256,257], and energy status at herd level of cows 

[23]. We hypothesize that on-farm cow data can predict metabolic status of dairy cows 

in early lactation. 

Machine learning method uses statistical techniques to predict cow performance or 

disease events using large datasets [75,76]. On farm, available cow data usually include 

a series of correlated variables, for example, fat yield is correlated with milk yield [79]. 

Machine learning algorithms, however, can deal with complicated correlations caused 

by ever increasing number of variables [80], for example, Decision Tree has a good 

predictive performance by correlation-based variable selection [258], and Bayesian 

inference could mitigate the effect of correlations among a set of variables [259]. 

Machine learning algorithms, such as Naive Bayes, Random Forest, and Artificial Neural 

Networks (ANN), have been used to predict milk yield [81], breeding values [75], 

reproductive performance [76,83], and to identify mastitis [84,85] in dairy cows. 

Additionally, cluster analysis was used to define metabolic status in dairy cows in early 

lactation [174,260]. To our knowledge, however, the application of machine learning 
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algorithms to predict metabolic status of dairy cows in early lactation using on-farm cow 

data has never been published. In this study, we aim, i) to define metabolic status of dairy 

cows through cluster analysis based on their plasma metabolites and metabolic hormones 

through lactation week 1 to 7; and ii) to predict metabolic status of those cows using on-

farm cow data through machine learning algorithms. 

6.3. Materials and Methods 

6.3.1. Data and animals 

Data was collected from two earlier studies with protocol number 2010026 (study I) 

[86,88] and 2014125 (study II) [126]. The experimental protocols were approved by the 

Institutional Animal Care and Use Committee of Wageningen University and were 

conducted at Dairy Campus research herd (WUR Livestock Research, Lelystad, the 

Netherlands). In study I, 168 Holstein-Friesian cows were assigned randomly to 1 of 3 

groups with 0-d, 30-d or 60-d dry period length (DPL), 64 cows with a 0-d DPL (parity 

2: 10 cows; parity ≥ 3: 54 cows); 69 cows with a 30-d DPL (parity 2: 11 cows; parity ≥ 

3: 58 cows); 74 cows with a 60-d DPL (parity 2: 10 cows; parity ≥ 3: 64 cows). After 

one lactation within the experiment, 130 cows were monitored for a second lactation 

within study I [88]. In study II, 127 Holstein-Friesian cows were assigned randomly to 

1 of 2 groups with either a 0-d or 30-d DPL: 84 cows with a 0-d DPL (parity 2: 40 cows; 

parity ≥ 3: 44 cows); 43 cows with a 30-d DPL (parity 2: 19 cows; parity ≥ 3: 24 cows). 

During all lactation stages in both study I and II, cows were housed in a free stall with 

slatted floor and cubicles, and cows were milked twice daily. Before calving, dry cows 

were fed a dry cow diet that consisted of grass silage, corn silage, wheat straw, rapeseed 

meal, urea, and vitamins and minerals (5.4 MJ NEL/kg DM), whereas lactating cows 

were fed a lactation diet supporting 25 kg of milk. All cows were fed 1 kg/day of 

glucogenic or lipogenic concentrate from 10 days before the expected calving date. 

Postpartum, the experimental concentrate supply was increased in increments of 0.5 

kg/day until a level of 8.5 kg/day was reached. Details on diet composition were 

presented earlier [86,88,126]. 

6.3.2. Measurements 

Body weight and milk production traits. Body weight and milk yield were recorded daily 

and averaged per week. Milk fat, protein, and lactose percentage, and SCC were analysed 
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per cow per week [(ISO9622, 2013), Qlip, Zutphen, the Netherlands]. Fat- and protein-

corrected milk (FPCM) was calculated as: 

FPCM (kg) = [0.337 + 0.116 × fat (%) + 0.06 × protein (%)] × milk yield (kg) [167] 

Blood collection and analysis. During week 1 to 7 postpartum, 10 mL of blood was 

sampled every Thursday morning from the coccygeal vein into evacuated EDTA tubes 

(Vacuette, Greiner BioOne, Kremsmunster, Austria). Blood samples were kept on ice 

before centrifugation for plasma isolation (3,000 × g for 15 min, 4 °C). Plasma samples 

were stored at -20 °C before analysis. Plasma analysis has been previously described 

[261,262]. In short, the concentration of BHB was measured with kit no. RB1007 

(Randox Laboratories, Ibach, Switzerland), FFA with kit no. 994-75409 (Wako 

Chemicals, Neuss, Germany), glucose with kit no. 61269 (BioMerieux, Marcy l’Etoile, 

France) [262], insulin with kit no. PI-12K (EMD Millipore Corporation, Billerica, MA, 

USA), and IGF-1 with kit no. A15729 (Beckman Coulter, Fullerton, CA, USA) [261].  

6.3.3. Data transformation 

Plasma glucose displayed a normal distribution in all lactation weeks. Raw data of FFA, 

BHB, insulin, and IGF-1 were first log transformed to correct for skewness. 

6.3.4. Principal component analysis and correlation analysis 

Principal component analysis (PCA) was performed to transform the data of 5 plasma 

metabolites and hormones into several orthogonal principal components (PC, [263]) for 

visualization and interpretation purposes. Data was centered and scaled to unit variance 

before analysis. The number of PC to retain was determined using the “elbow rule” [264]. 

The bi-plot (by 2-dimension) was used to investigate the patterns of variation of data and 

visualize the clustering with respect to different metabolic statuses. The correlation 

coefficient (r) among 5 plasma metabolites and hormones was determined by Pearson 

correlation. 

6.3.5. Cluster analysis 

In the current study, we assumed that the different metabolic status of dairy cows could 

be grouped through cluster analysis per lactation week. From study I and II, a total of 

220, 315, 311, 310, 301, 299, and 298 cows with complete records for both blood and 

milk were used through lactation week 1 to 7 (Table 6.1). To assign dairy cows to 
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metabolic status in each lactation week, K-means cluster analysis was applied on weekly 

plasma BHB, FFA, glucose, insulin, and IGF-1. Briefly, prerequisite cluster number k 

was determined by “Average Silhouette” method [265]. Then a set of N samples X(1, 2.., i, 

i+1, ..., n) were clustered into different Cj (1, 2...., k), mean (μk) of all samples in each cluster is 

called the cluster “centroid”. Based on an iteration (maximum number is 10) that puts 

one sample into a cluster each time, K-means algorithm aims to choose the centroid with 

minimized within-cluster sum of squared Euclidean distance among each observation. 

Average values for plasma BHB, FFA, glucose, insulin and IGF-1 were calculated per 

cluster per lactation week and over all 7 lactation weeks. 

6.3.6. Definition of metabolic clusters 

Labelling of clusters for poor, average or good metabolic status was based on average 

value within a cluster for concentrations of plasma BHB, FFA, glucose, insulin and IGF-

1 relative to the other clusters within the same lactation week. The cluster with the 

greatest plasma BHB and FFA, and the lowest plasma glucose, insulin and IGF-1 was 

defined as a relatively poor metabolic status; the cluster with the lowest plasma BHB 

and FFA, and the greatest plasma glucose, insulin and IGF-1 was defined as a relatively 

good metabolic status; the intermediate cluster was defined as a relative average 

metabolic status. 

6.3.7. Machine learning algorithms 

Machine learning algorithms were evaluated to predict cows in a poor, or an average, or 

a good metabolic status. Preliminary analysis indicated a limited number of cows in the 

poor metabolic status group; therefore, we build further classifiers to predict cows in 

either a good or an average metabolic status only. In each lactation week, models were 

trained by 8 machine learning algorithms using on-farm cow data with 13 features, 

including BW, DPL, parity, milk yield, milk yield SD, fat percentage, protein percentage, 

lactose percentage, FPCM, SCC, fat yield, protein yield, and lactose yield. Features were 

presented as an average per week, except milk yield which was included both as an 

average per week and as SD of milk yield per week. In the current study, cow in one 

lactation was regarded as independent to the same cow in another lactation. To evaluate 

several algorithms on a specific task is a common practice in machine learning, because 

performance of algorithm may depend on features, sample size, structure, and other 

characteristics of the dataset. In this study, 8 widely used machine learning algorithms 
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were evaluated, including Decision Tree, Naive Bayes, Bayesian Network, Support 

Vector Machine, Artificial Neural Networks, Bootstrap Aggregation, Random Forest, 

and K-Nearest Neighbour. All methods were used with default parameters. 

Table 6.1. The number of dairy cows with complete blood and milk observations in Study I and Study 

II through lactation week 1 to 7. 

Study 1 
Lactation week 

1  2  3 4 5 6 7 

Study I 

First lactation 58 89 92 92 89 89 90 

Second lactation 71 104 99 99 91 88 86 

Study II 91 122 120 119 121 122 122 

Total 220 315 311 310 301 299 298 
 

1 The experimental design, dry period length, and diet in Study I first lactation was described by van Knegsel et al. 

(2014) [86], Study I second lactation by Chen et al. (2016) [88], and in Study II by van Hoeij et al. (2017) [126]. 

6.3.8. Model evaluation  

In each lactation week, models trained with eight machine learning algorithms were 

evaluated through 10-fold crossed validation. Briefly, in 10-fold crossed validation, 10% 

of the samples in whole dataset were kept as testing dataset, and the rest of the samples 

(90%) were used to train the model. Through lactation week 1 to 7, in total 29, 65, 64, 

63, 56, 51, and 51 cows were in the dataset with 2 separate lactations. To avoid that the 

same cow is both in the test and the train dataset at the same time, with a different 

lactation number, a cow is only used once per loop of 10-fold cross validation. One loop 

ends until all samples were used exactly once in testing. For each machine learning 

algorithm, each loop of crossed validation repeated 500 time. Error rate is a priori value 

to evaluate the predictive performance of machine learning algorithms in each lactation 

week. To predict cows with 2 metabolic status, the error rate is defined as the ratio of 

false positive-to-false negative; to predict cows with 3 metabolic status: 

Error rate = 1 - (sum of corrected prediction / sample size) * 100% 

Moreover, the sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) of machine learning algorithms in each lactation week were also 

presented [266]. Based on preliminary analysis, Random Forest performed well not only 

in mode accuracy, but also in sensitivity and NPV. The importance of each feature in 

Random Forest was investigated by mean decreased Gini [267]. Briefly, importance of 
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feature Xm to predict Y is evaluated by adding up weighted impurity decreases p(t) Δi (st, 

t) for all nodes t where Xm is used, averaged over all NT trees in Random Forest: 

𝐼𝑚𝑝 (𝑋𝑚) =  
1

𝑁𝑇

 ∑  ∑ 𝑝(𝑡)

𝑡∈𝑇:𝑣(𝑠𝑡)=𝑋𝑚𝑇

𝛥𝑖(𝑠𝑡 , 𝑡)             (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

and where Xm is the features used in Random Forest, p(t) is the proportion Nt/N of 

samples reaching t, and v(st) is the variable used in split st [268]. A lower Gini (i.e. higher 

decreased Gini) means that a feature plays a relatively more important role than others 

to discriminate samples into defined classes. 

6.3.9. Data processing and software 

Multiple comparison analysis was applied with Tukey Honest Significant Differences 

test. Data pre-processing and machine learning algorithms were programmed in the R 

environment (version 3.3.3), with function “kmeans()” for cluster analysis, function 

“prcomp()” for principal component analysis, function “cor.test()” for Pearson analysis, 

package “rpart” for Decision Tree, “neuralnet” for Bayesian Network, “e1071” for Naïve 

Bayes and Support Vector Machine, “adabag” for Bootstrap Aggregation, and 

“randomforest” for Random Forest. Figures were plotted in Python (version 3.6), using 

modules “pandas”, “matplotlib”, and “Seaborn”. 

6.4. Results 

6.4.1. Principal component analysis and correlation analysis 

All plasma metabolites and metabolic hormones were correlated (Pearson) with a r 

(absolute value) less than 0.61 (P < 0.05) or insignificant (P > 0.05) (Table 6.2). Fig. 6.1 

shows the bi-plot (limited to the first two components, for sake of simplicity) from the 

PCA and presents the explained variation in 1st principal component (PC, range 47.5% 

to 62.6% during week 1 to 7) and 2nd PC (range: 13.5% to 18.2%). Inspection of the 

PCA loadings shows the relative contribution of 5 plasma metabolites and hormones to 

cluster metabolic status of dairy cows (bi-plot of PCA, Fig. 6.1). Raw data of loading is 

presented in Appendix Table 6.1. The loading pattern of plasma metabolites and 

hormones is the same across lactation week 1 to 7. 
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6.4.2. Definition of clusters for metabolic status 

Optimal number of clusters suggested by Average Silhouette was “3” through lactation 

week 1 to 7. In each lactation week, the silhouette widths per k numbers in Cluster 

Analysis were presented in Appendix Fig. 6.1. Based on the concentration of plasma 

metabolites and metabolic hormones, cows in the first, second, and third cluster were 

defined as having a good, average, and a poor metabolic status, respectively. Cluster 3 

defined as poor metabolic status had the greatest plasma BHB and FFA, but the lowest 

glucose, insulin and IGF-1 (P < 0.05, Table 6.3); conversely, cluster 1 defined as good 

metabolic status had the lowest plasma BHB and FFA, but the greatest plasma glucose, 

insulin and IGF-1 (P < 0.05). For all lactation weeks, cluster 2 had a lower plasma BHB 

or lower plasma FFA than cluster 3 (P < 0.05), but also a lower plasma insulin, IGF-1 

and glucose than cluster 1 (P < 0.05), and was therefore defined as the cluster with cows 

with an average metabolic status. 

6.4.3. Predictive performance of machine learning algorithms 

To predict cows in either a good or an average metabolic status, SVM had the lowest 

error rate in lactation week 3 to 7 of all algorithms. Random Forest had the lowest error 

rate in lactation week 1 and 2, and slightly higher error rate through lactation week 3 to 

7 (Table 6.3). The sensitivity and NPV of all algorithms are relative lower in lactation 

week 1 than other weeks. Random Forest had relative higher sensitivity (range  from  

67.8% to 82.9% during week 1 to 7) and NPV (range: 89.5% to 93.8%), and SVM had a 

relative higher specificity (range: 80.9% to 93.7%) and PPV (range: 78.8% to 86.1%) 

(Fig. 6.2). After 500 repetitions in Random Forest, error rate to predict cows in a good 

metabolic status was higher than error rate to predict cows in an average metabolic status 

(Fig. 6.1). In two-dimensional PCA plots, major incorrectly predicted dots (big size dots) 

are mainly presented in border area between good and average metabolic status groups 

(Fig. 6.1). 

Machine learning algorithms to predict cows in a poor, or an average, or a good 

metabolic status were evaluated (Appendix Table 6.2). The general performance of 8 

algorithms decreased when 3 metabolic statuses are included in the prediction, compared 

with prediction of 2 metabolic statuses, error rate ranged from 21.36% to 48.7%. Random 

Forest and SVM are still best performed algorithm through all lactation weeks. 
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Table 6.2. Pearson coefficients (P < 0.05) among the concentration of plasma free fatty acids (FFA), 

BHB, glucose, insulin, and IGF-1 of dairy cows through lactation week 1 to 7. (n.s., not significant) 

 

 

 

 

 

 

 

 

 

 

 

week 1  week 2 

 FFA BHB Glucose Insulin  FFA BHB Glucose Insulin 

BHB 0.52     0.52    

Glucose -0.18 -0.36    -0.49 -0.53   

Insulin -0.47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.47 
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IGF-1 -0.55 -0.29 0.34 0.58  -0.51 -0.31 0.60 0.50 
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 week 4 

 FFA BHB Glucose Insulin  FFA BHB Glucose Insulin 

BHB 0.41     0.39    

Glucose -0.48 -0.57    -0.45 -0.53   

Insulin -0.44 -0.20 0.45   -0.38 -0.24 0.40  

IGF-1 -0.50 -0.30 0.61 0.45  -0.52 -0.16 0.57 0.32 

 week 5  week 6 

 FFA BHB Glucose Insulin  FFA BHB Glucose Insulin 

BHB 0.43     0.39    

Glucose -0.43 -0.52    -0.37 -0.48   

Insulin -0.33 -0.17 0.40   -0.20 n.s. 0.32  

IGF-1 -0.49 -0.25 0.57 0.37  -0.42 -0.22 0.53 0.25 

 week 7      

 FFA BHB Glucose Insulin      

BHB 0.32         

Glucose -0.38 -0.43        

Insulin -0.29 -0.17 0.34       

IGF-1 -0.46 -0.18 0.57 0.31      

6.4.4. Feature contribution 

Random Forest had the relative lower error rate, but also had highest sensitivity and NPV 

to predict dairy cows with a good metabolic status (Table 6.4 and Fig. 6.2). Contribution 

of features to predict metabolic status in Random Forest is shown in Fig. 6.3. Through 

lactation week 1 to 3, milk yield, fat yield, and protein percentage were more important 

than other features, in week 4 and 5, protein percentage and lactose yield were top 

important features to predict metabolic status; in week 6 and 7, milk yield, protein 

percentage, and lactose yield are more important than other features, while fat related 

features were not as important as in lactation week 1 to 3. 
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Table 6.3. Plasma metabolite and metabolic hormone concentrations for dairy cows (number, N) in 3 

metabolic clusters (C) in lactation week (wk) 1 to 7 postpartum. Cluster analysis of metabolic status 

(MS) was based on the concentration of plasma free fatty acids (FFA), BHB, glucose, insulin, and IGF-

1. Values represent means (SD). 

wk C N 
BHB 

(mmol/L) 

FFA 

(mmol/L) 

Glucose 

(mmol/L) 

Insulin 

(µU/mL) 

IGF-1 

(ng/mL) 
MS 

1 

1 35 0.60 (0.17)a 0.12 (0.10)a 4.63 (1.27)a 31.81 (17.88)a 162.9 (55.0)a Good 

2 135 0.58 (0.13)a 0.38 (0.22)b 3.75 (0.67)b 10.34 (4.81)b 71.7 (36.6)b Average 

3 50 1.10 (0.36)b 0.87 (0.32)c 3.25 (0.59)c 6.37 (3.44)c 33.6 (20.9)c Poor 

Average 0.70 (0.30) 0.45 (0.33) 3.78 (0.86) 12.87 (11.72) 77.6 (54.9)  

2 

1 80 0.56 (0.13)a 0.14 (0.11)a 3.90 (0.29)a 18.35 (7.90)a 154.3 (69.1)a Good 

2 199 0.75 (0.26)b 0.43 (0.21)b 3.22 (0.36)b 7.96 (3.75)b 57.1 (28.9)b Average 

3 36 2.55 (1.25)c 0.97 (0.43)c 2.55 (0.43)c 5.55 (2.52)c 32.2 (16.4)c Poor 

Average 0.91 (0.76) 0.42 (0.32) 3.32 (0.53) 10.32 (6.92) 78.9 (61.3)  

3 

1 95 0.60 (0.14)a 0.13 (0.09)a 3.86 (0.29)a 18.72 (9.19)a 138.9 (49.5)a Good 

2 195 0.80 (0.32)b 0.40 (0.19)b 3.24 (0.36)b 8.86 (4.28)b 69.7 (26.6)b Average 

3 21 2.95 (0.91)c 0.64 (0.24)c 2.48 (0.44)c 7.07 (3.39)b 47.6 (19.5)c Poor 

Average 0.89 (0.66) 0.33 (0.22) 3.38 (0.51) 11.75 (7.71) 89.4 (48.2)  

4 

1 129 0.64 (0.19)a 0.12 (0.08)a 3.88 (0.30)a 19.2 (10.9)a 131.9 (41.9)a Good 

2 168 0.79 (0.37)b 0.39 (0.20)b 3.33 (0.36)b 9.70 (4.06)b 73.5 (25.8)b Average 

3 13 3.79 (1.25)c 0.67 (0.24)c 2.47 (0.55)c 8.01 (6.58)b 52.3 (29.2)b Poor 

Average 0.85 (0.73) 0.28 (0.22) 3.52 (0.49) 13.58 (9.08) 96.9 (44.9)  

5 

1 110 0.63 (0.22)a 0.11 (0.08)a 3.99 (0.32)a 22.03 (12.63)a 140.4 (41.5)a Good 

2 169 0.71 (0.30)a 0.30 (0.16)b 3.48 (0.34)b 10.37 (4.23)b 79.5 (26.4)b Average 

3 22 2.97 (1.54)b 0.63 (0.33)c 2.72 (0.35)c 8.11 (3.83)c 53.1 (16.4)b Poor 

Average 0.85 (0.77) 0.26 (0.21) 3.61 (0.48) 14.47 (10.12) 99.8 (45.1)  

6 

1 117 0.60 (0.19)a 0.11 (0.08)a 4.03 (0.28)a 20.69 (14.01)a 143.4 (40.1)a Good 

3 163 0.67 (0.25)a 0.27 (0.16)b 3.55 (0.31)b 11.64 (5.78)b 76.6 (23.9)b Average 

3 19 2.76 (1.27)b 0.51 (0.37)c 2.97 (0.31)c 8.96 (2.44)b 62.0 (22.5)b Poor 

Average 0.78 (0.64) 0.22 (0.19) 3.70 (0.42) 15.01 (10.78) 101.8 (45.7)  

7 

1 144 0.61 (0.20)a 0.09 (0.06)a 3.99 (0.28)a 20.2 (12.92)a 132.8 (37.0)a Good 

2 144 0.69 (0.29)a 0.25 (0.14)b 3.55 (0.31)b 12.02 (5.97)b 74.3 (23.6)b Average 

3 10 3.08 (1.25)b 0.37 (0.11)c 2.97 (0.58)c 8.30 (2.97)b 68.7 (15.5)b Poor 

Average 0.73 (0.55) 0.18 (0.14) 3.74 (0.40) 15.85 (10.77) 102.4 (42.5)  

Average wk 

1 till 7 

0.61 (0.18)a 0.11 (0.08)a 3.98 (0.43)a 20.55 (12.38)a 140.3 (46.9)a Good 

0.72 (0.29)b 0.35 (0.20)b 3.42 (0.43)b 9.99 (4.88)b 71.3 (28.3)b Average 

2.38 (1.27)c 0.75 (0.37)c 2.83 (0.57)c 7.03 (3.66)c 44.2 (23.2)c Poor 
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6.5. Discussion 

6.5.1. Metabolic clusters 

In the current study, we first aimed to define metabolic status of dairy cows through 

cluster analysis based on their plasma metabolites and metabolic hormones through 

lactation week 1 to 7. It was hypothesized that altered plasma metabolites and metabolic 

hormones between different clusters could indicate the difference in metabolic status. 

Moreover, the correlation among these plasma variables were in line with previous 

studies, for example, greater plasma glucose concentration was negatively correlated 

with plasma BHB and FFA concentration [269,270]. In the current study, however, 

majority of the correlations between plasma metabolites and metabolic hormones had a 

trend to get weak from lactation week 1 to 7. For example, both the correlations beween 

plasma FFA and insulin and plasma IGF-1 and insulin got smaller from week 1 till 7. 

Cluster analysis can be affected by variables with high correlation [271], which is usually 

defined as a correlation of above 0.8 or 0.9 [272]. Correlations among variables in the 

current study were maximal 0.61. An alternative could be to perform cluster analysis on 

selected principal components, which are orthogonal and thus uncorrelated [260,273]. 

The sum explained variation by first and second PC accounted for 65.7% to 76.1% over 

lactation weeks in the current study (Fig. 6.1). Therefore, when using selected PCs (for 

example, 2 PCs) from PCA in cluster analysis, 2 PCs could only account for 65.7% to 

76.1% explained variation of 5 plasma metabolites and metabolic hormones. 

In the current study, metabolic status was a composite trait of plasma BHB, FFA, glucose, 

insulin and IGF-1. Cows in a poor metabolic status had on average a greater BHB 

concentration than the earlier suggested threshold for subclinical ketosis (>1.2 mmol/L 

[274]), or on average a greater plasma FFA than the suggested threshold for subclinical 

ketosis (>0.6 mmol/L) [17], except in lactation week 7. Recently, Tremblay et al. (2018) 

identified plasma values for poor metabolic adaptation syndrome (PMAS) in dairy cows 

in early lactation [260]. Results of this study are in line with the current study for cows 

with a good metabolic status, but not completely for cows with a poor metabolic status. 

In the current study, cows with a good metabolic status had over lactation weeks on 

average a lower plasma FFA concentration than the earlier suggested threshold for low 

PMAS (<0.39 mmol/L) [260]. Dairy cows with a poor metabolic status, however, had in 

week 1 and 2 on average a greater plasma FFA concentration than the earlier suggested 
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threshold for high PMAS (≥0.7 mmol/L) [260]. Difference between these 2 studies might 

be related to the fact that PMAS clusters were based on plasma FFA, BHB and milk fat-

to-protein ratio [260], while in the current study metabolic status was a composite trait 

based on plasma FFA, BHB, glucose, insulin and IGF-1. For all lactation weeks, cows 

with a relative good metabolic status had plasma IGF-1 concentration >100 ng/mL [275], 

and greater plasma glucose and insulin concentration than the other 2 clusters. Moreover, 

in our study, cluster analysis was done per lactation week, which avoids a possible 

confounding effect of lactation stage with metabolic status of dairy cows. Implication of 

this approach is that metabolic health classifications are relative to the other 2 clusters 

within a lactation week. This could imply that what is defined as a poor metabolic status 

in week 2 is different from what is defined as a poor metabolic status in week 7. 

Comparing, however, cluster 1 and 3 over lactation weeks, shows that over lactation 

weeks the differences among clusters are marginal, indicating that the cows defined as 

having a poor metabolic status have a similar metabolic profile over the first 7 lactation 

weeks in the current study. 

In bi-plot of PCA, the opposing loadings of 5 plasma metabolites and metabolic 

hormones could indicate how these values contribute the separation of dairy cows with 

a relative good, average, or poor metabolic status. The negative contribution of plasma 

BHB and FFA to 1st principal component means that high BHB and FFA are related to 

a poor metabolic status in cluster analysis. Concentration of FFA is an indicator of fat 

mobilization during poor metabolic status, while plasma BHB is an indicator of fat 

metabolism and incomplete oxidation of fat [115]. In our study, cows in poor metabolic 

status had the lowest concentration of glucose, insulin and IGF-1 among 3 clusters. 

Glucose in early lactation is not only essential for lactose production, but also to 

metabolize fatty acids and make energy available to the body in the form of ATP [156]. 

Low insulin reduces glucose uptake by insulin-responsive peripheral tissues (adipose 

and muscle) and facilitate greater uptake of glucose by the mammary gland [276]. Low 

concentration of IGF-1 and insulin is related to the NEB status of cows [277]. Cows with 

the greatest concentration of insulin and IGF-1 were defined as having a good metabolic 

status, which fits with the observation that great concentrations of insulin and IGF-1 

were found in cows with positive energy balance [277,278]. Associated with increasing 

plasma glucose and insulin availability, increased IGF-1 can be hypothesized to have 

anabolic effects on carbohydrate metabolism [279,280]. Cows in a good metabolic status 
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had greater IGF-1 (Table 6.2), lower body weight and lower average parity (Appendix 

Table 6.3). In mammals, IGF-1 promotes growth and ageing [281,282], which could 

indicate that cows in a good metabolic status have a more anabolic status. Therefore, 

cows in good metabolic status have low body weight, milk yield, protein yield, and fat 

yield (Appendix Table 6.3). The low average BW and low average parity in this cluster 

suggest there might be a greater proportion of young cows in this cluster, which still have 

some priority for growth, which might explain the greater plasma IGF-1 concentration 

for these cows. 

In the current study, machine learning algorithms were used to predict cows in a good or 

average metabolic status, but not for cows in a poor metabolic status. This approach was 

chosen due to a limited number of animals in the cluster with a poor metabolic status in 

order to improve the predictive performance of the algorithms. For cow health 

management, however, prediction of cows in a poor metabolic status is very informative. 

Therefore, evaluation of machine learning algorithms to predict cows in a poor, average 

or good metabolic status is added in Appendix Table 6.2. Identification of metabolic 

status could facilitate cow health management by fine-tuning of dietary and management 

strategies for individual dairy cows in a precision farming system, as reviewed by Rutten 

et al. (2013) [283]. On the one side, cows in a poor metabolic status could be supplied 

with a diet with greater energy content, or attributed to a 30-d or 0-d DPL to improve 

metabolic status in the next lactation. On the other side, cows in a good metabolic status 

might deserve extra attention to prevent metabolic diseases in the next lactation caused 

by body fat accumulation in the current lactation [115]. First, limiting energy supply 

could result in reduced body fat storage, and lower BCS [284]. Second, dairy cows with 

a good metabolic status are candidate for a 30-d or 60-d DPL to reduce energy balance 

and maximized milk yield in the next lactation [88]. 

6.5.2. Predict metabolic status with machine learning algorithms 

In this study, K-means was an unsupervised learning method in cluster analysis, whereas 

KNN was a supervised learning method to predict metabolic status. Although both 

algorithms used “Euclidean Distance” as kernel function, KNN could limitedly predict 

metabolic status with on-farm cow data. It is difficult to consider a specific linear 

function with conventional statistical methods, due to its limitations when using 

correlated variables. In this context, analysing data through machine learning algorithms 
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seems promising to manage large datasets with on-farm cow data with a lot of 

correlations among features [285]. 

The superior performance of Random Forest and Bootstrap Aggregation is in line with 

study that predicts insemination outcomes in cows [83], which could be explained by the 

power of ensemble methods to generate high-performance classifiers by collecting 

individual trained classifiers. Although Random Forest performed better than other 

algorithms, even to predict cows with 3 metabolic statuses in our study (Appendix Table 

6.2), it does not mean Random Forest will always be the best algorithm in practice. The 

performance of all algorithms, for example Random Forest, depends on used features 

and parameters. A multi-parallel comparison among algorithms, therefore, is necessary 

to evaluate algorithms in a specific case. 

Other machine learning algorithms had relatively higher error rate than Random Forest 

and Bootstrap Aggregation. Among all algorithms, ANN is frequently used, for example, 

to predict milk yield [81,286], and to classify mastitis cases [84,85]. In our study, 

however, the error rate of ANN (21.3% to 39.2%, Table 6.3) in prediction of metabolic 

status is high, compared with other studied algorithms. Reasons for difference in fit of 

ANN among studies are unknown. 

All algorithms had a better prediction of metabolic status of cows in lactation week 2 

and 3, compared with prediction in week 1, and 4 to 7, which could be explained by the 

dramatic changes of metabolic status at the beginning of lactation [249]. Dramatic 

changes of metabolic status in cows with low adaptive capacity in early lactation could 

benefit the prediction of metabolic status by machine learning algorithm in the current 

study. In addition, major incorrectly predicted cases in Random Forest were presented 

in border area between good and an average metabolic status of cows in the PCA plot 

(Fig. 6.1). This result indicates that on-farm cow data are limited to predict metabolic 

status of cows in the border area between clusters, which could be explained by some 

features that are not different between cows in a good or an average metabolic status, 

such as BW, fat percentage, lactose percentage, and FPCM (Appendix Table 6.3). 

The performance of algorithms with different sensitivity, specificity, PPV, and NPV 

determines application in practice. The relative higher sensitivity and NPV value of 

Random Forest could be helpful to detect cows with surplus energy balance (also referred 

to a good metabolic status). In addition, it would be expected to further study the reason 
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that machine learning algorithms perform different in sensitivity, specificity, PPV, and 

NPV, and improve the performance of applied algorithms in practice. For example, how 

the sensitivity of prediction of metabolic status could be improved by using dietary 

component data. Moreover, several other aspects can be hypothesized to facilitate further 

fine-tuning of machine learning algorithms to predict metabolic status. First, larger 

datasets and more comprehensive on-farm cow data or on-farm non-cow data. E.g. 

datasets including more cows in a poor metabolic status would allow more precise 

prediction of cows in a poor metabolic status; weather data could be used to predict 

energy intake of dairy cows [287], which could be related to metabolic status in early 

lactation. Second, in the current study, features were included as the weekly average or 

SD per week for milk yield. Also other on-farm cow data can be hypothesized to 

contribute to a model to estimate metabolic status like the minimum or maximum milk 

yield, feeding activity or lying time per day [174]. Third, models could be further 

optimized using not only data per lactation week, but also data of all lactation weeks at 

once. This would imply the random effect of individual cows in consecutive lactation 

weeks needs to be considered, which would request more complicated algorithms, which 

are, to our knowledge, not standard procedure. Fourth, machine learning algorithms can 

be used not only to predict metabolic status, like Tremblay et al. (2018) [260], or the 

current study, but specific diseases and disorders associated with metabolic status, like 

fatty liver or subclinical ketosis in dairy cows [288]. 

6.5.3. Important features 

In the current study, Random Forest had the relative lower error rate, but also had highest 

sensitivity and NPV to predict 362 dairy cows with a relatively good metabolic status. 

In lactation week 1, 2 and 3, milk yield, fat yield, and protein percentage played 

important roles to predict cows in a good or an average metabolic status in Random 

Forest, which could be explained by relation between milk production and body fat 

mobilization. Increased fat yield in early lactation originates partly from mobilized body 

fat, this process is related to elevated plasma concentration of FFA and BHB [115]. 

Therefore, milk fat and fat-to-protein ratio were used to estimate energy balance of cows 

at herd level [18,140]. In the current study, in lactation week 4 and 5, protein percentage 

and lactose yield were top 2 important features in Random Forest. It can be speculated 

that milk protein and lactose are important to assign cows to a relative good or an average 

metabolic status. Cows in an average metabolic status had greater protein and lactose 
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production than cows in a good and a poor metabolic status (Appendix Table 6.3). In 

lactation week 6 and 7, fat related features were not as important as milk yield, milk 

protein percentage, and lactose yield. In lactation week 6 and 7, cows in an average 

metabolic status had same fat yield as cows in a poor metabolic status (Appendix Table 

6.3), which could be explained by the recovery to positive energy balance status after 

41.5 DIM postpartum [27]. In expectation, fine tuning the model by adjusting the 

contribution of milk yield, fat yield, protein percentage, and lactose yield in each 

lactation week to the model could improve predictive performance in further studies. 

6.6. Conclusions 

Through lactation week 1 to 7, dairy cows were clustered for either a relatively poor, 

average, or good metabolic status, based on 5 plasma metabolites and metabolic 

hormones. On-farm cow data predicted cows in a good or an average metabolic status in 

early lactation using 8 machine learning algorithms. Error rate of those algorithms ranged 

from 12.4% to 49.8%. Of all algorithms, Random Forest and Support Vector Machine 

had stable and best performance to predict metabolic status of dairy cows. Milk yield, 

fat yield, protein percentage, and lactose yield had important roles in Random Forest, 

however, their rank of importance differed across lactation weeks.
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7.1. Abstract 

The objectives of this study were: i) to evaluate if hyperketonemia in dairy cows (defined 

as plasma BHB ≥ 1.0 mmol/L) can be predicted using on-farm cow data either in current 

or previous lactation week, and ii) to study if adding individual net energy intake (NEI) 

can improve the predictive ability of the model. Plasma BHB concentration, on-farm 

cow data, and NEI of 532 individual cows were available weekly through lactation week 

1 to 5 postpartum. To predict hyperketonemia in dairy cows, models were first trained 

by partial least square discriminant analysis (PLS-DA), using on-farm cow data in same 

or previous lactation week. Second, NEI was included in models to evaluate the 

improvement of predictive ability of PLS-DA. Through 5,000 times 5-fold crossed 

validation, models were evaluated by accuracy (the ratio of the sum of true positive and 

true negative), sensitivity, specificity, positive predictive value, and negative predictive 

value. Through lactation week 1 to 5, the accuracy to predict hyperketonemia using data 

in same week was 75.9% to 83.8% (on-farm cow data only), 78.0% to 84.9% (model 

including NEI), and using data in previous week was 72.0% to 79.0% (on-farm cow data 

only), 72.8% to 80.7% (model including NEI). Improvement of the accuracy of the 

model due to including NEI ranged among lactation weeks from 0.6% to 3.7% when 

using data in the same lactation week and 0.6% to 1.6% when using data in the previous 

lactation week. In conclusion, trained models via PLS-DA have potential to predict 

hyperketonemia in dairy cows using data not only in the current lactation week, but also 

using data from the previous lactation week. Net energy intake can improve the accuracy 

of model, but only to a limited extent. Besides NEI, body weight, milk fat and protein 

content and milk fat and protein yield were important variables to predict 

hyperketonemia, but their rank of importance differed across lactation weeks. 
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7.2. Introduction 

In early lactation, dairy cows typically have a negative energy balance (NEB) which has 

been related to metabolic disorders, like hyperketonemia [115,289]. Hyperketonemia is 

defined as an increased concentration of plasma BHB, the usually used threshold is 

plasma concentration of BHB ≥ 1.0 to ≥ 1.4 mmol/L in dairy cows [141,289]. The 

incidence of hyperketonemia is especially high (up to 45.7%) in the first weeks after 

calving [290]. Hyperketonemia is related to an increased risk of disorders in peripartum 

period, such as subclinical ketosis and ketosis [103,289], left-displaced abomasum [291], 

and decreased reproductive performance [141]. Reliable assessment of hyperketonemia 

could thus diagnose cows with metabolic disorder, but no clinical signs yet. Urine or 

milk ketone tests have been applied as cow-side tests to diagnose hyperketonemia in 

dairy cows on farms [96]. These cow-side tests, however, are not used to frequently 

screen all cows due to the costs and labour associated with these tests. Alternatively, 

plasma BHB has been predicted using milk fat-to-protein ratio [21], milk metabolites 

[64], and milk BHB and acetone [257]. Those methods estimated plasma BHB using 

data in same lactation week. A reliable and early prediction of hyperketonemia in cows 

could assist in cow management and potentially reduce the risk for clinical and 

subclinical metabolic disorders. To our knowledge, only Ehret et al. (2015) [292] 

predicted milk BHB based on data in the previous lactation week, using milk production 

traits, genomic and metabolic information. In this study, the maximum correlation 

coefficient (r) between observed and predicted milk BHB when using data in previous 

lactation week was 0.37, which was much lower than r between observed and predicted 

BHB using data in the same lactation week as milk BHB measurement (the highest r was 

0.64). 

Machine learning methods have been used to predict cow performance, disease, and 

metabolic status using large datasets [75,76]. It can be hypothesized that also 

hyperketonemia could be predicted with similar approaches using on-farm cow data. In 

fact, it is known that several on-farm cow data, like milk yield [293], milk fat and protein 

percent [21], and BW [20] are related to plasma BHB, or risk for clinical and subclinical 

ketosis. In addition, also NEI is related to plasma BHB [87], and can be expected to be 

a valuable variable to predict hyperketonemia, but limited available on commercial farms. 

The correlation among different on-farm cow variables, such as milk yield, milk fat and 

protein, results in intricate dependencies among explanatory variables when used 
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together in the same model [79]. Further, it is difficult to find a specific parametric 

function (e.g. linear, quadratic etc.) with conventional statistic methods. In this context, 

analysing trough flexible algorithms in machine learning seems promising to manage 

large datasets with complex correlation patterns among variables [285]. We thus 

hypothesize that machine learning methods can predict hyperketonemia in dairy cows 

using on-farm cow data and NEI in early lactation. Objectives of this study were: i) to 

evaluate if hyperketonemia in dairy cows (defined as plasma BHB ≥ 1.0 mmol/L) can be 

predicted using on-farm cow data either in same or previous lactation week, and ii) to 

study if adding individual NEI can improve the predictive ability of the model. 

7.3. Materials and Methods 

The concentration of plasma BHB, on-farm cow data, and NEI of in total 424 cows 

originate from van Knegsel et al. (2007) [294], van Knegsel et al. (2014) [86], Chen et 

al. (2016) [88], and van Hoeij et al. (2017) [87]. Experimental protocols were approved 

by the Institutional Animal Care and Use Committee of Wageningen University. Briefly, 

plasma and milk samples were collected weekly. The concentration of plasma BHB was 

measured with kit no. RB1007 (Randox Laboratories, Ibach, Switzerland), as previously 

described [262]. On-farm cow data included dry period length (d), parity, BW (kg), 

weekly changed BW (kg/week, BW in current week minus BW in previous week), milk 

yield (kg/d), yield (kg/d) of milk fat, protein and lactose, the percentage of fat, protein 

and lactose, fat- and protein-corrected milk production (kg/d), and SCC (CHU). Net 

energy intake was calculated by dietary net energy concentration and feed intake of 

individual cows. Of all 424 individual cows, the number of cows with complete records 

in each lactation week are presented in Table 7.1. 

Table 7.1. In lactation week 1 to 5, number of cows with complete records (on-farm cow data and 

individual net energy intake) in the prediction of hyperketonemia using data in same and previous 

lactation week 1. 

Study 2 
Completed records in each lactation week 

wk 1 to 1/2 wk 2 to 2/3 wk 3 to 3/4 wk 4 to 4/5 wk 5 to 5 

van Knegsel et al. (2007) [294] 69/69 72/72 72/72 72/71 72 

van Knegsel et al. (2014) [86] 58/60 58/59 91/91 91/87 91 

Chen et al. (2016) [88] 56/59 56/56 73/73 77/76 77 

van Hoeij et al. (2017) [126] 91/111 111/111 121/121 121/120 121 

Total 274/299 297/298 357/357 361/354 361 
 

1 The hyperketonemia in dairy cows in lactation week 1 was not predicted by data in previous week. 
2 The experimental design, dry period length, and diet in these studies were described by van Knegsel et al. (2007) 

[294], van Knegsel et al. (2014) [86], Chen et al. (2016) [88], and van Hoeij et al. (2017) [126]. 
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7.4. Results and Discussion 

Preliminary analysis showed partial least square discriminant analysis (PLS-DA) 

outperformed random forest, artificial neural networks (ANN), and support vector 

machine. Therefore, PLS-DA was used to predict hyperketonemia in dairy cows in 

current study. Briefly, on-farm cow data and on-farm cow data combined with NEI, 

either in same lactation week, or in previous lactation week, were used as predictor 

variables (X matrix), whereas if dairy cows had hyperketonemia (plasma BHB ≥ 1.0 

mmol/L [17,95]) was used as the targeted variable in classification (Y). Predictor 

variables in training and testing dataset were centered and scaled to unit variance after 

split in cross validation. A large proportion of the cows had a plasma BHB < 1.0 mmol/L 

(81.4 to 84.5% among lactation weeks), which would give too much weight to cows 

without hyperketonemia when training models, and would impair the accuracy when 

predicting hyperketonemia in dairy cows. Therefore, the data was re-sampled to obtain 

a reduced and balanced dataset [295]. Cows without hyperketonemia were randomly 

sampled to obtain a dataset where the proportion of cows without hyperketonemia was 

the same as the proportion of cows with hyperketonemia. After 5,000 times 5-fold cross 

validation, the predictive ability of models was evaluated by the accuracy (the ratio of 

the sum of true positive and true negative), sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV). In the PLS-DA model, variable 

importance in projection (VIP) score was used to quantify the contribution of each 

variable [130]. Data pre-processing, including log transformation and scaling, model 

training with PLS-DA, and the determination of component number in PLS-DA were 

programmed in Python (version 3.6) using modules, “pandas”, “numpy”, and “sklearn”. 

Figures were plotted in R (version 3.3.3) with package “ggplot2”. 

On average (SD), milk production was 25.5 (8.9), 33.4 (7.7), 37.2 (7.9), 39.2 (8.3), and 39.2 

(8.3) kg/d for lactation week 1 to 5, respectively. Plasma BHB concentration (SD) was 

0.70 (0.30), 0.83 (0.62), 0.84 (0.54), 0.84 (0.71), and 0.84 (0.72) mmol/L for lactation week 

1 to 5, respectively. Incidence of hyperketonemia was 12.4%, 20.7%, 20.5%, 17.4%, and 

15.8% for lactation week 1 to 5, respectively. 

When applying on-farm cow data in same week to predict hyperketonemia in cows, the 

model predicted hyperketonemia best in week 3 (accuracy 83.8±6.6%), followed by 

week 5 (81.7±7.6%), week 4 (78.0±7.8%), week 1 (77.0±10.8%), and week 2 
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(76.0±8.6%) (Fig. 7.1-A). Through lactation week 1 to 5, sensitivity ranged from 77.3% 

to 83.5%, specificity from 77.2% to 86.0%, PPV from 76.6% to 84.8%, and NPV from 

76.8% to 83.5% (Fig. 7.1-C). 

When applying on-farm cow data in previous week to predict hyperketonemia in cows, 

the model predicted hyperketonemia best in week 3 (accuracy 79.0±7.9%), followed by 

week 5 (77.7±7.9%), week 4 (77.5±8.0%), and week 2 (72.0±8.5%) (Fig. 7.1-B). 

Through lactation week 1 to 4, sensitivity ranged from 72.9% to 78.7%, specificity from 

73.7% to 82.7%, PPV from 73.2% to 81.3%, and NPV from 72.6% to 78.4% (Fig. 7.1-

D). 

 
Fig. 7.1. Prediction of hyperketonemia in dairy cows using on-farm cow data (FD) and FD combined 

with net energy intake (NEI) by partial least squares discriminant analysis using either data in same 

lactation week (A: accuracy of the model per week; C (FD) and E (FD+ NEI): sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) of model per week), or data in 

previous lactation week (B: accuracy of the model per week; D (FD) and F (FD+NEI): sensitivity, 

specificity, PPV, and NPV of model per week). The accuracy is defined as the ratio of the sum of true 

positive and true negative observations. 
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The ability of model to predict hyperketonemia in dairy cows differed across lactation 

weeks. Prediction of hyperketonemia in dairy cows in week 3 is better than the prediction 

in week 1, 2, 4, and 5, independent if data in same or previous lactation week were used. 

Dairy cows usually have a greater incidence of hyperketonemia in lactation week 2 and 

3 [103,296] in early lactation. In our results, the incidence of hyperketonemia in lactation 

week 2 (20.5%) and 3 (20.7%) is greater than the incidence in week 1, 4, and 5 (range 

12.4% to 17.4%). High incidence of higher hyperketonemia in week 3 indicates dairy 

cows are prone to hyperketonemia, which could be related to the maximum 83.8% 

accuracy to predict hyperketonemia in this week, compared with other weeks. The 

prediction of hyperketonemia in week 2, however, was worse than in other weeks, which 

could be related to the high variation of variables related to milk production at start of 

lactation [249]. Generally, the prediction of hyperketonemia in dairy cows was better 

using data in same week than data in previous week. In principle, it seems logical that 

on-farm cow data in the same week give a more accurate prediction because these data 

reflect the altered metabolic status of a cows real-time. Nevertheless, although metabolic 

status of cows varies highly across consecutive weeks during the first weeks of lactation 

[297], predictive performance based on data in the previous week is reasonable good, 

compared with data in same week. 

When adding NEI in same week to predict hyperketonemia in cows in lactation week 1 

to 5, model accuracy improved (P < 0.05) 3.7%, 2.1%, 1.1%, 0.6%, and 0.8%, 

respectively. Through lactation week 1 to 5, sensitivity ranged from 79.1% to 84.3%, 

specificity ranged 78.6% to 87.3%, PPV ranged 78.5% to 86.2%, and NPV ranged 78.5% 

to 84.2% (Fig. 7.1-E). 

When adding NEI in previous week to predict hyperketonemia in cows in lactation week 

2 to 5, model accuracy improved (P < 0.05) 0.8%, 1.6%, 0.6%, and 1.0%, respectively. 

Through lactation week 2 to 5, sensitivity ranged from 75.1% to 80.0%, specificity 

ranged 73.0% to 85.4%, PPV ranged 73.1% to 83.7%, and NPV ranged 74.1% to 79.3% 

(Fig. 7.1-F). 

The VIP scores indicate the contribution of variables in the models to predict 

hyperketonemia with and without NEI (Fig. 7.2). Generally, across lactation week 1 till 

5, BW change, milk fat and protein yield and milk fat and protein percentage are among 

the best variables predicting hyperketonemia. When NEI was added to the models to 
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predict hyperketonemia, NEI had the highest or second highest contribution among all 

variables to contribute to the prediction of hyperketonemia, although the increase in 

model accuracy was limited. Moreover, BW [298], BW change [299] and milk fat and 

protein yield/percentage [300] are all related to NEI in dairy cows. This implies that part 

of the effect of NEI was already accounted for in the model using on-farm cow data only 

and explains possibly why the relative increase in accuracy when adding NEI is marginal. 

Further study could consider the variance of important variables not only to predict 

hyperketonemia, but also to predict reproductive performance [76], mastitis [85], and 

milk yield [81] with machine learning techniques in the context of precision dairy 

farming. 

Fig. 7.2. The variable importance in projection (VIP) scores in the first principal component calculated 

by partial least squares discriminant analysis to predict hyperketonemia in dairy cows with on-farm 

cow data (FD) only and FD combined with net energy intake (NEI). The x label in each subplot formats 

as “wk n → m (FD or FD+NEI)”, which is presented as “Data of week n (wk n) to predict 

hyperketonemia in dairy cows in week m”. 

Abbreviations: FPCM, fat- and protein-corrected milk production; ∆BW, changed BW; Milk, milk yield.  
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This study is the first report about the prediction of hyperketonemia in dairy cows using 

on-farm cow data and on-farm cow data combined with NEI in early lactation by PLS-

DA. Besides PLS-DA, other machine learning algorithms also have been applied in 

studies of dairy cows to predict milk yield [81], reproductive performance [76], and 

metabolic status [260]. Although PLS-DA had higher accuracy than other algorithms in 

our preliminary analysis, it did not mean PLS-DA was always the best algorithm in 

practice. For more applications in precision dairy farming systems, the prediction of 

health and disease needs further investigation. 

7.5. Conclusions 

Hyperketonemia in dairy cows can be predicted by PLS-DA using on-farm cow data in 

both same and previous lactation week, although with some reduction in accuracy when 

using data in previous lactation week. Adding individual NEI improved the predictive 

ability of model with extra 0.6% to 3.7% accuracy. Besides NEI, changed BW, milk fat, 

and milk protein play important roles to predict hyperketonemia in dairy cows.
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8.1. Introduction 

In early lactation, high-yielding dairy cows experience a negative energy balance (NEB) 

[86,137], which is associated with impaired health and fertility [115,301,302]. On the 

farm, an early and reliable screening of energy balance and metabolic status could help 

to identify dairy cows with an increased risk for health and fertility problems. Currently, 

energy balance and metabolic status can be estimated by milk characteristics, such as 

milk yield and milk fat [18,37,38,40], but also by the levels of ketone bodies in plasma 

or milk [20,22]. The current screening methods, however, are limited either by low 

performance to estimate energy balance when using milk characteristics, or by the 

invasive sampling and labour requirements in specialized laboratories when using blood 

plasma of dairy cows. Therefore, a non-invasive approach to estimate energy balance or 

metabolic status using milk samples or on-farm cow data could be interesting. 

In this thesis, we used two different methods to estimate energy balance and metabolic 

status of dairy cows: metabolomics and machine learning techniques using on-farm cow 

data. Metabolomics techniques can detect small molecules present in bio-fluids [303]. 

The most commonly used metabolomics techniques are mass spectrometry (GC-MS for 

volatile molecules and LC-MS for non-volatile molecules) or proton nuclear magnetic 

resonance (NMR). The changes observed in the spectra measured with either NMR or 

MS reflect differences in amounts of metabolites present and can be used, for instance, 

for detection of biomarkers linked to nutrition or to disease [304]. In dairy cows, NMR 

and GC-MS/LC-MS studies have been applied to study differences in composition of 

plasma [58,92,143,305-307], milk [54,57,66,305,308,309], urine [310,311], and rumen 

fluid [310,312]. In our studies, using metabolomics approaches, we aimed at a better 

understanding of metabolic pathways related to energy balance. The outcome of these 

studies will make it possible to develop new biomarkers for energy balance and 

metabolic status as well as to develop further customized nutritional and management 

strategies for individual dairy cows. Machine learning, as used in this thesis, aims to 

develop computer algorithms that can help in the analysis of large and complex datasets 

[313]. In dairy cows, machine learning has been applied to estimate milk yield [81], 

reproductive performance [76,83], and even to identify mastitis [84,85]. Furthermore, 

using on-farm cow data can be expected to be important in the development of precision 

dairy farming applications. 
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The aims of this thesis were first to estimate energy balance and metabolic status of 

individual cows using milk metabolomics and machine learning techniques using on-

farm cow data and to investigate the metabolic pathways related to energy metabolism 

of dairy cows in early lactation using metabolomics and proteomics techniques In this 

general discussion, the estimation of energy balance using plasma metabolites or milk 

metabolites as well the estimation of metabolic status using on-farm cow data with 

machine learning algorithms will be discussed. In addition, biological pathways related 

to energy metabolism will be discussed. Finally, conclusions and future perspectives are 

given. 

8.2. Estimation of Energy Balance and Metabolic Status 

8.2.1. Estimation of energy balance using blood and milk metabolomics data 

In Chapter 2, we estimated the energy balance of 31 dairy cows in lactation week 2 and 

7 using milk production traits and 52 milk metabolites obtained from (targeted) LC-MS 

studies. The adjusted-R2 of the reduced models using only milk metabolites ranged from 

0.65 to 0.76 (Table 2.3, Chapter 2). The adjusted-R2 of reduced models using milk 

metabolites combined with milk production traits to estimate energy balance ranged 

from 0.83 to 0.88 (Table 2.3, Chapter 2). The combination of milk production traits with 

milk metabolites had a better performance to estimate energy balance than using milk 

production traits alone, or milk metabolites alone. In early lactation, dairy cows mobilise 

body reserves, such as glycogen, fat, (muscle) protein, and bone, to compensate for the 

nutrient deficit due to the high energy requirement for milk production [7,8], which result 

also in a typical increase in milk fat yield [27] and is associated with milk yield, including 

milk protein and lactose yield. Therefore, it can be expected that a NEB status and 

mobilisation of body reserves of dairy cows are reflected in both an altered metabolic 

status and milk yield characteristics. In our study we observe a clear relationship between 

milk metabolites and energy balance. Milk metabolites of cows in NEB in early lactation 

were attributed to cell apoptosis in the mammary gland. Concomitantly also metabolites 

were observed that could be attributed to cell renewal. Based on these observations we 

proposed that both cell apoptosis and cell renewal are paramount in dairy cows with 

NEB. 

In Chapter 3, we reported 67 milk metabolites detected from milk samples of 87 dairy 

cows by the combined integration of NMR and LC-MS data. Of these 67 metabolites, 
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14 were positively and 25 were negatively correlated to energy balance. In line with the 

results of Chapter 2, where only LC-MS was used to analyse metabolic profiles of milk 

samples, choline, glycine, citrate, and creatinine were important metabolites related to 

NEB. However, of the 33 metabolites detected by NMR, 17 were observed to be 

modestly or highly correlated with energy balance, based on a cut-off of r > 0.36 or r < 

-0.36 [314]. These metabolites include acetyl-carnitine, cis-aconitate, choline, citrate, α-

ketoglutarate, cytidine monophosphate (CMP), creatinine, ethanolamine, galactose-1-

phosphate (Gal-1-P), N-acetyl-galactosamine (Nac-Gal), glucose-1-phosphate (Glu-1-P), 

glutamate, N-acetyl-glucosamine (Nac-Glu), UDP-Nac-Gal, UDP-Nac-Glu, PC and 

phosphocreatine. 

Also NMR and LC-MS data of these 87 dairy cows can be applied to estimate the energy 

balance of dairy cows in week 2 of lactation (Table 8.1). Estimations are based on 

metabolites in milk detected from NMR (Model 1) or LC-MS (Model 2), or milk 

production traits (Model 3), or a combination of NMR, LC-MS, and milk production 

traits (Model 4, 5, 6, and 7). Model 1 estimates energy balance using 2 metabolites 

detected by NMR whereas model 2 estimates energy balance using 4 metabolites 

detected by LC-MS. Model 3 based on milk production traits has a higher estimated 

performance than Model 1 and Model 2, which is consistent with results presented in 

Chapter 2. Model 4 estimates energy balance through the combination of reliable 

metabolites detected from either NMR or LC-MS. Model 5 and 6 estimate energy 

balance with the combination of milk fat yield and milk metabolites detected either in 

NMR, or in LC-MS. In Model 7, milk fat yield, 3 metabolites detected by NMR and one 

metabolite detected by LC-MS (glycine) resulted in a model with the highest adjusted-

R2 (0.80) to estimate the energy balance of dairy cows in lactation week 2. Model 7 

indicates that the combination of milk production traits and milk metabolites detected 

from LC-MS and NMR gives the best performance. In general, combining variables 

obtained from multiple sources, such as milk metabolites detected from NMR, and LC-

MS, and milk production traits, improved the performance of the reduced models to 

estimate energy balance. Milk fat yield is important in all reduced models, and the 

explained variation by milk fat yield ranges from 50.9% to 84.6% in Model 3, 5, 6, and 

7. In line with Chapter 2, we conclude that milk metabolites and milk production traits 

(in particular milk fat yield), played important roles in these models. Milk metabolites 

detected by NMR further improved the models as can be observed in Table 8.1. 
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In Chapter 4, blood plasma and milk samples of 24 dairy cows in lactation week 2 were 

measured using both NMR and LC-MS, and metabolic profiles of blood plasma and milk 

were obtained. Of 53 metabolites detected in plasma and 65 metabolites detected in milk, 

24 (plasma) and 30 (milk) were correlated with energy balance of dairy cows. For 

example, energy balance was observed to be correlated with blood plasma metabolites 

BHB (r = -0.64), glycine (r = -0.81), and glucose (r = 0.80). Chapter 4 focused on the 

relation between metabolites present in plasma and milk, and the correlation of these 

metabolites with energy balance. We applied a partial least square (PLS) model to 

estimate energy balance of 24 dairy cows in lactation week 2 using either 53 metabolites 

in plasma and 65 metabolites in milk. The reason of using a PLS model, rather than using 

a reduced model, was to compare the performance between the blood and milk metabolic 

profiles for the estimation of energy balance. Based on an optimal number of PLS 

components, the estimation of energy balance using metabolites in plasma is 0.76 (Q2) 

in a PLS model, which is higher than the estimation using metabolites detected in milk 

where Q2 is 0.59 in a PLS model. These results indicate that plasma metabolites can 

better estimate, albeit to a limited extend, energy balance than milk metabolites. 

Table 8.1. Reduced models obtained through an integrated analysis among proton nuclear magnetic 

resonance (NMR) spectra, liquid chromatography mass spectrometry (LC-MS) and milk production 

traits to estimate the energy balance (EB) of dairy cows in lactation week 2. The reduced models were 

selected by multivariate linear regression. 

 

1 Model 1, 2, 4, 5, 6, and 7 do not show the intercept and coefficients of the variables. 
2 R2 was obtained through 10-fold cross-validation. 
3 adjusted-R2 (ad-R2) considered the number of independent regressors in a model, and it was obtained through the 

formula, adjusted-R2 = 1 - [(1 - R2)(n-1)/(n-k-1)], n is the number of sample size, k is the number of independent 

regressors, excluding the constant. 
4 N: only milk metabolites detected by NMR are used in this model. These metabolites are marked by an asterisk. 
5 M: only milk metabolites detected by LC-MS are used in this model. 
6 P: only milk production traits are used in this model. Fat and protein represent the fat yield in milk and protein 

yield in milk, respectively. The unit of fat, protein, and milk yield is “kg”. 

Abbreviations: cis-Aco, cis-aconitate; Arg, arginine; Gly, glycine; Gal-1-P, galactose-1-phosphate; Glu, glutamate; 

α-KG, α-ketoglutarate; Met (O), methionine sulfoxide; Nac-Gal, N-acetyl-galactosamine; UDP-Nac-Gal, UDP-N-

acetyl-galactosamine. 

Model 1  No. Model (Equation) R2 2  ad-R2 3 

N 4 1 EB ~ cis-Aco (87.8%) + Nac-Gal (12.2%)  0.57 0.55 

M 5 2 EB ~ Gly (62.5%) + carnitine (17.6%) + Met (O) (14.5%) + Arg (5.4%) 0.59 0.57 

P 6 3 EB = 169.1 - 514.5*fat (56.2%) + 850.0*protein (30.1%) - 19.5*milk yield (13.7%) 0.72 0.71 

N+M 4 EB ~ Gly (41.0%) + Met (O) (20.6%) + cis-Aco (18.5%) + carnitine (15.0%) + Glu (4.8%) 0.67 0.65 

N+P 5 EB ~ fat (84.6%) + Gal-1-P (2.3%) + Glu (5.3%) + α-KG (4.7) + creatine (3.1%) 0.79 0.77 

M+P 6 EB ~ fat (50.9%) + Gly (22.1%) + protein (14.8%) + carnitine (7.0%) + Met (O) (5.1%) 0.78 0.76 

N+M+P 7 EB ~ fat (69.8%) + Gly (9.6%) + Gal-1-P (9.2%) + Glu (6.8%) + UDP-Nac-Gal (4.6%) 0.81 0.80 
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Considering the relatively low differences in PLS models to estimate energy balance 

using metabolites observed in plasma or metabolites observed in milk we propose that 

milk metabolites, as milk samples are more easily obtained than blood plasma samples, 

could be used to estimate energy balance of dairy cows on commercial farms. 

8.2.2. Generalization of the mathematical model with milk production traits 

In Chapter 2, we reported the reduced model to estimate energy balance in lactation week 

2 and 7 based on milk samples of 31 dairy cows (Table 2.3). In these two weeks, milk 

production traits, especially milk fat yield, had a high contribution to the model to 

estimate energy balance. The generalization of the model using only milk fat yield, 

however, has not been evaluated with a larger dataset than used in Chapter 2 and 3. 

Therefore, we applied the model using only milk fat yield to the data of 457 dairy cows 

in lactation week 2, 72 cows from van Knegsel et al. (2007) [294], 162 cows from van 

Knegsel et al. (2014) [86], 101 cows from Chen et al. (2016) [88], and 122 cows from 

van Hoeij et al. (2017) [126], as follows, 

Model 3 (Table 2.3): 

EB = 580.7 - 532.4*Fat 

Model 3 (Table 8.1): 

EB = 169.1 - 514.5*fat (56.2%) + 850.0*protein (30.1%) - 19.5*milk yield (13.7%) 

The adjusted-R2 of Model 3 of Chapter 2 (Table 2.3) is now 0.67, which is lower than 

the reported performance (adjusted-R2 = 0.78) in Chapter 2. The adjusted-R2 of Model 3 

(Table 8.1) is now 0.59, which is lower than the performance (adjusted-R2 = 0.71) in 

Table 8.1). The reason could be i) limited sample size as only 31 cows were used in 

Chapter 2 or 87 cows were used in Table 8.1 leading to overfitting, ii) the variance among 

different experiments. 

8.2.3. Estimation of energy balance with on-farm cow data using a stepwise 

regression model 

In Chapter 6 and 7, variables from on-farm cow data were used to predict metabolic 

status lactation week 1 to 7 and hyperketonemia lactation week 1 to 5 of dairy cows. In 

this general discussion, we use 19 to 21 variables (depending on lactation week) from 

on-farm cow data to predict energy balance of dairy cows using a stepwise regression 

model. These variables include dry period length (d), parity, body weight (kg), body 
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weight change by week (kg/week i.e. body weight in current week minus body weight 

in previous week), milk yield (kg/d), yield (kg/d) of milk fat, protein and lactose, the 

percentage of fat, protein and lactose, fat- and protein-corrected milk production (kg/d), 

maximum milk yield (kg/d), and minimum milk yield (kg/d). Moreover, 6 variables 

related to weather data were also involved in the model, including maximum ambient 

temperature (T, ℃), minimum T (℃), mean T (℃), maximum humidity (H, %), 

minimum H (%), and mean H (%). These weather data were collected from 

www.wunderground.com, and weekly averaged data were applied in the stepwise 

regression model. Weather data were included because of their relation with feed intake 

[287,315]. The adjusted-R2 of the reduced models with (up to) 5 variables ranges from 

0.69 to 0.81 (Table 8.2). 

In these models, milk production traits, such as fat- and protein-corrected milk yield 

(FPCM), milk fat-, protein- and lactose-related variables, were important to predict the 

energy balance of dairy cows. The variables important in these models in Table 8.2 were 

reported before in studies on the health status of dairy cows [316,317]. Besides variables 

related to milk production traits, such as FPCM, protein (%), and fat (%), the most 

important variable is body weight change (ΔBW) to estimate energy balance in lactation 

week 2 to 6. Body weight change was also important to estimate hyperketonemia of dairy 

cows in lactation week 2 to 5 (Chapter 7). The accounted variance explained by ΔBW 

gradually decreases from lactation week 2 (61.1%) to week 6 (7.9%), which matches 

with the serious body reserve mobilization in early lactation. In dairy cows, body 

condition score (BCS) is widely used to indicate energy balance and metabolic status 

[20,318], because BCS change is correlated with fat mobilization [142,319,320]. Greater 

prepartum fattening of cows was previously associated with a NEB status postpartum 

[88,321]. Body condition score, however, is not used in the current study, because BCS 

is not a daily obtained variable in practice. In lactation week 7, one of the weather data, 

minimum humidity is involved in the model, which is consistent with studies that 

temperature and humidity negatively affect feed intake and milk production of dairy 

cows [287,315,322]. Weather data could be much more important to estimate energy 

balance of cows in other regions, for example, India and China, compared with the 

Netherlands with cool summers and moderate wet winters. 
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8.2.4. Clustering of metabolic status of dairy cows using plasma metabolites 

In Chapter 6, plasma metabolites and metabolic hormones, including free fatty acids 

(FFA), β-hydroxybutyrate (BHB), glucose, insulin and insulin-like growth factor 1 (IGF-

1) were used to cluster dairy cows either in a good, average, or poor metabolic status. 

The cluster analysis can be affected by two or more metabolites which can be expected 

to be highly correlated (collinearity) [271,272]. In our results, the maximum correlation 

between two metabolites or between two metabolic hormones was 0.61, which is 
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considered as a moderate correlation [314]. To avoid collinearity in this cluster analysis, 

an alternative method used is with principal components (PCs) from principal 

components analysis (PCA) of plasma metabolites and metabolic hormones [260,263]. 

The difference between the two methods is small, especially for lactation week 2, 3, and 

4 (Table 8.3). Selected two PCs from the PCA could account for 65.7% to 76.1% (Fig. 

6.1) of the explained variation of 5 of the plasma metabolites and metabolic hormones 

through lactation week 1 to 7, as discussed in Chapter 6. 

Table 8.3. The result of cluster analysis with selected principal component (PC) number from principal 

component analysis (PCA) to 5 plasma metabolites and metabolic hormones. 

Metabolic status 
Lactation week 

1  2  3 4 5 6 7 

Cluster analysis with 5 plasma metabolites and metabolic hormones 

Good 35 80 95 129 110 118 144 

Average 135 199 195 168 169 163 144 

Poor 50 36 21 13 22 19 10 

Cluster analysis with selected PC 1 from PCA 

Good 38 79 96 123 101 109 146 

Average 124 200 192 173 177 166 146 

Poor 58 36 23 14 23 25 6 

Different ID of cows 2 in same clusters between two methods 

Good 5 1 1 6 9 17 4 

Average 13 1 3 6 10 21 8 

Poor 9 0 2 1 1 6 4 
 

1 The principal component number is selected byelbow rule, number is 2 through lactation week 1 to 7, as presented 

in Appendix Fig. 6.1.  
2 Different ID of cows means the number of cows with different identification between two datasets. 

In Chapter 7, on-farm cow data were used to predict hyperketonemia. The threshold of 

plasma BHB to define hyperketonemia with data from blood plasma, as discussed in 

Chapter 7, was 1.0 mmol/L. The normally used thresholds to define hyperketonemia in 

dairy cows are for a concentration of BHB ≥ 1.0 mmol/L [141,323], or ≥ 1.2 mmol/L 

[56,99,105,107,289], or ≥ 1.4 mmol/L [96,103,104,141] in dairy cows.  In our study, 

58.0% to 60.9% out of 532 dairy cows had a 0-d of 30-d dry period length (DPL). When 

comparing this with a conventional DPL (60-d), shortening or omitting the dry period 

improves energy balance [137] and metabolic status [324]. With 0-d or 30-d DPL, dairy 

cows involved in the current study had a relatively better metabolic status, with a lower 

plasma concentration of BHB. The definition of 1.0 mmol/L plasma BHB resulted in a 

relative bigger proportion of dairy cows with hyperketonemia in the training dataset, 
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which is 12.4%, 20.7%, 20.5%, 17.4%, and 15.8% for lactation week 1 to 5, respectively. 

The proportion is 6.6%, 9.1%, 10.6%, 11.4%, and 10.8%, respectively, if defining 

hyperketonemia as a plasma concentration of BHB ≥ 1.2 mmol/L, or 3.6%, 7.4%, 7.0%, 

8.0%, and 9.1%, respectively, if defining hyperketonemia as plasma concentration of 

BHB ≥ 1.4 mmol/L. Therefore, we used 1.0 mmol/L plasma BHB as a threshold to define 

hyperketonemia of dairy cows. 

8.3. Metabolic Pathways Related to Energy Balance and Metabolic 

Status 

8.3.1. Metabolomics techniques used and metabolites detected 

Nuclear magnetic resonance (NMR) is a spectroscopic method able to give a 

comprehensive overview of the most abundant organic compounds in a sample 

employing a single measurement [118]. In a biological-fluid sample, hydrogen-

containing molecules will show a signal in an 1H NMR spectrum, as long as they are 

present in concentrations above the detection limit. Alternatively, LC-MS has also been 

used in the detection of metabolites present in biological fluids. Metabolites can be 

extracted from bio-fluids and ultra-high performance liquid chromatography (UPLC) 

columns are used for separation of the metabolites followed by detection with a mass 

spectrometer. With the recent development of specific columns that can separate 

hydrophilic molecules, targeted approaches with Triple Quadrupole Mass Spectrometers 

or High Resolution Mass spectrometers are becoming into daily practice. 

The NMR spectra of plasma samples were, when compared with NMR spectra of milk 

samples, easier to interpret. Blood, apparently, is not only a well-studied medium with 

regards to metabolites that can be discovered but also blood is well a well-balanced 

system with a specific set of abundant metabolites that can easily be assigned. In milk 

samples, the NMR spectrum is dominated by many resonances of lactose, which masks 

the signal of other metabolites, as previously described [325]. Moreover, milk is less 

well studied than blood samples, but a series of metabolites have been reported in 

previous studies using either mass spectrometry, or NMR, or both [54,125,235]. These 

detected metabolites in earlier studies were used for a better understanding of the 

metabolism of dairy cows in heat stress [57,307], ketosis [56,64], mastitis [125,326], 

hepatic steatosis [327], displaced abomasum [328], as well as a shortened productive 

lifespan [58]. 
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8.3.2. Body reserves mobilization and hormonal regulation 

In Chapter 4, the plasma metabolic profile of dairy cows was detected through the 

integration of LC-MS and NMR data. The relation of energy balance and plasma 

metabolites points to the process of body reserves mobilization of dairy cows in NEB 

[329], including muscle protein breakdown, body fat mobilization, and bone usage or 

breakdown. 

In early lactation, dairy cows have decreased plasma glucose [142,215,216], which is 

consistent with our results that plasma glucose is positively correlated with energy 

balance (r = 0.84, Chapter 4). Glucose is endogenously produced by gluconeogenesis 

and glycogenolysis (the breakdown of glycogen) in the liver [221,330,331]. Propionate 

can contribute up to 45% in lactating cows to gluconeogenesis [332]. Propionate is 

produced largely in the rumen (Fig 8.1) [333,334]. In dairy cows, glucose is not only 

used as an energy source [217], but also used as the precursor to synthesize lactose in 

milk [218]. The low concentration of plasma glucose in cows in negative energy balance 

could indicate the high priority of the mammary gland for lactose synthesis 

[160,221,335]. 

Plasma glucose concentration is regulated by insulin, both glucose and insulin 

concentration are low in dairy cows in NEB [126,336]. Low plasma insulin, however, 

has no effect on the glucose uptake of the mammary gland, which has insulin-

independent glucose transporters [220,276,337], which is beneficial for the uptake of 

glucose by the mammary gland during a status with low plasma insulin concentration 

and consequently is beneficial for milk lactose synthesis and milk production. Holstein-

Friesian dairy cows have been selected through breeding programs for high milk yield 

resulting in a decreased plasma insulin concentration [338]. Moreover, plasma insulin 

plays a key role in the relationship of the growth hormone - insulin-like growth factor 1 

(GH-IGF-1) axis in dairy cows in early lactation. Under physiological conditions, GH 

induces hepatic IGF-1 synthesis [339], and systemic IGF-1 negatively regulates GH 

production as a feedback [340]. In dairy cows in NEB, however, the GH-IGF-1 axis 

uncouples in the liver [341], which results in a reduced plasma IGF-1 concentration 

although plasma GH concentration is elevated [342-344]. Besides insulin, GH, and IGF-

1, plasma epinephrine is also negatively correlated with energy balance (r = -0.43, 

Chapter 4), with higher levels of epinephrine (adrenaline) in cows with NEB. 
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Fig. 8.1. Metabolic pathways related to energy balance of dairy cows in early lactation.  

Abbreviations: Bet, betaine; Car, carnitine; Eth, ethanolamine; FAA, free amino acids; FFA, free fatty acids; Gal-1-

P, galactose-1-phosphate; Glu-1-P, glucose-1-phosphate; Glu, glucose; Gly, glycine; HYP, hydroxyproline; KB, 

ketone bodies; NA, nucleic acids; PC, phosphocholine; PtC, phosphatidylcholine. 

8.3.3. Metabolic data related to lipid metabolism 

In Chapter 2, milk fat played an important role to estimate energy balance of dairy cows 

in lactation weeks 2 and 7. In milk, 45% to 60% of milk fat consists of medium- and 

short-chain fatty acids (4 to 16 carbons in length), which are mainly de novo synthesized 

in the mammary gland [345]. In the mammary gland long-chain fatty acids (LCFA) can 

either be secreted into milk or can be used as energy source. When fatty acids are 
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oxidized by mitochondria for energy supply, carnitine and acyl-carnitine are important 

for transport of fatty acids from cytoplasm into mitochondria [346], as shown in Fig. 8.1 

(See also Fig. 2.3, Chapter 2). We observed a positive correlation between energy 

balance and milk carnitine (Chapter 2, 3, and 4) and a negative correlation between 

energy balance and milk acetyl-carnitine. 

Energy balance was negatively correlated with milk citrate (Chapter 2, 3, and 4). Citrate 

has a higher concentration in milk in early lactation, and decreases gradually as lactation 

progresses [347,348]. Citrate has been suggested as a marker of energy status in the dairy 

cow, being correlated with ketones in milk and de novo fatty acid synthesis [192]. Also 

in the current study (Chapter 4), milk citrate was positively correlated not only with 

acetone in milk (r = 0.45), but also with BHB in milk (r = 0.38), and milk fat yield (r = 

0.74). The energy metabolism in Fig. 8.1 includes the metabolic pathways leading to the 

formation of the energy-carrying molecule adenosine triphosphate (ATP). Most of the 

ATP is created in citric acid cycle in the mitochondria, which starts from acetyl 

coenzyme A. Acetyl coenzyme A may be derived either from carbohydrates via 

glycolysis, or from fatty acids via β-oxidation, or from amino acids from protein 

breakdown [349]. 

8.3.4. Metabolic data related to lactose synthesis 

Lactose is one of the main components in milk, and lactose yield of dairy cows is 

negatively correlated with energy balance, for example, in lactation week 2, r ranged 

from -0.59 to -0.77 in our studies. In the mammary gland, lactose is synthesized from 

two molecules of glucose in the Golgi apparatus of mammary epithelial cells (Fig. 8.2). 

One molecule glucose is converted into galactose that is combined with another molecule 

glucose to synthesize lactose [172]. The presence of Glu-1-P and Gal-1-P in milk of dairy 

cows in NEB as observed in our data, however, is surprising as these molecules are 

intermediates in the pathway for lactose synthesis. We propose that the presence of Glu-

1-P and Gal-1-P in milk indicates leakage of intermediates in lactose synthesis into milk 

through apoptotic cells [66]. In Chapter 3 and 4, we observed that energy balance was 

negatively correlated with Gal-1-P (r = -0.64 and -0.57) and Glu-1-P (r = -0.51 and -

0.54). This indicates that apoptosis is more severe in cows with severe NEB than in cows 

with a less NEB, which is in line with an earlier study who reported Gal-1-P in milk of 

dairy cows during NEB [66]. 
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Fig. 8.2. The synthesis of milk lactose in the mammary gland of dairy cows, figure is adapted from 

Kuhn et al. (1980) [172]. 

Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate; Glu-1-P, glucose-1-phosphate; Gal-1-P, 

galactose-1-phosphate; Pi, inorganic phosphate; PPi, pyrophosphate; UDP, uridine 5’-diphosphate; UMP, uridine 

5’-monophosphate; UTP uridine triphosphate; GT, galactosyltransferase; α-LA, α-lactalbumin; NDPase, nucleoside 

diphosphatase; A, glucose transporter; B, UDP-galactose-transporter; C, galactose-1-phosphate uridylyltransferase. 

8.3.5. Cell proliferation in the mammary gland 

Cell apoptosis as proposed by us could occur concomitantly with cell proliferation. In a 

recent study it was observed that there is increase of 65% for total DNA around 10 days 

peripartum [180]. In Chapter 2, 3, and 4, energy balance was observed to be positively 

correlated with milk choline, r ranged from 0.63 to 0.67, and be negatively correlated 

with milk glycine, r ranged from -0.66 to -0.83. We proposed, based on these 

observations that choline is important as a methyl donor in the process of cell 

proliferation, besides its role in lipid metabolism (see Fig. 2.4, Chapter 2) [224]. Choline, 

folate and methionine metabolism are interrelated as all influence the production of S-

adenosylmethionine, the universal donor of methyl-groups in biological reactions [147]. 

Besides the role of energy source and precursor of lactose (section 8.2.1 and 8.3.4), 

glucose could also serve as a methyl donor for one-carbon related processes in the 

mammary gland (Chapter 2). The role of glucose as methyl donor has been described in 

cancer cell proliferation [154,155]. In Chapter 2, 3, and 4, we also observed the 

correlation of energy balance with the intermediate of nucleic acids synthesis. For 
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example, energy balance of dairy cows in lactation week 2 is negatively correlated with 

3',5'-cyclic adenosine monophosphate (cAMP, r = -0.43) and cytidine monophosphate 

(CMP, r = -0.58) in Chapter 3 (Fig. 3.2). These observations support an increase in cell 

proliferation in cows in NEB. 

A decreased glycerylphosphorylcholine/phosphocholine (GPC/PC) ratio has been 

observed for cancer cells and immortalized cell lines of humans [188,189,350]. In dairy 

cows, the decreased GPC/PC ratio was suggested as an indicator of increased risk for 

ketosis [64]. Here, we propose that the altered ratio of GPC/PC could also be related to 

the process of cell membrane synthesis during the cell proliferation in mammary gland, 

as shown in Fig. 3.4 (Chapter 3) [182]. 

8.3.6. Milk protein post-translational modifications 

Post-translational modifications (PTMs), important in many biological processes, can 

modify the catalytic activity of eukaryote proteins [351]. In Chapter 2, 3, and 4, we 

observed a correlation between energy balance of dairy cows with milk choline and milk 

glycine. These two metabolites, glycine and choline, are both involved in the one carbon 

metabolism as discussed above. Choline is an important methyl donor in one carbon 

metabolism [147]. We therefore hypothesized that changes in choline levels could be 

related to changes in methylation status of proteins. The results of a proteomics study 

(Chapter 5) showed that specific proteins (immunoglobulin and β-lactoglobulin) have 

post translational methylation modifications that are also correlated with energy balance 

of dairy cows in week 2 of lactation. In cows in NEB these proteins were observed to 

have a decreased methylation as post-translational modification. In addition to changes 

in methylation status of some proteins, the concentration of a set of proteins (legumain, 

alpha-2-HS-glycoprotein, vitamin D binding protein, glycoprotein 2, folate receptor 

alpha, peptidyl-prolyl cis-trans isomerase B, and apolipoprotein A-IV) were correlated 

with energy balance. However, as our data size was limited, a more extensive study could 

show an even more in-depth relationship between energy balance and milk proteins 

modifications as well as changes in milk proteins concentration [66]. 

8.4. Future Studies 

This thesis provides new possibilities to estimate energy balance using metabolomics 

data and to estimate metabolic status and energy balance based on machine learning 
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approaches using on-farm cow data. In the context of a precision farming system, a large 

(and theoretically even increasing) amount of data could be collected, for example, 

climate conditions, body weight, milk quality variables, disease incidence, physiological 

data. With the increasing amount of data acquired, machine learning approaches are 

expected to further improve the estimation of milk quality (fat concentration, protein 

concentration, unsaturated versus saturated lipids), milk production, fertility, and disease 

incidence. In the current study, we observed that the biggest challenge using machine 

learning techniques is data collection. The variation obtained with different data sources 

is something which unfortunately often cannot be avoided and excluded. For example, 

the model of milk fat yield we obtained for 31 dairy cows in Chapter 2 performed worse 

when applied to a large population of dairy cows (section 8.2.4). When improved quality 

of data from different sources could be obtained machine learning could gain importance. 

However, the rate limiting step in this approach will be probably the local quality check 

of the on-farm cow data. 

Machine learning approaches appear promising for applying a customized nutrition 

strategy to individual cows in NEB. Based on our observations, however, the main 

challenge in machine learning approaches will be the quality of the on-farm data. With 

improved standardization of on-farm data, the quality of computer-based algorithms will 

improve and integrated into an on-line cloud-based application for a customized nutrition 

strategy. Possibly also combining on-farm cow data with milk metabolomics data. 

Specifically, metabolomics data can also be used to identify metabolic status of 

individual cows, cows at risk for metabolic disease or possibly even cows at risk for 

other diseases relevant for our modern high-producing dairy cows, like mastitis, or 

fertility-associated disorders. In the current studies, we identified a large series of 

important milk metabolites that are related to energy balance of dairy cows in early 

lactation, i.e. choline, citrate, cytidine monophosphate, glucose-1-phosphate, galactose-

1-phosphate, cis-aconitate, fucose, N-acetyl-galactosamine (Nac-Gal), N-acetyl-

glucosamine (Nac-Glu), UDP-Nac-Gal, UDP-Nac-Glu, glycine, and carnitine. In the 

future, these metabolites could be detected using lab-on-a chip systems for integrated 

bioanalyses. The estimation of energy balance and metabolic status, and in the future 

maybe also other physiological statuses, based on milk metabolites could customise 

management and nutrition strategies for individual cows in NEB. Based on nutritional 

perspectives, for example, extra supply of glucose or glucogenic diets to individual cows 
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could help for cows in NEB [294], and extra supply of rumen-protected choline to 

individual cows could help to overcome the limitations of the one carbon metabolism at 

low choline levels [352,353]. 

8.5. Conclusions 

We applied two different methods to estimate energy balance of dairy cows, a machine 

learning approach using on-farm cow data or metabolomics techniques with a reduced 

model approach. The results of the machine learning approach appeared promising using 

limited datasets but when extending the dataset size the performance dropped, which 

indicate that either data collection, data or variable selection, or the models themselves 

should be further optimized. Part of this optimization could be realized by an integration 

of machine learning techniques with milk metabolomics data. Metabolomics techniques 

can be more easily standardized than machine learning techniques but the challenge with 

metabolomics approaches is that specialized instrumentation and highly skilled technical 

people are needed for data acquisition. With developments of lab on chip devices to 

determine the amount of specific metabolites (biomarkers) in milk samples less emphasis 

on specialized instrumentation or skilled technical personal is necessary. Based on our 

studies as described in this thesis several important biomarkers could be used for 

detection of energy status on a cow in early lactation: choline, citrate, galactose-1-

phosphate, glucose-1-phosphate, glycine, phosphocholine, UDP-N-acetyl-

galactosamine, and UDP-N-acetyl-glucosamine. When the amounts of these metabolites 

or a combination of these metabolites will be detected using lab on a chip system, the 

farmer can decide to supplement specific compounds (glucose, rumen protected choline) 

to the cow in order to alleviate the problems of an animal in NEB.  
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Appendix 

Fig. 2.1. Principal component analyses to identify metabotypes, data were labelled with different dry 

period length (a) and parity (b). 
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Fig. 2.2. Pearson correlations matrix among milk metabolites, milk production traits and energy balance 

of dairy cows in week 2 (A). Blank represents the P-value of correlation between two variables is 

insignificant (P > 0.05).  

For a better digital version, please check online (https://www.nature.com/articles/s41598-018-34190-

4#Sec18). 

Abbreviations: cAMP, adenosine 3,5-cyclic monophosphate; AMP, adenosine monophosphate; CMP, cytidine 

monophosphate; FMN, flavin mononucleotide; FPCM, fat- and protein-corrected milk production; Methionine (O), 

methionine sulfoxide. 

  

https://www.nature.com/articles/s41598-018-34190-4#Sec18
https://www.nature.com/articles/s41598-018-34190-4#Sec18
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Fig. 2.2. Pearson correlations matrix among milk metabolites, milk production traits and energy balance 

of dairy cows in week 7 (B). Blank represents the P-value of correlation between two variables is 

insignificant (P > 0.05). 

For a better digital version, please check online (https://www.nature.com/articles/s41598-018-34190-

4#Sec18). 

Abbreviations: cAMP, adenosine 3,5-cyclic monophosphate; AMP, adenosine monophosphate; CMP, cytidine 

monophosphate; FMN, flavin mononucleotide; FPCM, fat- and protein-corrected milk production; Methionine (O), 

methionine sulfoxide. 

  

https://www.nature.com/articles/s41598-018-34190-4#Sec18
https://www.nature.com/articles/s41598-018-34190-4#Sec18
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Fig. 2.3. The effect of significant two-way interaction between energy balance (EB) and different 

treatments, including dry period length (DPL) and parity in week 2 glycine (A), creatinine (B), choline 

(C), adenosine 3,5-cyclic monophosphate (cAMP) (D), hydroxyproline (E), citric acid (F), milk yield 

(G), lactose (H), fat yield (I), protein (J), and fat- and protein-corrected milk yield (K).  
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Fig. 2.4. The effect of significant two-way interaction between EB and different treatments, including 

dry period length (DPL) and parity in week 7 on glycine (A), citrulline (B), tyrosine (C), lactose (D), 

protein (E), and fat- and protein-corrected milk yield (F). 
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Table 3.1. The milk metabolites detected either by Liquid chromatography-mass spectrometry (LC-

MS), or by nuclear magnetic resonance (NMR), or by both. 

No. Milk Function Detection by Integrated region in NMR 

1 Acetyl-carnitine Lipid metabolism LC-MS NMR 2.149-2.146; 3.200-3.189 

2 Acetate Energy metabolism  NMR 1.931_1.919 

3 Acetone Lipid Metabolism  NMR 2.243-2.234 

4 Acetylcholine Energy metabolism LC-MS   

5 Aconitate Energy metabolism LC-MS   

6 cis-Aconitate Energy metabolism  NMR 5.729_5.709 

7 Adenosine Nucleic metabolism LC-MS   

8 Alanine AAs metabolism  NMR 1.500-1.474 

9 Arginine AAs metabolism/Urea Cycle LC-MS   

10 Asparagine AAs metabolism LC-MS   

11 Aspartate AAs metabolism LC-MS   

12 BHB Lipid metabolism  NMR 1.203-1.194; 1.192-1.186 

13 Butyrate Lipid metabolism  NMR 2.167-2.160; 2.154-2.150; 1.588-1.538 

14 Carnitine Lipid metabolism LC-MS   

15 cAMP Nucleotide metabolism LC-MS   

16 Choline Lipid metabolism LC-MS NMR 3.210-3.200 

17 Citrate Energy/Lipid metabolism  NMR 2.722-2.641; 2.581-2.508 

18 Citrulline AAs metabolism/Urea cycle LC-MS   

19 Creatine Protein degradation  NMR 3.044-3.034 

20 Creatinine Protein degradation  NMR 3.049-3.044 

21 CMP Nucleotide metabolism LC-MS NMR 7.986-7.957; 6.007-5.983 

22 Cytidine Nucleotide metabolism LC-MS   

23 Cystine AAs metabolism LC-MS   

24 Ethanolamine  Lipid metabolism  NMR 3.145-3.139 

25 FMN Energy metabolism LC-MS   

26 Fucose 1 Lipid metabolism  NMR 1.250-1.242 

27 Formate Energy metabolism  NMR 8.467-8.452 

28 Fumarate Energy metabolism  NMR 6.538-6.517 

29 Galactose-1-P Lactose synthesis  NMR 5.525-5.486 

30 Glucose-1-P Lactose synthesis  NMR 5.475-5.447 

31 Glutamate AAs metabolism LC-MS NMR 2.145-2.142; 2.376-2.338 

32 Glutamine AAs metabolism LC-MS   

33 Glycine AAs metabolism LC-MS   

34 GPC Lipid metabolism  NMR 3.242-3.227 

35 Guanosine Nucleotide metabolism LC-MS   

36 Hippurate AAs/Energy metabolism  NMR 7.860-7.822; 7.666-7.623; 7.585-7.533 

37 Histidine AAs metabolism LC-MS   

38 Hydroxyproline AAs metabolism LC-MS   

39 α-Ketoglutarate Energy metabolism LC-MS NMR 3.027-2.999 

40 Kynurenine AAs metabolism LC-MS   

41 Lactose Lactose synthesis  NMR 5.263-5.219; 4.507-4.415; 3.185-3.171 
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Table 3.1. (continued) 

42 Lactate Energy Metabolism  NMR 1.346-1.321 

43 Leucine AAs metabolism LC-MS   

44 Lysine AAs metabolism LC-MS   

45 Methionine 1 AAs metabolism LC-MS   

46 Met (O) AAs metabolism LC-MS   

47 Nac-Gal/Nac-Glu Lipid metabolism  NMR 5.283-5.266; 5.219-5.202; 2.067-2.054 

48 Nac-NA Lipd-metabolism  NMR 2.049-2.039 

49 Isoleucine AAs metabolism LC-MS   

50 Orotate Nucleotide metabolism  NMR 6.208-6.189 

51 Pantothenate Energy/Lipid metabolism LC-MS   

52 Phosphocholine Lipid metabolism  NMR 3.227-3.213 

53 Phenylalanine AAs metabolism LC-MS   

54 Phosphocreatine AAs metabolism  NMR 3.055-3.050 

55 Proline AAs metabolism LC-MS   

56 Serine AAs metabolism LC-MS   

57 TMAO AAs metabolism  NMR 3.273-3.263 

58 UDP-Nac-Gal Lipid metabolism  NMR 8.084-8.040; 5.417-5.389; 2.082-2.074  

59 UDP-Nac-Glu Lipid metabolism  NMR 8.168-8.099; 5.376-5.344; 2.074-2.066 

60 Uracil Nucleotide metabolism LC-MS   

61 Urea AAs metabolism/Urea Cycle  NMR 5.884_5.732 

62 Uridine Nucleotide metabolism LC-MS NMR 7.893-7.863 

63 Threonine AAs metabolism LC-MS   

64 Thymidine Nucleotide metabolism LC-MS   

65 Tryptophan AAs metabolism LC-MS   

66 Tyrosine AAs metabolism LC-MS   

67 Valine AAs metabolism LC-MS NMR 1.043-1.036 
 

1 Fucose and methionine were not reliably detected in Chapter 4. 

Abbreviations: AAs, amino acids; cAMP, 3',5'-cyclic adenosine monophosphate; BHB, β-hydroxybutyrate; CMP, 

cytidine monophosphate; FMN, flavin mononucleotide; Glu-1-P, glucose-1-phosphate; Gal-1-P, galactose-1-

phosphate; HYP, hydroxyproline; Met (O), methionine sulfoxide; Nac-Gal, N-acetyl-galactosamine; Nac-Glu, N-

acetyl-glucosamine; Nac-NA, N-acetyl-neuraminic acid; TMAO, trimethylamine N-oxide; UDP-Nac-Gal, uridine 

diphosphate-N-acetyl-galactosamine; UDP-Nac-Glu, uridine diphosphate-N-acetyl-glucosamine. 
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Table 4.1. The plasma metabolites detected either by Liquid chromatography-mass spectrometry (LC-

MS), or by nuclear magnetic resonance (NMR), or by both. 

No. Metabolites Function Detection by Integration (ppm) in NMR spectrum 

1 Acetyl-carnitine Lipid Metabolism LC-MS   

2 Acetate Energy Metabolism  NMR 1.938-1.912 

3 Acetone Lipid Metabolism  NMR 2.247-2.232 

4 Alanine AAs1 Metabolism LC-MS NMR 1.502-1.468 

5 Allantoin Energy Metabolism LC-MS NMR 5.422-5.370 

6 Aminobutyrate Energy Metabolism LC-MS   

7 Arginine AAs Metabolism/Urea Cycle LC-MS   

8 Asparagine AAs Metabolism LC-MS   

9 Aspartate AAs Metabolism/Urea Cycle LC-MS   

10 BHB Lipid Metabolism  NMR 2.333-2.288; 1.222-1.176 

11 Carnitine Lipid Metabolism LC-MS   

12 Carnosine AAs Metabolism LC-MS   

13 Choline Lipid Metabolism LC-MS NMR 3.212-3.203 

14 Citrate Energy Metabolism  NMR 2.701-2.649; 2.560-2.514 

15 Citrulline AAs Metabolism/Urea Cycle LC-MS   

16 Creatine Protein Degradation LC-MS NMR 3.944-3.932 

17 Creatinine Protein Degradation LC-MS NMR 4.069-4.058 

18 Cystathionine Nucleotide Metabolism LC-MS   

19 Cytidine Nucleotide Metabolism LC-MS   

20 Epinephrine Energy Metabolism LC-MS   

21 Formate Energy Metabolism  NMR 8.474-8.449 

22 Glucose Energy Metabolism  NMR 3.260-3.235 

23 Glutamate AAs Metabolism LC-MS   

24 Glutamine AAs Metabolism LC-MS NMR 2.481-2.444 

25 Glycine AAs Metabolism LC-MS NMR 3.571-3.561 

26 Guanosine Nucleotide Metabolism LC-MS   

27 Hippurate AAs/Energy Metabolism  NMR 7.861-7.822;7.667-7.625;7.585-7.537 

28 Histidine AAs Metabolism LC-MS NMR 7.800-7.775; 7.077-7.043 

29 Hydroxyproline AAs Metabolism LC-MS   

30 Isoleucine AAs Metabolism LC-MS NMR 1.026-1.005 

31 3-methyl-KIV AAs/Energy Metabolism  NMR 1.087-1.078 

32 Kynurenine AAs Metabolism LC-MS   

33 Lactate Energy Metabolism LC-MS NMR 4.133-4.112 

34 Leucine AAs Metabolism LC-MS NMR 0.970-0.950 

35 Lysine AAs Metabolism LC-MS NMR 3.037-3.018 

36 Methanol Energy metabolism  NMR 3.372-3.362 

37 Methionine  AAs Metabolism LC-MS   

38 Met (O) AAs Metabolism LC-MS   

39 Niacinamide Energy Metabolism LC-MS   

40 Norepinephrine Energy metabolism LC-MS   

41 Ornithine AAs Metabolism/Urea Cycle  NMR 3.079-3.055 
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Table 4.1. (continued) 

42 Pantothenate Energy/Lipid Metabolism LC-MS   

43 Phenylalanine AAs Metabolism LC-MS NMR 7.457-7.414; 7.403-7.363; 7.351-7.319 

44 Proline AAs Metabolism LC-MS   

45 Serine AAs Metabolism LC-MS   

46 Serotonin AAs Metabolism LC-MS   

47 Threonine AAs Metabolism LC-MS   

48 Thymidine Nucleotide Metabolism LC-MS   

49 Tryptophan AAs Metabolism LC-MS   

50 Tyrosine AAs Metabolism LC-MS NMR 7.218-7.179; 6.929-6.881 

51 Uric acid AAs Metabolism LC-MS   

52 Uridine AAs Metabolism LC-MS   

53 Valine AAs Metabolism LC-MS NMR 1.066-1.078; 1.026-0.984 

54 1,2-propanediol 1 Lipid Metabolism  NMR 1.160-1.139 

55 α-KIV 1 AAs/Energy Metabolism  NMR 1.109-1.090 

56 Isobutyrate 1 Lipid Metabolism  NMR 1.066-1.058 
 

1 Isobutyrate 1,2-propanediol, α-ketoisovalerate were tentatively labeled in NMR spectra of blood. 

Abbreviations: AAs, amino acids; BHB, β-Hydroxybutyrate; KIV, ketoisovalerate; Met (O), methionine sulfoxide. 
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Table 6.1. Loadings of first and second Principal Component (PC) of 5 plasma metabolite and 

metabolic hormone, which are obtained from Principal Component Analysis through lactation week 1 

to 7 postpartum.  

wk 

Loading score of 5 plasma metabolites and metabolic hormones 1 

Free fatty acids BHB Glucose Insulin IGF-1 

1st PC 2nd PC 1st PC 2nd PC 1st PC 2nd PC 1st PC 2nd PC 1st PC 2nd PC 

1 -0.49 0.35 -0.36 -0.64 0.39 0.53 0.50 -0.14 0.48 -0.41 

2 -0.47 0.16 -0.41 -0.75 0.47 0.23 0.46 -0.25 0.41 -0.55 

3 -0.47 0.27 -0.40 -0.71 0.50 0.25 0.45 -0.10 0.40 -0.59 

4 -0.49 0.29 -0.37 -0.75 0.49 0.29 0.46 -0.15 0.41 -0.5 

5 -0.47 0.20 -0.39 -0.80 0.52 0.22 0.46 -0.27 0.42 -0.44 

6 -0.47 0.20 -0.39 -0.81 0.52 0.17 0.46 -0.37 0.38 -0.38 

7 -0.49 -0.21 -0.32 0.86 0.50 -0.07 0.49 0.46 0.41 -0.05 
 

1 Raw data is scaled by 4 times in Fig. 6.1 to make a visible bi-plot. 

 

Table 6.2. The error rate (SD) of machine learning algorithms to predict metabolic status (good, average 

and poor) of dairy cows through lactation week 1 to 7.

Algorithms 
Error rate in each lactation week (%) 

Average 
week 1 week 2  week 3 week 4 week 5 week 6 week 7 

DT 38.5 (2.9) 24.3 (2.2) 28.1 (2.3) 24.9 (2.2) 26.0 (2.3) 28.2 (2.3) 25.0 (2.3) 27.9 (5.1) 

NB 42.3 (1.8) 22.5 (1.2) 23.8 (1.7) 22.1 (1.5) 23.7 (1.6) 25.6 (1.3) 29.7 (2.0) 27.1 (6.8) 

BN 42.5 (2.7) 22.0 (1.4) 27.4 (2.5) 23.1 (2.1) 25.7 (2.3) 27.9 (1.6) 25.3 (1.9) 27.7 (6.7) 

SVM 33.6 (1.5) 22.5 (1.4) 21.3 (1.5) 17.3 (1.5) 22.5 (1.2) 24.3 (1.6) 23.0 (1.5) 23.5 (4.8) 

ANN 48.7 (5.0) 31.9 (1.9) 32.4 (2.3) 33.9 (4.0) 35.5 (2.9) 35.7 (2.8) 42.7 (5.0) 35.3 (4.9) 

Bootstrap 30.8 (1.9) 21.6 (1.4) 23.5 (1.5) 21.8 (1.5) 23.4 (1.4) 25.0 (1.5) 22.8 (1.8) 24.0 (3.2) 

RF 30.8 (1.7) 22.1 (1.5) 22.6 (1.4) 20.2 (1.5) 23.8 (1.5) 24.7 (1.5) 24.3 (1.6) 24.1 (3.4) 

KNN 36.7 (2.2) 29.6 (1.8) 28.3 (1.8) 25.3 (1.6) 32.3 (1.9) 30.6 (1.8) 34.5 (2.0) 31.0 (4.0) 

Average 38.9 (5.0) 23.9 (3.4) 25.3 (3.5) 22.5 (3.8) 25.8 (4.0) 27.0 (3.1) 27.1 (5.2)  
 

Abbreviations: ANN, Artificial Neural Networks; BA, Bootstrap Aggregation; BN, Bayesian Network; DT, 

Decision Tree; KNN, K-Nearest Neighbour; NB, Naive Bayes; SVM, Support Vector Machine; RF, Random Forest. 
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Table 6.3. Plasma metabolite and metabolic hormone concentrations for dairy cows in 3 metabolic 

clusters in lactation week 1 to 7 postpartum. Cluster analysis of metabolic status was based on the 

concentration of plasma free fatty acids (FFA), BHB, glucose, insulin, and IGF-1. Values represent 

means (SD). 

wk Cluster 
Dry period length 

Parity 
BW 

(kg) 

MilkYield 

(kg) 

MilkStd 

(kg) 

Fat  

(%) 0-d 30-d 60-d 

1 

Good 33 (33.0%) 2 (3.1%) - 2.9 652.9 (54.3)a 14.1 (7.1)a 4.13 (1.48)a 5.20 (0.95)a 

Average 53 (53.0%) 46 (71.9%) 36 (64.3%) 3.5 678.6 (74.0)b 24.7 (6.7)b 5.53 (2.13)b 5.28 (1.04)a 

Poor 14 (14.0%) 16 (25.0%) 20 (35.7%) 3.9 728.1 (59.4)c 28.4 (6.7)b 5.98 (2.88)b 6.13 (1.32)b 

P-value      0.01 < 0.01 <0.01 <0.01 

2 

Good 71 (56.3%) 8 (7.6%) 1 (1.2%) 2.8 653.8 (64.2)a 25.1 (7.0)a 1.59 (0.62)a 5.03 (0.61)a 

Average 48 (38.1%) 85 (81.0%) 66 (78.6%) 3.7 691.5 (71.7)b 35.7 (5.6)b 1.98 (0.78)b 5.03 (0.74)a 

Poor 7 (5.6%) 12 (11.4%) 17 (20.2%) 3.7 716.0 (63.5)b 34.7 (6.4)b 2.42 (0.97)c 5.82 (0.93)b 

P-value     < 0.01 < 0.01 <0.01 <0.01 

3 

Good 71 (59.2%) 19 (17.8%) 5 (6.0%) 2.8 669.7 (71.2)a 30.5 (7.8)a 1.19 (0.55)a 4.70 (0.61)a 

Average 43 (35.8%) 81 (75.7%) 71 (84.5%) 3.7 675.5 (65.2)a 39.9 (6.2)b 1.70 (0.92)a 4.70 (0.64)a 

Poor 6 (5.0%) 7 (6.5%) 8 (9.5%) 3.7 718.9 (55.2)b 39.3 (5.2)b 2.48 (1.87)b 5.34 (0.74)b 

P-value     < 0.01 < 0.01 <0.01 <0.01 

4 

Good 90 (74.4%) 30 (28.3%) 9 (10.8%) 3.0 675.5 (66.0) 33.0 (7.5)a 1.33 (1.35)a 4.62 (0.62)a 

Average 29 (24.0%) 71 (67.0%) 68 (81.9%) 3.8 676.5 (65.7) 43.3 (6.3)b 1.82 (1.19)a,b 4.50 (0.65)a 

Poor 2 (1.7%) 5 (4.7%) 6 (7.2%) 3.4 688.8 (43.1) 41.3 (5.5)b 2.45 (1.97)b 5.19 (1.05)b 

P-value     0.78 <0.01 <0.01 <0.01 

5 

Good 81 (65.9%) 23 (23.7%) 6 (7.4%) 2.9 669.6 (63.0) 33.4 (7.7)a 1.78 (1.43)a 4.51 (0.55)a 

Average 38 (30.9%) 65 (67.0%) 66 (81.5%) 3.7 674.5 (67.2) 43.9 (6.7)b 1.23 (0.75)a 4.31 (0.63)b 

Poor 4 (3.3%) 9 (9.3%) 9 (11.1%) 3.9 695.3 (54.7) 40.8 (7.4)b 2.43 (2.22)b 5.08 (0.63)c 

P-value     0.24 <0.01 <0.01 <0.01 

6 

Good 81 (65.3%) 27 (27.6%) 9 (11.7%) 2.9 672.5 (68.3) 33.7 (7.3)a 1.20 (0.68)a 4.48 (0.55)a 

Average 40 (32.3%) 63 (64.3%) 60 (77.9%) 3.7 674.7 (59.8) 44.8 (6.1)b 1.60 (1.07)b 4.17 (0.56)b 

Poor 3 (2.4%) 8 (8.2%) 8 (10.4%) 4.0 689.3 (47.6) 42.2 (6.9)b 2.23 (1.19)c 4.65 (0.42)a 

P-value     0.56 <0.01 <0.01 <0.01 

7 

Good 88 (72.7%) 44 (44.4%) 12 (15.4%) 2.9 675.3 (65.9) 36.0 (7.9)a 1.24 (0.69)a 4.37 (0.59)a 

Average 33 (27.3%) 50 (50.5%) 61 (78.2%) 3.9 677.6 (61.2) 44.3 (6.8)b 1.75 (1.30)b 4.15 (0.60)b 

Poor - 5 (5.1%) 5 (6.4%) 4.2 689.4 (40.8) 43.8 (6.4)b 1.60 (0.52)b 4.55 (0.23)a,b 

P-value     0.58 <0.01 <0.01 0.02 
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Table 6.3. Plasma metabolite and metabolic hormone concentrations for dairy cows in 3 metabolic 

clusters in lactation week 1 to 7 postpartum. Cluster analysis of metabolic status was based on the 

concentration of plasma free fatty acids (FFA), BHB, glucose, insulin, and IGF-1. Values represent 

means (SD). 

wk Cluster 
Lactose 

(%) 

Protein  

(%) 

Fat  

(kg) 

Lactose 

(kg) 

Protein 

(kg) 

FPCM 1 

(kg) 

SCC 

(104/mL) 

1 

Good 3.99 (0.76) 5.72 (1.36)a 0.74 (0.41)a 0.59 (0.35)a 0.74 (0.28)a 18.4 (9.0)a 1811 (2863)a 

Average 4.20 (0.42) 4.63 (0.73)b 1.29 (0.38)b 1.05 (0.31)b 1.12 (0.28)b 31.7 (8.8)b 814 (1686)b 

Poor 4.13 (0.24) 4.37 (0.68)c 1.70 (0.48)c 1.17 (0.30)c 1.23 (0.31)c 38.7 (8.1)c 231 (180)c 

P-value 0.28 <0.01 <0.01 <0.01 < 0.01 <0.01 <0.01 

2 

Good 4.29 (0.39)a 4.42 (0.29)a 1.25 (0.35)a 1.06 (0.26)a 1.12 (0.34)a 29.3 (7.8)a 840 (1811)a 

Average 3.79 (0.32)b 4.46 (0.16)b 1.79 (0.33)b 1.35 (0.22)b 1.60 (0.26)b 40.8 (6.4)b 202 (287)b 

Poor 3.62 (0.21)b 4.36 (0.21)c 1.99 (0.39)c 1.26 (0.26)b 1.52 (0.32)b 41.6 (8.9)b 142 (186)b 

P-value 0.01 < 0.01 < 0.01 <0.01 <0.01 <0.01 <0.01 

3 

Good 3.92 (0.38)a 4.55 (0.20)a 1.41 (0.32)a 1.18 (0.24)a 1.39 (0.37)a 33.8 (7.5)a 528 (1390)a 

Average 3.46 (0.29)a 4.57 (0.14)b 1.87 (0.34)b 1.38 (0.21)b 1.83 (0.30)b 43.5 (6.6)b 219 (512)b 

Poor 3.22 (0.17)b 4.45 (0.18)c 2.09 (0.39)c 1.26 (0.17)a 1.75 (0.25)a,b 44.5 (6.7)b 168 (290)a,b 

P-value  0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 

4 

Good 3.75 (0.38) 4.58 (0.18)a 1.50 (0.30)a 1.22 (0.22)a 1.51 (0.36)a 35.7 (6.9)a 275 (716) 

Average 3.26 (0.25) 4.59 (0.14)b 1.93 (0.32)b 1.41 (0.20)b 1.99 (0.30)b 45.3 (6.2)b 193 (452) 

Poor 3.04 (0.24) 4.50 (0.16)c 2.13 (0.47)b 1.25 (0.15)b 1.86 (0.26)b 46.5 (5.9)b 159 (226) 

P-value 0.17 <0.01 <0.01 <0.01 <0.01 <0.01 0.43 

5 

Good 3.72 (0.37) 4.59 (0.15)a 1.49 (0.30)a 1.23 (0.23)a 1.54 (0.36)a 36.1 (7.2)a 251 (498) 

Average 3.23 (0.33) 4.60 (0.17)a 1.88 (0.34)b 1.41 (0.19)b 2.03 (0.33)b 45.1 (6.7)b 242 (723) 

Poor 3.05 (0.29) 4.53 (0.14)b 2.07 (0.43)c 1.24 (0.22)a 1.85 (0.35)b 44.8 (8.3)b 350 (687) 

P-value 0.12 <0.01 <0.01 <0.01 < 0.01 < 0.01 0.77 

6 

Good 3.66 (0.40) 4.61 (0.16)a 1.49 (0.28)a 1.22 (0.22)a 1.55 (0.35)a 35.9 (6.8)a 257 (532) 

Average 3.21 (0.29) 4.61 (0.12)a 1.86 (0.30)b 1.43 (0.17)b 2.07 (0.29)b 45.3 (5.9)b 173 (352) 

Poor 2.94 (0.18) 4.58 (0.15)b 1.96 (0.36)b 1.24 (0.20)a 1.93 (0.31)b 44.5 (7.3)b 162 (202) 

P-value 0.68 <0.01 <0.01 <0.01 <0.01 <0.01 0.24 

7 

Good 3.61 (0.38) 4.62 (0.14)a 1.55 (0.30)a 1.28 (0.22)a 1.66 (0.37)a 37.6 (7.0)a 170 (332) 

Average 3.15 (0.28) 4.6 (0.13)b 1.82 (0.31)b 1.39 (0.21)b 2.04 (0.33)b 44.2 (6.7)b 233 (463) 

Poor 3.04 (0.20) 4.56 (0.1)b 1.99 (0.30)b 1.32 (0.15)b 1.99 (0.28)a,b 45.7 (5.5)b 132 (87) 

P-value 0.32 <0.01 <0.01 <0.01 <0.01 <0.01 0.35 
 

1 FPCM: fat-and-protein-corrected milk. 
a,b,c Values within one lactation week of dairy cows in different metabolic status with different superscripts differ (P 

< 0.05).
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Summary 

In early lactation, high-yielding dairy cows experience a negative energy balance (NEB), 

due to the increased energy demands for milk production and limited energy intake from 

feed. Negative energy balance is associated with impaired health and fertility. On farm, 

an early and reliable screening of energy balance and metabolic status should be able to 

identify dairy cows with an increased risk for health and fertility problems. Currently, 

energy balance and metabolic status can be estimated by milk characteristics, such as 

milk yield and milk fat, but also by the levels of ketone bodies in plasma or milk. The 

current screening methods are limited either by low estimated capability for estimating 

energy balance when using milk characteristics, or by the invasive sampling and labour-

intensive requirements in specialized laboratories when using blood samples of dairy 

cows. Therefore, a non-invasive approach to estimate energy balance or metabolic status 

using milk samples or on-farm cow data could be interesting. 

The aims of this thesis were, first to estimate energy balance and metabolic status of 

dairy cows using metabolomics and machine learning techniques; and second to 

investigate the metabolic pathways related to energy balance of dairy cows using 

metabolomics and proteomics techniques. 

The first metabolomics study (Chapter 2) aimed to investigate metabolic profiles in milk 

through liquid chromatography mass spectrometry (LC-MS) and estimate energy 

balance using milk metabolites and milk production traits. In this study, 52 metabolites 

were detected from milk samples of 31 cows in lactation week 2 and 7 (Chapter 2). 

Partial least square (PLS) model could estimate energy balance as Q2 = 0.72 and Q2 = 

0.84 for cows in lactation week 2 and 7, respectively. Through stepwise regression, 

reduced models could estimate energy balance of dairy cows in both lactation week 2 

and 7, predictive capability ranged from 0.53 to 0.78, using milk production traits alone, 

or milk metabolites alone, or the combination of both. In these reduced models, milk fat 

yield, glycine, choline, and carnitine were important variables to estimate energy balance. 

The relationship of these milk metabolites with energy balance is proposed to be related 

to their roles in cell renewal.  

The second metabolomics study (Chapter 3) aimed to measure the metabolic profile of 

milk of dairy cows in lactation week 2 through LC-MS and nuclear magnetic resonance 
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spectroscopy (NMR), and to improve our understanding of metabolism in the mammary 

gland of dairy cows in early lactation. In this study, 67 metabolites were detected from 

milk samples of 87 cows in lactation week 2. Of 67 metabolites in milk, 25 were 

negatively correlated with energy balance, r ranged from -0.25 to -0.74; and 14 were 

positively correlated with energy balance, r ranged from 0.23 to 0.63. We concluded that 

the metabolic processes in the mammary gland during NEB are related to the leakage of 

cellular content, the synthesis of nucleic acids, the synthesis of cell membrane 

phospholipids, protein glycosylation, an increase in one-carbon metabolic processes as 

well as an increase in lipid-triglyceride anabolism. 

The third metabolomics study (Chapter 4) aimed to i) reveal metabolic profiles of plasma 

and milk samples by integrating results of nuclear magnetic resonance (NMR) and liquid 

chromatography triple quadrupole mass spectrometry (LC-QQQ-MS); ii) investigate the 

relationship between energy balance and metabolic profiles of plasma and milk samples. 

In this study, 53 and 65 metabolites were detected from plasma and milk samples of 24 

cows in lactation week 2, respectively. Total 10 metabolites presented a correlation 

between their concentration in plasma and in milk. Of the 53 metabolites in plasma 27 

were correlated with energy balance. These plasma metabolites are related to 

mobilization from body fat, skeleton muscle, and bone, increased blood flow, and 

gluconeogenesis. Of the 65 metabolites in milk 30 were correlated with energy balance. 

These milk metabolites are related to the apoptosis and proliferation of cells in the 

mammary gland. In conclusion, metabolic profiles of plasma and milk clearly reflect the 

metabolism in the body or in the mammary gland of cows in NEB in early lactation. 

The proteomics study (Chapter 5) is a preliminary study which aimed to investigate the 

correlation of energy balance with low abundant proteins in milk, as well as specific 

proteins with post translational methylation modifications (PTMMs). In this study, milk 

samples of 5 dairy cows in lactation week 2 were measured. The results indicate that 

energy balance is not only correlated with the 9 milk proteins concentration, but also 

correlated with 2 proteins with PTMMs. These milk proteins were related to immune 

response, lipid metabolism, and cell division in the mammary gland. Due to the limited 

sample size, the effect of limited sample size on statistical correlation could not be 

excluded. More milk proteins and specific proteins with PTMMs are expected to be 

correlated with energy balance in further study using a larger sample size than current 

study. 
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The first machine learning study (Chapter 6) aimed to i) investigate whether metabolic 

status of individual cows in early lactation could be clustered based on their plasma 

values, and ii) evaluate machine learning algorithms to predict metabolic status using 

on-farm cow data. First, dairy cows were clustered as either a good, or an average, or a 

poor metabolic status through 5 metabolic metabolites and metabolic hormones. Second, 

on-farm cow data, including dry period length, parity, milk production traits, and body 

weight, were used to predict metabolic status with 8 machine learning algorithms. 

Random Forest and Support Vector Machine were top 2 best performing algorithms to 

predict metabolic status. In Random Forest, milk yield, fat yield, protein percentage, and 

lactose yield had important roles in prediction, but their rank of importance differed 

across lactation weeks. In conclusion, dairy cows could be clustered for metabolic status, 

based on plasma metabolites and metabolic hormones. Moreover, on-farm cow data can 

predict cows in a good or an average metabolic status with best performance for Random 

Forest and SVM of all algorithms. 

The second machine learning study (Chapter 7) aimed to i) evaluate if hyperketonemia 

in dairy cows (defined as plasma BHB ≥ 1.0 mmol/L) can be predicted using on-farm 

cow data either in current or previous lactation week, and ii) study if adding individual 

net energy intake (NEI) can improve the predictive ability of the model Partial least 

square discriminant analysis (PLS-DA) outperformed Random Forest, Artificial Neural 

Networks, and Support Vector Machine. When NEI was included in the model, the 

accuracy to predict hyperketonemia improved, but only to a limited extent. Besides NEI, 

body weight, milk fat and protein content and milk fat and protein yield were important 

variables to predict hyperketonemia, but their rank of importance differed across 

lactation weeks. 

In the general discussion (Chapter 8), we first discussed the estimation of energy balance 

using metabolites in plasma and in milk obtained from metabolomics studies, and using 

machine learning algorithms based on on-farm cow data. Second, estimation of 

metabolic status and hyperketonemia using machine learning algorithms based on on-

farm cow data is discussed. Third, the relation of energy balance and metabolic pathways 

of dairy cows, based on plasma and milk metabolomics studies in discussed. Fourth, 

future perspectives concerning metabolomics, proteomics, and machine learning 

techniques approached in dairy cows are discussed. Lastly, concluding remarks were 

presented (section 8.5). 
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In conclusion, the energy balance of dairy cows can be estimated by milk metabolites 

based on metabolomics study, and metabolic status can be estimated by machine learning 

algorithms using on-farm cow data. In early lactation, energy balance of dairy cows was 

related to milk and plasma metabolites associated with body reserve mobilization, 

apoptosis, cell proliferation, and synthesis of milk production.
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