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1.1 Importance of banana in the African Great Lakes region 

Musa spp. (grouped into banana and plantain), hereafter called banana is an 

important crop worldwide. With a harvested area of 9.9 million hectares and annual 

production of 151.2 million Mg in 2016, it ranks the World’s 7th most important 

source of carbohydrates (FAO, 2019). Only 14.5% of the annual world banana 

production, predominantly the dessert types, is traded, indicating that the crop is 

important for household food security (FAO, 2019). In the same period, Africa 

produced 44.1 million Mg of banana, accounting for about 29.2% of the world 

production. Only 1.9% of the African production was traded (FAO, 2019). Banana in 

Africa is produced on an area of about 5.95 million hectares, which is equivalent to 

55% of the total land area under banana globally (FAO, 2019). This translates to an 

average yield of 16.6 Mg ha-1 for Africa and 28 Mg ha-1 for the World, suggesting a 

low productivity of the crop in Africa.  

 The African Great Lakes region (AGLR) which traverses Burundi, Democratic 

Republic of Congo (DR Congo), Kenya, Rwanda, Tanzania, and Uganda, is a secondary 

centre of diversity of East African highland bananas and plantains (Simmonds and 

Shepherd, 1955; Simmonds, 1966). The crop is cultivated over a wide range of 

agroecologies and cropping systems in the region (Eledu et al., 2004; AATF, 2009; 

Ocimati et al., 2013a). About 42% of Africa’s banana production (~12% of world 

production) in 2016 came from the AGLR (FAO, 2019). In the AGLR, it provides 30-

60% of food energy needs for over 70 million people (Abele et al., 2007; Karamura 

et al., 2008), with the leading per capita consumption rates in the world of up to 243 

kg per annum reported in Uganda, Burundi and Rwanda (Sharrock and Frison, 2000). 

Bananas unlike cereals or other annual crops that are seasonal provide an all year-

round bunch/ food supply and thus important for stability in food supply to the 

households. In this region, the crop also contributes to incomes along the value chain 

of the crop (Okech et al., 2004; Edmeades et al., 2007) and other provisional services 

such as animal feed, herbal medicine, crafts and ornaments, construction materials 

and bedding for poultry and livestock (Kamira et al., 2015; Frison and Sharrock, 

1998).   

 Across banana growing landscapes in the AGLR, banana plantations are 

multifunctional agroecosystems, which in addition to the wide range of provisioning 

services above also deliver a range of supporting, regulatory and cultural ecosystem 

services. For example, the crop contributes to soil erosion control (Lufafa et al., 2003) 

and supports nutrient recycling and carbon sequestration (Kamusingize et al., 2017). 

Culturally, the crop is used for ritual practices (Frison and Sharrock, 1998). Given the 

multiple functions played by the crop, any disturbance that affects the resilience of 
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the banana systems could thus profoundly impact on households, communities and 

landscapes. Thus, strategies for sustainably managing the banana production 

systems are crucial. 

1.2 Banana production constraints in the African Great Lakes region 

FAO data (FAO, 2017) shows a downward trend in banana production in the AGLR. 

In Uganda, for example, FAO (2017) data respectively, shows a 39 and 50% drop in 

area under banana production and total production (Fig. 1.1) in 2014, compared to 

2002. The decline in production in the AGLR region can be attributed to a wide range 

of abiotic and biotic factors that include sub-optimal management of the crop; land 

tenure and fragmentation; declining soil fertility; reliance on rain for production, 

with high risk of drought; and pests and diseases (van Asten et al., 2004, 2011; Gold 

et al., 1999; Kalyebara et al., 2007; Tinzaara et al., 2019). Although the ranking of 

importance of constraints in the region is a point of contest, declining soil fertility 

and drought stress stand out as the key abiotic stresses, while Xanthomonas wilt of 

banana (XW), banana bunchy top disease (BBTD) and fusarium wilt are most 

important among the biotic stresses. Other biotic constraints of importance in the 

region include the banana weevil and nematodes, and the fungal leaf spots. 

Figure 1.1. Banana production trends between 1992 and 2014 in Uganda (Source: FAO, 2017). 

 The past two decades have especially seen an increase in disease and pest 

pressure on the banana production landscapes in the AGLR (Blomme et al., 2013). 

Damage caused by the diseases vary from very minor effects to extremely serious 

effects, depending on the virulence of the pathogen, host resistance or susceptibility, 

agroecology, climate, farmers awareness and adoption of control practices and 
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presence and activity of vectors. For example, black leaf streak (caused by 

Pseudocercospora fijiensis) does not lead to complete death of plants though can 

result in small to moderate yield losses, thus often accommodated by farmers. In 

contrast, fusarium wilt, BBTD and XW diseases lead to complete death of plants 

and/or mats and plantations and thus causing major yield losses. XW, a bacterial 

disease is the most recent of all the constraints and has severely distressed banana 

producing households and landscapes in the region. Outbreaks of XW have been 

associated with extensive land degradation due to exposure of soil through massive 

uprooting of plants as a recommendation for its management, total arrest of 

agricultural activity and associated food insecurity and financial crisis (Ocimati et al., 

2014). More recent studies still show that that the disease is a major problem (e.g. 

Blomme et al., 2017a, b; Bioversity International, 2017) and strategies are thus still 

needed for sustainably managing it. 

1.3 Xanthomonas wilt of banana, impact and management 

The outbreak of the Xanthomonas wilt disease of banana (XW) caused by the Gram-

negative bacteria Xanthomonas campestris pv. musacearum (Xcm) has drawn the 

greatest attention due to its severe impact on production systems and its fast rate 

and diverse modes of spread. The disease causes rapid wilting after tool-mediated 

infections and premature ripening and rotting of fruits in florally infected plants, 

leading to a complete loss of the infected plants (Tushemereirwe et al., 2006; 

Tripathi et al., 2009; Ocimati et al., 2013a). Delayed intervention can result in up to 

100% yield loss. In the Kagera region of Tanzania, Muchuruza and Melchoir (2013) 

reported yield and income losses of 84% and 64% per annum, respectively due to 

the disease. In Tanzania and Rwanda, a 35% drop in sales and doubling of bunch 

prices were reported (Nkuba et al., 2015) whereas a potential loss of US$ 200 of food 

and income per year and household was estimated if disease control measures were 

not implemented in Uganda (Kalyebara et al., 2006). The disease thus severely 

compromises the food and income security of the affected households in the AGLR. 

 In addition to direct losses due to XW, some of the management practices 

involve uprooting entire mats/ fields and cutting down of sick plants (Jogo et al., 

2013; Ocimati et al., 2014). Cutting or uprooting of plantations out of frustration is 

also common (Blomme et al., 2014; 2017) and could partly explain the observed 

decline in both production and area under production e.g. in Uganda (Fig. 1.1).  

Land uses and covers are closely related to the integrity of ecosystems and 

the associated ES (Sohel et al., 2015). Widespread decline in ES has been reported 

due to anthropogenic activities across the world (MEA, 2005; Sohel et al., 2014). The 
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land-uses and land-use trajectories driven by XW raise concerns over sustainability 

in the supply of some key ecosystem services, e.g. regulatory and supporting 

ecosystem services that are crucial for the resilience of the agroecosystem; an aspect 

not assessed to-date. Past studies have mainly focused on disease impact on 

production and incomes, which is an understatement of the total impact of the 

disease. In this thesis, I seek to understand the ongoing changes in land-use and land-

use trajectories due to XW in the banana-based agroecosystems/ landscapes and the 

potential effects of XW and the changes in land-use/ land-use trajectories on the 

supply of ecosystem services as a basis for mitigating any potentially negative effects 

and bolstering the resilience of the banana producing landscapes.  

 Xanthomonas wilt disease of banana, first observed in central Uganda in 2001 

(Tushemereirwe et al., 2004), has over a period of a decade spread to the whole 

AGLR (Fig. 1.2, Ndungo et al., 2006; Reeder et al., 2007; Tripathi et al., 2009; Carter 

et al., 2010; Blomme et al., 2013). This rate of spread also puts other yet unaffected 

banana growing areas within or neighbouring this region at risk. XW control efforts 

over the past 15 years have been reactive or focused on mitigation and the drivers 

of XW spread at various spatial scales are yet to be unravelled. Existing mapping 

efforts (Tushemereirwe et al., 2006; Bouwmeester et al., 2016; Shimwela et al., 

2017) focused specifically on individual countries or regions within countries and 

often only highlighted disease presence or absence in a zone. Knowledge and spatial 

mapping of the relationship between these covariates and XW disease severity 

and/or incidence can help to pin-point disease hot spots, fronts and vulnerable 

landscapes. The increasing availability of maps of environmental variables (c.f. 

Hijmans et al., 2005; Jarvis et al., 2008), specialized GIS and analysis software and 

methods (c.f. Goovaerts, 1997; Hosmer and Lemeshow, 2000; Webster and Oliver, 

2007; R Core Team, 2017; Hijmans, 2017; Bouwmeester et al., 2016) and other 

supportive technologies make mapping of diseases feasible. Knowledge of XW 

hotspots, fronts and vulnerable landscapes will be important for pro-actively and 

comprehensively guiding the design of XW control and mitigation measures on 

vulnerable landscapes within the AGLR and across Africa. Proactive measures could 

include surveillance and early warning systems; risk assessment; priority setting and 

resource allocation; and timely information dissemination and disease management. 
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Figure 1.2. Map shows first reports of Xanthomonas wilt in different African countries (Source: Blomme 
et al., 2013). 

 The management of XW in the AGLR is further influenced by the high 

population density and small (<2 ha) fragmented farm sizes (van Asten et al., 2004, 

Wairegi et al., 2010) that drive cultural practices at field or farm level. Bananas are 

predominantly intercropped (AATF, 2009) while cultural practices such as crop 

rotation, agroforestry and fallowing of importance in managing soil fertility and pests 

and diseases are not always feasible. Banana intercropping with other crops is 

common to optimally use the available land space and spread production risks. The 

common intercrops include beans, coffee, taro, leafy vegetables, agroforestry trees, 

cassava, yams and sweet potato (Sebasigari, 1985; Ocimati et al., 2013c; Mpiira et 

al., 2013; Ssebulime et al., 2017). High diversity and functional biodiversity within 

agroecosystems have been associated higher opportunities for beneficial 

interactions between species and to enhance agroecosystem sustainability 

(Vandermeer, 1995; Altieri, 1995; Poeydebat et al., 2017). However, other plants 
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species could exacerbate and perpetuate diseases and pests in an agroecosystem. 

Understanding the nature of interactions of plants in the survival and perpetuation 

of pests and pathogens in a system and key risk factor at field/ and farm level is 

important. With respect to XW disease, Xcm, the causal organism has been shown 

to cause disease in a common weed Canna lily (Canna indica) in controlled 

experiments (Ssekiwoko et al., 2006). Xcm has also been recovered from some crop 

species (e.g. maize, sugarcane) grown in association with, or in close proximity to 

bananas following artificial inoculations (Karamura, 2012; Rutikanga et al., 2016), but 

it is not clear if Xcm interaction with these plants can perpetuate XW on farm. This 

thesis thus sought to determine if Xcm survives within and/or affects other crops 

spp. and weeds, and if this association poses any risk to the banana and these crops. 

The study also sought to determine the key factors influencing XW risk at farm level. 

Understanding the key factors responsible for XW perpetuation on farm is crucial for 

informing the control strategies. 

 At field level, banana leaf pruning to reduce shading of the short understory 

intercrops is common so as to boast their performance. This practice together with 

damaging of the banana corms and roots during tillage in preparation or at 

intercropping spread XW and thus could undermine benefits associated with banana 

intercropping. However, some of these practices, especially banana leaf pruning to 

integrate legumes has persisted in some of the production zones (Blomme et al., 

2014; 2017b). Dissuading farmers from these practices and developing strategies to 

harness agroecological benefits from the agroecosystem will thus require an in-

depth understanding of the merits and demerits of farmers’ current intensification 

practices. This will form a good basis for either dissuading farmers from their current 

practices or identifying alternative banana intercrop management options that will 

sustainably improve productivity given the current constraints without 

compromising the resilience of the banana agroecosystem. This is often complex 

given the large number of interrelated farm components determine overall farm 

performance (Groot and Rossing, 2011; Groot et al., 2012) whereas farmers own trial 

and error experiments can be costly, time consuming and risky (Le Gal et al., 2011; 

Baudron et al., 2012). This will require an understanding of the potential trade-offs 

in the allocation of resources and between the different production objectives 

(Tittonell et al., 2007; Groot et al., 2012). Optimisation models can overcome these 

challenges and help explore alternative land-use options (Mayer et al., 1998; Groot 

et al., 2007; 2012; Groot and Rossing, 2011). In this thesis, an empirical field 

experiment is combined with a multi-objective optimization model that allows 

analysing trade-offs and synergies among various productive, environmental and 

socio-economic indicators, and thereby helps to identify options for integration of 
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banana legume intercropping. The thesis also explores through review of relevant 

literature best-fit agroecological intensification alternatives for improving the 

performance of the banana-based agroecosystem. 

1.4 Thesis goal, objectives and guiding hypotheses 

The overall goal of the study was to explore strategies for preventing and minimising 

shocks caused by XW disease outbreaks and improving the adaptability of banana 

agroecosystems under XW stress. This study addressed the following specific 

objectives. 

i. To retrospectively characterize the XW driven land-use changes and trajectories

and potential changes in the supply of key ecosystem services within XW

affected landscapes. This objective was guided by the following hypothesis: a).

XW is driving changes in land-use within farms and landscapes within affected

banana-based agroecosystems.

b). XW driven changes in land-use are independent of the time of exposure to XW

shocks and negatively impact on the supply of supporting and regulatory

ecosystem services within the landscape.

ii. To evaluate the risk of XW transmission in space as a function of environmental

variables at landscape level. This objective is supported by the hypothesis that

the spatial risk of XW is influenced by its characteristic biotic and abiotic

covariates such as vegetation, banana cultivar composition, rainfall,

temperature, crop and disease management practices.

iii. To determine the field level risk factors including the role of intercrops and

weeds as alternative hosts to Xanthomonas campestris pv. musacearum, the XW

causing pathogen in banana. I hypothesise that though Xcm can affect or survive

on other crops and weeds in the banana-based agroecosystems, its association

with these potential alternative hosts poses no risk to banana or these other

crops.

iv. To explore trade-offs and synergies between different productive objectives in

the current banana-legume intercrop management practices in the eastern DR

Congo as basis for discouraging the practice or improving the performance of the

system. I hypothesize that in addition to spreading XW disease, the current

practice of banana leaf pruning to intercrop legumes results in a sub-optimal

performance for a broad range of production objectives and this could form a

good basis for discouraging the practice.

v. To explore the best-fit agroecological intensification alternatives for optimizing

banana-based smallholder farms affected by XW. I hypothesize that best-fit
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agroecological intensification strategies are needed to mitigate XW effects on 

the supply of key ecosystem services within fields, farms and landscapes. 

1.5 Thesis outline and methods 

Figure 1.3 shows the outline of this thesis, with each objective being addressed by 1 

to 3 thesis chapters. Objective 1 is addressed through Chapters 2 and 3. Chapter 2 

uses both a qualitative and quantitative approach for data collection.

Qualitatively focus group discussions (FGDs) and the Four-cell chart analysis are

used to explore the ongoing XW-driven changes in land-use and land-use 

trajectories within banana-based landscapes, while quantitatively field 

measurements across fields with varying land-uses are used as proxies for 

selected ecosystem services potentially affected by land-use changes/

trajectories. Chapter 3 supplemented Chapter 2 by reviewing available 

literature on the potential effects of XW on ecosystem services other than the 

provisional services that to-date have received little or no attention.  

Figure 1.3. Schematic outline of the thesis.  
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 Objective 2 of this thesis is addressed through Chapter 4. In this chapter, field 

survey data collected/collated on XW disease incidence, is regressed against 

environmental and expert developed covariates and interpolated using the indicator 

regression kriging to develop the map of the AGLR showing the XW hotspots, fronts 

and vulnerable landscapes. In addition, expert generated covariates and relevant 

environmental covariates are used for mapping the possible risk due to XW across 

banana producing zones across Africa.  

 Objective 3 of the study is addressed by Chapter 5. In this chapter, the ability 

of Xcm, the XW causal agent to cause disease symptoms on selected weed and 

intercrop species is determined through screenhouse and laboratory studies. At field 

and farm level a survey followed by a multivariate analysis is used to determine the 

main factors (including the presence of plants that succumbed to XW in the 

screenhouse studies) explaining the variance of XW incidence and prevalence.  

Objective 4 of this thesis is addressed by Chapters 6 and 7. Chapter 6 uses an 
empirical field experiment to determine the effects of farmer’s banana leaf-pruning 
(a practice that spreads XW disease) to integrate legumes on the agronomic and 
economic performance of the system. Chapter 7 employs data from the field 
experiment in Chapter 6, a market study and literature to explore ex-ante with the 
multi-objective Pareto-based optimization FarmDESIGN model the trade-offs and 
synergies among economic, nutritional and environmental production objectives of 
the banana-bush bean intercropping system. This chapter also explores
alternative scenarios and identifies superior banana-bush bean management 
options for improving the banana-bush bean system.  

 Objective 5 is attained through Chapters 3, 7 and 8. Chapter 3, through a 

review of literature suggests agroecological intensification options that bridge the 

gaps in ecosystem services lost due to XW disease outbreaks. Chapter 7 uses

the FarmDESIGN model to explore alternative scenarios for improving the banana-

bush bean intensification system for multiple objectives while Chapter 8 explores 

from literature alternative agroecological intensification options, especially 

through use of shade and drought tolerant species for improving biomass 

production in banana-based agroecosystems affected by XW.  
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Abstract 

Changes in land-use/cropping patterns have been observed in banana-based 
systems in the African Great Lakes region affected by Xanthomonas bacterial wilt 
(XW) disease. Through participatory focus group discussions (FGDs) and the 4-cell 
method, changes in land-use were retrospectively assessed in 13 XW-affected 
villages at least 20 km apart along a 230 km transect from Masisi (XW arrived in 2001) 
to Bukavu (XW arrived around 2014) in eastern Democratic Republic of Congo during 
2015. The four-cell chart ranked land-use by mapping the area under production and 
the number of households involved in production. Farmers’ perceptions on the 
sustainability of new land-uses were also documented. Soil nutrient content and 
erosion levels were measured for five major land-use options/ trajectories on 147 
fields across 55 farms and three landscapes along the transect. Before XW outbreak, 
banana was ranked the most important crop in 92% of the villages and produced on 
large areas of land and by many households across these villages. However, current 
ranking has it first only in one village along the transect. Farmers reportedly 
uprooted entire banana mats or fields, expanding land under other crops or 
introducing new crops. In 36% of the villages, banana is currently produced by many 
households but on smaller areas of land, while in 64% of cases it is produced by few 
households on smaller areas of land. The area shares of other fourteen crop species, 
mainly beans, taro, sweet potato, cassava, maize, coffee and eucalyptus increased 
over the same period. Species richness did not change at landscape level, though 21 
crop species were introduced at farm level across the villages. Communities, 
however, still perceived land-use for banana to be more sustainable due to its 
multifunctional roles: year-round and regular supply of food, beer, fodder, building 
material; ability to reduce soil erosion; use as quick collateral for credits, school fees, 
emergencies and other social obligations; low production cost and high market 
value. Soils under banana plots were found in general to be better in their chemical 
attributes. High erosion levels (Mg ha-1 year-1) were observed under cassava (1.7-
148.9) compared with banana (0.3-10.7) and trees (0.3-5.9). The current study offers 
a good basis and entry point for interventions to sustainably improve production 
systems, incomes and food security in XW-affected landscapes. 

Key words: communities, disease, multi-functional, perceptions, soil erosion, 

uprooting 
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2.1 Introduction 

Musa spp. (banana and plantain, hereafter banana) is an important food and income fruit 

crop the world over (Robinson and Galán Saúco, 2010). The crop ranks sixth in production, 

with an annual world production of about 144.6 million Mg (FAO, 2017). The East and 

Central African Great Lakes region contributes one third of the world production, with 

production estimates of 5.2, 1.8, 1.4 and 1.4 million Mg ha-1 year-1 reported for Uganda, 

Rwanda, Burundi and the Democratic Republic of Congo, respectively (FAO, 2017). In this 

region, banana provides 30 - 60% of food energy needs of over 70 million people (Abele et 

al., 2007; Karamura et al., 2008) and is also important for income generation through 

market sales (Okech et al., 2004; Edmeades et al., 2007). The region is a secondary centre 

of diversity for the East African Highland bananas (AAA genome) and plantains (AAB 

genome) (Simmonds and Shepherd, 1955; Simmonds, 1966). Banana in the region, is mainly 

grown as a perennial crop/permanent vegetation and plantations that are 30 to 50 years 

old are very common (Bekunda, 1999; Gold et al., 1999).  

 The crop is grown across a wide range of agroecological zones either as sole crop or 

in association with various annual or perennial crops, offering a broad range of ecosystem 

services in addition to food, feed and fibre (Ocimati et al., 2018). The thick year-round 

canopy offered by its broad leaves, the mulch cover provided by dead leaves, leaf sheaths 

and harvested plant parts and an extended superficial root system help reduce soil erosion 

(Baragengana, 1985; Rishirumuhirwa and Roose, 1998; Lufafa et al., 2003), hence 

contributing to the resilience of the agroecosystems. The banana crop could thus be 

considered as a foundation species in this part of the word. A foundation species is a 

common/ abundant species whose attributes (structural or functional) define an ecological 

community or ecosystem (Dayton, 1972). Tampering with a foundation species can 

potentially affect the socio-cultural, economic and ecological resilience of a landscape. 

Modest to dramatic decline has been observed over the past two decades in the lifespan 

and productivity of banana plantations, and food and income security of banana dependent 

households has been severely affected by pests (weevils and nematodes) and diseases 

(mainly Xanthomonas wilt, banana bunchy top disease and Fusarium wilt).  

 The banana Xanthomonas wilt disease (XW), the most recent constraint, has been 

particularly devastating to banana production in this period in the region. First observed in 

Ethiopia in 1939 (Castellani, 1939), XW was reported in Uganda and eastern DR Congo in 

2001 (Tushemereirwe et al., 2004; Ndungo et al., 2004) and has since spread to the entire 

East and Central Africa region, compromising plantations, and food and income security at 

local, national and regional levels (FAO, 2012). The disease causes death of affected plants 

and makes infected bunches inedible. As a control measure, or out of frustration, there has 

been widespread cutting and uprooting of diseased mats or fields. In response to the 



Chapter 2 

18 

disease, farmers have also been reported to have diversified into other crop species and 

off-farm activities (Desire et al., 2016). Thus, in addition to XW effects on food and income 

security, the disease has been postulated to be accompanied by changes in land-use and 

species composition at farm and landscape level, with potential positive or negative effects 

on the food systems and other ecosystem services. These changes have not been 

systematically documented as a basis for evaluating the repercussions to livelihood 

outcomes and ecosystem services in the affected landscapes. 

 This study retrospectively analysed the i) trajectories of change in land-use patterns 

in response to XW in the XW-affected landscapes, ii) changes in production, consumption 

and marketing of banana and other key crop species in the landscape, iii) soil nutrient 

content and amount of soil erosion for major land use types and iv) farmers’ perceptions 

on the sustainability of the new land-uses. Objectives (i) and (ii) were achieved through 

recall studies in landscapes exposed to XW disease for time periods varying between 1 to 

14 years. Objectives (iii) and (iv) were attained through field measurements and interviews 

across farms.  

2.2  Materials and methods 

2.2.1 Study area 

This study was conducted in the eastern part of the Democratic Republic of Congo (DR 

Congo) that comprises two provinces, North Kivu and South Kivu. The province of North 

Kivu covers an area of 59,631 km2 and has 4.9 million inhabitants. It is located between 0o 

58' latitude North to 02o 03' latitude South and 27o 14'-29o 58' longitude East (UNDP, 2009), 

mean annual rainfall ranges between 1268 mm and 1556 mm and an altitude range of 909 

- 1803 meters above sea level (m) (Farrow et al., 2006). South Kivu is located between 1o

36' - 5o latitude South and 26o 47' - 29o 20' longitude East and has an area of 69,130 km2, a

population of 3.9 million people (UNDP, 2009). Annual rainfall in South Kivu varies between

1,437 mm and 1,661 mm and an altitude range varying between 950 to 2019 m (Farrow et

al., 2006). In this predominantly highland region, agriculture is the main basis of livelihoods

of the rural and peri-urban population, with most of them farming at a subsistence level.

Banana and plantain are important staple and cash crops contributing to the food and

income security of over five million people (CIALCA, 2009). For example, banana/plantain

and their products (e.g. beer) were reported to provide about 80 percent of incomes in

South Kivu (Food for the Hungry, 2013).

2.2.2  Land-use trajectories and food systems 

The study was conducted along a 230 km-long axis from Masisi in North Kivu province to 

Bukavu in South Kivu province (Figure 1) in 2015. This transect was selected as a case study 
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because it starts at a disease front and comprises sites with various timespans of high 

disease presence/pressure.  

 The data for this study was collected using a total of 13 village-level focus group 

discussions (FGDs). Eleven of the 13 FGDs were conducted at approximately 20 km interval 

along the 230-km axis starting from Kahanga-Kabingu village in Masisi territory to Kashusha 

village in Bukavu, while the other two FGDs were conducted on Idjwi Island (i.e., Idjwi North 

and Idjwi South) located in Lake Kivu, South-Kivu province (Fig. 1, Table 1). XW was first 

reported at Masisi in the year 2001 while it arrived at Bukavu, the last FGD location, in 2014 

(Fig. 1, Table 1).  

Figure 1. Map showing the locations of the communities/landscapes that participated in the Focus 
Group Discussions conducted in North and South Kivu provinces in eastern DR Congo. 

The snowball sampling technique was used for the identification of parishes affected by XW 

along the study transect. With the snowball sampling technique (Cohen and Crabtree, 

2006), the existing study objects inform the recruitment of the subsequent subjects based 

on their acquaintance. Within the parishes, villages affected by XW were purposively 
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sampled for the FGDs through interaction with community leaders, key informants and 

extension agents in the study area (Table 1).  

A total of 10 farmers in a sex ratio 1:1, each at least 30 years of age participated in 

FGDs. Precaution was taken to select only farmers that had been fully active in the study 

sites for a period of over 10 years. It was postulated that this category of farmers had a 

better understanding/experience with the impact of the biotic stresses, especially XW, and 

understanding of the changes and trajectories in the crop diversification and food systems 

at these sites. The distribution of the FGDs in the study area is detailed in the Table 1 below. 

Table 1. The positioning of the sampled villages and focus group discussions along the 230 km study 
axis.  

Province Territory Village 

Year of 

XW 

outbreak 

Longitude Latitude Altitude 

Distance 

from 

Masisi 

Kahanga- Kabingu 2004 - - - 0 

North-

Kivu 

Masisi Muhanga 2001 S01.24778 E029.05931 1701 20 

Burungu 2004 - - - 40 

Makombo 2008 S01.47358 E029.04045 2010 60 

South-

Kivu 
Kalehe 

Bulenga 2005 S01.71581 E29.01702 1525 80 

Ruhunde 2005 S01.81677 E029.00951 1520 100 

Kabulu 2005 S01.94952 E028.93301 1757 120 

Bushushu 2009 S01.97875 E28.90992 1486 140 

Muhongoza 2004 S02.07115 E28.89534 1585 160 

Kabare Kahanga 2009 S01.18282 E028.8617 1488 180 

Kashusha 2012 S02.32044 E28.80240 1713 210 

Idjwi Chondo 2002 S01.94219   E029.09471 1550 - 

Ntalangwa 2008 S02.22220   E029.01602 1492 - 

The FGDs were guided using a structured questionnaire. The facilitator used a checklist to 

elicit information from the participants and probed for triangulation of the responses 

whenever necessary. Care was also taken to ensure full participation of all the FGD 

participants. A four-cell chart (Bellon and Raneri, 2014; Raneri et al., 2016) was used to 

retrospectively rank the trajectories and changes in crop species and cultivar diversification 

and importance in landscapes affected by XW. The four-cell is a participatory rapid rural 

appraisal technique created to assess agrobiodiversity and local food system flows (Sthapit 

et al., 2006; Raneri et al., 2016). It allows for a quick identification and assessment of 

changes in food security and diet diversity (Raneri et al., 2016). The four-cell chart ranks 

species abundance and distribution by looking at area under production and the number of 

households involved in production. This results into four cells or groupings i.e. a species 
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being grown on: i) a large acreage and being produced by many households; ii) large acreage 

but by few households; iii) small acreage but by many households and iv) small acreage and 

few households (Fig. 2)  

Figure 2. A four-cell chart (A) and an example of farmers posting of different crop species on a four-
cell chart within a landscape and a point in time (B). The four-cell analysis were conducted across 13 
landscapes in South/North Kivu provinces, eastern DR Congo. 

Data were coded and analysed using both quantitative and qualitative methods. Descriptive 

statistics were carried out using STATA and GenStat v. 12 software (VSN International Ltd, 

2009). MS Excel was used for developing figures. The qualitative information was either 

used to explain and interpret the quantitative information provided by the respondents 

during the group discussions or compiled and sorted through a coding process to generate 

descriptive tables and figures.  

2.2.3 Effect of XW driven land use trajectories of change on selected supporting and 

regulatory ecosystem services 

To determine the potential effect of land use changes and trajectories on selected 

supporting and regulatory services (objective iv), 147 fields spread across 55 farms on three 

sites along the transect, namely Idjwi North (Northern part), Katana (midway) and 

Mushinga (southern part) were examined. All the three sites are in South Kivu province. Soil 

related agroecosystem services such as pest and disease regulation, nutrient flows, soil 

formation and structure are provided by several interrelated processes that govern 

decomposition, soil formation, soil structure, erosion control, soil moisture and aeration, 

and cycling of mineral nutrients and carbon (Bommarco et al., 2013). These soil variables 

are thus a good measure of the effect of farm management on soil health and a good proxy 

for soil ecosystem services (Wood et al., 2001; Bommarco et al., 2013; Gliessman, 2015). To 
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Area
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infer the potential effect of the land-use trajectories of change due to XW on ecosystem 

services, soil chemical properties and soil erosion rates were determined. Soil chemical 

properties served as a proxy for nutrient recycling, an import supporting ecosystem 

function, while soil erosion rates served as proxy for erosion control, an important 

regulatory service in the landscape. 

2.2.3.1 Soil carbon and nutrients 

The content of soil organic matter (SOM), total nitrogen (N), available phosphorus and 

exchangeable bases (K and Ca) were measured as indicators for soil quality and were used 

to compare different land-use options and to infer the potential impact of the land-use 

trajectories. Composite samples of five soil cores (2 cm in diameter and 15 cm deep; using 

a soil auger) were collected diagonally in fields under different land uses (crops or plant 

species) in the middle of the main growing season (i.e. October 2016). Each sample was air 

dried, sieved to pass through a 2-mm mesh and analysed for soil pH and nutrient 

composition at the National Agricultural Research Laboratories, Kawanda, in central 

Uganda. The exchangeable cations and available phosphorus were extracted using Mehlich 

3 extraction method at a pH of 2.5 (Mehlich, 1984) then determined using an atomic 

absorption spectrophotometer. Soil organic carbon content was determined 

colorimetrically at 600 nm after digestion with potassium dichromate and sulphuric acid 

(Walkley-Black). Nitrogen was extracted using sulphuric/selenium digestion mixture, at 

330oC and later quantified colorimetrically using salicylate method. pH was read from a 

1:2.5 soil:water extract. Soil texture was determined using the Bouyoucos hydrometer 

method (Bouyoucos, 1962). 

Mean levels of SOM, N, available phosphorus and exchangeable bases across the 

different land use options were analysed through Analysis of Variance, with means 

separation using LSD at 5%. The GenStat statistical package v.12 (VSN International Ltd, 

2009) was used for the analysis. 

2.2.3.2 Soil erosion losses 

Erosion rates for different land uses were determined using the revised universal soil loss 

equation (RUSLE) (Renard et al., 1997; Wall et al., 2002; Stone and Hilborn, 2015). RUSLE 

estimates the annual erosion rate on a field based on field slope, rainfall intensity, soil type, 

crop characteristics and management practices. It is expressed as (Renard et al., 1997):  

A = R*K*LS*C*P    (1) 

Where: A = estimated average soil loss (Mg ha-1 year-1); R = rainfall-runoff erosivity factor 

(MJ mm ha-1 h-1 year-1); K = soil erodibility factor (Mg h MJ-1 mm-1); L = slope length 
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factor; S = slope steepness factor; C = cover-management factor; and P = support 

practice factor. 

 Rainfall-runoff erosivity (R) is a measure of erosion potential of a rainfall event and 

is influenced by duration and intensity of the event; and R for the study site were in the 

order of 3,750 MJ mm ha-1 h-1 year-1, as calculated by Vrieling et al. (2010). Soil erodibility 

factor K is a measure of susceptibility of soil particles to detachment and transport by 

rainfall and water runoff. K was determined using the method developed by Kassam et al. 

(1992) for Kenyan soils. Using this approach, soil texture results for each land-use unit/ field 

(see Section 2.3.1) and soil units for the study areas were used as input for determining the 

K classes and the associated K values. The soil units for Mushinga, Katana and Idjwi were 

respectively, haplic Acrisols, humic Cambisols and haplic Ferralsols (Beernaert, 1999, Van 

Engelen et al., 2006). On farm data for input in the RUSLE included the slope length (L) and 

steepness (S) of fields, main crop species grown on fields, tillage practices and supportive 

field management practices. The lengths for each field or segment, was measured using a 

100 m length tape measure whereas the % slope was computed using the equation: 

S = Rise of slope/ Run of slope *100% (2) 

 The rise (m) was obtained from the difference between the elevations of the upper 

and lower parts of the field along the length of the slope measured using global positioning 

unit (GPS, Garmin - GPSMAP 64s; www.garmin.com) whereas run of slope was obtained 

using the Pythagoras theorem (i.e. Run of slope2 = L2 – Rise of slope2).  

LS, which is the proportion of soil loss under a given condition compared to that of a site 

with a standard slope steepness of 9% and length 22.13 m was determined as described by 

Stone and Hilborn (2015) using:  

LS = [0.065 + 0.0456 (S) + 0.006541 (S)2] (L ÷ constant)N (3). 

Where: S = slope steepness in %; L = length of slope (m); constant = 22.13 m; and N= N 

values of 0.2, 0.3, 0.4 and 0.5, respectively, correspond to S values of <1, 1≤ 

slope< 3, 3 ≤ slope < 5, and ≥ 5. 

The crop management and tillage factor (C) determines the relative effectiveness of crop 

and soil management in prevention of soil erosion and was computed as the product of the 

crop type factor (score of 0 to 1) and the tillage method (score of 0 to 1) (Stone and Hilborn, 

2015). The plant/crop canopy cover factor (ranging between 0 and 1) was estimated using 

Equation (4) (Wischmeier and Smith, 1978; Renard et al, 1998): 
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Crop type factor = 1 – Fc * exp (-0.1 * H) (4) 

Where Fc is the proportion of the ground covered by the canopy, H (ft) is the distance the 

raindrops fall after hitting the canopy. Fc and H were captured through visual assessments 

and estimations on farm.  For the assessment of canopy height (H) in intercropped fields, 

one species was considered if dominant, otherwise an average was considered where two 

or more species had a more or less equal share of the land cover. Thus, the crop type factor 

was influenced by the level of species diversity and the attributes of the species complex. 

The tillage method factor was scored between ‘0’ and ‘1’ (‘0’ denoting good practice while 

‘1’ a bad practice) as described by Stone and Hilborn (2015). The supportive practice factor 

P is the ratio of soil loss through a supportive practice to that through farming up and down 

the slope and varies between a scale of ‘0’ (good practice) to ‘1’ (bad practice) (Wischmeier 

and Smith, 1978; Stone and Hilborn, 2015). 

 The tillage method factors, crop type/cover factor, the support practices and the soil 

erosion rates were compared across the dominant land-use options using Analysis of 

Variance (ANOVA) and the means separated as described in the Section 2.3.1 above. Due 

to an unequal distribution of land use options across the sites and the lack of interaction 

between the sites and land use options, ANOVA was only computed for the land use 

options. 

2.2.4 Farmers’ perceptions on the future role of banana crop and the sustainability of 

the key land-use trajectories in XW affected landscapes 

Farmers perceptions on future role of banana and the ability of the major land use 

trajectories to fill the gap left by the banana crop obtained through structured interviews 

in the FGDs in 2.2 above and on farms. 

2.3. Results and discussion 

2.3.1 On-farm coping strategies against Xanthomonas wilt disease 

Communities affected by XW disease reported several coping strategies (Fig. 3). The most 

prevalent practices across communities/ landscapes included uprooting of diseased mats, 

cutting of sick plants and removal of male floral buds to prevent insect-mediated infections 

(Fig. 3). These practices form the basic cultural control practices being promoted for 

managing XW disease (Blomme et al. 2014). Other practices being promoted such as farm 

tool sterilization and formation of community task forces to enforce disease control 

occurred in only 45% and 27% of the landscapes, respectively. Ochola et al. (2013) reported 

some of these practices as the prevalent agroecological practices on farms affected by XW 
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disease. Uprooting of entire banana fields was also prevalent across 73% of the 

communities. In 55% and 91% of the cases, landscapes reported the complete abandoning 

of the banana crop and expansion of the area under other crops, respectively (Fig. 3). This 

was mainly due to frustration due to severe yield losses and persistence of infections on 

farms. The consumption of banana also declined across 82% of the landscapes in eastern 

DR Congo while in 90% of the cases, households had diversified to other crops for beer 

making. Nkuba et al. (2015) reported changes in diets, with an increased consumption of 

maize and root and tuber crops (36% of households) and a reduction in number and size of 

meals (52%) as coping strategies within households affected by XW in Rwanda and 

Tanzania.  

Figure 3. Responses and/ or coping strategies in reaction to Xanthomonas wilt across different banana 
growing communities/ landscapes in eastern DR Congo. Error bars represent standard errors. 

2.3.2  Crop diversification trajectories due to Xanthomonas wilt disease 

Prior to the outbreak of XW, farmers ranked banana as the most important crop on farms 

across the studied landscapes, followed by beans and cassava. However, following XW 

outbreak, crop rankings changed, with banana dropping to the fourth in importance, 

relative to the other crops, across the study landscapes (Fig. 4A). Food crops, mainly 

cassava, maize, sweet potato and soybean gained in importance (Fig. 4A). Cassava currently 

ranks as the most important crop across the XW affected landscapes in eastern DR Congo. 

A big shift in ranking also occurred for soybean (13th to the 8th). The ranking of beans in the 

food system remained unchanged while coffee and taro dropped in importance.  
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A shift was observed towards increasing the area under a large number of crop 

species by many households (i.e. to cell 1), mainly from being grown on small areas by many 

households (i.e. cell 3) (Fig. 4B).  

Figure 4. Farmers’ perceptions on the rankings in importance of different crop species (A) and trends 
in crop species richness (%) on along the quadrants of a 4-cell chart (B) following the outbreak of XW 
in 13 landscapes in eastern Democratic Republic of Congo. Cells 1, 2, 3 and 4, respectively stand for a 
species being grown on i) a large acreage and by many households; ii) large acreage but by few 
households; iii) small acreage but by many households and iv) small acreage and by few households. 
Data was captured in the period 2015/16.  

The four-cell chart predominantly grouped the banana crop into cell 1 before the 

outbreak of XW disease across the 13 XW-affected landscapes (Fig. 5). Banana was ranked 

first in 92% of the villages, produced on large land areas and by many households across 

the villages. Cassava (85%) and beans (46%) were also more likely to be grouped in cell 1 

across the surveyed landscapes before the outbreak of the disease (Fig. 5; Chi2 = 92.1, P 

<0.0001). At the time of this study (after or at the peak of XW epidemics), only a single 

village ranked banana first among the crop species. Farmers reported uprooting entire 

banana mats and/or fields while expanding land under other crop species and/ or 

introducing new crop varieties (Figures 3, 5). Banana no longer fell into cell 1 of the four-

cell chart. In 36% of the villages, banana was produced by many households but on small 

areas (cell 3), while in 64% of cases it was produced by few households on small areas (cell 

4) (Fig. 5; Chi2 = 61.1, P <0.0001). Species richness did not change at landscape level, though

21 crop species were introduced at farm level across the villages. Pronounced changes in

importance were mainly observed for 14 food crops and tree species, mainly beans, taro,

sweet potato, cassava, maize, coffee, eucalyptus and soybeans in terms of area under

production and the number of households producing them (Figures 5 and 6).



Xanthomonas wilt drives changes in land-use 

 

27 
 

 
Figure 5. Spider plots showing the shifts in diversity (abundance) of selected key crop species before 
and after the outbreak of Xanthomonas wilt disease of banana across 13 landscapes in eastern 
Democratic Republic of Congo. Cells 1, 2, 3 and 4, respectively stand for a species being grown on i) a 
large acreage and by many households; ii) large acreage but by few households; iii) small acreage but 
by many households and iv) small acreage and by few households.  
 

 Increase in the importance and production of the 14 crops was reported to target 

the filling of the food security and income gap that arose from the loss of the banana crop 

to XW disease. Nkuba et al. (2015) similarly reported increases in the area under maize, root 

and tuber crops on XW affected farms in Tanzania and Rwanda. Replacement of banana 

with sweet potatoes and cassava after devastation by XW has also been reported in Uganda 

(Kalyebara et al., 2006). The high ranking of cassava can be attributed to its complementary 

role to banana as a food and income crop in these XW affected landscapes. The increments 

in the area and the number of households growing coffee and taro (Figures 5 and 6) is not 

in tandem with the drop in the rankings of these crops (Fig. 4). The slight drop in the 

rankings for coffee and taro (cf. Fig. 4) could be attributed to the urgent need to bridge the 

food and income gap, with quick maturing annual crops taking the priority. This is supported 

by the fact that the number of households and area under coffee, taro and cocoyam relative 
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to the period before XW outbreak had increased (Fig. 5). The leap in the rank of soybean 

was attributed to ongoing promotion of soybean as a biological nitrogen fixation agent and 

source of income by international projects in the region.  

Figure 6. The crop species used to replace uprooted banana fields in landscapes affected by 
Xanthomonas wilt disease of banana in the eastern DR Congo. 

Farmers’ choices of replacement crops for banana in XW affected landscapes mainly 

comprised of the urgent need to bridge the income gap i.e. market value and improve food 

and nutrition security. The potential environmental benefits or effects on e.g. soil erosion, 

nutrient recycling received the least attention from farmers when considering crops to 

replace banana. This could be due to farmers’ limited knowledge on or perceived less 

importance of such services, in addition to these services often being intangible (Ocimati et 

al., 2018). 
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2.3.3 Perceived changes in the food systems due to XW stress 

XW disease induced changes in the value chains of major staple crops from production to 

consumption within the affected areas. Declines in the production and consumption of 

banana occurred across all (100%) XW-affected landscapes, while the sale and purchase 

by households from other markets of banana only increased in 23% and 38% of the 

affected landscapes, respectively, relative to the time before the outbreak of XW (Fig. 7). 

The decline in banana production and consumption within households was 

predominantly attributed to XW disease. Delayed management of XW disease is reported 

to result in up to 100% yield losses. Increases in household sales of banana in some of the 

landscapes despite the decline in production and consumption can be attributed to the 

attractive higher market prices resulting from a low supply of bunches in the market. Nkuba 

et al. (2015) also reported a 35% decline in banana sales by farmers and a doubling of 

banana bunch prices in Tanzania and Rwanda due to XW disease. The slight increment in 

household expenditure on banana bunches, is because some households were able to buy 

bunches from the local or urban markets to meet the household demand for banana-based 

food and banana beer beverage that also had an attractive price in the market. Increases in 

production was observed for all the major food and tree crops in most of the XW-affected 

landscapes (Fig. 7). These increases were due to increased land allocation (cf. Fig. 5) to meet 

the food and income needs of the households. For example, increases in consumption were 

reported for sweet potato, beans, taro, maize and cassava while relative sales of beans, 

coffee, cassava and eucalyptus increased. The increased production of beans was also 

attributed to an increased productivity of the crop in abandoned or destroyed banana fields 

that had a higher soil fertility. An increase in coffee purchase was also reported, possibly 

due to farmers and middlemen buying locally, and bulking for future sales or for 

transportation to outside markets (e.g. in neighbouring Rwanda) with higher prices. 

Pronounced increases in production and trade sugarcane were also observed (Fig. 7).     
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Figure 7. Net frequency (%) of landscapes reporting changes production, sale, purchase and 
consumption of key food and tree crops across 13 landscapes affected by Xanthomonas wilt disease 
of banana in eastern Democratic Republic of Congo. 

2.3.4 Farmers’ perceptions on the future role of banana and the sustainability of the 

key land-use trajectories in XW affected landscapes 

Despite banana being severely affected by XW, it still occupies a unique position in the 

farming system, due to its multifunctional benefits and roles in the production system. The 

most important benefits reported by farmers included, its regular and all year-round 

production (100% of landscapes), household preference to consume banana fruits (100%), 

its high profitability (92.3%) and its ranking as the major contributor to household income 

(92.3%) (Fig. 8). Farmers described the crop to be their “local bank”, stemming from the 

ease of its conversion into cash. This is in line with the findings of Vandamme (2008) who 

reported the banana crop to play an important economic role as a farmers’ `bank account’ 

for unexpected or major expenses and thus its importance in the agriculture sector in 

eastern DR Congo. Banana was also important for beer making, a use that was reported to 

enhance social cohesion (70%). Study groups reported the loss of banana to have exposed 

youth to more potent alcoholic beverages, increasing health and social problems within 

their landscapes, thus the need to restore banana production and the banana local beer 

industry. The crop is also an important source for livestock feed, materials for construction 

of temporary shelters. Farmers were therefore still eager to manage the disease or re-

introduce the crop on their farms. Approximately half (54%) of the landscapes visited in the 

study area were either still producing or had resumed banana cultivation despite the 

presence of the XW, while the other percentage had not. No association (R2 = 0.01) was 
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observed between the time of exposure to the disease, and the continuation and 

resumption of a landscape to produce banana. The continuation or resumption of a 

landscape to produce banana was also influenced by farmers’ access to clean planting 

materials, the differential importance of banana for food and income, and the variability in 

incidence and severity of the infection XW across the landscape. For example, clean planting 

materials were not accessible in the study region while in one out of the 13 sites, banana 

was not highly ranked and grown on large scale, as such XW disease was not a major 

concern. The key replacement crops were also reported to have failed to bridge the food 

security and income gap left by the banana crop. Due to the perennial nature of the banana 

crop, farmers reported a lower cost of production e.g. in labour and inputs whereas the 

other crops demanded major cultivation annually and investments in inputs annually.  

Not surprisingly, only farmers in about 10% of the landscapes recognized the role 

of banana in reducing soil erosion in the landscape. This was because it is less tangible and 

lacked immediately visible benefits to most farmers.  

Figure 8. Farmers perceived comparative benefits offered by the banana crop across 13 landscapes in 
eastern Democratic Republic of Congo. Numbers denote percentage of villages reporting. 
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2.3.5 Soil quality 

The soil chemical properties significantly differed (P<0.05) between the land-use options 

and sites, whereas no significant interactions (P>0.05) were observed between the land-use 

options and sites (Table 2). No use of chemical fertilizers was reported by farmers across 

the study sites for the analysed land-use options. Soil organic matter (SOM) and nitrogen 

(N), potassium (K) and phosphorus (P) were consistently higher in fields planted with trees 

and banana (Table 2). The banana crop also scored high for exchangeable bases calcium 

(Ca) and magnesium (Mg). Banana extracts large amounts of soil N and P (Nyombi et al., 

2010) and as such, a higher depletion of these nutrients in soils with banana would have 

been expected. The observed higher availability of these and other nutrients in banana 

fields could be linked to the location of most banana plots close to homesteads, which 

allows for easy application of household wastes. The banana crop, due to its large size and 

wide spacing, and in contrast to other crops, is more compatible with the deposition of most 

household wastes in between plants. It was also common to see banana plots with some 

mulch and/ or heavy crop litter. The permanent nature of banana fields, high recycling of 

banana wastes, the application of external mulch and kitchen wastes under banana fields 

have been reported to improve nutrient availability and recycling in banana fields (Ocimati 

et al., 2018). Bekunda and Woomer (1996) also reported farmers to preferentially apply 

available organic resources on plots close to the homestead. Mulch and crop residues also 

intercept, slow and reduce runoff through retaining a fraction of rainfall/runoff, increasing 

hydraulic roughness, ponding and infiltration, obstructing and diverting runoff (Mohamoud 

and Ewing, 1990), potentially reducing nutrient loss through erosion. In contrast, fields 

under cassava and other annual crops generally received no external inputs. Stems of 

cassava and some annual crops e.g. maize and sorghum were often exported out of fields 

and used as fuel wood while some annual crop residues were burnt on farm, practices that 

lead to nutrient depletion.  

Fields under grass where generally low in soil P, K and Ca content, possibly due to 

constant extraction of nutrients through livestock grazing (Table 2). Such fields also 

predominantly consisted of fields previously found to be less productive for food crops. 
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2.3.6 Soil erosion control 

The mean values of the variables for estimating soil erosion levels or its variables 

with exception of slope length were significantly different across the land use 

options (P <0.001) and the three study sites (P<0.05) (Tables 3). Significant 

interactions between land cover options and sites occurred for soil erodibility (K), 

the crop management factor (C), and the support practice (P). 

The crop cover factors that influences the crop management factor C were 

highest for land cropped with cassava (0.41-0.47) and annual crops (0.47-0.54) while 

least for fields covered by grass (0.01-0.02) (Table 3). Of the food crops, the banana 

crop (0.09-0.12) had the least crop cover factor. The cover factors in this study (Table 

3) for the various crop/plant categories are comparable to those reported in

literature (e.g. Howeler et al., 2001; Wall et al., 2002; Angima et al., 2003; Borrelli et

al., 2017; Panagos et al., 2015; Stone and Hilborn, 2015). The tillage factor values for

fields under grass and trees were low due to no tillage. Tillage practice values under

coffee and banana (often minimum or zero tillage) were lower and more supportive

in controlling soil erosion than those under cassava and annual crops (Table 3). Fields

planted with annual crops and cassava were subjected to routine cultivation,

exposing the soil to run-offs. In line with the low crop cover type factors and tillage

method factors, fields under grass, trees and banana had lower C values (0.002-0.06)

compared with 0.21-0.33 for cassava and 0.27-0.43 for the annual crop fields across

the sites (Table 3).

 In general, most farmers did not adhere to support practices (P) that minimise 

soil erosion. For example, most farmers cultivate up the slope (instead of along 

contour bands), a practice that encourages soil erosion. Cassava and annual crops 

ranked worst with regards to these practices while coffee and banana fields were 

moderate due to minimum/zero tillage practiced on some farms (Table 3).  

 The mean slope factor (LS) was mainly influenced by the slope gradient. LS 

and slope respectively, varied from 0.45-16.3 and 4-39% and were in general highest 

for fields planted with trees and least for fields planted with the annual crops. The 

ground surface of fields planted with trees were often covered by grass and/or thick 

layers of leaf litter. Growing trees with deep root systems on steep slopes and annual 

crops on relatively flatter areas could be farmer’s strategy to minimise soil loss 

and/or put such lands to fruitful use. Banana crops (slope = 4-16%) relative to cassava 

(4-20%) were cultivated on relatively flat areas (Table 3), probably due to most 

banana farms being located close to homesteads which were more often on flatter 

portions of the land. The farms at Katana were on more gentle slopes (4-5%) 

compared to Idjwi (10-28%) and Mushinga (6-39%). 
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 Soil erodibility factor, K varied between 0.0053 and 0.0268 Mg h MJ-1mm-1

and was lower at Katana compared with Idjwi and Mushinga. These K values are 

comparable to 0.009-0.021 Mg h MJ-1mm-1 reported for the Tangata catchment in 

Rwanda (De Taeye, 2016), 0.016 Mg h MJ-1mm-1 for the Kainjuki highlands in Kenya 

and 0-0.24 Mg h MJ-1mm-1 for the whole of Rwanda (Karamage et al., 2016). 

The mean soil erosion levels (A) computed using the RUSLE equation were in 

general lower for the fields under grass (0.4 Mg ha-1 year-1 of soil loss per annum), 

trees (0.5-5.9) and banana (0.3-10.7) compared with 29.5% Mg ha-1 year-1  for coffee, 

1.4-28.3 for the annual crops and 1.7-148.9 Mg ha-1 year-1 for cassava fields (Table 

3). The high erosion levels for cassava fields can be attributed to allocation of cassava 

to the less fertile steep slopes and the less protective tillage and support practices 

under cassava (Table 3). The soil erosion levels were generally lower at Katana (0.3-

1.7 Mg ha-1 year-1) that had less soil erodibility and more gentle slopes compared 

with 0.4-98.8 Mg ha-1 year-1 at Mushinga and 0.4-148.9 Mg ha-1 year-1 at Idjwi. Several 

farms at the Mushinga and Idjwi site were on steep slopes, coupled to their higher 

soil erodibility rates (Table 3). The trend in erosion levels for landscapes under 

banana, coffee and annual crops as reported by Lufafa et al. (2003) for the Lake 

Victoria basin catchment are similar though higher compared with those of the land 

uses in this study. Lufafa et al. (2003) reported soil loss levels of 32-47 Mg ha-1 year-

1 for banana and coffee systems and 93 Mg ha-1 year-1 for the annual crops. In the 

Kianjuki catchment area in central Kenya, Angima et al. (2003) reported higher soil 

losses between 30-666 Mg ha-1 year-1 for annual rotations, banana and coffee-based 

systems. However, despite a comparable LS factor (1-29), the Kianjuki site had twice 

higher rainfall erosivity of 8,527 MJ mm ha-1 h-1 year-1 compared with 3750 MJ mm 

ha-1 h-1 year-1 in the current study sites. Apart from land use under grasses, trees and 

banana, and the Katana site, erosion levels for cassava, coffee and annual crops were 

above the tolerable soil loss rates of 2.2-10 Mg ha-1 year-1 reported for the Kainjuki 

catchment in Kenya (Angima et al., 2013) and 15 Mg ha-1 year-1 used for the Tangata 

catchment in Rwanda (De Taeye, 2016).  

Given the current trajectory of farmers in these XW affected landscapes to 

shift to cassava, beans and other annual crops, the unsuitable location of several 

farms on steep slopes (6-28%) coupled with the poor tillage and support practices 

under the alternative land uses, erosion levels are likely to rise on XW affected farms 

and landscapes. Strategies for supporting farmers alternative land uses to mimic 

banana production system and land uses such as land under trees and grasses needs 

to be explored and promoted. Potential practices could include the integration of 

contour hedges, grass bands, mulching and the use of cover crops to reduce runoff 

in erosion prone land use options.
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2.4. Conclusion 

Xanthomonas wilt disease of banana leads to death of affected plants and decay of 

infected bunches. All the study sites reported XW to severely distress their 

production systems. Uprooting of entire banana fields, expanding area under other 

crop species and totally abandoning banana for other crops was common across the 

landscapes. No changes in crop species richness at landscape level were observed 

though changes were eminent at farm level, with some farms introducing individual 

crop species. The overall trend across the sites was to increase the production of 

crops such as cassava, sweet potato, maize, sugarcane and eucalyptus with the 

objective of filling the short-term food security and income gaps arising from the loss 

or low productivity of bananas due to XW disease. Cassava and coffee especially, 

have already been important food and/or income crops in the region, with better 

developed market value chains, offering a better option in the short and long term 

to bridge the food and income gaps left by the banana crop. However, the observed 

trends in crop diversification in XW affected landscapes needs to be supported 

through deliberate efforts to improve extension services, seed systems, post-harvest 

handling and market value chains. Banana is still perceived as the preferred crop due 

to its multifunctionality in providing food, fodder, fiber, incomes and other 

ecosystem services in the landscape. The current trajectory in land-use will 

potentially increase soil loss and negatively affect the productivity and resilience of 

the soils. Strategies to manage XW and rapidly restore banana production in affected 

landscapes are necessary. In parallel, efforts are needed to support other land-uses, 

especially land under cassava so as to mimic the natural ecosystems in the supply of 

services such as erosion control and nutrient recycling e.g. through planting hedges 

and grass bands along contours. This study stresses the importance of a holistic 

approach focused on the entire banana-based agroecosystem in addressing the XW 

problem and is a good basis/ entry point for interventions to sustainably improve 

production systems, incomes and food security in XW-affected landscapes. 
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Abstract 

 

Banana plantations are multifunctional agroecosystems that besides their main 

provisioning service also deliver a range of supporting, regulatory and cultural 

services that are largely unvalorized. Banana is perennial in nature with plantations 

as old as 50 years reported in the African Great Lakes region. Banana is cultivated in 

a wide range of agroecologies (from sea level to 2400 m.a.s.l.) and cropping systems, 

where it contributes to various ecosystem services (ES). These include regulating soil 

erosion, water cycles and quality, and nutrient recycling. However, the outbreak of 

Xanthomonas wilt of banana (XW) along with some of its management practices, 

such as uprooting mats/entire fields, is devastating banana production and 

rendering landscapes bare and prone to degradation. Yet this process is also leading 

to diversification of agroecosystems in over 70% of farms in the African Great Lakes 

region with unknown but potentially positive consequences for resilience and 

adaptation, as well as for local diets. The sustainability of these alternative land-uses 

is variable. This study reviews the different services offered by banana plantations 

and the impacts, positive or negative, that XW-driven diversification may have on 

these services. It suggests the need to consider explicitly the consequences of pests 

and diseases for the full range of ES provided by the crop and an ES-broad framework 

for estimation of losses, and planning resources and strategies for disease 

management. The study also suggests strategies, such as incorporation of shade- and 

drought-tolerant cover crops, hedges and agroforestry trees, to augment the supply 

of key ES within XW-affected agroecosystems/landscapes. 

 

Keywords: drought tolerance, landscape, multiple functions, provisioning, 

regulatory, shade tolerance, supporting.  
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3.1 Introduction 

 

Worldwide, Musa spp. (bananas and plantains, hereafter referred to as banana), with 

an estimated annual production of 144.6 million tons, rank as the sixth most 

important source of carbohydrates (FAOSTAT, 2015). About one‐third of this 

production comes from sub‐Saharan Africa (FAOSTAT, 2015), where the crop provides 

over a quarter of food energy requirements for more than 70 million people 

(Karamura et al., 2008). The African Great Lakes region, covering parts of Burundi, 

Democratic Republic of Congo (DR Congo), Kenya, Rwanda, Tanzania and Uganda, is 

the largest producer and consumer of banana in Africa (Smale, 2006). In this region, 

the crop is also important for cash (Edmeades et al., 2007). 

In the African Great Lakes region, banana is predominantly grown by 

smallholder farmers (<2 ha), who realize low yields of 5‐30 Mg ha‐1 year‐1 (Wairegi et 

al., 2010; Okumu et al., 2011) when compared with 70 Mg ha‐1 year‐1 reported at 

experimental stations (van Asten et al., 2004). The low yields are attributed to several 

factors that include sub‐optimal crop management practices, and several abiotic and 

biotic stresses. Xanthomonas wilt disease of banana and enset (XW, caused by 

Xanthomonas campestris pv. musacearum) is currently one of the most important 

constraints to banana production in the African Great Lakes region (Kalyebara et al., 

2006; Blomme et al., 2014). 

XW indiscriminately infects all banana cultivars in the region (Ssekiwoko et al., 

2006). Infected plants die and other attached plants in the mat may also get infected 

(Ocimati et al., 2013a; 2015). As part of control, or in frustration and anger, farmers 

uproot infected banana mats or entire fields. XW thus severely compromises 

livelihoods and food security for the banana‐dependent households (Kagezi et al., 

2006; Blomme et al., 2014). Potential economic losses varying between US$ 200 and 

295 million/ year were estimated for Uganda if the disease was not managed 

(Kalyebara et al., 2006; Abele and Pillay, 2008). The estimated economic losses were 

based on the short‐term benefits, i.e. yield and incomes from the fruits (i.e. a 

provisioning service). Other potential supporting, and regulatory services realized 

from the crop were not factored in these disease impact calculations. 

Banana plants are large perennial herbs characterized by 50 to 100 cm long 

sub‐horizontal roots that occasionally reach 3 m in length (Blomme and Ortiz, 2000), 

and a pseudostem consisting of large overlapping leaf sheaths and broad leaves. 

These attributes make the crop a conducive supplier of several supporting and 

regulatory services, such as nutrient recycling, and regulation of soil erosion, water 

cycles and quality. The current economic loss estimates are thus an under‐estimation 

of the impact of XW disease in the banana‐based systems.  
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As with the banana crop, most disease‐estimation studies in agroecosystems 

have focused on provisioning services, especially yield. This is also reflected in the 

definition advanced for agroecosystems, i.e. an ecosystem managed with the 

intention of producing, distributing and consuming food, fuel and fiber (Cabell and 

Oelofse, 2012). Cheatham et al. (2009) proposes the ecosystem services (ES) concept 

as an appropriate means to define successful disease management more broadly, 

beyond short‐term crop yield evaluations. Banana plantations are multifunctional 

agroecosystems that, besides their main provisioning service, deliver a range of 

supporting, regulatory and cultural services. This study reviews the different banana‐

based systems, the potential ES offered by banana plantations and the impacts, 

positive or negative, that XW‐driven land‐use diversification and control strategies 

may have on these services in the African Great Lakes region. It outlines the need for 

researchers and policy makers to look beyond banana’s short‐term provisioning role 

while assessing the impact of diseases and planning resources to invest in disease 

management. The study also suggests strategies for supporting banana‐based 

agroecosystems to augment the supply of key ES within landscapes affected by XW 

disease. 

 

3.2 Banana agroecologies and systems in the African Great Lakes Region 

 

Banana production systems in the African Great Lakes region are complex and 

diverse. The complexity derives from the diversity in agroecological conditions as well 

as the socio‐economic variability across the regions (AATF, 2009). The prevailing 

farming systems also influence farmers’ management practices, the prevalence and 

severity of biotic constraints and strategies for managing the constraints. Bananas 

are grown from altitudes as low as sea level to above 2000 meters above sea level 

(Gold et al., 2002; Eledu et al., 2004; Ocimati et al., 2013b), with both bimodal and 

unimodal annual rainfall patterns between 400 to above 1000 mm (Eledu et al., 

2004). Soils range from low nutrient sandy soils to rich loamy volcanic soils (Eledu et 

al., 2004).  

In the African Great Lakes region, bananas are grown as a permanent 

vegetation, as a sole crop or in association with various crops and in varying 

agroecologies and mainly on smallholdings (<2ha). Plantations 30 to 50 years of age 

are common in the African Great Lakes region (Bekunda, 1999; Gold et al., 1999). 

Monocropped plantations are almost non‐existent in the East and Central African 

region (AATF, 2009). Bananas are primarily intercropped with beans, coffee and taro 

(Sebasigari, 1985; AATF, 2009; Ocimati et al., 2013c). Other common intercrops 

include leafy vegetables, scattered trees and other root and tuber crops such as 



Xanthomonas wilt affects supply of ecosystem services 
 

 

47 
 

cassava, yams and sweet potato. Plantations are often mulched with grass and other 

crop residues obtained from elsewhere on the farm. Plantings in home gardens often 

benefit from kitchen and other household wastes. Tillage practices of banana fields 

vary from zero tillage to tilling twice annually mainly depending on (i) production 

objectives, (ii) whether crops are grown in mixtures or as sole crops, and (iii) access 

to farmland. Most commercial‐oriented farms and sole cropped banana plantations 

are not tilled and instead mulched with grass and/or crop residues. In contrast, most 

small‐scale farmers intercrop banana with other crops due to the limited access to 

land and as such practice a high level of tillage on farm. External inputs, apart from 

crop residues and mulch, are used among the better‐resourced, market‐oriented 

households. Agroecological intensification practices, such as agroforestry and 

fallowing, that could improve soil fertility are rarely practiced under these systems 

due to the high population density, land fragmentation and small size of the plots 

(Ocimati et al., 2013c). 

The East African highland (EAH) cooking and beer bananas (AAA genome) 

dominate the banana landscapes in the African Great Lakes region, mainly covering 

the medium to high altitude zones from 1000 to 2000 m.a.s.l. (Gold et al., 2002; Eledu 

et al., 2004; Ocimati et al., 2013b). The EAH cultivars are often more intensively 

managed, and bunches can be harvested all year‐round. The AAB plantains form an 

important component of the banana landscape in the lowland humid areas (below 

1200 m.a.s.l.) of eastern DR Congo and the Congo basin (Eledu et al., 2004; Ocimati 

et al., 2013b). The beer banana ‘Pisang Awak’ (ABB genome) systems are also 

common in the low‐altitude areas, e.g. in central Uganda (Gold et al., 2002). This 

cultivar is robust even under poor soil and management conditions and is often less 

intensively managed by farmers (Gaidashova et al., 2005). There are also limited 

quantities of other cooking (ABB genome) and dessert types (both AAA and AAB 

genome groups).  

In a nutshell, banana is an important foundation species in several 

agroecosystems in the East and Central African region. A foundation species is a 

common or abundant species whose structural or functional attributes create and 

define an entire ecological community or ecosystem (Dayton 1972; Hanski, 1982). 

The importance of foundation species has been described for several forest 

ecosystems in which a single foundation species controls population and community 

dynamics and modulates ecosystem processes (Orwig et al., 2002; Ellison et al., 

2005). The loss of such species can have dramatic effects on our perception of the 

landscape and broad consequences for associated biota, ecosystem function, and 

stability (Ellison et al., 2005). 
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3.3 Potential ecosystem services offered by banana-based systems 

 

Banana plantations or fields serve multiple functions to banana farming households 

and landscapes, but services other than the provisioning services have often gone 

unrecognized.  

Provisioning services offered by the banana crop: Several studies, such as Singh and 

Uma (1996); Edmeades et al. (2007); Abele et al. (2007); Karamura et al. (2008); 

FAOSTAT (2015) and Kamira et al. (2015), have stressed the importance of the banana 

crop in provisioning of food, fodder (fresh leaves and pseudostems), fuel (dry leaves 

and leaf sheaths) and fiber (leaf sheaths and flower stalks). All parts of the crop are 

varyingly beneficial to households in different regions. The crop is an important 

source of animal feeds, herbal medicine, crafts and ornaments, and construction 

materials (Singh and Uma, 1996; Kamira et al., 2015). Bananas are consumed as fruit, 

beverage, vegetable and staple food.  

Regulatory services: The characteristics of banana plants make them suitable for the 

supply of regulatory services, such as soil erosion control, water quality and 

pollination enhancement in fields and landscapes. The dense network of horizontal 

roots and thick year‐round canopy due to the broad leaves and large number of 

lateral shoots coupled to the humus from the rotting leaves and trunks protect the 

ground from soil erosion (Baragengana, 1985; Rishirumuhirwa and Roose, 1998), 

especially during heavy rainfall seasons and in undulating/hilly terrains, contributing 

to the resilience of fragile ecosystems. For example, Lufafa et al. (2003) reported 

much lower (<30%) soil erosion levels in fields under permanent banana canopy 

compared to annual cropped fields. Tillage practices that leave little residue in 

agricultural fields have been reported to exacerbate soil erosion by wind and water, 

resulting in reduced top soil and removal of nutrients, air pollution from wind‐blown 

soil and loss of soil structure, leading to reduced infiltration of water and increased 

runoff (Miller, et al. 1999; Al‐Kaisi and Hanna, 2002; With, 2002). Crop residues 

intercept and retain a certain fraction of rainfall from 2 to 4 times their mass 

(Mohamoud and Ewing, 1990). Crop residues also reduce runoff by increasing 

hydraulic roughness, ponding (which slows run off), obstructing and diverting runoff 

(increasing the length of down slope flow path) thus increasing the time of runoff, 

allowing for more infiltration (Gilley et al., 1991; Alberts and Niebling, 1994). Thus, 

the characteristic of the banana plants and plantations (application of mulch and 

household wastes (more often in backyard plantations)) potentially help improve 

water infiltration.  

Taro (Colocasia spp.), a common food crop in most banana producing 

households in eastern DR Congo, is also observed to grow well under the shade 
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provided by the large banana leaves and canopies. The destruction of banana 

plantations by XW and XW management practices, and the absence of banana shade, 

has already been incriminated by farmers in this region for its yield‐reducing role in 

taro (Jules Ntamwira, personal communication, 2016). Rogers and Iosefa (1993) 

reported higher plant height, leaf area and an increase in taro plant biomass under 

50% shade compared to full sunlight. Taro corm yields were also not reduced under 

50% shade whereas corm percentage dry matter, a proxy for quality, was higher 

under 50% shade compared with full sunlight.  

With respect to pollination, the banana crop flowers all year round, though 

peaking in the wet seasons. The melliferous species are thus able to ensure an all‐

year supply of pollen and nectar for pollinators, especially in times outside the 

blooming period of other crops and weeds.  

The banana crop can also potentially help with climate regulation through 

carbon sequestration and minimising temperature extremes. Carbon stock levels 

(82.5‐92.8 Mg ha‐1) obtained under selected EAH banana plots (Kamusingize et al., 

2017) are comparable or higher than some woody species such as Eucalyptus‐

dominated wood lots (63.8 Mg ha‐1; Sirike, 2012 in Kamusingize et al., 2017), tea 

plantations (69 Mg ha‐1) and natural forests (67 Mg ha‐1; Twongyirwe et al., 2013) in 

Uganda and pine plantations (87 Mg ha‐1) in Columbia (Usuga et al., 2010). 

Supporting services: Bananas are often grown as a permanent land‐use leading to a 

build‐up in crop litter, helping in nutrient recycling and biomass accumulation. In 

addition, and unlike most other crops, external mulch materials, kitchen refuse and 

other wastes are often dumped or applied in the banana plantations, thus providing 

nutrient recycling and biomass accumulation. In eastern DR Congo, most farmers 

believe that banana plantations can independently support their nutrient recycling 

needs and thus only apply external inputs onto other crops and in extreme cases 

were observed to compost and transfer banana residues to other fields. The crop is 

also an important source of animal feeds (Singh and Uma, 1996; Kamira et al., 2015) 

whose dung, especially in zero‐grazed systems, offers a nutrient circulation benefit. 

Cultural services: Common cultural services offered by the banana plant include 

inspiration for art and spirituality (Singh and Uma, 1996; Kamira et al., 2015). Several 

cultural values related to birth, marriages, deaths and other special ceremonies and 

rituals are associated with specific banana cultivars, and as such significant 

proportions of these cultivars are always maintained in family gardens for these 

different purposes (Karamura et al., 1998). The traditional knowledge with the 

respect of conservation, management, use of the cultivars and preparation of 

banana‐based dishes is often passed from generation to generation through parents, 

uncles and aunts in these systems. There is also a strong sense of identity, self‐
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fulfilment and meaning associated with the banana crop and banana‐based diets in 

the banana‐consuming communities. For example, the traditional meal made from 

steamed EAH bananas, “matoke”, is synonymous for the word “food” in central 

Uganda (Karamura et al., 1998). Aesthetic enjoyment can also be realized from the 

beauty of banana landscapes and the cooler environment they provide.  

 

3.4 Xanthomonas wilt effects on ecosystem services in banana-based 

agroecosystems 

 

The negative effects of XW disease on food provision and incomes from banana fruits 

have been well studied and reported (see for example, Kalyebara et al. (2006) and 

Abele and Pillay (2008)). More recent studies show that, although there was a change 

in diversity at landscape level, diversity of crops at household level increased due to 

a complete loss or a significant reduction in banana plot size (Ocimati et al., 2016). 

Further studies are still needed to determine if the changes in diversity at household 

level have positively impacted on dietary diversity in the affected households 

No studies have been conducted to quantify XW‐induced losses in other ES 

(provisioning, regulatory and cultural). Plant disease effects on supporting and 

regulating services occur when a plant function is disrupted, and other plant types 

cannot compensate for the function. These services have received far less research 

attention (Cheatham et al., 2009). 

XW affects ES directly through the removal of plants and/or complete mats. 

XW causes premature ripening and rotting of fruits, rapid wilting and eventual death 

of affected plants. Some of the emerging suckers may eventually show symptoms 

and die while others emerge with or without latent infections and grow to maturity 

and bear good fruits (Ocimati et al., 2013a; 2015). The loss of plants, reduced plant 

density and canopy cover opens the soil to degradation by runoff water, reduced soil 

water retention and soil sedimentation into community water sources affecting 

water quality (Cheatham et al., 2009). The loss of plant cover can also affect 

biomass/crop litter accumulation and nutrient recycling in affected fields and 

landscapes. Reduced plant cover can also affect the supply of nectar, sap and pollen 

for pollinators (El‐Kazafy, 2007; Bat Conservation Trust, 2017), that play an important 

ecological role of pollination especially in landscapes where bananas are the 

predominant suppliers of these services, potentially down‐regulating this service and 

affecting overall yields.  

Indirectly, uprooting of infected plants or entire fields, which are among some 

of the recommended control strategies for managing the disease (Blomme et al., 

2014), can affect the supply of key ES (Cheatham et al., 2009). This practice is 
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associated with extensive destruction of the soil surface and structure, and exposure 

of soils to erosion agents, especially rainfall and wind. This practice is often 

accompanied by export of crop residues from the field, further aggravating soil 

erosion, reducing soil water infiltration and retention, and negatively affecting 

nutrient recycling in fields.  

As a coping strategy, farmers also often uproot banana plantations for entirely 

new land‐use options or expansion of other existing land‐use options. For example, 

replacement of banana with sweet potatoes and cassava following devastation by 

XW has been reported in Uganda (Kalyebara et al., 2006). This in part is due to 

frustration (of being unable to eradicate the disease) and need for alternative sources 

for food (to maintain a similar whole farm productivity level), and in part due to 

limited knowledge or importance placed on the regulatory and provisioning services, 

which are often not tangible to farmers. The effect of the alternative land uses on 

the multi‐functionality of the agroecosystems is not known. The sustainability of the 

alternative land‐use options needs to be assessed to influence policy decisions and 

mitigation strategies for combating the disease and guiding diversification efforts. It 

is postulated that some of the alternative land‐uses could negatively affect some 

services, such as erosion regulation, water infiltration and retention, nutrient 

recycling and weed suppression. In contrast, increased plant biodiversity may reduce 

disease risk if susceptible host tissue becomes less common (Cheatham et al., 2009). 

Increased biodiversity at household or landscape level could also improve pollination 

services and improve household nutrition. However, there is no current evidence to 

support these arguments in the XW affected banana‐based systems. There are 

ongoing studies to assess the extent of and trajectories of land‐use diversification 

due to XW disease occurrence, the associated trade‐offs in ES, and agroecological 

intensification strategies for recovery of XW‐affected landscapes in the South Kivu 

Province of eastern DR Congo, a hotspot of the disease.  

Indirectly, de‐budding of male buds, a common practice for preventing insect‐

mediated XW infections could potentially affect pollinator populations, depress 

pollination services and honey production for bee farmers. These male neuter 

flowers on male buds are also an important source of pollen, sap and nectar for 

pollinators such as bats and honey bees (El‐Kazafy, 2007; Bat Conservation Trust, 

2017), an important ecological function. 

Breeding through transgenetics is currently the only breeding mechanism that 

has yielded XW‐resistant banana lines. However, deployment of these lines awaits 

the establishment of a legal framework in the East and Central African region. Despite 

these transgenics being a welcome development for enhancing food and income 

security, their deployment could potentially lead to selection against the susceptible 
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cultivars (with other potentially important traits). It is worth noting that it is rather 

difficult to genetically modify all the commonly‐used banana cultivars for XW 

resistance. 

 

3.5 An ecosystem-based broad framework for disease impact assessment 

and management  

 

The ES concept provides a means to define successful disease management more 

broadly, beyond short‐term crop yield evaluations (Cheatham et al., 2009). Plant 

disease can affect ES directly, such as through removal of plants providing services, 

or indirectly through the effects of disease management activities, including 

pesticide applications, tillage and other methods of plant removal (Cheatham et al., 

2009). We recommend a simple ES‐based broad framework (Fig. 1) for better 

estimation of losses and resources to invest for disease management. 

This framework describes the interaction of the disease with the crop and the 

different ES, defines the role and interaction between research, policy and extension 

and management of the disease. The interaction of the disease with the supply of ES 

has been explicitly described in the above sections. In this section, we define the 

potential roles played by and interaction between research, policy and extension, 

and how this could impact disease management by farmers.  

Policy actors play the important role of setting priorities and allocating 

resources for research and extension work. They thus give the strategic direction by 

setting the agenda for research and extension that will in turn influence the policy 

guidelines and investment levels (in terms of capacity building, time commitment 

and finances). In this framework, policy makers will access information from 

research, extension and/or farming households to guide them in policy formulation. 

Research outputs can efficiently assist policy‐makers in making the right decisions 

and building up practical, efficient and sustainable policies. 

 



Xanthomonas wilt affects supply of ecosystem services 
 

 

53 
 

Figure 1. A broad ecosystem‐based framework for the more comprehensive assessment and management 
of banana diseases. 1 = yield assessment and interactions between scientific communities and farmers; 2 
= direct observations and feedback from farmers; 3 = assessment of disease impact on ecosystem services 
(e.g. trade‐off analysis); 4 = briefs to policy makers; 5 = policies and investment decisions influencing 
research and extension priorities; and 6 = research and extension priorities, tools and methodologies; 7 = 
policies directly influencing farmers’ decisions and activities and direct feedback from farmers to policy 
makers; and 8 = farmers/farming households/communities decision making and disease management. 
Arrows denote the flow of information and/or processes, or (intended) influences. 

 

Currently, existing legal policies regarding ecosystems are insufficient and 

mismatched with the necessary resources to protect ecosystem health and services. 

Moreover, the role of agroecosystems in supplying key ES has not been highly valued 

or emphasized, with more focus given to natural ecosystems. Informing decision‐

makers of current versus future costs and benefits of ES also requires organizing and 

translating scientific knowledge to economics, which articulate the consequences of 

our choices in comparable units of impact on human well‐being (Daily et al., 2000). 

It is the role of the research body to bring to the front the importance of 

agroecosystems for the supply of ES and to translate this knowledge into economic 

terms. 

Benefits accrued from the ecosystem and their flows are still poorly 

understood. Thus, landscapes/communities continue to suffer from the so‐called 

‘tragedy of the commons’ (Hardin, 1968). It is even more complex to deal with 

agroecosystems such as banana plantations that are often owned by individuals and 

https://en.wikipedia.org/wiki/Ecosystem_health
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Tragedy_of_the_commons
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hence hard to regulate. In a participatory manner with farmers, extension bodies and 

other stakeholders, researchers therefore, need to generate empirical evidence of 

the importance of ES, potential services from agroecosystems, impact of diseases on 

these ES, and strategies for harnessing these services. This calls for stronger linkages 

between the different stakeholders (research, extension, farming communities (the 

primary users of the knowledge and information) and the policy makers). 

Researchers also need to package the information in more user‐friendly and 

accessible alternatives for the different users. The extension bodies on their part 

have an important role of bridging the gap between researchers and farmers, 

especially in the traditional extension systems. Policy makers on the other hand need 

to support the research and extension efforts through generation of socio‐

economically relevant and environmentally sound policies.  

To bridge the gap between ES supply and demand, payments for 

environmental services (PES) has emerged as a means of channeling monetary flows 

from ES beneficiaries to ES providers (Wunder, 2005; Engel et al., 2008). PES is a 

voluntary transaction where a well‐defined environmental service or a land use likely 

to secure a given service is being ‘bought’ by the service buyer(s) from the service 

provider(s) (Wunder, 2005; Engel et al., 2008). PES focus has been on financing of 

natural resource management actions towards meeting the social demand for ES. 

Such arrangements have been reported for land uses for natural ecosystems such as 

forests (Gorriz‐Misfud et al., 2016). Similar efforts could be harnessed for valuable 

agroecosystems. However, for agroecosystems to gain from such arrangements, 

research needs to generate enough evidence to convince the policy makers and 

farmers to prioritize investments in protecting the services from the identified 

valuable land‐uses. In the case of banana crop, as PES, potential strategies could 

involve investment in training in, and promotion of, environment‐friendly cultural 

and cropping practices, and subsidization of seed to enable farmers to immediately 

restore affected landscapes. 

The emphasis on financial valuations of nature as emphasized in the concept 

of PES has however raised ethical concerns, as it may undermine other forms of 

valuation based on, for example, moral or cultural values (Child, 2009; Bowles 2008). 

It has been argued that, many practical applications of the ES concept such as 

education, land‐use planning, strategic policymaking, and in some cases even PES 

schemes do not require such monetary valuations. Caution therefore must be taken 

to ensure that the economic framing of ES in general ‐and their monetary valuation 

in particular‐ does not necessarily lead to a denial of the non‐use and intrinsic values 

of nature (Luck et al., 2012). Authors such as Martín‐López et al. (2008) and Sagoff 

(2011) emphasized the importance of place and context in terms of understanding 
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the values and trade‐offs related to ES. Similar approaches can be applied to the non‐

use and intrinsic values. For agricultural systems, this has been demonstrated using 

multi‐objective optimization models (e.g. the explorative Landscape IMAGES) to 

determine trade‐offs in multifunctional land use planning process including 

environmental, social and economic land‐use aspects (Groot et al., 2007; 2010). 

 

3.6 Potential agroecological intensification strategies for supporting XW 

infected landscapes 

 

More comprehensive strategies for managing XW and landscapes affected by XW 

should look beyond yield and associated incomes to other long‐term multiple 

benefits that can be realized from the banana crop. Conventional intensification 

approaches to bridge yield gaps have been reported to lead to decline in productivity 

in the long run and reduced integrity of several natural supporting and regulating 

services (Bommarco et al., 2013). Instead ecological intensification approaches by 

optimizing ES in low‐input farming systems, with wider yield gaps are recommended 

by Bommarco et al. (2013), as is the case in most banana‐based systems in the East 

and Central African region. Several farming systems, such as intercropping, 

agroforestry, shifting cultivation and other traditional farming methods, are reported 

to mimic natural ecological processes (Altieri, 1999). Agricultural systems can also be 

designed to make more effective use of sunlight, soil nutrients, rainfall and biological 

resources (Gliessman, 1995; Altieri, 1999). Agroecosystems could thus be 

manipulated or managed to optimize the supply of key ES within landscapes. Caution 

should also be taken to match technologies to farm types.  

We suggest some potential agroecological intensification practices that could 

be incorporated in XW affected landscapes to minimise the effect of the disease. 

Hedge crops: Shrub or grass hedges with the ability to produce a large amount of dry 

matter could be promoted at the edges of farms, homesteads and contour lines of 

steep slopes. These crops can serve as fodder sources that should promote 

integration of small ruminants that can potentially improve nutrient recycling. 

Additional nitrogen inputs by symbiotic fixation can be provided if leguminous 

species are included. Using the hedges as mulch or green manure will also improve 

nutrient recycling on the farms. On steep slopes, the hedges will help to slow run‐off 

and reduce soil erosion. Other potential benefits can include the creation of habitats 

for natural enemies to plant‐eating pests, such as carabids, staphylinids (Altieri, 1999; 

Lichtfouse, 2010), interception of dusts and aerosols (Lichtfouse, 2010) and 

increasing biodiversity (Risser, 1995; Groot et al., 2010; Lichtfouse, 2010). Despite the 

risk of some hedges serving as reservoirs for weeds, some plant pests and pathogens, 
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benefits of hedges in supporting biological control agents have been reported to 

outweigh such negative interactions (Lichtfouse, 2010).  

Cover crops: The use of Mucuna as a cover crop has been found to be promising for 

weed suppression and soil fertility improvement when planted in fields using residual 

soil water at the onset of the dry season in ongoing experiments in eastern DR Congo 

(Blomme Guy, personal communication, 2016). Mucuna and similar cover crops (e.g. 

Lablab) could be promoted as cover during dry seasons and in sole banana plots with 

a good level of light penetration to suppress weeds, improve soil fertility and reduce 

soil erosion.  

Agro-forestry: Though not feasible in most households due to shortage of land, some 

household types can afford to incorporate trees on their farms. Agroforestry 

practices could be selectively promoted for enhancing the resilience of the 

agroecosystems. Coffee‐banana intercropping is common and reported as a 

compatible interaction that improves the resilience of agroecosystems (van Asten et 

al., 2011) and could thus be promoted in zones currently not growing coffee as a 

buffer to incomes and ES. 

Proper crop residue management: Burning of crop residues and deposition at the 

edge of farms are common practices on farmers’ fields. Extension knowledge on the 

negative effects of these practices is necessary to improve nutrient recycling on 

farms. 

Banana cultivar mixtures: Differential XW spread has been observed between 

banana cultivars under natural conditions. High banana cultivar diversity has been 

reported to suppress banana pests and black leaf streak in Uganda (Mulumba et al., 

2012). The potential of cultivar mixtures to suppress XW disease has not been 

studied, yet dilution and barrier effects provided by cultivars that escape insect‐

mediated infections could be explored to reduce XW‐related losses in more 

susceptible cultivars. 

3.7 Conclusion 
 
XW not only reduces yields but also degrades other ecosystem services that often 

receive less attention in the traditional banana‐producing areas, with potentially 

more severe and long‐term effects on the agroecosystem. Policy makers locally, 

nationally and regionally need to be sensitized on the additional roles that banana 

can potentially play in the ecosystem. At community or farm level, knowledge and 

information on the importance of other services other than provisioning services are 

urgently needed to help farmers appreciate these services and their roles in 

sustaining the resilience of their agroecosystems. An ES‐broad framework is thus 
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recommended for better estimation of losses and resources to invest in disease 

management and development of disease management strategies and approaches. 

Measurements of provisioning services are often direct and easy, which is not always 

the case with other ES. Rapid and easy to use methodologies and tools for assessing 

these other ecosystem services in the banana‐based systems are also urgently 

needed to broaden the framework of assessing the impact of the diseases. We 

recommend the use of agroecological intensification practices for enhancing or 

bridging the provision of key ecosystem services in the banana‐based 

agroecosystems affected by XW disease. 
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Abstract 

 

Banana production landscapes in the African Great Lakes Region (AGLR) have been 

under immense pressure from Xanthomonas wilt (XW) disease over the past two 

decades. XW, first reported on banana in central Uganda and eastern DR Congo in 

2001, has since spread to the entire AGLR. XW is currently spreading westwards from 

hot spots in eastern DR Congo highlands, putting the plantain (Musa AAB genome) 

belt of central and west Africa at risk. In-depth understanding of the key variables 

responsible for disease spread, current hotspots, and vulnerable landscapes is crucial 

for disease early warning and management. We mapped aggregated disease 

distribution and hotspots in the AGLR and identified vulnerable landscapes across 

African banana production zones. Available data on disease prevalence collected 

over 11 years was regressed against environmental and expert developed covariates 

to develop the AGLR XW hotspots map. For the Africa-wide risk map, precipitation, 

distance to hotspots, degree of trade in fresh banana products, production zone 

interconnectedness and banana genotype composition were used as covariates. In 

the AGLR, XW was mainly correlated to precipitation and disease/banana 

management. Altitude and temperature had unexpectedly low effects, possibly due 

to an overriding impact of tool-mediated spread which is part of the management 

covariate. In the AGLR, the eastern part of DR Congo was a large hotspot with highest 

vulnerability. Apart from endemic zones in the AGLR and Ethiopia, northern 

Mozambique was perceived as a moderate risk zone mainly due to the 

predominance of ‘Bluggoe’ (Musa ABB type) which is highly susceptible to insect-

vectored transmission. Presence of XW hotspots (e.g. eastern DR Congo) and 

vulnerable areas with low (e.g. north-western Tanzania) or no disease (e.g. Congo 

basin, western DR Congo and northern Mozambique) pressure suggest key areas 

where proactive measures e.g. quarantines and information sharing on XW 

diagnosis, epidemiology, and control could be beneficial.  

 

Key words: covariates, cultivar, indicator regression kriging, surveillance, vulnerable 

landscapes  
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4.1 Introduction 

More than one third of Africa’s banana (Musa spp.) production, or nearly 11% of 

world production, comes from the African Great Lakes region (AGLR), i.e., Burundi, 

Democratic Republic of Congo (DR Congo), Kenya, Rwanda, Tanzania, and Uganda 

(FAO, 2017), which is a centre of diversity of East African highland bananas and 

plantains (Simmonds and Shepherd, 1955; Simmonds, 1966). Banana provides 30-

60% of food energy needs for over 70 million people in this region (Abele et al., 2007; 

Karamura et al., 2008) and contributes to incomes of farm households and 

businessmen along the value chain of the crop (Okech et al., 2004; Edmeades et al, 

2007). Since two decades, banana production landscapes in the AGLR have been 

subjected to immense pressure from pests and diseases on top of several abiotic 

constraints. The outbreak of Xanthomonas wilt disease of banana (XW) has drawn 

the greatest attention due its rapid rate of spread and severe impact on production. 

The disease was first observed on banana in 1974 in Ethiopia (Yirgou and Bradbury, 

1974). In the AGLR, it was first observed in 2001 in central Uganda (Tushemereirwe 

et al., 2004) and eastern DR Congo (Ndungo et al., 2006) and has over a period of a 

decade spread to the whole AGLR (Reeder et al., 2007; Tripathi et al., 2009; Carter 

et al., 2010; Blomme et al., 2013). Within the affected countries, the disease has 

spread to new zones at rates dependent on the agroecological conditions and the 

characteristics of the production systems. High spread rates have been reported in 

lower altitude areas (<1500 m) of central Uganda (Tushemereirwe et al., 2006) with 

slower rates reported at high elevations (>1500 m) of eastern DR Congo (Ndungo et 

al., 2006). The disease is currently spreading westwards from the current hot spots 

in eastern DR Congo, towards the Congo basin, putting the plantain belt of central 

and west Africa at risk. XW disease results in severe yield losses reaching as high as 

100% if control is delayed, severely compromising food and income security of 

households and communities (Kalyebara et al., 2006; Blomme et al., 2014; 2017). 

Potential economic losses between US$ 200 and 295 million a year due to delayed 

intervention have been estimated for Uganda (Kalyebara et al., 2006; Blomme et al., 

2017; Abele et al., 2007; Okech et al., 2004). In Tanzania and Rwanda, a 35% drop in 

sales and doubling of prices due to XW were reported (Nkuba et al., 2015). In 

Uganda, (FAO, 2017) reports 50% less production for 2014, compared to 2002 while 

area under banana declined by 39%.  

 Over the past 15 years, various research and extension efforts have been put 

in place to manage and contain the disease. For example, several XW epidemiology 

studies have been conducted and control strategies fine-tuned (Blomme et al., 2005, 

2017b; Ssekiwoko et al., 2006; Tinzaara et al., 2006; Ocimati et al., 2013a, b, 2015; 
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Nakato et al., 2015; Ochola et al., 2014, 2015) farmers sensitized and trained; and 

bylaws and task forces formed to foster control (Blomme et al., 2014; Tinzaara et al., 

2011; Kubiriba et al., 2012). No disease quarantines have been set up in the region 

to contain the disease. If attempted, low success rates are anticipated due to lack of 

efficient detection tools at border points, porous nature of borders and common 

ethnicities at borders with some households being separated by the borders 

(Blomme et al., 2014). Once established, landscape-wide XW control is difficult and 

total eradication is impossible (Eden-Green, 2004). Ocimati et al. (2013a) reported 

long incubation periods of up to 24 months and latent infections. Though helpful for 

reducing disease incidence and recovery of yields, the current measures have been 

reactive and are not adequate for containing the disease, especially not from 

spreading to new locations.  

Knowledge of the vulnerable landscapes and disease fronts could prevent or 

minimise negative effects due to the disease.  Here we aim to map XW incidence and 

identify the XW disease fronts and the vulnerable landscapes across Africa. Making 

XW spatially explicit can guide the design of interventions for disease management 

and containment. Maps will be important for surveillance; risk assessment; priority 

setting and resource allocation; and strategizing for disease management and 

containment. Mapping will also allow identification of vulnerable sites for a more 

pro-active disease prevention strategy, rather than the commonly applied reactive 

strategy. Our objectives were (i) to map the spatial spread of XW disease and the 

vulnerable landscapes of the AGLR, collating available disease incidence survey data 

and environmental and social co-variates from the various countries in the region, 

and (ii) to develop a first, coarse XW disease risk map for the rest of Africa. 

Deliberating on these XW spatial risk maps with stakeholders is anticipated to pro-

actively guide decisions and strategies for XW prevention and management at 

landscape and regional level. This study will build on existing XW mapping exercises 

in the region (Tripathi et al., 2009; Tushemereirwe et al., 2006; Ndungo et al., 2008; 

Bouwmeester et al., 2016; Shimwela et al., 2017) that have often been region- or 

country-specific. 

 

4.2  Materials and methods 

4.2.1 Study area 

The study area (Fig. 1) consists of two geographical zones. The first zone is the African 

Great Lakes region (AGLR) and measures about 1000 x 1000 km2. The area includes 

Rwanda, Burundi, the main banana growing areas in western Kenya, Uganda, 

northern Tanzania and the eastern DR Congo. The East African highlands are part of 
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the African Rift System with Lake Victoria as the central basin. The area has a diverse 

agroecology, resulting from a large variation in altitude (550–4600 m above sea level; 

CGIAR-CSI, 2008), mean annual rainfall (500–2300 mm; Hijmans et al., 2005) and 

mean annual temperature (from 3 to 26 oC; Hijmans et al., 2005). A large part of the 

area is very suitable for growing crops such as banana and plantains, maize and 

cassava because of fertile soils and high rainfall. Agriculture in the region can 

predominantly be characterized as subsistence farming with complex mixed 

cropping. This zone is dominated by the east African highland bananas. Plantains 

(AAB genome) can be found in high abundance in parts of eastern DR Congo while 

the ABB types can be found localized in patches across this zone, with higher 

concentrations in central Uganda. All surveys were carried out in this zone. 

 

 

Figure 1. Study areas: 1) African Great Lakes region and 2) entire Africa. Shaded are the main 
banana growing areas (Source: www.crop-mapper.org). 
 

The second (much larger) zone covers all the banana growing zones in Africa, 

including the AGLR. The area covers 28 tropical or subtropical countries in Africa with 

a very diverse agroecology resulting from its sheer size and the African Rift System 

that cuts it in two (Fig. 1). It borders two oceans, has several mountain ranges, river 

systems/basins and extensive forested areas. The areas in the west and central Africa 

are dominated by plantains while the east and central African highlands (AGLR) are 
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dominated by the east African highland banana (AAA genome). Other AAA genomes 

(e.g. Cavendish types) are prevalent in the central, east and southern parts of Africa. 

Both study areas are delimited using administrative boundaries (Global 

Administrative Areas vs. 2.8; www.gadm.org). 

 

4.2.2 Methodology for zone 1 (i.e. AGLR) 

 

Data collection: Survey datasets: The data set for mapping the AGLR was collated 

from nine ground-based surveys conducted between 2005 and 2016 across the zone 

1 (Figs 1 and 2) and comprised of a total of 4,760 farms. An ellipse is added for each 

survey to show its geographic extent (Fig. 2). The smallest extent is that of survey E, 

where all samples lie within a 3 km distance. The largest one is survey H, where the 

samples lie within 1000 km distance. Only survey H covers the entire area of interest. 

XW incidence/ distribution was recorded through farmer interviews and diagnosis of 

banana farms/fields. The coordinates of the sample locations were recorded with a 

handheld GPS with an error margin of about 10 m. The surveys measured XW as 

binominal (present or absent) or categorical values (percentage incidence of infected 

plants in a farm (i.e. 0 to 100%)). For uniformity, all measurements were transformed 

to binominal values (1 = present or 0 = absent). 

 

 
Figure 2. Incidence of XW for all nine surveys indicated with letters A to H. An 

ellipse/circle shows the geographic extent of a survey. 
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Dataset of covariates: Most of the area of interest for the AGLR risk mapping is 

devoid of samples. Environmental variables (e.g. altitude, rainfall, temperature) and 

banana cultivar composition have a relationship with XW disease (Blomme et al., 

2005; 2014; Biruma et al., 2007; Bouwmeester et al., 2016; Shimwela et al., 2017). 

Precipitation, temperature and altitude influence insect vector activity and thus the 

incidence and severity of XW disease (Blomme et al., 2005; Shimelash et al., 2008; 

Rutikanga et al., 2015). The ABB banana types are particularly prone to insect-

mediated infections due to their non-persistent neuter flowers (Blomme et al., 

2017), as such depending on their concentrations and farm management practices, 

landscapes containing them tend to be more prone to XW infection. Environmental 

characteristics/banana types can thus help to predict the incidence of XW or the risk 

of infection at the unobserved locations. The environmental variables (e.g. 

topography, vegetation, temperature, precipitation) and major markets were 

obtained from publicly available predictor maps. Data on the distribution and 

abundance of ABB types in the AGLR was obtained through literature review and 

expert knowledge. The level and organization of extension services and thus disease 

management also plays a key role in the spread, incidence and severity of the 

disease. To capture this, through expert judgement, management was incorporated 

as an additional covariate using a scale varying between 0 and 1, ‘0’ denoting no 

efforts to manage XW disease and ‘1’ strong research, extension and management 

efforts to control XW. Table 1 lists all environmental variables that have been used 

for mapping the AGLR and Figure 3 illustrates them as maps. 

 

Table 1. Sixteen covariates used for the regression analysis and for making the infection risk 
map of the African Great Lakes Region. 

Var. Description Resolution Source 

Lon Longitude 30 arc s - 
Lat Latitude 30 arc s - 
Alt Altitude above sea level (m) 30 arc s http://srtm.csi.cgiar.org (Jarvis et 

al., 2008). 
Prec Annual precipitation (mm) 30 arc s WorldClim V1 (Hijmans et al., 2005) 
Precsq - 30 arc s - 
precmin Precipitation driest month (mm) 30 arc s WorldClim V1 (Hijmans et al., 2005) 
precvar Precipitation seasonality (-) 30 arc s WorldClim V1 (Hijmans et al., 2005) 
Temp Mean annual temperature (◦C) 30 arc s WorldClim V1 (Hijmans et al., 2005)  
Tempsq - 30 arc s - 
tempmin Mean temperature coldest month 

(◦C) 
30 arc s WorldClim V1 (Hijmans et al., 2005) 

tempvar Temperature seasonality 30 arc s WorldClim V1 (Hijmans et al., 2005) 
Market Market access (hr) 30 arc s www.forobs.jrc.ec.europa.eu 
Veg Vegetation cover 30 arc s ESA CCI landcover map V1 
Vegsq - 30 arc s - 
Man Management Factor (-) 30 arc s Expert knowledge 
abb Distribution of ABB banana types  30 arc s Expert knowledge 

http://srtm.csi.cgiar.org/
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Figure 3. Covariate maps that served as input for the regression model for developing the spatial map of 
Xanthomonas wilt disease in the African Great Lakes Region. 

 

Indicator regression kriging: To develop the XW disease map for the AGLR, the 

indicator regression kriging method was used. Indicator regression kriging is a 

geostatistical interpolation method that spatially interpolates a response variable, 

making use of point observations of the target variable and auxiliary data (Goovaerts, 

1997; Webster and Oliver, 2007). Bouwmeester et al. (2016), used the method to 

map XW in the East African highlands. In this study, the same technique was applied, 

but multiple merged survey datasets were used, instead of just one, and hence the 

spread of XW was predicted for a larger area. Bouwmeester et al. (Bouwmeester et 

al., 2016) used data of 2006/7 only, and since then the disease has spread to other 

areas in the region. The methodology involves two stages. In the first stage, the 

binary survey variables are regressed to auxiliary environmental (e.g., terrain, 

climate, land cover) and social (e.g. management) covariates. In the second stage, 

the regression residuals are interpolated using simple kriging and added to the 

regression map to further improve the spatial prediction of XW incidence across the 

entire region. 
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Regression analysis: Regression models predict at the unobserved locations using 

the relationship between the observed locations and the environmental auxiliary 

covariates. We used 16 auxiliary covariates (Table 1) that were thought to have a 

plausible and significant relationship with XW or its vectors and for which spatially 

exhaustive maps in the public domain or literature and knowledge were available. 

An overlay of the survey locations and covariates resulted in a database with XW 

presence and 16 covariates. This database served as input for fitting the regression 

models. We applied logistic regression because the dependent variable (XW 

presence) is binary, either 1 for present or 0 for absent. The theory and practical 

application of logistic regression is well explained by (Hosmer and Lemeshow, 2000) 

and by Bouwmeester et al. (2016) and therefore only briefly described it in this 

article. The general logistic regression model was built in four steps: 

1. All 16 covariates (Table 1) were entered into a univariate logistic regression 

model. Covariates with a significance level less than 0.25 were included in 

further analysis because these may be significant in two-way interactions. 

2. The 16 covariates (Table 1) were then entered into a multivariate logistic 

regression model. With stepwise regression, the covariates that were not 

significant at the p=0.05 level were removed one at a time.  

3. Two-way-interactions between covariates were included to check for 

combined effects that improve the likelihood ratio. Initially, all possible 

covariate interactions were examined. All interactions with a p-value less than 

0.05 are deemed significant and included in the model, again using a stepwise 

approach. 

4. The goodness-of-fit of the final model was assessed in terms of deviance and 

compared to the null model (i.e., the model without covariates) using the 

likelihood ratio test. 

Finally, the derived logistic regression model was used on the covariate maps and 

yields a regression prediction map for zone 1 of the study area. 

The R Statistical software (R Core Team, 2017) and the Raster package (Hijmans, 

2017) were used for the regression analysis. 

 

Spatial interpolation: In most cases, the regression model will only describe part of 

the variation in the response variables. Through regression kriging, the regression 

residuals were interpolated with kriging and used to correct the estimate of the 

regression model. Kriging predicts at unobserved locations by taking a weighted 

average of the surrounding observations, where the kriging weights depend on the 

spatial autocorrelation between the variable at the prediction and observation 

locations. The spatial autocorrelation is characterized by the semivariogram that 



Chapter 4 

 

 

72 
 

plots the semivariance, i.e., a measure of the degree of variation, as a function of 

geographical distance (Goovaerts, 1997). In regression kriging, the residuals from the 

regression analysis are used instead of the observations directly. We estimated the 

semivariogram model parameters based on visual interpretation of the semivariance 

plot. Next, simple kriging of the regression residuals was applied since the regression 

residuals have zero mean (Webster and Oliver, 2007). Finally, the simple kriging 

method yields a kriging prediction map for zone 1 of the study area. The GSTAT 

package in R (Pebesma, 2004) was used for this. 

 

XW prediction map: To predict the XW incidence of the entire region, the regression 

prediction map was simply added to the kriging prediction map. Cells were set to 

zero if the sum of the regression- and the kriging-value was negative, and cells were 

set to 1 if the sum exceeded 1.  

 

4.2.3 Methodology for zone 2 (banana growing areas in Africa) 

For the development of XW infection risk map at the Africa-wide level, we cannot 

directly rely on the current surveys because they cover only the AGLR. Therefore, 

variation in environmental covariates is beyond the range of the samples, and the 

calculated relationships for study area 1 will not hold. Also, XW is currently not 

present in the lowland plantain growing zones of west and central Africa and not in 

the Cavendish (AAA genome) growing zones in eastern and southern Africa. 

Management as a covariate would also not work for the Africa wide context due to 

the absence of the disease. 

  To overcome this challenge, a prediction of infection risk was estimated by 

calculating a background risk level to all banana growing zones in Africa based on the 

relationship between XW disease and selected covariates (environmental and expert 

generated). This background risk was then corrected based on expert knowledge. 

The expert assessment of covariates was attained through a two-step procedure. In 

the first step, a questionnaire was administered to 14 experts on XW epidemiology, 

to determine the importance of ten suggested covariates on a scale of 1–5 (Fig. 4). 

Rank ‘1’ stands for not important while rank ‘5’ denotes very important in influencing 

XW disease. Table 2 lists the covariates that were finally used for the Africa wide XW 

risk map. Subsequently, and using the selected covariates, three experts with good 

understanding of XW disease epidemiology and the banana production zones, 

independently ranked the risk scores for each production zone/ country. 
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Figure 4. The percentage of experts giving different ranks for 10 potential covariates influencing risk of 
Xanthomonas wilt disease spread and severity. Covariates were ranked at a scale of 1 to 5, “1” denoting 
that a covariate does not influence XW disease while “5” has a very important influence on XW disease. 
Fourteen experts participated in ranking of the covariates.  

 

Most of the banana production zones for which the XW infection risk was calculated 

were downloaded from the crop-mapper application (www.crop-mapper.org). The 

zones were modified using ArcGIS (2014) because some zones were 1) overlapping, 

2) were entered twice, 3) were split into small polygons or 4) were displaced. In some 

countries, zones were added because they were missing in the crop-mapper 

application despite having significant banana production (FAO, 2017). The 

geographic location of these missing zones was based on the maps of MapSPAM V2 

(You et al., 2017) banana production. 

  After editing there were 121 zones within 28 African countries. In some 

countries there were many zones with a maximum in Guinea of 15, whereas in other 

countries like Madagascar there was only one zone. To each zone relevant covariate 

data were added. The relevance was determined through expert assessments and 

by interpreting correlation coefficients between environmental data and XW 

samples in the East African Highlands (Table 2). 
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Table 2. The covariate data used for developing the Xanthomonas wilt of banana risk map for 
production zones in Africa. 

Covariate Detail Source(s) μ Σ Weight 

Zones Banana production zone 
www.crop-mapper.org; 
http://mapspam.info 

(-) (-) (-) 

Genotype 

Banana genotype composition. 
ABB types are prone to insect 
vector-mediated infections 
predisposing landscapes to XW 
(Tripathi et al., 2009). 

www.crop-mapper.org 
Various banana experts 
and authors. 

1.3 0.6 +1 

Connectivity 

Interconnectedness to hot spots - 
Isolated areas have a lower 
exposure to XW. Could be 
influenced by a common border, 
main road axis, water body or 
forests. 

Various banana experts 
and authors. 

0.3 0.4 +1 

Trade 

Trade with hotspots in fresh 
fruits. Spread along trade routes 
has been reported (Ocimati et al., 
2015; Nakato et al., 2013). 

Various banana experts 
and authors. 
 

0.4 0.5 +1 

Distance 
Actual distance to hotspots - 
closer a site is to a hotspot the 
higher the XW risk 

Various banana experts 
and authors. 

14 13 -1 

Precipitation 
Annual precipitation (mm)- higher 
number of infections reported in 
the wet seasons. 

WorldClim V1 (Hijmans 
et al., 2005) 

1333 597 +1 

 

The values of the covariates had very different ranges (Table 2). To make 

comparisons possible all values were standardized. To calculate the infection risk of 

each zone, five covariates (genotype, connectivity, trade, precipitation and distance) 

were simply summed. Four other covariates (e.g. production zone size, production 

level, temperature and altitude) were also considered but not used in the end 

because the resulting maps suggested a non-useful relation. It was assumed that the 

covariates genotype, connectivity, trade and precipitation increase risk, whereas 

distance decreases risk. It was also assumed that all covariates have an equal weight 

in determining risk.  

 

4.3  Results 

 

4.3.1 Correlation of covariates to XW occurrence in AGLR 

Pearson’s correlation between XW incidence and all covariates were significant at 

the p=0.05 level, except for the two covariates market and vegetation squared 

(Vegsq) (Table 3). Three covariates (precipitation squared, precipitation and 

management) had an absolute correlation coefficient of 0.35 or higher, suggesting a 

higher contribution to the observed variation in XW disease occurrence. All 

http://www.crop-mapper.org/
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precipitation covariates, except the variability in precipitation, were positively 

correlated to XW. This suggests XW incidence is higher during the wet/humid 

seasons. In contrast, the disease management factor was negatively correlated with 

the XW incidence. Thus, a higher occurrence of XW is expected in landscapes that 

either had no access to management information or in which disease was poorly 

managed. 

 

Table 3. Pearson’s correlation coefficients between XW incidence and covariates used for the 
African Great Lakes Region map, ordered from highest positive to high negative. 

Variable 
code 

Variable name Pearson correlation 
coefficient (r) 

p-value 

Precsq Precipitation squared 0.41 2.2e-16 
Prec Annual precipitation (mm) 0.40 2.2e-16 
Alt Altitude above sea level (m) 0.14 2.2e-16 
Precmin Precipitation driest month (mm) 0.09 1.6e-10 
Veg Vegetation cover 0.09 6.9e-10 
Abb Distribution of ABB banana types  0.03 0.035 
Market Market access (hr) 0.02 0.142 
Vegsq Vegetation cover squared 0.02 0.112 
Lat Latitude -0.09 2.8e-09 
Tempmin Mean temperature coldest month (◦C) -0.10 2.3e-11 
Tempsq Temperature squared -0.14 2.2e-16 
Temp Mean annual temperature (◦C) -0.15 2.2e-16 
Precvar Precipitation seasonality (-) -0.17 2.2e-16 
Tempvar Temperature seasonality  -0.18 2.2e-16 
Lon Longitude -0.22 2.2e-16 
Man Management Factor (-) -0.35 2.2e-16 

 

4.3.2 Regression analysis and spatial interpolation 

The deviance of the regression model was 25.9% smaller than the deviance of the 

null model, which indicates the covariates (S1 Appendix) improved the goodness of 

fit of the model and explain a larger part of the variation than the null model. The 

covariates management (‘man’), precipitation seasonality (‘precvar’), precipitation 

in the driest month (‘precmin’) and precipitation (‘prec’) (S1 Appendix) had relatively 

high absolute values, just like the correlation values (Table 3). Similar to observations 

with the correlations, this suggests that the management and the precipitation 

related covariates had the highest contribution to the observed variation in the 

model, thus XW occurrence. A shift in the sign for ‘prec’ and relative importance of 

covariates is observed in the regression coefficients (S1 Appendix) in comparison 

with correlation values (cf. Table 3). These changes may be explained by the fact that 

the covariates are themselves correlated, which is very much the case between 

‘prec’ and ‘precsq’ with a correlation efficient close to 1. In the regression model all 
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covariates and interactions are lumped together in multivariate model, whereas the 

correlations are univariate. In the multivariate regression model the contribution of 

a specific covariate may entirely be covered by another one, as is probably the case 

for ‘prec’. With the final regression model a regression map was calculated (Fig. 5a). 

 

 
Figure 5. The XW incidence in the AGLR (c) is the sum of the regression prediction map (a) and 
kriging prediction map (b) and is aggregated by administrative boundaries (d). Large lakes are 
shaded blue. Areas deemed unsuitable for banana production, above 2500 m, forests and or 
national parks are denoted by black stripes/ dashed lines and correspond to masked areas.  

 

The kriging prediction map was calculated from the regression residuals. First a 

semivariogram was calculated (S2 Appendix). It is a near nugget variogram, meaning 

that there is little spatial autocorrelation between residuals. With the semivariogram 

a kriging prediction map was calculated (Fig. 5b). The map consists of different colour 

shades around the samples representing relatively small positive or negative 

prediction values. In the blue areas the sample kriging prediction values were higher 

than the regression model predictions (i.e. >0) whereas in the red areas the values 

were lower (i.e. <0). The kriging prediction value in most parts of the study area is 
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zero, the average value of the residuals, i.e. the kriging predictions were the same as 

the regression predictions. 

 

4.3.3 XW incidence map of the African Great Lakes region 

The XW incidence map of the East African Great Lakes region (Fig. 5c) is the sum of 

the regression predictions (Fig. 5a) and the kriging predictions (Fig. 5b). The areas 

with black stripes/ dashed lines correspond to masked areas, where the altitude is 

above 2500 m, forests or national parks and deemed unsuitable for banana 

production. The resulting high-resolution map had a cell size of approximately 1 km, 

which may be too detailed and difficult to translate into clear-cut policy decisions or 

recommendations. Therefore, an aggregated map showing the XW incidence per 

district was created by calculating the average value for all cells in a district (Fig. 5d). 

  Both, the high resolution and aggregated XW incidence maps strongly 

resemble the regression map as the influence of the kriging is limited and local. The 

maps show that the risk XW spreads beyond the original data points (Fig. 2) given 

the biophysical conditions and management is high. The disease has a high likelihood 

of being in all districts of Uganda and eastern DR Congo. The eastern part of DR 

Congo is a potential large hotspot with high XW occurrence. Uganda has a moderate 

to high XW occurrence/incidence. Clusters of potential XW hotspots were also visible 

in the Kagera region of north-western Tanzania, western parts of Burundi and 

Rwanda, southern Burundi and in western Kenya at the border with Uganda. Large 

portions of Burundi, Rwanda and the banana producing zones in Tanzania, have low 

levels of or no likelihood of appearance of XW. However, large portions of the survey 

regions were devoid of data (as surveys did not cover all banana production regions), 

though could potentially be having the disease. 

 

4.3.4 XW infection risk in tropical Africa 

The XW infection risk for all banana production zones in tropical Africa derived from 

expert developed covariates (Fig. 6) shows one zone in Tanzania, two zones in 

Ethiopia and the infected zones in the AGLR to have a very high risk (>4.5) due to the 

presence of the disease in these zones. A high-risk score of 2.1-4.5 was observed for 

one production zone in Mozambique, a large zone stretching from north eastern-

central DR Congo, a zone in northern Ethiopia, zones in Kenya and Tanzania. 

Production zones in Egypt, Sudan, South Africa, Guinea, Togo, Ghana and Cote 

d'Ivoire had the least risk to XW infection.  
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Figure 6. Infection risk of Xanthomonas wilt in tropical Africa developed using five expert 
generated covariates i.e. banana genotype, connectivity to disease hotspots, trade with an 
infected zone or country, precipitation and distance from a hotspot. 

 

Banana genotype effects on the landscape risk of XW were strong in Mozambique 

and parts of the AGLR (Fig. 7). Connectivity of landscapes and inter country trade 

also had strong contributions to the XW risk in the AGLR. Presence of the ABB-

genotypes that are prone to insect-mediated infections, connectivity to a hotspot, 

and trade increase the risk of exposure to XW disease. Risk variability in the western 

part of Africa was mainly influenced by the distance from the hotspots and the level 

of precipitation (Fig. 7). A long distance from the hot spot(s) and a low precipitation 

is associated with a lower risk. Risk in the northern parts of Africa were mainly 

influenced by the low amounts of precipitation. 
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Figure 7. The contribution of five expert developed covariates (i.e. trade with a disease 
hotspot, connectivity to a disease hotspot, precipitation, distance from a disease hotspot and 
banana genotype composition) to the Xanthomonas wilt disease risk levels of different 
countries that grow banana in Africa. Covariate scores have been standardized as Z scores. 

 

4.4  Discussion 

 

Xanthomonas wilt disease of banana has rapidly spread across the AGLR and the 

plantain belt of central and west Africa is currently at risk. This study developed risk 

maps showing the aggregated spatial XW disease distribution and hotspots in the 

AGLR, and vulnerable landscapes across African banana and plantain production 

zones (Figs 5 and 6). 
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4.4.1 XW occurrence and incidence in endemic zones of the African Great Lakes 

region 

In the endemic zones of the AGLR the occurrence and incidence of the XW disease 

was largely explained by precipitation and management (cf. Table 3, S1 Appendix). 

The occurrence of XW increased with precipitation and declined with increasing level 

of disease/banana management. 

  High precipitation offers a conducive environment for both the pathogen 

(Xanthomonas campestris pv. musacearum (Xcm)) and the host (Agrios, 2005). 

Higher XW severity and incidence has often been reported on farms during the rainy 

season in contrast to the drier seasons (Biruma et al., 2007; Tripathi et al., 2009). 

Using Maxent and regression, (Shimwela et al., 2017) also reported precipitation to 

be positively correlated to XW and to predominantly explain XW development in 

Tanzania. Rainfall and water availability can affect the survival, vigor, multiplication, 

spore production, inoculum dispersion, spore germination and penetration of a 

pathogen (Hirano, 2000; Agrios, 2005; Kang et al., 2010; Aung et al., 2018). 

  A humid microclimate within the crop can result in stomatal opening allowing 

microbes to enter the plant apoplast (Aung et al., 2018) and also modulate bacterial 

population and disease incidence (Mina and Sinha, 2008; Xin et al., 2016; Aung et al., 

2018). Xcm bacteria are in the group of proteobacteria, that are sensitive to 

desiccation (Saddler and Bradbury, 2005; Taketani et al., 2017) and thus likely to be 

favored by high humidity in plant tissues. Results from (Ochola et al., 2014) show 

banana plants that receive an adlib supply of water to be more susceptible than 

those that received a moderate water stress, and that banana plants tended to 

remain in a latent state when moisture in the soil was deficient. High humidity has 

been associated with suppression of R gene mediated Hypersensitive Response that 

involves rapid plant cell death at point of infection in some plant species (Wang et 

al., 2005), though not yet investigated or reported for Xcm. 

  Shimwela et al. (2017) suggests the short distance spread of XW causing 

bacteria through rain splashes as the possible explanation for the higher correlation 

of XW infections to high rainfall or the rainy season. Infections through rain splashes 

would however be feasible in the presence of wounds on healthy plants and bacterial 

ooze on the ground and inflorescences, that would be most likely associated with 

farm management practices or pest damage. For example, Xcm has been reported 

to infect plants and cause disease when it comes in contact with fresh wounds on 

the roots or corms resulting from nematode or tool damage (Shehabu et al., 2010; 

Ocimati et al., 2013b). 

  Management plays a crucial role at regulating disease pressure on farms. XW 

is spread over both short (at field level and between close fields and farms) and long 
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distances mainly through contaminated farm tools, insect vectors and infected 

planting material and occasionally through fruit/nectar feeding birds and bats 

(Blomme et al., 2014). To prevent spread or reduce disease inoculum and incidence, 

tool sterilization, early male bud removal using forked sticks (prevents insect-

mediated infections), removal of infected bunches, plants and or mats are 

recommended. Where these practices have been applied, the disease has been 

contained or kept to lower levels of severity or incidence (Blomme et al., 2005, 2014, 

2017a, b; Kubiriba et al., 2012; Eden-Green, 2004; Biruma et al., 2007). Increased use 

of farm tools most often without sterilization in the rainy season during field 

preparation, pruning of leaves to introduce annual crops could also contribute to the 

higher incidence in the rainy season (Tripathi et al., 2009; Blomme et al., 2014, 2017). 

  Altitude and temperature have also been reported to influence XW spread, 

mainly through their effect on insect vector activity. Insect vector numbers and 

population activity is lower at higher and cooler altitudes resulting in a lower disease 

occurrence and severity (Shimelash et al., 2008; Rutikanga et al., 2015). But 

unexpectedly low correlation and regression coefficients were obtained between 

XW and temperature and altitude, possibly due to the larger impact of tool-mediated 

XW spread (captured in the disease management covariate – cf. Table 3, S1 

Appendix). More so, the endemic AGLR sites are dominated by the east African 

highland banana types that are not very prone to insect-mediated XW transmission 

due to their persistent male floral bracts and flowers (Tripathi et al., 2009). 

  In the AGLR, multiple disease hotspots were observed in the entire study area 

(Fig. 5). The eastern part of DR Congo was a large hotspot, while Tanzania had most 

of its production zones XW free (cf. Fig. 5). The XW status in eastern DR Congo could 

be attributed to the lower level of control/ management efforts due to a weaker 

extension support system. A recent study in eastern DR Congo reported a low 

adoption of XW management practices, while only 32.3% of farmers had accessed 

some training on XW management over the past five years (Bioversity International, 

2017). The distribution of this training was skewed with some regions having zero 

access. The eastern DR Congo also has high precipitation that has been shown in this 

study and studies of Bouwmeester et al. (2016) and Shimwela et al. (2017) to be 

correlated with high infection levels. In contrast, Rwanda had a strong extension 

effort, including a mandatory government driven effort to uproot swathes of 

plantations in disease hotspots in western Rwanda with plans to reintroduce the 

crop after a few years of fallow (Rutikanga et al., 2016). In contrast, production zones 

in Tanzania are distant from each other, preventing XW spread. 

  Clusters of XW hotspots were also visible in the Kagera region of Tanzania, 

central and eastern regions of Uganda, the western part of Burundi and in the 
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western part of Kenya on the border with Uganda. This could be attributed to the 

rapid rate of spread over short distances (e.g. though contaminated farm tools, 

insect vectors, small ruminants, infected planting materials and rain 

splashes/floods). 

 

4.4.2 XW infection risk in tropical Africa 

Apart from the endemic zones in the AGLR and Ethiopia, northern Mozambique was 

perceived to be at a very high risk mainly due to the omnipresence in backyards of 

‘Bluggoe’ (Musa ABB type) which is highly susceptible to insect, bird and bat-

vectored transmission. Ocimati et al. (2018), observed a significant association 

between the presence/absence of the XW-susceptible ABB types with disease 

incidence on a farm. The ABB banana types have also been blamed for the rapid 

spread of XW in Uganda (period 2003 till 2006) from the initial point of infection in 

Luwero district in Central Uganda. Proactive preventive measures in both the 

southern part of Tanzania and northern part of Mozambique and Malawi will be 

crucial for preventing a southward spread of the disease. These could include 

community awareness to improve surveillance and introduction of infected planting 

materials or fresh products and installation of quarantine measures. Similar 

measures are also needed to prevent the westward spread of the disease into the 

Congo basin and the plantain growing belt of west Africa.  

 

4.4.3 Reflection on the methods 

The surveys carried out in the AGLR were an accurate method of scouting for XW 

disease. However, their reach was limited by the need of a high financial investment, 

time constraints and limited access to some of the study locations (leading to 

convenience sampling). The study shows that geostatistical approaches can 

overcome the above challenges and use limited surveys or data points to make valid 

and precise predictions beyond the surveyed areas. Bouwmeester et al. (2016), 

through cross-validation reported regression kriging to yield unbiased predictions of 

XW occurrence. The regression model however suffers some limitations and may not 

as such capture part of the variation in XW. First, not all underlying processes that 

cause spatial variation in XW incidence e.g., mode of transmission, distribution of 

susceptible host types and level of disease management are known or can be 

effectively represented by covariates in the model. The mode of spread of XW is 

complex, involving mainly farming tools, insect vector spread and planting materials. 

Spread through these modes can be minimised through cultural management 

practices. In the current study, a management covariate based on expert knowledge 

and available literature was incorporated to capture some of these aspects (cf. Table 
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1, Fig. 3). The ABB Musa types are also known to be highly susceptible and a covariate 

on the distribution of ABB Musa types (cf. Table 1, Fig. 3) was as such incorporated 

based on expert knowledge and available literature. These covariates based on 

expert knowledge may suffer from errors due to failure to capture minor details e.g. 

variations over short distances and a lack appropriate scale but give valid predictions 

over large geographical scopes. For the Africa-wide risk map, a prediction of infection 

risk was estimated based on the relationship between XW disease and selected 

environmental and expert developed covariates because the variation in 

environmental covariates outside of the AGLR was beyond the scope of the surveys. 

These covariates could as such suffer from errors and or lack appropriate scale. 

However, this exercise gives us the first coarse XW disease risk map for the rest of 

Africa that can offer a platform to pro-actively make decisions and strategies for 

containing the disease to the currently affected zones. 

 

4.5  Conclusion 

 

XW is spread across most of the AGLR. All banana landscapes in this region are 

vulnerable. Efforts in the region could focus on managing/reducing the disease and 

its damage on productivity. Landscapes with high precipitation are hotspots of XW 

or highly vulnerable to XW infection. Management plays a crucial role on the current 

XW incidence and prevalence. Improving extension services is crucial for the 

management of the disease in the AGLR. Extension efforts should be concentrated 

to such landscapes to curb or reduce the XW pandemic. Production zones in northern 

Mozambique and central lowland DR Congo are potential gateways for the spread of 

XW southwards and eastwards, respectively. Proactive measures are crucial for the 

prevention of the disease to these production zones. Possible actions could include 

the institution of quarantine measures and provision of relevant information and 

training on diseases diagnosis and epidemiology. The integration of expert 

judgement in development of covariates that are not readily available yet capture 

underlying processes that cause spatial variation was crucial in improving the 

regression outcomes. 
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Supporting information 

 

S1 Appendix. Estimates and standard errors of coefficients of the logistic regression model. 
Interactions are indicated with the ‘:’ sign. 

Term Estimate Std. Error 

(Intercept) -1.44E+02 6.56E+01 

Lon 3.09E-05 1.86E-05 

Lat -7.65E-05 4.79E-05 

Alt 6.41E-02 2.03E-02 

Prec -9.08E-02 2.73E-02 

Precsq 3.97E-05 1.08E-05 

Precmin 1.08E-01 3.13E-01 

Precvar 3.31E-01 7.17E-02 

Tempsq 2.65E-03 7.75E-04 

Market -6.24E-04 3.51E-04 

Vegsq -5.09E-05 2.16E-05 

Man 2.29E-01 1.88E-01 

lon:lat 1.40E-11 5.24E-12 

lon:alt -1.18E-08 6.49E-09 

lon:tempsq -4.45E-10 2.47E-10 

lon:tempvar 1.10E-08 5.23E-09 

lat:alt 5.73E-08 1.10E-08 

lat:prec -1.59E-07 5.08E-08 

lat:precsq 6.17E-11 2.03E-11 

lat:precmin -5.28E-07 9.55E-08 

lat:precvar -2.17E-07 1.12E-07 

lat:tempsq 2.19E-09 4.14E-10 

lat:tempvar -2.03E-08 6.90E-09 

alt:precmin -2.34E-04 7.15E-05 

alt:tempvar -2.05E-05 4.83E-06 

alt:vegsq 3.68E-08 1.47E-08 

alt:man -1.13E-04 4.01E-05 

prec:precmin 9.12E-04 3.35E-04 

prec:tempvar 3.75E-05 2.51E-05 

prec:man 5.82E-04 2.05E-04 
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Term Estimate Std. Error 

recsq:precmin -3.14E-07 1.28E-07 

precsq:tempvar -1.95E-08 9.80E-09 

precsq:man -2.57E-07 8.13E-08 

precmin:tempsq -9.79E-06 2.70E-06 

precmin:man -8.26E-04 4.45E-04 

precvar:tempvar -1.31E-04 7.73E-05 

precvar:man -4.21E-03 8.43E-04 

tempsq:tempvar -7.82E-07 1.87E-07 

tempsq:man -7.09E-06 1.66E-06 

man:tempvar 2.49E-04 4.12E-05 

 
 

 

 
S2 Appendix. The semivariogram of the regression residuals (nugget = 0.14, sill = 0.17, range 
= 0.2 degrees). The line depicts the variogram model, with little spatial autocorrelation until a 
distance of 0.2 degrees where it flattens out. 
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Abstract 

 

Alternative host plants are important in the survival and perpetuation of several crop 

pathogens and have been suspected to play a role in the survival of Xanthomonas 

campestris pv. musacearum (Xcm) and perpetuation of Xanthomonas wilt (XW) 

disease of banana and enset. This study determined the potential risk posed by two 

weeds (Canna spp. and wild sorghum) and common banana intercrops (maize, millet, 

sorghum, taro and sugarcane) as alternative hosts to Xcm. The study employed 

screenhouse experiments, laboratory procedures and diagnosis of banana fields in 

XW-affected landscapes. Typical XW symptoms were only observed in artificially 

inoculated Canna sp., with an incidence of 96%. Leaf lesions characteristic of 

xanthomonads occurred on millet (50%) and sorghum (35%), though the plants 

recovered. No symptoms occurred in maize, sugarcane, taro or wild sorghum. 

However, Xcm was recovered from all these plant species, with higher recoveries in 

Canna sp. (47%), millet (27%), sugarcane (27%) and wild sorghum (25%). Only 

isolates recovered from Canna sp., millet, sorghum and wild sorghum caused disease 

in banana plantlets. The presence and incidence of XW on-farm was positively 

associated with the presence of susceptible ABB Musa genotypes and negatively 

with number of banana cultivars on farm and household access to training on XW 

management. Only 0.02% of field sampled Canna spp. plants had Xcm. Risk posed by 

Canna spp. on-farm could be limited to tool transmission as it has persistent floral 

bracts that prevent insect-mediated infections. Given the high susceptibility, 

perennial nature and propagation through rhizomes of Canna sp., it could pose a 

moderate-high risk, thus warranting some attention in the management of XW 

disease. Sugarcane could offer a low-moderate risk due to its perennial nature and 

propagation through rhizomes while risk from maize, millet and sorghum was 

deemed zero-low due to their annual nature, wind-mediated mode of pollination 

and propagation through seed. Understanding the interactions of a crop pathogen 

with other plants is thus important when diversifying agroecosystems. The study 

findings also suggest other factors such as cultivar composition and management of 

the disease at farm and landscape level to be important in the perpetuation of XW 

disease. 

 

Key words: Alternative host, banana, Canna spp., maize, millet, sorghum, 

Xanthomonas campestris pv. musacearum, Xanthomonas wilt  
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5.1 Introduction 

 

Xanthomonas wilt (XW) disease of banana (Musa spp.) and enset (Ensete 

ventricosum) caused by the bacteria Xanthomonas campestris pv. musacearum 

(Xcm) has severely affected the production of banana and plantain in the east and 

central African (ECA) region. Host range studies have shown all the edible Musa spp. 

and enset cultivars in this region to be susceptible, though the level of susceptibility 

has been observed to vary with genotypes (Ssekiwoko et al., 2006a; Michael et al., 

2006; Kebede and Gemmeda, 2017). Only Musa balbisiana, a wild Musa sp., has been 

reported to be resistant (Ssekiwoko et al., 2006a). The potential inoculum sources of 

Xcm have been reported to include infected plants, infected planting materials, 

infected plant residues, traded banana products (fruits and leaves) and 

contaminated soils and water (Eden-Green, 2004; Karamura et al., 2008; Nakato et 

al., 2014). Efforts to manage XW disease in ECA have mainly focused on the banana 

crop, yet banana grows in association with other crop and weed species. Weed 

fallows and some food and/or fodder crops such as common beans (Phaseolus 

vulgaris), cassava (Manhot esculent), maize (Zea mays), taro (Colocasse spp.), sweet 

potato (Ipomea batatas), sorghum (Sorghum bicolor), tobacco (Nicotiana tobacum) 

and Napier grass (Pennisetum purpureum) have also been recommended for 

breaking the cycle of the banana Xanthomonas wilt (Mwangi et al. 2006). Some of 

the weeds and crops in association with banana could potentially influence the XW 

dynamics either through inhibiting spread and survivial of the pathogen or 

supporting pathogen survival and perpetuation of the disease. Understanding the 

nature of interactions of plants in the survival of pathogens and disease dynamics 

are thus important. Field level crop diversification of agroecosystems has been 

reported as a promising strategy for suppressing pests and diseases (Letourneau et 

al., 2011; Boudreau, 2013; Poeydebat et al., 2017). Intercrops affect disease 

dynamics by altering wind, rain, and vector dispersal; modifying the microclimate 

(mainly temperature and moisture); altering host morphology and physiology; and 

directly inhibiting the pathogen (Boudreau, 2013). In contrast, other plants in an 

agroecosystem could exacerbate and perpetuate the diseases of certain crops, 

especially when acting as alternative host plants.  

  Alternative hosts have been reported to play a crucial role in the perpetuation 

of several diseases in different crop species. For example, the Indian tomato leaf curl 

virus was identified in 13 common weed species through symptoms and TAS-ELISA 

and was effectively transmitted by Bemisia tabaci from these weeds to tomato 

(Ramappa et al., 1998). Similarly, Ocimati et al. (2017) reported sorghum to be 

affected by Pythium spp. causing root rots in beans, thus exacerbating the bean root 



Chapter 5 

 

94 
 

rot problem in southwestern Uganda. In banana, R. syzygii subsp. celebesensis 

strains that cause banana blood disease, a wilt of banana, is associated with some 

Heliconia species (Elphinstone, 2005; Blomme et al., 2017a). Ralstonia solanacearum 

that causes Moko/Bugtok wilt in banana has a wide host range (Belalcazar et al., 

2004) and was also isolated from Heliconia species in the Coto valley virgin forests 

of southwest Costa Rica, leading to the suggestion that Moko could have originally 

been endemic in these rainforests (Sequeira and Averre, 1961). R. solanacearum 

strains causing Moko/Bugtok disease are associated with Solanaceaous hosts thus 

compromising the efficiency of fallow periods in disease management. Therefore, 

the removal of weeds that are alternative hosts is recommended (Romo et al., 2012).  

  Pathogenic Xanthomonas species have also been reported in some crops such 

as maize (De Cleene, 2008), sugarcane (Saccharum spp.) (Destefano et al., 2003), 

sorghum (Reddy, 2012), common beans (Mkandawire et al., 2004; Todorović et al., 

2008) and sweet potato (Hernandez and Trujillo, 1990), all of which are commonly 

grown in the banana-based systems of ECA. Xcm has also been shown to be 

phylogenetically similar to Xanthomonas vasicola pv. vasculorum (Xvv) that is 

pathogenic to sorghum, maize and sugarcane (Aritua et al., 2008; Lang et al., 2017).  

A number of studies have been conducted to understand how other plant species 

(weeds and cultivated crops) in the environment of banana and enset interact with 

Xcm (e.g. Yirgou and Bradbury, 1974; Ashagari, 1985; Ssekiwoko et al., 2006b; Aritua 

et al., 2008; Karamura et al., 2015; Chala et al., 2016). Whereas studies consistently 

report Canna spp., a common weed, to develop XW characteristic symptoms similar 

to those in banana after inoculation with Xcm (Ssekiwoko et al., 2006b; Chala et al., 

2016), they give a mixed and less clear picture regarding the interaction of Xcm with 

the cereals, especially with maize.  

  Yirgou and Bradbury (1974), Ashagari (1985) and Ssekiwoko et al. (2006b) 

observed no symptoms in cereals after inoculation with Xcm isolates from enset and 

banana. In contrast, Aritua et al. (2008) reported a hypersensitive response 

(pathogenic reaction) at the inoculation points of maize while Karamura et al. (2015) 

reported characteristic Xanthomonas wilt symptoms in sugarcane but not in maize. 

These two studies were able to isolate Xcm from the maize plants 5 weeks after the 

inoculations. Rutikanga et al. (2016) reported the isolation of Xcm from maize, beans 

and sweet potato plant parts and soils around these crops, and mixed weed fallow. 

The most common weed species in the Rutikanga et al. (2016) weed fallow sites 

included Bidens pilosa L., Tithonia diversifolia (Hemsl.) A Gray, Bothriocline 

ugandensis (S. Moore) M.G. gilbert, Leonotis nepetifolia (L.) R Br, 

Coleus/Plectranthus kilimandschari Gurke ex Engl, Ricinus communis (L.), 

Crassocephalum vitellium Benth, Canna indica (L.), Galisonga ciliate (Raf.) Blake, 
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Comelina diffusa Burm. F. and Crassocephalum montuosum (S. Moore) Milne-Redh. 

Though the Rutikanga et al. (2016) isolates were confirmed to be Xcm with PCR, they 

did not cause disease when inoculated into tissue cultured banana plantlets. 

  A more recent study by Chala et al. (2016) using three Xcm isolates obtained 

from cultivated enset, wild enset and banana reported typical disease symptoms 2 

to 3 weeks after the inoculations with incidences of 40-67% in maize, 25-50% in 

sorghum, 13% in wild sorghum and 1-17% in millet (Eleusine coracana). However, 

some of the above studies did not report re-isolation of Xcm from these alternative 

host plants while Koch’s postulates were not reported in all the studies. Yet some 

plant species can act as symptomless carriers or non-hosts of pathogens (Katan, 

1971; Schaad and Dianese, 1981; Gitaitis et al. 1998; Fassihiani, 2000). For example, 

naturally-occurring weeds including Amaranthus sp., Chenopodium album, and 

aubergines were colonized to various degrees and determined as symptomless 

carriers of Fusarium oxysporum f. sp. Lycopersici that is pathogenic to tomato 

(Fassihiani, 2000). In addition to clarifying the above observations, the risk posed by 

these crop species under on-farm situations also needs to be examined.  

  The current study built on to the above studies by i) determining the potential 

risk of selected weeds (Canna spp. and wild sorghum) and common banana 

intercrops (maize, millet, sorghum, sugarcane and taro (Colocasia esculenta)) to 

harbour and / or succumb to Xcm in controlled experiments; ii) the potential of Xcm 

isolates from these putative alternative hosts to re-infect banana plants and iii) the 

potential importance of the putative alternative hosts in the perpetuation of XW in 

banana in farmers’ fields. Synthesis of these findings will be helpful in informing the 

management of XW disease on farms in the ECA region. 

 

5.2 Materials and methods 

 

This study was conducted through laboratory, screenhouse and field studies. 

Screenhouse and laboratory studies were conducted at the National Agricultural 

Research Laboratories (NARL) located at Kawanda in central Uganda in 2015/2016. 

The screen house and laboratory studies were complemented through farm 

diagnostic studies in central Uganda, a hot spot for XW disease. 

 

Screenhouse studies 

A total of eight plant species that included five common banana intercrops (maize, 

millet, sorghum, sugarcane and taro) and two weeds (Canna sp. and wild sorghum 

(Sorghum versicolor)) previously reported or suspected to harbour or succumb to 

Xcm infection under controlled screenhouse conditions were used in this 
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experiment. Two months old east African highland (EAHB) banana cv. ‘Musakala’ 

(AAA genome) plantlets were used as the positive control. The choice of the banana 

cultivar to use was based on availability of tissue culture plantlets, as all banana 

cultivars in the region are susceptible to XW disease following infection by the Xcm 

pathogen. For each species, 60 plants were raised from either seed (maize, millet 

and sorghum); rhizome/corm bits (taro), cuttings (sugarcane), rhizome (Canna spp.), 

small plantlets (wild sorghum) or tissue culture plantlets (banana). To rule out any 

latent Xcm-infection in vegetatively propagated plants, cross sections from the 

stems and or leaves were sampled, total DNA extracted as described by Mahuku 

(2004) and checked with PCR using Xcm GspDm-specific primers (Adriko et al., 2012). 

The plants were then grown in small pots (3 L in size) filled ¾ full with pre-sterilized 

forest top soil mixed with sand in a ratio of 2:1 over a period of 1-2 months 

(depending on the crop species) before treatment application. Sand was added to 

improve drainage and aeration while the plants were regularly watered to provide 

adequate moisture for growth.   

Inoculum preparation: Xcm for the screenhouse study was isolated from a fresh 

sample of a banana pseudostem obtained from a plant that had only recently 

developed XW symptoms (not older than two days) in an infested field at NARL, 

Kawanda. One gram of the sample was aseptically cut off from the middle and inner 

portion of the pseudostem tissue and macerated with a mortar and pestle in 3 mL of 

sterile distilled water, serially diluted four-fold and 10 µL of each dilution plated on 

Yeast Peptone Glucose Agar (YPGA, Mwangi et al., 2007) media in Petri plates. Plates 

were sealed and incubated at 28 °C for a period of 72 hours. Single colonies with 

Xcm–characteristics (yellow, mucoid and dome shaped) were carefully picked, 

streaked on fresh media and incubated as above. Resultant colonies were confirmed 

using Xcm-specific primers (Adriko et al., 2012) using PCR, and a suspension of the 

bacteria adjusted to 0.5 OD600 (~1×108 colony forming units) using a Nanodrop 

spectrophotometer (Thermo Fisher Scientific Inc., Pittsburgh, PA, USA) for the 

inoculation of plants. 

Inoculation of plants: Thirty maize, sorghum, millet, bean, Canna spp. and wild 

sorghum plants were inoculated after one month from emergence or potting while 

sugarcane, taro and banana were inoculated at two months after establishment An 

equal number of plants served as un-inoculated controls. Inoculations were done by 

injecting 100 µL of fresh Xcm inoculum using a sub-dermal syringe into the stem 

tissues at 15-20 cm height. Twelve inoculated plants per species were routinely 

observed for symptoms typical of XW whereas the remaining 18 plants were 

routinely sampled for laboratory analysis. An equal number of un-inoculated plants 

were respectively kept for observation and sampling. The screenhouse plants were 
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observed for a 60 days period corresponding to the life span of the annual crops and 

covering adequately the time period in which XW symptoms in banana plantlets are 

manifested. Data collected included symptom characteristics, time from inoculation 

to symptom expression (i.e. incubation period) and symptom incidence. Mean 

incubation was computed as sum of XW incubation period for the individual 

symptomatic plants divided by the total number of symptomatic plants, while 

incidence was determined as the percentage of plants that showed XW symptoms 

over the study period. 

Replications: The experiment was repeated thrice over the period of the study. 

Isolates for inoculation of plants in the three screenhouse experiments were 

obtained from the same field and thus assumed to be homogenous. The Xcm isolates 

for the first screenhouse experiment could not be used in subsequent experiments 

due to a possible change in their virulence associated with repeated culturing and 

long storage in the laboratory (Tripathi Leena., personal communication, 2017). 

Sampling of plants: Three inoculated plants per species in the screenhouse were 

sampled at an interval of 7 days starting at 14 days and ending at 49 days post 

inoculation for Xcm isolation in the laboratory. Samples were destructively collected 

in an aseptic manner by sterilizing knives and gloves with a solution of 15 % (v/v) 

sodium hypochloride (NaOCl) between samples to prevent cross contamination. 

Further precaution was taken to sample the un-inoculated controls first, followed by 

the potential alternative host species and lastly the already known / susceptible Xcm 

host (i.e. banana). For each plant species, samples were obtained from the 

stems/leaves and below ground parts. Samples were stored separately in labelled 

plastic bags and transferred to the laboratory where they were processed 

immediately or stored at 4 °C for later isolation. 

 

Laboratory studies 

Isolation of Xcm: Samples from the field were separately washed in running water, 

surface sterilized using 15% v/v NaOCl to eliminate any epiphytes and external Xcm 

contamination, rinsed with distilled water to remove excess NaOCl and blotted dry 

using paper towels. Approximately 3 g of each plant part/sample were cut and 

homogenized with a sterile mortar and pestle in 3 mL of sterile distilled water. 1 mL 

of this homogenate was serially diluted to 10-3, from which a 20 µL aliquot was 

spread plated on triplicate Petri plates of YPGA- containing antibiotics 5-fluorouracil 

and cephalexin (Mwangi et al., 2007). Plates were sealed, incubated at 28°C for 3 

days and scored for presence or absence of colonies with Xcm characteristics. All 

Xcm-like colonies were streaked on fresh YPGA media and incubated as above to 
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obtain pure cultures and confirmed through PCR using Xcm GspDm-specific primers 

(Adriko et al., 2012). 

Genomic DNA extraction from Xcm and Polymerase Chain Reaction (PCR): Genomic 

DNA was extracted from Xcm-like colonies as described by Mahuku, (2004). The 

integrity (concentration and purity) of DNA samples was determined using the 

NanoDrop 2000C spectrophotometer (Thermo Fisher Scientific Inc., Pittsburgh, PA, 

USA) and adjusted to 50 ng/µL, for PCR. The gDNA extracted from Xcm-like colonies 

was used as template in a PCR reaction using 265 bp GspDm-specific Xcm primers 

(Adriko et al., 2012). Amplification reactions were carried out in a 20 μL reaction 

volume with a final concentration of 0.3 µM of each of the forward and reverse 

primers, 1.5 mM MgCl2, 0.2 µM of each dNTPs (Promega, Madison WI, USA), 1× PCR 

green buffer, 1 unit of HotStarTaq Plus DNA polymerase (Qiagen, Canada) and 2 µL 

of genomic DNA (50 ng/µL). The PCR amplification reactions were performed in the 

Eppendorf Mastercycler (Eppendorf AG, Hamburg, Germany) using the following 

program: an initial denaturation at 95°C for 3 min; 35 cycles consisting of 92°C for 20 

s, annealing at 64°C for 15 s, extension at 72°C for 15 s; and a sing1e final extension 

at 72°C for 3 min before cooling and holding at 4°C. Amplified PCR products were 

separated by electrophoresis in 1.5% w/v agarose gel in 1× TAE buffer at 150 V for 

45 min. The gel was stained with ethidium bromide (0.5 μg mL-1) and the image 

captured using the GBOX Syngene gel documentation system (SYNGENE, UK). 

Samples with a 265-bp amplicon were selected and preserved on 2 mm glass beads 

in 80% v/v glycerol at -80°C for further studies. 

Koch postulate trials: Koch’s postulate trials were conducted to determine if the Xcm-

like bacterial isolates recovered from the potential alternative host plants inoculated 

with Xcm could cause disease in the original host (banana plantlets). Koch’s postulates 

are a stringent criterion that provides a framework for thinking about the proof of 

microbial disease causation and are widely used in plant pathology (Liu et al., 2016). The 

key elements include a specific association of the microbe with the disease state, 

scientific consistence of microbiological and pathological evidence, isolation of the 

microbe on culture media, and reproduction of disease following inoculation of the 

cultured organism into a host. To fulfill Koch’s postulate, Xcm-characteristic colonies 

re-isolated from the alternative host plants in the study that were confirmed positive 

for Xcm with PCR were sub-cultured and inoculated into 2 months old East African 

highland banana (cv. ‘Musakala’) banana plantlets using the procedures described 

above. Five banana plantlets of the same age, each having a total of four leaves were 

inoculated per Xcm inoculum source/ isolate. Five banana plantlets inoculated with 

Xcm isolated from banana plantlets served as controls. All inoculated banana 

plantlets were regularly monitored for disease symptoms, time to symptom 
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expression and symptom incidence as in the section above. XW severity at a scale of 

0-1, 0 being no disease symptom and 1 being the highest severity score, was also 

assessed for some of the Xcm isolates used for the Koch postulate trials. The severity 

S for a given isolate was assessed as below. 

𝑆 =
𝑠𝑃1+ 𝑠𝑃2+ −−−− + 𝑠𝑃𝑛

𝑁𝑝
     (i) 

𝑠𝑃 =
𝐿𝑖

𝐿𝑁
      (ii) 

Where: S = severity score for a given Xcm isolate inoculated into a total of “Np” 

plants;  sP = XW severity score for a single plant, with the number of plants 

inoculated with a single isolate varying from “1” to “n” plants; Np = total number of 

plants inoculated with a given Xcm isolate; Li = number of symptomatic leaves at the 

time of data recording; and LN = the total number of leaves per plant at inoculation. 

 

Assessment of the field risk/relative importance of the potential alternative host 

plants of Xanthomona campestris pv. musacearum on farm  

The potential risk and relative importance of crops or weeds that either showed XW 

symptoms in the controlled experiments or from which active Xcm could be isolated 

were assessed on-farm through diagnosis of 63 randomly selected banana farms in 

XW endemic districts (Mukono, Wakiso, Kayunga and Luwero) in central Uganda and 

expert knowledge. On farms, data was collected on: XW presence and incidence; 

presence of Canna spp. and wild sorghum in banana fields; and presence of common 

banana intercrops (maize, millet, sorghum, sugarcane, and taro) in banana fields and 

or farm. XW incidence on each farm was scored on mat (i.e., an underground banana 

rhizome from which one or more shoots emerge) basis at a scale of 0 to 100%. Data 

was also collected on other potential factors that could influence XW presence and 

incidence, and these included: presence of banana cultivars with ABB genome, the 

diversity of banana cultivars and presence of agroforestry trees. Banana cultivars 

with ABB genome are highly susceptible to insect-mediated XW infections (Tripathi 

and Tripathi, 2009; Blomme et al., 2017a) whereas, a high diversity of banana 

cultivars and presence of agroforestry trees were anticipated to cause a dilution 

effect and reduce insect vector access to the susceptible ABB banana types. XW 

management practices also play a crucial role in influencing disease presence and 

incidence on farm. Thus, information on management of banana fields (e.g. weeding, 

removal of male buds, and removal of excess suckers), the history of XW, household 

access to training on XW management, and key XW cultural control practices applied 

on farm were also collected using farmer interview schedules. The on-farm studies 

sought to determine if a cause-effect relationship existed between the presence of 

the potential alternative host plant(s) of interest as an independent variable and i) 
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the presence/absence of XW and ii) the incidence of XW on banana farms as 

response variables. Other possible explanatory variables to the above two response 

variables assessed on-farm included the time of exposure to XW, key XW 

management practices (male bud removal, single diseased stem removal (SDSR), 

complete banana mat removal (CMU)), number of banana cultivars on farm/field, 

presence/absence of ABB banana types, presence of agroforestry trees, banana 

intercropping, access to information on XW and farmer/ household access to training 

on XW management. During field diagnosis, Canna spp. plants were aseptically 

sampled for laboratory isolation and identification of Xcm as described in sections 

above. Priority was given to sample Canna spp. plants that exhibited suspicious 

Xanthomonas characteristic wilting symptoms. 

  Expert knowledge from five scientists with at least seven years of experience 

on XW epidemiology and management was used to develop XW risk scores varying 

between 0 (no risk) to 5 (high risk) for the different potential alternative host crops. 

In addition to the results of the experiments in this study, key plant species 

characteristics used for assessing the risk from the alternative host plants included 

their mode of pollination, persistence or non-persistence of floral bracts and male 

neuter flowers, potential for tool mediated Xcm spread, mode of reproduction and 

life span (annual vs. perennial). XW is also spread by insects that visit for pollen and 

nectar, thus plant species pollinated by insects were deemed a risk to XW spread 

while banana plants with persistent neuter flower and floral bracts have been found 

to escape the disease. Plants that reproduce through rhizomes can potentially pass 

the bacteria or disease to subsequent generations while susceptible perennial plant 

species are likely to offer a higher risk to the banana crop than the annual crops.  

 

Statistical analysis 

Data were compiled in MS Excel. The GenStat v. 12 statistical software (VSN 

International Ltd, 2009) was then used to obtain the analysis of variance ANOVA and 

to separate means (at 5% Least Significant Difference (LSD)) of the laboratory and 

screenhouse data. The R-Statistical package (R Core Team, 2013) was used to 

separately conduct a regression analysis between the response variables and the 

explanatory variables. A general logistic regression model was used to explore the 

relationship between the presence/absence of XW on-farm with the above 

explanatory variables, except the XW management practices and exposure time. XW 

management practices (SDSR and CMU) were not used as explanatory variables 

because they can either be introduced on-farm in response to XW presence or 

influence XW presence. A linear model was used to explore the relationship between 

XW incidence with the explanatory variables. The explanatory variables for each 
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response variable were reduced to a few that significantly influenced the observed 

response through a backward stepwise regression process, each step dropping 

explanatory variables that contributed least to the observed response. 

 

5.3 Results 

 

Screenhouse and laboratory studies 

Occurrence of Xanthomonas wilt symptoms: Characteristic symptoms similar to 

those of XW disease in banana (Fig 1. B) i.e. progressive yellowing and wilting of 

leaves were only visible in Canna sp. plants (Fig. 2B and C). In most of the cases, leaf 

necrosis and yellowing in Canna sp. started either in the middle part or edge of a 

leaf, subsequently progressing to the whole leaf and plant. Severely affected Canna 

sp. plants also had their leaf margins turning black, progressing rapidly to the entire 

leaf and plant (Fig. 2D). The affected Canna sp. plants collapsed and rotted. Cut 

Canna sp. pseudostems released a yellow bacterial ooze (Fig. 2E) similar to cut XW 

infected banana stems (Fig. 1C). Infections were also observed in some of the 

attached suckers following the inoculation of the parent Canna sp. plants (see figure 

2D) whereas other suckers from inoculated Canna sp. mats did not show symptoms. 

None of these symptoms occurred in the uninoculated controls. 

 
Figure 1. A) A disease-free banana plant, B) a banana plant showing Xanthomonas wilt symptoms after 
inoculation with Xanthomonas campestris pv. musacearum, and C) a cut pseudostem of a XW infected 
banana plant showing yellow Xcm ooze. 
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Figure 2. Photos of Canna sp. showing: A) an un-inoculated control plant, B) an inoculated plant and C) a 
symptomatic leaf, D) a severely affected mat showing the dead parent plant (middle) and symptomatic 
shoots (foreground and behind), and E) yellow bacterial ooze on a cut stem surface. 

 

Leaf necrosis (whitish to light green lesions) along the parallel veins were observed 

on leaves of inoculated sorghum (Fig. 3B and C) and millet (Fig. 3E and F) plants, 7 

days after inoculation. No symptoms occurred in the control plants (Fig. 3A and 3D). 

However, these symptoms were observed to disappear over time and new emerging 

millet and sorghum leaves presented no leaf symptoms, suggesting that the plants 

recovered from the Xcm infection. No Xanthomonas-characteristic symptoms were 

observed in the controls or inoculated plants of maize, sugarcane, wild sorghum, 

beans or taro. 

 

 
Figure 3. A) The leaf of an un-inoculated control sorghum plant, B) and C) inoculated sorghum leaves with 
whitish lesions, D) leaf of an un-inoculated millet plant, and E) and F) leaves of inoculated millet plants 
with white lesions. Photos depict plants/leaves at about 12 days after trial initiation/inoculation.  
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Figure 4 A). Mean incubation period (i.e. time for the appearance of symptoms characteristic of 
Xanthomonas wilt) in different plant species and B). the proportion of plants from different plant species 
from which Xanthomonas campestris pv. musacearum was recovered following a deliberate artificial 
inoculation. Vertical bars denote standard errors. Significant differences were observed between the 
species means at P <0.001. Mean values followed by the same letter are not significantly different at P= 
5%. 

 

XW incubation period, incidence and occurrence of Xcm in plant tissues: The mean 

incubation period (number of days from time of inoculation to first symptom 

observation) was greatest for Canna sp. and did not differ significantly between 

banana, millet and sorghum (Fig. 4). The XW symptom incidence in Canna sp. was 

96%, while banana had 100% of potted plants showing symptoms. Millet had 

symptom incidence of 50% and sorghum 35%.  
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Figure 5. Xanthomonas campestris pv. musacearum (Xcm) like colonies (on Yeast Peptone Glucose Agar) 
recovered from different crop species artificially inoculated with Xcm. A= banana, B= Canna sp., C= wild 
sorghum, D= sorghum, E= sugarcane and F= taro. 

 

Xcm-like colonies (Fig. 5) were re-isolated from both symptomatic and symptomless 

Canna sp., sorghum and millet plants and confirmed to be positive with a PCR using 

Xcm GspDm-specific primers (Fig. 6; Adriko et al., 2012). Despite the absence of 

symptoms Xcm was also recovered from wild sorghum, sugarcane, maize and taro 

and similarly confirmed with the GspDm-specific primers (Fig. 5, 6). Adriko et al. 

(2012) reported the GspDm-specific primers to be specific to Xcm based on a 265 bp 

amplicon. To our knowledge there are no other published primers other than GspDm 

reported to be specific for molecular diagnosis of Xcm. However, when we performed 

an in silico analysis with Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-

blast/primertool.cgi?ctg_time=1532089551&job_key=wsgdcVNWXv55wFvFVqV_9yy-

bsUBrXXYAA&CheckStatus=Check), GspDm primers generated a specific amplicon of 

265 bp with Xvv and non-specific amplicons (>3000 bp) with other Xanthomands (non-

pathogens of banana). This suggests that the GspDm primers may also amplify Xvv that 

causes bacterial leaf streak in maize, sugarcane and sorghum. The fact that a 265 bp 

amplicon was not observed in the genomic DNA of tissues from maize, sugarcane and 

other plant species used in this study prior to inoculation gives us confidence that the 

plants used for the screenhouse experiments were Xvv free and amplicons obtained 

with Gspdm primers were Xcm. 

  The frequency of Xcm presence in the plant parts significantly (p<0.001) varied 

between the crop species (Fig. 4B). Xcm was recovered in 83% of the banana plant 

samples compared with 47% in Canna sp. plants. Xcm incidence in plant parts of the 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/primertool.cgi?ctg_time=1532089551&job_key=wsgdcVNWXv55wFvFVqV_9yy-bsUBrXXYAA&CheckStatus=Check
https://www.ncbi.nlm.nih.gov/tools/primer-blast/primertool.cgi?ctg_time=1532089551&job_key=wsgdcVNWXv55wFvFVqV_9yy-bsUBrXXYAA&CheckStatus=Check
https://www.ncbi.nlm.nih.gov/tools/primer-blast/primertool.cgi?ctg_time=1532089551&job_key=wsgdcVNWXv55wFvFVqV_9yy-bsUBrXXYAA&CheckStatus=Check
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other crops was significantly lower than that in Canna sp. and varied between 6.5% 

in sorghum to 27% in millet (Fig. 4B). For the period of Xcm isolation (13-39 days 

after inoculation), no consistent relationship was observed between the proportion 

of plants from which Xcm was recovered and the age of plants or time of Xcm re-

isolation. 

 

 
Figure 6. DNA bands on agarose gel for different Xanthomonas campestris pv. musacearum (Xcm) like 
isolates from different plant species after being inoculated with Xcm isolated from banana. On gel A, 1= 
Canna sp., 2, 3, 8= banana; 4, 5, 10, 11= sugarcane; 6, 7= taro; 9= maize; 12= positive control and 13= 
negative control. On gel B, 1, 2, 7-9, 13= wild sorghum; 3, 4,5, 16= maize; 6, 10, 12, 17-21= Canna sp.; 11, 
14= sorghum; 15= sugarcane; 22= taro; 23= negative control; 24= positive control. Gel C, 1, 2= sugarcane; 
3,5-7, 18,21 = wild sorghum; 4, 16, 20= taro; 8-10, 12, 13, 15, 17, 19= banana; 11 = Canna sp.; 14= sorghum; 
22= negative control and 23 = positive control. On gel D, 1-18 = millet. “M” on all the gels denotes the 
DNA ladder. The experiments were conducted at the Kawanda laboratory in central Uganda. 

 

Koch’s postulates using pathogens re-isolated from non-host plants 

Koch’s postulates were performed using the isolates recovered from the different 

artificially inoculated crop species. Isolates recovered from banana, Canna sp., 

millet, wild sorghum and sugarcane caused XW symptoms in banana plantlets with 

incidences of 100% for those from banana, 60% for those from Canna sp., 80% for 

those from millet, 40-100% for those from wild sorghum and 40% for those from 

sugarcane. Isolates from maize and taro did not cause disease in banana while 
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isolates from sorghum were not introduced into the banana plants. Finger-prints 

were obtained for some of the isolates from banana, sugarcane, Canna sp. and taro. 

Similar finger-print patterns were observed for the banana and Canna sp. isolates 

that caused disease in banana plantlets, while a different pattern was observed for 

the taro and sugarcane isolates that did not cause disease in banana plantlets (Fig. 

7).  

 

 
Figure 7. DNA finger prints on agarose gel for different Xanthomonas campestris pv. musacearum (Xcm) -
like isolates from: 1 = Canna sp., 3 and 8 = banana, 4 = sugarcane, 6 = Taro, 12 = Xcm positive control. The 
initial Xcm isolate was obtained from a symptomatic banana plant at Kawanda research station, central 
Uganda. Isolates 1, 3, 8 caused disease in banana plantlets while 4 and 6 did not.  

 

Four of the Xcm isolates recovered from the potential alternative hosts were 

compared for their virulence on banana plantlets (Fig. 8A and B). One isolate from 

wild sorghum was highly virulent causing up to 100% incidence with a 

correspondingly high severity score of 1 (1 being the highest score and 0 being no 

disease). A second isolate from wild sorghum and the isolate from sugarcane were 

the least virulent while the isolate from millet was moderately virulent. 

 



Field level risk of Xanthomonas wilt 

107 
 

 
Figure 8. Xanthomonas wilt incidence (A, %) and (B) severity scores over time in banana plantlets 
inoculated with Xanthomonas campestris pv. musacearum re-isolated from different Xcm non-host plant 
species. A total of five banana plantlets were inoculated per isolate. Severity was scored at a scale of 0 to 
1, 0 being no disease and 1 being the highest severity scores. 

 

Xanthomonas wilt field risk drivers  

XW was present in 92% of the surveyed farms with a mean mat disease incidence 

and time of exposure to XW of 21% and 4.7 years, respectively. The number of Musa 

cultivars on farm varied between 1 and 11, while the ABB types were present on 95% 
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of the banana farms (Table 1). Agroforestry trees and intercropping were practiced 

on all the surveyed farmers. Between 32% and 84% of the farmers practiced different 

XW control measures while between 5% and 76% of the farmers reported to have 

accessed information and or training from different sources. Farmers were the main 

source of information (75%) on XW disease (Table 1).  

 
Table 1. Distribution of response and explanatory variables explored on Xanthomonas wilt 
(XW) infected farms in central Uganda. In parenthesis are minimum and maximum values of 
the variables. A total of 63 farms were surveyed. 

 

Canna spp. was observed on 59.5% of the farms surveyed in central Uganda (Table 

1). The abundance of Canna spp. on farms could not always be easily ascertained as 

most farmers had cleaned their fields using mainly hand hoes and/or herbicides in a 

few cases. In some farms, (see example of Figure 9B), Canna spp. are very abundant. 

Out of 46 Canna spp. samples analyzed in the laboratory, only one plant (~0.02%) 

had colonies characteristic of Xcm that were also confirmed positive using Xcm 

specific primers. The other samples either had no Xcm-like colonies or were negative 

on PCR with the specific primers.  

 

Variable Mean value 

XW presence on farms (%) 91.9  

XW mat incidence score (%) 21.3 (0-80) 

Time of exposure to XW disease (years) 4.7 (0-20) 

Area under banana (hectares) 0.61 (0.10-4.05) 

Number of banana cultivars on farm 4.4 (1-11) 

Farms with ABB types of banana (%) 94.6 

Presence of agroforestry trees (%) 100 

Farms intercropping banana (%) 100 

Farms applying complete mat uprooting (CMU) (%) 37.8 

Farms applying single diseased stem removal (SDSR) (%) 32.4 

Farmer accessing information on XW from other farmers (%) 75.7 

Farmer accessing information on XW from extension agents (%) 5.4 

Farmer accessing information on XW from media (%) 46.0 

Households accessing training (%) 32.4 

Farms on which Canna sp. was present (%) 59.5 

Who accesses information in household (%)  

-  Men 48 

- Women 41.7 

- Children 10.4 

Male headed households (%) 83.8 

Commercially oriented farms (%) 13.5 
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Figure 9. A) Banana being intercropped with sugarcane, B) a banana field with a high density 
of Canna sp. 

 

A logistic regression model of XW presence/ absence on farm only selected farmers 

access to training and the presence of ABB banana cultivar types as explanatory 

factors that significantly influenced disease presence/absence on farm. Access to 

training had a negative and significant (P=0.009) influence on XW presence on farm, 

suggesting that the 8% of the farms without XW were also those that had received 

training on XW management. In contrast, 92% of the farms with XW had a high 

likelihood of having the susceptible ABB banana cultivar types (P=0.029) (Table 2). A 

linear regression model for XW plant incidence on-farm selected the number of 

banana cultivars, as the key factor influencing XW incidence on a farm (Table 2).  

 
Table 2. Model outcomes of regressions of Xanthomonas wilt (XW) presence (as binary scores) 
and Xanthomonas wilt incidence on farm as response variables with different explanatory 
variables. SDSR denotes ‘single diseased stem removal’ 

 Parameter 
estimate 

Standard 
error 

t 
value 

Pr (>|t|) 

Xanthomonas presence on farm 
Intercept 0.62 0.17 3.53 0.0012 ** 
Presence of ABB banana types 0.40 0.17 2.29 0.0286 * 
Household access to training -0.23 0.08 -2.76 0.0094 ** 
     
Xanthomonas wilt incidence on farm 
Intercept 21.17 17.81 1.19 0.2431 
Number of banana cultivars on-farm -4.62 2.25 -2.06 0.0478 * 
Presence of ABB banana types  26.01 16.83 1.55 0.1318 
Application of SDSR -13.48 8.12 -1.66 0.1064 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

 

The number of cultivars on farm and the application of SDSR, one of the 

recommended control practices led to a decline in XW incidence, while incidence 

was increased on farm by the presence of the susceptible ABB banana types. 

However, only the number of cultivars had a significant effect at P=0.05. The logistic 
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regression and the linear regression models respectively, explained 29.3% (null 

deviance: 2.7569 on 36 degrees of freedom (d.f.) and residual deviance: 1.9503 on 

34 d.f.) and 18.1% (model p-value of 0.083) of the variation in XW presence/absence 

and incidence on farm, suggesting likely landscape effects not explored in this study 

played an important role in XW incidence on farm.  

 

Synthesis of the risk posed by potential alternative host plants 

Table 3 summarizes the different risk criteria and how they ranked across the crops 

in this study based on laboratory, screenhouse and field observations; and expert 

knowledge. In the screenhouse pot trials only Canna sp. was found to be highly 

susceptible whereas other crops were resistant (Table 3). The risk to/from Canna sp. 

and sugarcane could be increased by their perennial nature and propagation through 

the rhizome. Overall, the risk from Canna spp. could be ranked as moderate-high 

while low-moderate for sugarcane and none-very low for the other crop species in 

this study. 

 

Table 3. Ranking of the risk of the different crops/weeds to perpetuate Xanthomonas wilt 
disease on banana plants on farms. For the different criteria, rank 0 denotes no risk while 5 
denotes a high risk. 

Criteria Canna sp. Wild 
sorghum 

Millet Sorghum Taro Maize Sugarcane 

Susceptibility to 
Xcm (based on 
ability to induce 
symptoms) 

5 0 2 2 0 0 0 
 

Recovery of Xcm 
from tissues 

5 2 2 1 1 1 2 

Life span 5 (Perennial 
– high risk of 

sustaining 
infection) 

0 
(annual) 

0 (Annual. 
No risk) 

0 
(Annual) 

0 
(Perennial 
but not a 
suitable 

host) 

0 (Annual. 
Not a 

suitable 
host) 

5 (Perennial) 

Mode of 
propagation 

5 (Dispersed 
through the 

rhizome, 
thus able to 

pass 
infection to 
plantlets) 

0 (Seed 
dispersal) 

0 (Seed 
dispersal) 

0 (Seed 
dispersal) 

• 0 (Not a 
suitable 

host) 

0 (Seed 
dispersal) 

4 (Dispersed 
through the 
rhizome and 
cuttings. Can 
possibly pass 
infection to 
plantlets) 

Risk of spread 
though tools 

5 1 1 1 0 1 3 

Presence in banana 
fields (Likely to vary 
from place to place) 

3 (52% of 
farms in 
Uganda) 

2 1 2 3 3 
3 

Field assessment 1 (isolated 
from 0.02% 

of field 
plants) 

Not 
assessed 

Not 
assessed 

Not 
assessed 

Not 
assessed 

Not 
assessed 

Not assessed 

Overall risk rating Moderate-
high 

• None - 
very low 

None - 
very low 

• None -
very low 

None • None - 
very low 

Low - 
moderate 
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5.4  Discussion 

 

Alternative host plants play an important role in the spread and perpetuation of 

several plant pests and diseases. Several crop and weed species have been suspected 

to potentially play a role in the spread or survival of the XW disease-causing 

pathogen, Xcm.  

  In the current study, Xcm caused symptoms similar to those in banana in 96% 

of Canna sp. plants. This confirms the findings of Ssekiwoko et al. (2006b) and Chala 

et al. (2016), who observed symptoms in Canna spp. after inoculation with Xcm. The 

longer incubation period in Canna sp. plants could be attributed to the fact that fully 

grown Canna sp. plants were used in contrast to the other plants species. In the 

current study, Xcm was successfully re-isolated from 47% of the Canna sp. plants in 

the screenhouse study and confirmed with Xcm specific primers, a component not 

present in previous studies. Given the high symptom incidence in Canna sp. (96 %), 

the observed level of Xcm recovery/re-isolation (47%) in Canna sp. was relatively 

low, a fact that could be attributed to the growth of saprophytes in the severely 

affected and decomposing plants which were assessed at later stages of sampling. 

Isolation of Xcm from banana plants with advanced disease symptoms has also been 

reported to be low due to the onset of decomposition and competition from 

saprophytes (Mwebaze et al., 2006; Were et al., 2015). Koch’s postulates showed 

however that the isolates from Canna sp. could induce disease in banana plantlets. 

These laboratory and screenhouse findings coupled with the high prevalence of this 

weed on banana farms in east and central Africa suggests that Canna spp. could pose 

a risk to the management of the XW disease.  

  Yet, in the field assessment only 0.02% of the field-grown Canna plants had 

Xcm. Moreover, presence/absence and incidence of XW on the studied farms was 

not influenced by the presence of Canna spp. on farm. A close examination of the 

Canna spp. plants in the field revealed that they have persistent floral bracts. In 

banana, cultivars with semi or persistent male/neuter flowers have been reported 

to escape insect-mediated infections (Tripathi and Tripathi, 2009; Blomme et al., 

2014). Thus, the risk of Canna spp. on farm is likely to be limited to tool transmission 

mostly during weeding. The use of farm tools has been reported to potentially spread 

the Xcm bacteria from an infected banana plant to disease-free plants within or 

across fields (Ocimati et al., 2013). The weeding/ land preparation periods (including 

banana leaf and sucker trimming) have been reported to be often followed by higher 

incidences of XW disease (Mgenzi Byabachwezi, 2016, personal communication). 

Canna spp. can propagate through the underground rhizome and as such Xcm 

infections can spread from one plant to other attached plants leading to disease 
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persistence on a farm. In the current study, the attached suckers and sprouts in some 

of the symptomatic or dead Canna sp. plants, for example, were observed to 

succumb to the inoculation of the parent plants whereas in other pots the attached 

lateral shoots did not show disease symptoms even after death of parent plants. 

Based on the above findings we therefore rated the risk of Canna spp. to perpetuate 

XW on-farm as moderate to high.  

  Among the cereals inoculated with Xcm, symptoms were only observed in 

millet and sorghum plants, though the plants eventually recovered. The recovery 

suggests that the resistance mechanisms of these species could overcome the 

pathogen. Pathogen virulence is often directly correlated with pathogen replication, 

with higher levels of replication resulting in increased damage to the host (Ebert and 

Bull, 2008). However, virulence and pathogen replication can be decoupled 

(Margolis and Levin, 2008), especially if the host mounts an appropriate immune 

response against novel pathogens (Graham et al., 2005). Chala et al. (2016) also 

reported typical Xanthomonas wilt symptoms after Xcm inoculations into sorghum 

and millet. The appearance of symptoms in cereals and the taxonomic similarity of 

Xcm to X. vasicola, a pathogen of sorghum, maize and sugarcane should be a source 

of concern as this suggests a potential risk of a jump from one host to another. We 

however rate the risk of Xcm to these crops and from these crops to banana to be 

low mainly due to i) the short annual cycle of these crops and the inability of Xcm to 

survive in absence of the host, ii) the lack of infection arising from insects, iii) their 

dispersal through seeds and other criteria in table 7. These cereals, unlike banana 

that is exposed to XW spread through insects foraging for nectar and pollen (a key 

mode of XW spread) are wind and/or self-pollinated. No symptoms were observed 

in maize and sugarcane. The absence of symptoms in maize and sugarcane agrees 

with earlier findings by Yirgou and Bradbury (1974) or Ashagari (1985) but contrasts 

findings from Karamura et al. (2015) and Chala et al. (2016) who reported typical 

Xanthomonas symptoms in sugarcane and maize, respectively, following inoculation 

with Xcm. No symptoms were also observed in wild sorghum contrary to reports by 

Chala et al. (2016). Taro a common banana intercrop reported to suffer from wilts 

by farmers in XW landscapes did not succumb to Xcm inoculation, suggesting that it 

is resistant. 

  Differences in results between the above studies could potentially arise from 

the differences in the varieties used and differences in virulence of Xcm isolates. 

Karamura et al. (2015) used six different isolates from different sites in the east and 

central African region, while Chala et al. (2016) used three isolates arising from 

banana, wild enset and domesticated enset. Chala et al. (2016) reports different 

levels of susceptibility of banana, enset and the potential alternative hosts to these 
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three isolates. This is strengthened by the fact that four isolates recovered from 

millet, wild sorghum (2 isolates) and sugarcane in this study had different levels of 

virulence, with a higher virulence observed in one of the isolates from wild sorghum, 

followed by that in millet and the least in the second wild sorghum isolate (cf. Figure 

8). Evaluating a wide range of isolates from different geographical setups would 

therefore be vital. We rate the risk of wild sorghum and maize to be very low due to 

their short annual cycle and mode of pollination (i.e., wind pollinated) that prevents 

insect-mediated infections (Table 3). Sugarcane like other cereals are wind pollinated 

but are perennial and reproduce through cuttings and the underground rhizomes. 

Thus, in case Xcm gets adapted to it, it could be of importance in perpetuation of the 

problem of XW disease in banana. With tool-mediated XW spread and the observed 

increase in cases of banana–sugarcane intercrops (e.g. fig. 10A), sugarcane could 

potentially gain importance as an alternative host to Xcm. Based on the screenhouse 

and laboratory results, the characteristics of the sugarcane and its management, 

would propose a low –moderate risk score from/for sugarcane (Table 3).  

  Xcm was isolated from all the plant species after artificial inoculation with an 

Xcm isolate from banana in this study, irrespective of presence or absence of 

symptoms. Xcm re-isolation has also been reported for maize (Aritua et al., 2008, 

Karamura et al., 2015) and sugarcane (Karamura et al., 2015). In this study, isolates 

from maize and taro did not cause disease in banana plantlets. Rutikanga et al. (2016) 

also reported the isolation of Xcm from maize, beans and sweet potato plant parts 

and soils around the stems of these plants. The isolates though confirmed to be Xcm 

with PCR did not cause disease in banana plantlets (Rutikanga et al., 2016). The 

multiplication of bacterial pathogens in planta irrespective of the plant being a non-

host or a host has been reported (Hodson et al., 1995; Vidhyasekaran, 2002; 

Canteros et al., 1991). The bacteria in non-hosts have been reported to however 

remain static or to decline after some time (Canteros et al., 1991; Vidhyasekaran, 

2002). Novel host-pathogen interactions have not been under direct selection 

(Antonovics et al., 2013), and hence the degree of pathogen virulence is likely to be 

maladaptive for both the novel host and the pathogen. Host phylogeny has been 

considered a key factor in determining the susceptibility of novel hosts (de Vienne 

et. al., 2009; Gilbert and Webb, 2007) because species closely related to the natural 

host of a pathogen tend to be more susceptible since the pathogen develops 

specialized adaptations to its natural host such as binding to host receptors, avoiding 

immune responses or utilizing host resources, and these break down if the 

environment provided by the novel host is too different (Longdon et al., 2014). We 

postulate that the failure of Xcm isolates from non-host plants to cause XW 

symptoms in banana may be due to loss or modification of key genes involved in 
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virulence in the pathogenicity island of the Xcm genome. The loss of such loci could 

be attributed to the variation in fingerprint patterns compared to the original isolate 

(control). The ability of Xcm re-isolations from sugarcane and wild sorghum to cause 

disease in banana even though they did not show any symptoms raises a big concern 

for the management of the disease as several plant species have been reported to 

act as symptomless hosts to pathogens. Age of plants (time of re-isolation) did not 

affect the recovery of the bacteria from the inoculated plants.  

  The observation of symptoms in some of the non-host plants in this study and 

earlier studies could be a cause for concern as several plant pathogens have been 

reported to evolve by host jumps followed by specialization (Grünwald and Flier, 

2005; Raffaele et al., 2010). Species in the Phytophthora clade 1c are reported to 

have evolved through host jumps and subsequent adaptive specialization on plants 

from four dissimilar botanical families (Grünwald and Flier, 2005). In the group of 

xanthomonads, Coutinho et al. (2015) reported a significant host jump of 

Xanthomonas vasicola from sugarcane to eucalyptus. It is also not known for how 

long such pathogens need to survive in the non-host plants to warrant concern for 

management, especially given the reported closeness of Xcm to pathogens such as 

X. vasicola that are pathogens to some of these non-host cereal plants. For example, 

Peixoto et al. (2007) isolated Xanthomonas campestris pv. viticola from non-host 

plants such as Alternanthera tenella, Amaranthus sp., and Glycine max. These plants 

and grapevine (host) developed typical symptoms of bacterial canker when they 

were inoculated with the recovered isolates. However, the plant/ crop spp. in this 

study were not reinoculated with isolates recovered from them. 

 XW presence and incidence on farm increased with the ABB banana types on 

farm. The ABB types, in addition to attracting many insect vectors, have floral bracts 

and neuter flowers that readily fall off leaving open fresh wounds on the 

rachis/flower stalk that are easily colonized by bacteria accidentally deposited by 

foraging insects (Blomme et al., 2014; 2017a). XW incidence also declined with 

increasing number of banana cultivars on farm. Crop or cultivar mixtures have been 

reported to impede disease and pest spread and damage (Poeydebat et al., 2016; 

Vidal et al., 2017; Li et al., 2018). High diversity of banana cultivars has been reported 

to suppress banana weevils, nematodes and black sigatoka in Uganda (Mulumba et 

al., 2012). The effect of mixtures on diseases can be through a dilution effect/ 

decrease in the susceptible host, change in microclimate, pathogen dispersal rate 

and vector population and behaviour, host alteration, and pathogen inhibition 

(Boudreau, 2013; Vidal et al., 2017). This study for the first time suggests a possible 

role of cultivar mixtures in reducing or slowing XW spread on farm. This effect of 

banana cultivars can be attributed to the effect of dilution on the susceptible ABB 
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types and a reduced insect vector access to susceptible cultivars. XW incidence on 

farm was also influenced by singly removing diseased stems/plants on farm i.e. SDSR 

application. SDSR is one of the recommended practices for managing XW disease on 

farms. SDSR has been reported to drastically reduce XW incidence and lead to 

recovery of infected banana fields if regularly and consistently applied (Blomme et 

al., 2017b). No associations were observed between XW presence/ incidence with 

crop mixtures and agroforestry practices, possibly due to the homogeneity of the 

farms in the study region. The models only explained between 18 and 29% of the 

observed variation on-farm. This could be attributed to the fact that other factors 

responsible for disease spread on farm such as use of contaminated tools and un-

certified seed were homogenous across farms. Landscape level factors could have 

also possibly dominated the studied factors within the individual farms. At landscape 

level, XW spread, incidence and severity has been reported to be influenced by 

altitude, temperature, precipitation, trade in diseased fresh products and the level 

of collective application of disease control measures among others. 

 

5.5 Conclusion 

 

In the current study, despite a low recovery (0.02%) of Xcm from field-based Canna 

spp. plants, the high susceptibility of Canna sp. to Xcm in the screenhouse coupled 

to the pathogenicity of the Xcm isolates recovered from these plants to banana 

makes them suitable alternative hosts to Xcm. More still, given the perennial nature 

of Canna spp. and its propagation through the rhizome, even at low incidences, 

Canna spp. could act as a reservoir of Xcm and perpetuate XW disease, leading to a 

low-moderate risk from this weed. Isolates recovered from sugarcane and wild 

sorghum (another important weed species) also caused disease in banana though 

these plants were resistant following inoculation with Xcm. Given sugarcane and 

some species of wild sorghum e.g. Johnson grass (Sorghum halepense (L.) Pers) are 

perennial and reproduce through the rhizome, they could potentially become 

important alternative hosts if the bacteria gets adapted to them. Efforts for 

managing XW will thus need to be broadened to management of some of the 

alternatives host plants, especially Canna spp. In contrast, the risk from the grain 

cereals is deemed as none to very low, give the grain cereals were resistant, are 

annual in nature and propagate through seed. More still, XW cannot survive in 

decomposing or dry host tissues. Efforts to diversify agroecosystems therefore need 

to consider the interaction of pathogens of given crops with other plants in the 

system. On farmers’ fields, XW presence and incidence had no association with the 

potential alternative hosts, especially Canna spp. but rather with the presence of 
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susceptible ABB Musa genotypes, number of cultivars on farm and access to training 

on XW management. The models accounted for only between 18-29% of the 

variation in XW presence on farm, suggesting a possible role of other factors on farm. 

There is also need for in-depth study of the genomes of the Xcm isolates retrieved 

from the potential alternative host plants.  
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Abstract 

 

Banana leaf pruning is a common practice to facilitate intercropping with legumes 

on farmers’ fields. It is however not clear if this practice improves farmers land-use 

and economic efficiency, especially after full canopy formation. To analyse pruning 

effects, three legumes viz. bush bean (Phaseolus vulgaris L), climbing bean 

(Phaseolus vulgaris L) and soybean (Glycine max), were planted under three banana 

leaf pruning levels in which four, seven and all fully grown leaves were retained. Sole 

banana or legume plots served as controls. Each treatment combination was 

replicated three times. Banana growth and yield attributes were measured for the 

plant and first ratoon crops while legume biomass and yields determined over five 

consecutive cropping seasons. Significant (P<0.001) reductions in banana growth 

and yield were associated with leaf pruning. Banana yield reductions of 31% and 10% 

for the four- and seven-leaf retention treatments, respectively occurred. The 

vigorous intercrops (climbing beans and soybeans) more often depressed the growth 

and yield of banana. Legume grain and biomass yields increased with leaf pruning 

levels. Weed biomass and associated management costs increased with decline in 

shade intensity. The land-use efficiency measured using the land equivalence ratio 

(LER) was far lower in the treatment with four-leaves (1.10) compared to when all 

leaves were retained (1.4) but higher (1.54) for the seven-leaf treatment. Severe 

banana leaf pruning could thus be detrimental to banana performance and 

inefficient. Moderate banana leaf pruning could however be promoted were land is 

limiting and farmers want to maximise diversity/nutrition. However, the highest 

values for gross revenue and benefit-cost ratio were realized for sole banana-all-leaf 

retention treatment due to a higher labour productivity and lower input costs 

attributed to the perennial nature of banana. The higher economic efficiency in sole 

banana plots suggests that reliance on LER only may be insufficient for guiding 

intercropping decisions. 

 

Keywords: banana, intercrop, leaf pruning, legume, LER, revenue. 
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6.1 Introduction 

  

Banana-legume intercropping is important in several countries of the African Great 

Lakes region (AGLR) including Uganda, Rwanda, Burundi, Democratic Republic of 

Congo (DR Congo) and north-western Tanzania (Wortmann and Sengooba, 1993; 

Nzawele et al., 2009; Ntamwira et al., 2013a, b; 2014). Banana-legume intercropping 

is widely practiced due to high population pressure on the land. The region is 

characterized by high population densities estimated at between 300 and 350 

inhabitants per km2 (DSRP, 2005; CIALCA, 2010), with each household typically living 

on less than 0.5 hectare of land. The incorporation of food and/or fodder legumes 

into banana cropping systems in AGLR could increase the use efficiency of land 

(Sileshi et al., 2007) and other resources in smallholder banana farms (Ouma, 2009). 

It is aimed at maximising productivity and minimising risks related to, for example, 

climate change, pests and diseases (Nyabyenda, 2006; Dapaah et al., 2003; Zinsou et 

al., 2004) and helps in suppression of weeds (Amanullah et al., 2007). Furthermore, 

intercropping with nitrogen-fixing legumes may also be a strategy to offset the 

depletion of soil nitrogen (Chakeredza et al., 2007), thereby contributing to 

increasing productivity of the system. For example, intercropping with grain legumes 

(common beans, cowpea, groundnut, pigeon pea or soybean) has been reported to 

increase productivity with land equivalent ratios of 1.2–1.9 (Pypers et al., 2010). 

 Wortmann and Sengooba (1993) compared the performance of 16 non-

climbing bean genotypes intercropped with East African highland banana with that 

in their respective sole crop systems. Intercropping reduced the bean yields to only 

50% of the sole bean yields yet the intercrop bean density was 68% of the sole crop. 

This incongruous response to reduction in the bean density in the intercrop 

compared with that in the sole crop suggests that the banana-bean intercrops were 

affected by competition for light, water and nutrients, which if well understood can 

guide the optimization of the system for productivity. Below ground competition for 

moisture and nutrients in the banana-bean intercrop probably limits bean 

productivity since both banana and bean species are shallow-rooted (Wortmann and 

Sengooba, 1993) and require large amounts of nitrogen (N), phosphorus (P) and 

potassium (K) for growth and development (Maria et al., 2002; Ganeshamurthy et 

al., 2011; Marschner, 2011; McGrath et al., 2013). Above ground shading of the 

shorter legume plants by the banana canopy could reduce light interception, growth 

and yield of the legumes (Nyambo et al., 1982; Davis et al., 1987). Consequently, 

farmers e.g. in eastern Democratic Republic of Congo, often prune banana leaves to 

enhance sunlight penetration to the understory component crop so as to improve 

their growth and yield (Mirindi, 2011; Ntamwira et al., 2013a, b; 2014; Ocimati et al., 
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2013; Blomme et al., 2017). However, leaf pruning perpetuates the spread of the 

bacterial wilt disease of banana (Blomme et al., 2017) and is potentially detrimental 

to the banana yield (Robinson et al., 1992), hence the need to analyze the leaf 

pruning effects in banana-legume intercrop systems. 

  Ntamwira et al. (2013a; 2014) observed no significant differences in banana 

yield when leaves of fully-grown plants were reduced to seven on farmers’ fields and 

five in controlled field experiments compared with non-pruned controls over four 

annual cropping seasons. In these experiments, leaves were only cut once when 

plants were at the flowering stage. In contrast, significant declines in banana plant 

crop growth and yield were observed when leaves were reduced to four or 7 leaves 

starting from the third month of planting in controlled field experiments (Ntamwira 

et al., 2013b). The different legume species (soybeans, bush and climbing beans) 

performed better when banana leaves were pruned across the three experiments. 

The Ntamwira et al. (2013b) study reported findings of two bean cropping seasons 

and the banana plant crop (i.e. first crop established from plantlets or suckers) 

planted at a spacing of 2 m x 2 m. Our work builds on Ntamwira et al. (2013b) taking 

into account the significantly higher growth vigour and canopy cover of the banana 

ratoon crops (new shoots in a banana stool retained for the following crops) 

compared to those of the plant crop (e.g. Robinson et al., 1993). This study analysed 

the interaction of the annual crops with the banana crop under different pruning 

levels over three a three years period (i.e. two banana cropping seasons). Higher 

shade and competition levels were anticipated in additional season compared to 

those observed by Ntamwira et al. (2013b).  

 The specific objective of this study was to determine the requisite banana leaf 

pruning intensity to optimize productivity of the intercrops. It was hypothesized that 

there is no effect of banana leaf pruning intensity on the overall land use efficiency 

and net returns from banana-legume intercropping regardless of banana crop cycle 

and component legume species. The findings of this study could be relevant for 

guiding farmers’ decisions on banana intercropping and leaf pruning practices. 

 

6.2 Materials and methods 

 

6.2.1. Study location description 

This study was conducted at the Institut National d’Etudes et Recherches 

Agronomiques (INERA), Mulungu research station in the South Kivu Province in 

eastern of the Democratic Republic of Congo. Banana is an important food and cash 

crop in eastern DR Congo, accounting for 70% of the total crop production landscape 

(Bakelana and Ndungo, 2004). In this region, the crop is predominantly cultivated on 



Banana-legume intensification 

125 

smallholdings and in mixtures, with bush beans and taro as the predominant 

intercrops. To integrate the shorter annual crops such as beans, different levels of 

leaf pruning (retaining 4 to 7 leaves) is a common practice on farms in the wet 

seasons (J. Ntamwira personal communication, 2013). The experiments were located 

at 02°20.042’ S, 028°47.311’ E, and an altitude of 1,707 meters above sea level. The 

soils are volcanic Andosols with: pH 8.5 (read from a 1:2.5 soil:water extract), soil 

organic matter content 4.9%, N 0.25% (using salicylate method (Kempers and 

Zweers, 1986)), P 126 ppm, exchangeable K 748.8 ppm, exchangeable Ca 23.85 

cmol(+)/kg and exchangeable Mg 1.41 cmol(+)/kg. P, K, Ca and Mg were extracted 

using the Mehlich 3 extraction method (Melich, 1984). The mean annual rainfall at 

the site is 1,500 mm distributed over two rainy seasons (February to May and 

September to December). The experimental field had been under banana cultivation 

for three years. All banana mats were uprooted, and plant debris spread out as 

mulch across the field one week prior to establishing the intercropping experiment.  

6.2.2. Experimental design and management 

The treatments consisted of combinations of three different banana leaf pruning 

levels i.e. maintaining i) four, ii) seven and iii) all fully expanded leaves per plant 

applied to banana monocrops and banana-legume intercrops. On average, the ‘all 

leaves’ treatment had nine leaves per plant, while four leaves represented the worst-

case scenarios often observed on farmers’ fields during intercrops. For the intercrops 

three different legume species were used: bush bean (cv. MLB49), climbing bean 

(Phaseolus vulgaris L, cv. AND10) and soybean (Glycine max, cv. SB24). The 

monocrops of banana and the three legumes served as controls. The banana plants 

of the East African highland cooking cultivar ‘Barhabesha’ (genome AAA) were 

planted on the 13th December 2009. The legume crops were planted among the 

banana plants at 3 (8th March 2010), 9 (9th Sept. 2010), 15 (12th March 2011), 21 (12th 

Sept. 2011) and 27 (9th March 2012) months after banana planting and data were 

collected during five consecutive legume cropping seasons starting with the March-

June 2010 season and ending with the March-June 2012 season.  

 A total of 15 treatments were randomized within four blocks resulting in a 

randomized complete block design with four replications per treatment and a total 

of 60 plots. Each plot (120 m²) contained 30 banana mats, in five rows of six mats 

each, spaced at 2 m  2 m. Legumes were planted in lines 50 cm apart, thus giving 

20 lines of legumes per plot. Each line of legumes was 12 m long and the intra-line 

spacing was 20 cm for bush bean, 25 cm for climbing bean and 10 cm for soybean 

plants. Senesced banana leaves were removed regularly from legume planting until 

legume harvest. No banana leaf cutting was carried out during the dry seasons, to 
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mimic farmers practice. Leaf cutting is mainly done during the rainy season to allow 

for adequate sunlight to reach the shorter crops planted within banana fields 

(Ntamwira et al. 2012, 2013a, b). Weeding was carried out monthly, while de-

suckering was done at the beginning of the annual cropping season. Farmyard 

manure was only applied for banana in the planting hole at planting. No additional 

fertilizer was applied.  

6.2.3. Data collection and measurements 

Data were collected during two banana crop cycles, i.e. the plant crop (first crop cycle 

or crop resulting from plantlets used to establish plantation) and the first ratoon crop 

cycle (first suckers allowed to grow to maturity), equivalent to 5 legume crop cycles. 

Banana and legume data were collected in centrally-located net plots, which 

comprised 12 banana plants and a 6  4 m2 section of legume crop. Measurements 

on banana plants for both the plant and first ratoon crop were conducted at 

flowering and harvest. At flowering stage, data collected included pseudostem 

circumference (PCSL) at soil level, number of hands and fingers on the second lowest 

hand. 

At banana bunch harvest, data were collected on the weight of the second 

lowest hand (kg) of the bunch, the length of the middle finger of the second lowest 

hand, time to harvest (days) and bunch weight (kg). Bunches were harvested when 

the fruits were deep green, full and rounded (Dadzie and Orchard, 1997). Yield 

(Mg/ha/year) was computed from the bunch weight (kg) and time to harvest (days), 

using a cropping density of 2500 banana plants per hectare (i.e. 2 m  2 m spacing). 

Time to harvest for the plant crop was considered as the time from planting to 

harvest, whereas the time to harvest for the first ratoon crop was calculated as the 

time from harvest of the plant crop bunch to harvest of the first ratoon crop bunch. 

Bunch yield (Y; Mg/ha/year) was determined using a modification of the formula 

described by Gaidashova et al. (2008) as below:  

𝑌 =
𝑊

𝑇
∙ 𝐷 ∙ 𝑃 ∙ 𝑐 (1) 

Where: 

W = bunch weight (kg/plant); 

T = time to harvest (days); 

D = number of days in a year (365 days/year); 

P = plant density (2500 plants per ha); 

c = conversion factor from kg to Mg (1/1000). 



Banana-legume intensification 

 

127 
 

  Legume biomass yield was assessed when 50% of legumes had formed pods, 

in a 1 m  1 m section located in a corner of each legume net plot, while legume 

grain yield was assessed in the net plot of 23 m2. Legume biomass was not returned 

to the plots to mimic the common practices of the smallholder farmers in the study 

location. 

  Weed biomass was also assessed during the third (when banana plants were 

15 months old) and fourth legume cropping cycle (21st month) under the different 

banana leaf pruning and legume treatments. Weed biomass was assessed before 

legume planting (coinciding with the time of land preparation) and at legume 

flowering in a 1 m  1 m section located in a corner of each legume net plot. In the 

banana monocrop plots, weed biomass was similarly assessed in a corner of the 

banana net plot.  

  An ACCUPAR photometer probe (Model LP-80, Decagon Devices, Pullman, 

WA, USA; Decagon Devices, 2004) was used to measure the photosynthetically active 

radiation (PAR, µmol/m2/s) received by the leguminous crops under the different 

treatments. The PAR measurements were taken, from the second to the fifth legume 

cropping seasons, on clear days between mid-day and 2 pm, when (i) 50% of legumes 

had flowered, (ii) 50% of legumes had formed pods and (iii) 50% of legumes had 

reached full maturity. Twelve light measurements were taken below the banana 

canopy at 50 cm height in the legume net plot for each legume treatment and at 

each of the three legume physiological stages. The legume monocrop and intercrop 

plots were also visually monitored for the presence and severity of common diseases 

such as leaf spots and viruses.   

  Banana and grain legume yield across all treatments were compared using the 

land equivalent ratio (LER) (Willey, 1985), defined as the amount of mono-cultured 

land needed to produce the same yield as the specified intercrops. For each crop, 

the relative yield (RY) was calculated to determine the partial LER for that crop and 

then the partial LERs were summed to give the total LER for the intercrop (Mazaheri 

et al., 2006). 

 

𝐿𝐸𝑅 = 𝑅𝑌1 + 𝑅𝑌2 =
𝐼1

𝑀1
+

𝐼2

𝑀2
     (2) 

         

Where:  

RY1 = partial LER of crop 1 (-);  

RY2 = partial LER of crop 2 (-); 

I1= Yield of crop 1 grown as intercrop (kg ha-1 year-1); 

M1= Yield of crop 1 grown as monocrop (kg ha-1 year-1); 
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I2= Yield of crop 2 grown as intercrop (kg ha-1 year-1); 

M2= Yield of crop 2 grown as monocrop (kg ha-1 year-1). 

 

  An LER value of 1.0 indicates no difference in relative yield between the 

intercrop and the collection of monocultures. A total LER greater than 1.0 indicates 

the presence of positive interactions among the varieties or crops in the mixture and 

means that any negative interaction that exists in the mixture is not as great as may 

occur in the monocultures (Mazaheri et al., 2006). 

  Banana and bean net revenues, i.e. net present value (NPV, US$/ha) were 

calculated as the difference between the revenues from legume grain and banana 

bunch sales and the input costs (labour cost for field preparation, digging planting 

holes, manure application, banana and legume planting, weeding, banana leaf 

pruning, banana de-suckering, cost of propping banana and staking climbing beans, 

and cost of harvesting and post-harvest handling) for the period of the study. 

Legume gross revenues were estimated using the local market prices for grains (i.e. 

1.0 U$/kg while banana gross revenue was estimated using the market price for 

cooking banana bunches at the closest market to Mulungu research station i.e. 0.15 

US$/kg. Revenues for the different cropping cycles were adjusted upwards or 

downwards from the computed annual yields/ha using the duration to harvest for 

the respective treatments. High quality legume seeds and banana suckers were 

bought at the INERA research station, respectively at 2.5 US$/ kg and 1 US$ per 

sucker. Land preparation or weeding was costed at a wage of 1.33 US$ per 100 m², 

while digging a banana planting hole of 60  60  60 cm was costed at 0.11 US$. The 

stakes for propping climbing beans were bought at 2.22 US$ per bundle of 100 sticks. 

A benefit cost ratio (BCR) and the labour productivity for the cropping options were 

also computed as indices of risk to investment and guidelines for investment 

decisions. BCR is the ratio of the value of a project to the money spent in undertaking 

it. BCR provides a value of benefits and costs in actual dollars spent and gained and 

was computed using the net present values (NPV) of the cropping options. The 

labour productivity was computed as the ratio of the net present values (NPV) to the 

cost (US$) of labour invested in a cropping option (US$).  

 

6.2.4. Statistical analysis 

The R statistical software (R Core Team, 2018) and lmer function from the lme4 

package (Winter et al., 2013; Bates et al., 2015) were used to perform a linear mixed 

model analysis of the relationship between banana/ legume yield growth and yield 

parameters and the management options. The linear mixed model was used due to 

the presence of random effects within the experimental treatments. The random 
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effects were attributed to the blocks (4 levels) and the banana crop cycles (2 levels). 

The differences between and within the blocks were predominantly significant 

(p<0.05) following preliminary analysis of variance using the GenStat v. 12 statistical 

software (VSN International Ltd., 2009). In contrast, the crop cycles were set as 

random effects because of potential variations in the environment within the 

different years of experimentation and influence from the remains of mother plants 

and other attached shoots in the ratoon crop. The remains of the banana mother 

plants in a mat following harvest have been reported to support the growth and 

development of the ratoon crops (Walmsley and Twyford ,1968), an effect lacking 

for the plant crop. The random effects were entered as nested random effects with 

intercepts. The fixed effects include banana leaf pruning (3 leaf pruning levels), 

intercrop options (4 treatment levels), and the interaction term between the two 

effects. The above full model and its null and reduced forms were fit to the same 

data using the maximum likelihood criterion and compared using combinations of 

the model-fit statistics. The model fit by maximum likelihood generates several 

model-fit statistics that include the Akaike’s Information Criterion (AIC) (Sakamoto 

et al., 1986); Bayesian Information Criterion (BIC) (Schwarz, 1978); the log-likelihood 

and deviance of the parameter estimates; chi-square and p-values. The model with 

smaller values of BIC, AIC and deviance are recommended. For this study, models 

with the smallest BIC were selected for subsequent analysis. Where two or more 

models had more or less the same values of BIC, the AIC, deviance and p-values 

values were also considered. P values were considered significant when < 0.05. The 

best model was subsequently refit with the restricted maximum likelihood criterion 

(REML) which is default for lmer (Bates, 2010) to determine the random and fixed 

effects in the model. The lmerTest package was used to give the lmer4 package an 

extended output of the summary consisting of degrees of freedom using the 

Satterthwaite’s (Kenward-Roger’s) approximations for the t test and corresponding 

p-values (Kuznetsova et al., 2017). These p-values jointly with the treatment effects 

were used for comparison of the fixed effects.  

  For the legumes, the blocks had a zero variance and thus only the seasons that 

accounted for a greater part of the variance were retained as random effects. The 

banana canopy levels increased with subsequent seasons and legume performance 

was thus expected to be affected by this seasonal variation in canopy. Differences 

were also anticipated for other environmental variables such as nutrient levels, 

moisture and cloud cover of the different seasons. Only banana leaf pruning levels 

were considered as the fixed effect. A comparison between the legumes and legume 

interaction with the banana leaf pruning levels were not considered relevant given 
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the inherent differences between the legume species. Further analysis was as for the 

banana crop above. 

  Data visualization was attained using the R statistical software (R Core Team, 

2018) and statistical packages devtools (Wickham and Chang, 2018), ggplot2 

(Wickham, 2016), ggpubr (Kassambara, 2018) and patchwork (Pedersen, 2017) were 

used. The residual plots were visually inspected for obvious deviations from linearity, 

homoscedasticity or normality, and when necessary log transformed. GenStat v. 12 

was also used to compute linear regressions with groupings (with the bush bean as 

the reference level) between PAR and legume grain or biomass yield. 

 

6.3 Results 

 

6.3.1. Banana plant characteristics at flowering and harvest  

Table 1 shows that the reduced model was the best predictor for the banana plant 

characteristics (i.e. the lowest value for BIC and p<0.05 for significance of difference 

with the null model) and was thus used in the subsequent determination of the fixed 

effects. The fixed effects did not profoundly affect the time to harvest in banana 

plants (Table 1). Despite this observation, a lower mean time to harvest was 

observed in banana plants in which four leaves had been retained (Fig. 1a) while the 

banana monocrop relative to the intercrop treatments had a lower median and 

mean score (Fig. 1b).  

  The fixed effects (i.e. banana leaf pruning levels and intercrop options) 

generally had profound effects on banana pseudostem circumference at soil level, 

the number of hands on bunch and the number of fingers on the second lowest hand 

(Table 2). Banana leaf pruning significantly (p<0.001) reduced all the above 

parameters measured at flowering, with higher effects realized for the severe 

banana leaf pruning i.e. to four leaves (Table 2, Figs. 2a-2c). For example, the 

intercepts of pseudostem circumference were 3.2 and 8.8 cm smaller in the seven 

and four-leaf treatments, respectively, compared to the situation without banana 

leaf pruning (Table 2).  
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Table 1. The Bayesian Information Criterion (BIC) for null, reduced and full linear mixed models 
fit on the same banana growth and yield data. The model fixed effects include three levels of 
banana leaf pruning and four banana-legume intercrop treatments while the random effects 
are the blocks and banana crop cycles. For a given dependent variable, the best fit model is 
the one with the lowest BIC value. 

Dependent variable 
Null 

model 
Reduced 

model 
Full 

model 

Pseudostem circumference at soil level 6763.1 6456.0 6476.9 
Number of hands on bunch 2565.8 2448.5 2469.1 
Fingers on second hand 2150.6 2089.1 2091.5 
Time to harvest 10089.0 10104.0 10133.0 
Finger length 4507.1 4282.9 4310.9 
Bunch weight 5445.1 5069.2 5092.6 
Yield -492.6 -682.1 -673.6 

Null model: y ~ 1 + (1|block/cycle); reduced model: y ~ x1 + x2 + (1|block/cycle); and full model: y ~ x1 * x2 
+ (1|block/cycle). ‘y’ is the dependent variable (i.e. measured parameter), ‘x1’ and ‘x2’ respectively, the 
de-leafing treatments and the intercrop option that are the fixed effects.  Block (treatment blocks) and 
cycle (crop cycles) are the random effects of the model. 

 

 
Figure 1. Mean time to harvest banana bunches under different leaf pruning levels (a) and intercrop 
options (b).  “4”, “7” and “All”, respectively, denote four, seven and all fully open leaves retained on the 
banana plants. The horizontal line within each box is the median while the red diamond shape is the mean. 
The lower and upper boundaries of the boxes are respectively, the 25th and 75th percentile; the 
bars/whiskers below and above the box the 10th and 90th percentile and points beyond 10th and 90th 
percentiles are outliers. 
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Table 2. Experiment to understand the effect of banana leaf pruning to integrate legumes on 
the performance of the component crops. Fixed effects of three banana leaf pruning levels 
(i.e. retaining 4, 7 and all fully open leaves) and intercrops of bush bean (cv. MLB49), climbing 
bean (cv. AND10) and soybeans on pseudostem circumference at soil level (cm), number of 
hands on bunch and fingers on second lowest hand. The experiment was established under 
controlled conditions at the Institut National d’Etudes et Recherches Agronomiques, Mulungu 
research station in eastern Democratic Republic of Congo. 

Banana 

parameter 
Effects Estimate S. E 

t 

value 
Pr(>|t|) 

Pseudostem 

circumference 

at soil level 

(Intercept) 80.83 1.17 68.80 1.5E-13 

7 leaves -3.22 0.45 -7.13 1.9E-12 

4 leaves -8.81 0.45 -19.53 < 2.0E-16 

Banana-climbing bean intercrop 0.75 0.52 1.45 0.1483 

Banana-bush bean intercrop 1.19 0.51 2.33 0.0203 

Banana-soybean intercrop -0.96 0.51 -1.87 0.0622 

Number of 

hands on 

bunch 

(Intercept) 7.80 0.09 83.96 3.5E-13 

7 leaves -0.12 0.06 -1.90 0.0582 

4 leaves -0.75 0.06 -11.66 < 2.0E-16 

Banana-climbing bean intercrop -0.17 0.07 -2.27 0.0235 

Banana-bush bean intercrop -0.10 0.07 -1.40 0.1610 

Banana-soybean intercrop -0.08 0.07 -1.09 0.2753 

Number of 

fingers on the 

second lowest 

hand 

(Intercept) 7.94 0.08 103.18 < 2.0E-16 

7 leaves -0.11 0.05 -2.04 0.0415 

4 leaves -0.47 0.05 -8.90 < 2.0E-16 

Banana-climbing bean intercrop -0.15 0.06 -2.48 0.0134 

Banana-bush bean intercrop -0.20 0.06 -3.31 0.0010 

Banana-soybean intercrop -0.09 0.06 -1.41 0.1585 

 

  Bush and climbing bean intercrops resulted in larger pseudostems compared 

to the banana monocrop whereas soybean intercrop depressed the size of the 

pseudostem (Table 2, Fig. 2b). However, the effect of climbing beans and soybean 

did not result in pseudostem circumferences that were significantly (P>0.05) 

different from that of the banana monocrop. The intercrops negatively affected the 

number of hands, though this was only significant (P=0.0235) for the climbing beans. 

Similarly, the number of fingers on the second lowest hand of the bunch were 

depressed by all intercrops, though only significantly in the bush (P=0.0010) and 

climbing beans (P=0.0134) (Table 2).  
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Figure 2. Banana pseudostem circumference at soil level, number of hands on the bunch and 
number of fingers on the second lowest hand of bunch for different leaf pruning levels and 
intercrop options.  “4”, “7” and “All”, respectively, denote four, seven and all fully open leaves 
retained on the banana plants. The horizontal line within each box is the median while the red 
diamond shape is the mean. The lower and upper boundaries of the boxes are respectively, 
the 25th and 75th percentile; the bars/whiskers below and above the box the 10th and 90th 
percentile and points beyond 10th and 90th percentiles are outliers. 

 

  Leaf pruning and the legume intercrops also affected the finger length, bunch 

weight and overall banana yield measured at harvest (Table 3, Figs. 3a, 3c, 3e). Finger 

length, bunch weight and yield significantly decreased (P < 0.01) with the increasing 

level of leaf pruning (Table 3, Figs. 3a, 3c and 3e). For example, the finger length 

intercepts for the seven and four-leaf treatments dropped by 0.56 and 2.93 cm, 

respectively, from an intercept of 20.68 cm in the all leaf treatment.  
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  The intercrops, except for the bush bean crop that resulted in increased finger 

length (P=0.0005), generally depressed finger length, bunch weight and banana yield 

(Table 3, Figs. 3b, 3d, 3e). Significant negative effects were however only caused by 

the climbing bean intercrop on bunch weight (P=0.0038) and banana yield 

(P<0.0001) and by soybean on banana yield (P<0.0001) (Table 3).  

 

Table 3. Experiment to understand the effect of banana leaf pruning to integrate legumes on 
the performance of the component crops. Fixed effects of three levels of banana leaf pruning 
(i.e. retaining 4, 7 and all leaves) and legume intercrops (i.e. bush bean (cv. MLB49), climbing 
bean (cv. AND10) and soybean) on finger length, bunch weight and yield of banana. The 
experiment was established under controlled conditions at the Institut National d’Etudes et 
Recherches Agronomiques, Mulungu research station in eastern Democratic Republic of 
Congo. 

Banana 
parameter 

Effect Estimate S. E. 
t 

value 
Pr(>|t|) 

Finger 
length 

(Intercept) 20.68 0.31 66.10 <2.0e-16 

7 leaves -0.56 0.19 -2.97 0.0031 

4 leaves -2.93 0.19 -15.52 <2e-16 

Banana-climbing bean intercrop -0.12 0.22 -0.56 0.5781 

Banana-bush bean intercrop 0.75 0.21 3.52 0.0005 

Banana-soybean intercrop -0.31 0.22 -1.44 0.1504 

Bunch 
weight 

(Intercept) 18.23 0.70 25.88 <0.0001 

7 leaves -1.37 0.27 -5.00 6.8E-07 

4 leaves -5.87 0.27 -21.48 <2.0E-16 

Banana-climbing bean intercrop -0.91 0.31 -2.90 0.0038 

Banana-bush bean intercrop -0.14 0.31 -0.44 0.6575 

Banana-soybean intercrop -0.58 0.32 -1.83 0.0675 

log10 

(Yield) 

(Intercept) 1.626 0.08 21.61 6.4E-08 

7 leaves -0.048 0.01 -3.66 0.0003 

4 leaves -0.190 0.01 -14.51 <2.0e-16 

Banana-climbing bean intercrop -0.063 0.01 -4.26 2.3E-05 

Banana-bush bean intercrop -0.022 0.01 -1.49 0.1374 

Banana-soybean intercrop -0.058 0.01 -3.94 9.0E-05 
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Figure 3. Banana finger length, bunch weight and yield for different leaf pruning levels and 
intercrop options.  “4”, “7” and “all”, respectively, denote four, seven and all fully open leaves 
retained on the banana plants. The horizontal line within each box is the median while the red 
diamond shape is the mean. The lower and upper boundaries of the boxes are respectively, 
the 25th and 75th percentile; the bars/whiskers below and above the box the 10th and 90th 
percentile and points beyond 10th and 90th percentiles are outliers. 
 

6.3.2. Light interception, weed biomass, legume grain and biomass yields 

Retaining a larger number of banana leaves adversely affected light transmission to 

the underlying legumes in the intercrop systems. The amount of PAR intercepted at 

1 m height significantly increased with the level of leaf pruning (Fig. 4a). However, 

PAR under the four-leaf treatment was significantly (P<0.001) lower than that above 

the sole legume crop (Fig. 4a).  
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Figure 4. Photosynthetically active radiation (PAR) (a) and weed biomass (b) above/in legume 
monocrop field (i.e. 0 leaves) and under banana at three leaf pruning levels. “4 leaves”, “7 
leaves” and “All leaves”, respectively, denote four, seven and all fully open leaves retained on 
the banana plants. The horizontal line within each box is the median while the red diamond 
shape is the mean. The lower and upper boundaries of the boxes are respectively, the 25th 
and 75th percentile; the bars/whiskers below and above the box, the 10th and 90th percentile 
and points beyond 10th and 90th percentiles are outliers. 

 

  The effect of PAR was clearly visible on the growth of weeds. Weed biomass 

yields were significantly higher (P<0.05) in the legume monocrop fields compared 

with the fields that had banana, irrespective of the intercrop legume component 

crop or the number of leaves retained on the banana plants (Fig. 4b). Weed biomass 

significantly (P<0.05) increased with a decline in the number of leaves retained on 

the banana plants (Fig. 4b). 

  The cycle (seasonal) effects accounted for 52-55% of the variance in the 

random effects on the legume biomass and grain yield while the blocks accounted 

for 0% of the variance. Leaf pruning significantly (P<0.01) affected legume biomass 

and grain yields. Consistently the legume biomass and grain yields were significantly 

lower in the banana-legume intercrop fields compared with the legume monocrops 

and increased with increasing leaf pruning levels (Table 4, Fig. 5). The leaf pruning 

effects on legume biomass and grain yield did not however profoundly differ 

between the 7-leaf and the all-leaf treatments. Regression analysis showed that the 

PAR accounted for about 72% and 78% of the observed variation in biomass and 

grain yields respectively.  
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Table 4. Experiment to understand the effect of banana leaf pruning to integrate legumes on 
the performance of the component crops. Fixed effects of three levels banana leaf pruning 
(i.e. retaining 4, 7 and all leaves) and a control of legume monocrops as a fixed effect on 
legume biomass and grain yield. The experiment was established under controlled conditions 
at the Institut National d’Etudes et Recherches Agronomiques, Mulungu research station in 
eastern Democratic Republic of Congo 

Legume parameters/ Effects Estimate S. E. t value Pr(>|t|) 

Legume biomass yield (kg/ha) 

(Intercept) 2252.5 443.6 5.08 0.0057 

4 leaves -957.0 144.8 -6.61 2.6E-10 

7leaves -1226.7 144.8 -8.47 2.8E-15 

All leaves -1410.0 144.8 -9.74 < 2.0E-16 

Legume grain yield (kg/ha) 

(Intercept) 748.4 120.6 6.20 0.0024 

4 leaves -332.0 44.3 -7.50 1.4E-12 

7leaves -452.2 44.1 -10.26 < 2.0E-16 

All leaves -500.8 44.1 -11.36 < 2.0E-16 

 

 
Figure 5. Legume biomass (a) and grain yield (b) in a legume monocrop (i.e. 0 leaves) and 
under three banana leaf pruning levels (i.e. 4, 7 and All leaves).  “4 leaves”, “7 leaves” and “all 
leaves”, respectively, denote four, seven and all fully open leaves retained on banana plants. 
The horizontal line within each box is the median while the red diamond shape is the mean. 
The lower and upper boundaries of the boxes are respectively, the 25th and 75th percentile; 
the bars/whiskers below and above the box, the 10th and 90th percentile and points beyond 
10th and 90th percentiles are outliers. 

   

 Septoria brown spot caused by the fungus Septoria glycines and angular leaf 

spot caused by Phaeoisariopsis griseola were observed on soybean and 

bush/climbing beans, respectively. The severity of these two diseases was higher in 
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the legume monocrop plots, while in the intercropped plots, legume disease severity 

increased with increasing level of leaf pruning. 

 

6.3.3. The land equivalent ration (LER), income and risk of investment analysis 

Agronomic yield advantage measured in terms of LER (i.e. LER >1), was observed for 

all the banana-legume intercrops (Table 5). LER values varied between 1.54 in the 

banana-seven-leaf soybean intercrop and 1.10 in the banana with four leaves 

intercropped with climbing bean. In all cases, a higher LER value was obtained in the 

seven-leaf treatment when compared with the treatment in which all banana leaves 

were retained. In contrast, the four-leaf treatments under-performed in comparison 

to the all-leaf treatment (Table 5). 

  The gross revenue calculations revealed a high gap between the four, seven 

and all-leaf treatments across the banana monocrop and the banana-legume 

intercrops. For a given legume intercrop, gross revenues consistently declined with 

increasing level of leaf pruning. The banana monocrop average gross revenue varied 

between 8788 and 11429 US$/ha for the period of study (i.e. 30 months) in the sole 

banana four-leaf and all-leaf treatments respectively, while it varied between 9212 

and 13042 US$/ha/annum in the banana-legume intercrop treatments (Table 5). The 

gross revenues from the sole banana and banana-intercrops were far higher than 

those from the sole legume crops (2907-4615 US$/ha) due to the higher production 

per ha and monetary value of banana in the market. However, input and the labour 

costs where higher for the banana-legume intercrops compared to the sole banana 

crop resulting in lower net revenues for the banana-legume intercrops. The net 

revenue for the sole banana crop varied between 5432 US$/ha for the four-leaf and 

8103 US$/ha for all-leaf treatments over a 30 months period compared with 3504 

and 7366 US$/ha for the four-leaf and all-leaf banana-climbing bean and banana-

bush bean intercrops, respectively (Table 5). For the intercrop treatments, the 

banana-bush bean intercrop was more profitable than the banana-soybean and -

climbing bean intercrops (Table 5). A benefit cost ratio (BCR) revealed a higher return 

for every unit cost invested in the banana monocrop plots (1.6-2.4) compared with 

the intercrops (0.6-1.4) (Table 5). Higher returns were also realized for the all-leaf 

treatments (1.2-1.4) compared with 1.0-2.2 for the seven-leaf and 0.6-1.6 for the 

four-leaf treatments. A higher return for labour (i.e. 9.8-15.4 US$/ unit labour cost) 

was also observed for the banana monocrop fields compared to the sole legume (0.3-

0.9) and legume-banana intercrop (1.6-3.6) fields (Table 5). 
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6.4 Discussion 

 

Intercropping of bananas in East Africa has increased due to the currently increasing 

land pressure (Bekunda and Woomer, 1996; Bekunda, 1999; Ntamwira et al., 2013b; 

Ocimati et al., 2013; Tittonell and Giller, 2013). To intercrop shorter crops such as 

the legume crops within banana fields, pruning banana leaves is one of the 

intensification practices applied by smallholder farmers, mainly to meet their 

household food security and nutritional needs. This practice is aimed at increasing 

the efficiency of using the limited area of available land. Despite its role in the spread 

of the Xanthomonas wilt (XW) disease of banana (Blomme et al., 2017) it persists, 

especially in the eastern part of DR Congo. This study explored the effect of this 

practice on the performance of the component crops and overall productivity and 

profitability of the system. 

  In the current study, with exception of the time to harvest, negative effects 

on banana growth and yield attributes occurred with increasing levels of banana 

leaves pruned. The time to harvest was not significantly (P> 0.05) affected by both 

the banana leaf pruning treatments and the intercrops. This is consistent with finding 

by Ntamwira et al. (2013) for banana-legume intercrops in which banana leaves were 

reduced to 5 and 7. The reduced performance of the banana crop attributes with the 

subsequent reduction in number of functional leaves could be primarily due to the 

reduced photosynthetic capacity and production of assimilates for growth and 

partitioning into the storage organs and increase in evapotranspiration with 

declining canopy cover. Leaf area is often used to estimate the photosynthetic 

capacity and to predict the performance of a banana crop (Stover and Simmonds, 

1987; Echeverry, 2001). A strong positive relationship between leaf area and bunch 

weight has been reported for east African Musa spp. genotypes (Mukasa et al., 

2005). Leaf pruning could have also led to a reduced root mass, leading to a lower 

supply of water and nutrients for photosynthesis, growth and development. A 

significant reduction in root system and above ground plant growth following leaf 

pruning in banana has been reported (Blomme et al., 2001). In this study, the 

retention of four leaves on banana plants mimicked the worst-case scenario 

observed commonly on some farms in the annual cropping season. This practice 

severely depressed bunch weights, yields and the overall performance of plants (cf. 

Fig. 3c, f and Table 1). In contrast, the performance of the banana plants with seven 

leaves were profoundly different from those with all leaves. Robinson et al. (1992) 

reported a 35% increase in CO2 uptake and a greater photosynthetic efficiency in 

retained leaves after pruning banana leaves of cv. Williams. This could explain the 

lower yield depression in the banana plants when mildly pruned (e.g. to seven 
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leaves). Krishnamoorthy et al. (2004) reported seven to eight functional leaves as a 

requirement for optimal bunch formation and fruit filling at flowering. In contrast, 

Balbín and Zapata (2001) also reported five healthy leaves at flowering to be enough 

for bunch development. Retention of five and seven leaves were also confirmed not 

to significantly depress the yield of banana by Ntamwira et al. (2013a, b and 2014).  

  The banana yields obtained in this study (32-46 Mg ha-1 year-1) were 

comparable to yields reported for banana-legume intercrops on farmers’ fields (31-

42 Mg ha-1 year-1) in study region by Ntamwira et al. (2014) but higher than those on 

farmers’ fields (6-42 Mg ha-1 year-1) in other regions in the AGLR (e.g. Okumu et al., 

2011; Ndabamenye et al., 2013; van Asten et al., 2011). This performance is however 

still lower than the achievable yields of 60-70 Mg ha-1 year-1 under recommended 

practices (Tushemereirwe et al., 2001; Smithson et al., 2001). The relatively good 

performance of banana plants even when leaves had been pruned in the current 

study despite not adhering to recommended soil input levels can be attributed to 

the high fertility level at the site. Different responses could potentially have been 

obtained for these treatments under varying soil fertility conditions. For example, in 

Rwanda, Ndabamenye et al. (2013) observed Ca, Mg and K to limit plant density at 

Rubona that had a lower soil fertility while increasing plant density did not always 

result in nutrient imbalance at Ruhengeri that had a high soil fertility level. 

  In general, the intercrops reduced the performance of banana, though often 

non-significantly at P= 0.05. The bush beans (cv. MLB49) that have a smaller stature 

and biomass had the least effect on bunch weight and yields, suggesting a potential 

effect of competition for the below ground resources from the more robust climbing 

beans (cv. AND10) and soybeans. Similar observations were reported by McIntyre et 

al. (2001) and Ntamwira et al. (2012; 2013a, b, 2014) for banana-legume intercrops.  

  Nitrogen is one of the key yield-limiting nutrients for banana (Nyombi et al., 

2010; Taulya, 2013) and the integration of legumes that biologically fix N into the soil 

has often been recommended as a strategy for offsetting soil N balance and 

improving yields of other component crops. However, the heavy shading under the 

all- and seven-leaf treatments do not seem to offer conducive conditions for N 

fixation by the legumes, as such this benefit may not be fully harnessed and needs 

to be further explored. Shading has been reported to cause a marked loss of roots 

and nodules, and subsequently biological nitrogen fixation by different legume 

species (Butler et al., 1959; Fujita et al., 1992). Dry matter (DM) allocation plasticity 

suggests that more DM gets allocated to the shoots when light or carbondioxide is 

limiting and to the roots when water or nutrients are limiting (Bloom et al., 1985; 

McCarthy and Enquist, 2007). In the current situation, more DM in the legumes 

under the heavily shaded plots would be allocated to the shoots resulting into poorly 
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developed and less competitive legume-root systems and thus a depression in the 

activity of the symbiotic bacteria (Bloom et al., 1985). Similar situations of dry matter 

plasticity have been reported in vines (Grechi et al., 2007), Cryptomeria japonica 

(McCarthy and Enquist, 2007) and Lindera melissifolia seedlings (Lockhart et al., 

2012). Grechi et al. (2007) observed that vine leaves under shade had an increased 

specific leaf area (i.e. thinner leaves); a significantly reduced dry weight and a low 

root to shoot biomass ratio. In the above situation, the banana plants with four-

leaves would possibly not also benefit from the increased N fixation arising from the 

increased light penetration and improved legume root development due to a poorly 

developed root system and reduced photosynthetic capacity. Apart from N fixation, 

plants also compete for water and other essential minerals such as potassium and 

phosphorus. Integration of legumes would thus be effective when these other 

resources are not limiting in the system. 

  Legume grain and biomass yields as expected increased with leaf pruning 

levels and amount of PAR received by the legume crops, PAR accounting to over 70% 

of the observed variation in legume yield. The PAR values declined by approximately 

36% in the four-leaf treatments and 74% in the all leaf treatments compared to the 

legume monocrops. Akyeampong et al. (1999) showed a 27% decrease in PAR not to 

affect bean yields in a banana-tree-bean experiment, although a further decrease to 

42% of total PAR decreased dry bean grain yield by 27% compared with the control. 

The current decline in PAR values are above the 27% in Akyeampong et al. (1999) 

and result in yield declines varying between 56 and 86% in the four and all-leaf 

treatments respectively. In contrast, increasing the amount of light penetration to 

the annual crops under the banana canopy, led to increased weed growth and 

frequency of weeding and thus raising the labour costs for weed management. 

Weeds also increase competition for water and nutrients.  

  Higher severities of septoria brown spot and angular leaf spot were observed 

in the legume monocrop plots, and to increase with increasing levels of leaf pruning 

in the banana-legume intercrop plots. This suggests a positive effect of the banana 

canopy on reducing their spread. The role of crop or cultivar mixtures in disease and 

pest suppression has been reported in several studies (Boudreau, 2013; Vidal et al., 

2017; Li et al., 2018; Mulumba et al., 2012; Ocimati et al., 2018). The mechanisms for 

disease suppression in mixtures include: a change in the microclimate, vector 

population and behaviour; pathogen dispersal rate; host alteration; dilution effect 

due to decrease in the susceptible host; and pathogen inhibition (Boudreau, 2013; 

Vidal et al., 2017). Septoria brown spot and angular leaf spot are mainly favoured by 

presence of infested plant debris, volunteer crops and infected seed (Celleti et al., 

2006; Allen et al., 2017). Rainfall events help to splash their spores from plant debris 
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into the plant canopies, leading to infection (Celleti et al., 2006; Allen et al., 2017). 

The observed trend in the severity of these two diseases in the current study could 

be attributed to the increasing impact of rain drops with declining leaf canopy levels. 

Understanding the potential influence of banana-legume intercropping on the 

prevalence of pests and diseases in a system is thus also important.  

 The agronomic advantage for banana-legume intercrop combinations 

measured as LER, was greater than one across all leaf pruning treatments but highest 

for intercrops in which seven leaves had been retained. This suggests a higher land 

use efficiency in intercrops compared with sole crops (Prasad and Brook, 2005). The 

LER values suggest that area planted to monocultures would need to be larger than 

the current area planted to the intercrops by 10 to 54% to produce the same value 

as realized from the intercrops. The observed LER values agree with values (1.2-1.9) 

reported by Pypers et al. (2010) for banana-grain legume intercrops. LER in banana-

based systems may thus be increased by incorporating food and/or fodder legumes 

within the banana fields. High LER values of 1.5 and 2.5 reported for banana 

intercrops with Robusta and Arabica, respectively (van Asten et al. 2011) also offer a 

good case for improving the productivity of banana systems through intercropping 

of banana with other species. In all cases in the current study, a higher LER value was 

obtained in the seven-leaf treatment when compared with the treatment in which 

all banana leaves were retained. In contrast, the four-leaf treatment was less 

efficient compared to the all-leaf treatment. This practice also increased weed 

growth and labour costs needed for weeding. Extreme cutting of leaves also 

negatively affected the quality of the banana bunch and fruits as shown by the 

reduced number of hands, fingers and finger length (cf. Table 1, 2), and this could 

potentially lead to lower prices in the markets. The observed potential negative 

effect of severe leaf pruning (e.g. to four) on the agronomic efficiency of the system 

offers a good basis for discouraging this practice that currently also plays a big role 

in the spread of the XW disease of banana in the study region.  

 Despite a higher LER for the intercrops, higher profit, benefit cost ratio and 

labour productivity were realized for the sole banana and all leaf treatments 

compared with the sole annual crops and banana-legume intercrops. This can be 

attributed to the high market value of banana fruits compared with that for the grain 

legumes. Labour costs for banana production are also only high at establishment. 

Given its perennial nature plantations are not frequently re-established, with 

plantations in areas with low disease and pest pressure lasting even for decades. For 

example, plantations that are over 30 years old are common in East Africa (Bekunda, 

1999). The investments are often low in the first and subsequent ratoon crops 

compared with the plant crop because of lower input costs, lack of costs associated 
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with banana seed purchase, land preparation and weeding. The large canopy after 

full establishment suppresses weed growth and labour associated with weed 

management is therefore reduced. This can be shown by the higher weed biomass 

in the monocrop plots especially at the start of the season (cf. Fig. 4b). In contrast, 

for the intercrops, costs associated with the intercrops such as land preparation, 

weeding, staking, de-leafing are incurred seasonally. Of the intercrops, the banana-

bush bean intercrops were more profitable than other legumes across all leaf 

pruning treatments. This could be because they offered less competition compared 

with soybean and climbing beans. Ntamwira et al. (2012) also reported a banana-

bush bean intercrop as giving a larger net revenue compared to banana-climbing 

bean intercrop. Careful selection of intercrops will also be helpful for realizing 

optimal benefits from banana-legume/annual crop intercrops. 

  Despite the higher benefits from banana monocrops, few farmers cultivate 

these monocrops due to a very high population pressure on the land (estimated at 

300–350 inhabitants per km2) given the small land holdings (less than 0.5 ha per 

household) in the study region. Most production is thus focused on ensuring 

diversity for nutrition and insurance of food security against production risks. The 

observed trends could also be due to farmers’ lack of knowledge of the performance 

of the monocrops in comparison to the intercrops. Armed with knowledge on the 

performance of the monocrops in comparison with the intercrops, farmers’ choice 

to intercrop and/or prune would need to be consciously balanced out with farmers’ 

production objectives and access to land. Possible objectives could include 

maximisation of income; farm/crop diversity and nutrition; and soil fertility 

improvement. Farmers aiming at maximising profits could allot all or a large portion 

of their land to banana monocrop and lesser to annual crops, whereas those aiming 

at nutritional security could differently apportion their land to other 

crops/intercrops. Farmers with large parcels of land in contrast can afford to grow 

banana or legumes as monocrops on large areas without affecting their nutritional 

and food security needs. Model-based approaches that integrate biophysical and 

socio-economic aspects of production are recommended for tailoring such 

management decisions to farm types, production goals and resource endowments. 

 This study was however, conducted over a short period of time i.e. two 

production cycles (i.e. 4 years) and at a single experimental site with a single 

replication in time. Longer term environmental effects such as changes in soil 

fertility, build-up of pests and diseases and changes in the weather and climate 

conditions on banana leaf pruning and intercrops could thus not be ascertained. 

Interactions of the treatments with site conditions (e.g. different soils, 

environmental and management and biotic scenarios) could not be assessed, 
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whereas could have varied with site conditions. Thus, the application of the study 

findings in other context needs to be done with caution.  

 

6.5 Conclusion 

 

Banana leaf pruning despite its current role in the spread of XW disease of banana, 

is a common practice to allow for banana-legume intercropping and mainly driven 

by the small land/farm sizes. Leaf pruning improved light penetration to legumes and 

their yield while it negatively affected the growth and yield of the banana crop. More 

severe yield reductions occurred when only four leaves were retained, a practice that 

also resulted in the least land use efficiency compared to when all leaves are 

retained. Moderate leaf pruning (7 leaves) however, did not in most cases 

significantly depress yields and resulted in a higher land use efficiency than the 

banana monocrop all-leaf treatment. However, higher net revenues and labour 

productivity realized for sole banana and all leaf retention treatments suggests that 

growing banana as a sole crop is more profitable and moderate leaf- pruning, 

preferably bending the older leaves to avoid spread of XW could promoted when 

intercropping is necessary. Intensification decisions should thus go beyond the 

assessment of the land use efficiency of the systems to determining economic value 

(net revenues) of the systems. Depending on farmers’ production objectives they 

can decide whether to diversify their farms or target higher incomes. Given the 

findings of this study, it is recommended for a farmer interested in fostering food 

security, diversity and nutrition to go for moderate leaf pruning (7 leaves). In 

contrast, a farmer interested in improving immediate incomes could go for a sole 

banana crop. Intensification decisions (e.g. pruning banana leaves to integrate 

legumes) should also look at a broader range of production constraints. For example, 

where land is not limiting, it is recommended to cultivate the banana and the 

legumes as sole crops. Where land is limiting, minimal pruning to e.g. seven leaves 

can be applied with minimal damage. In the current study, annual crops were labour 

intensive compared to the banana crop, and as such a farmer constrained by labour 

could go for the sole banana crop. Taking such intensification decision is knowledge 

intensive, thus rigorous/regular knowledge extension to farmers will be crucial. Bio-

economic models (e.g. FarmDESIGN, Groot et al., 2009) that address multiple 

constraints, decision variables and objectives would be handy in guiding farmers’ 

decision with respect to such intensification options. 
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Abstract 

Smallholder farmers in the African Great Lakes region frequently intercrop banana 

with other crops, especially legumes. This is often accompanied with varying levels 

of banana leaf pruning to illuminate the understory crop(s). Banana leaf pruning 

reduced fresh bunch weight, enhances the risk of spreading bacterial wilt disease of 

banana and reduces the overall farm profitability. The impact of farmers’ practices 

on the environmental and nutritional production objectives are challenging to 

determine yet could guide farm decision making. We used data from a field 

experiment that assessed three banana leaf pruning intensities (i.e. retaining all, 

seven and four leaves) to integrate bush beans as input for a multi-objective 

optimization and exploration of trade-offs and synergies among economic, 

nutritional, and environmental objectives. Banana monocrops at the three leaf-

pruning treatment levels and bush bean monocrops served as checks. Retention of 

only four functional banana leaves mimicked a worst-case scenario of leaf pruning. 

The model optimized for maximisation of operating profit, nutritional yields, soil 

organic matter (SOM) and minimisation of external nitrogen (N) input. The model 

explored a range of scenarios that included: i) business as usual (BaU, farmyard 

manure only applied at planting), ii) addition of hedges, iii) addition of inorganic 

fertilizers, iv) combination of hedges with goat manure, v) hedges with inorganic 

fertilizer, vi) inorganic fertilizer with goat manure and vii) a combination of hedges 

with inorganic fertilizer and goat manure. No profound improvements in the system 

were realised for BaU and addition of hedges alone. Addition of inorganic fertilizer 

profoundly improved the performance of the system for operating profit, N input 

and protein yield. Goat manure improved SOM balance and increased N input in 

the system. For BaU and hedges, land was predominantly allocated to an 

intercrop of bush bean with pruned bananas and/or sole bush beans. In 

contrast, the model allocated land predominantly to the un-pruned banana-bush 

bean intercrop and/ or sole un-pruned banana crop at the Pareto-optimal 

frontiers when inorganic fertilizers and/ or goat manure was introduced. 

Farmers’ practice of leaf pruning could thus be indirectly reducing nutrient 

uptake/ depletion thus fostering the systems adaptive capacity. Discouraging the 

practice of leaf pruning will thus require efforts towards improving access and use 

of external input sources. The FarmDESIGN model optimization also made the 

trade-offs and synergies between the different objectives explicit and is helpful for 

field-level decision making in the system. 

Keywords: banana, FarmDESIGN, multi-objective, Pareto-optimal, trade-offs
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7.1  Introduction 

Banana (Musa spp.) is an important food and income crop across a wide range of 

agroecological zones and cropping systems in the African Great Lakes region (AGLR) 

(FAO, 2018). This region produces about one third of the crop in the world (FAO, 

2018). The crop provides 30-60% of dietary energy requirements for over 70 million 

people (Abele et al., 2007; Karamura et al., 2008) in this region that comprises of 

Burundi, Democratic Republic of Congo (DR Congo), Rwanda, Kenya, Tanzania and 

Uganda.  

 The AGLR is characterised by a high population density, with the highest 

population densities of 435 and 470 inhabitants per km2, respectively reported in 

Burundi and Rwanda (The World Bank Group, 2016). About 70-90% of the population 

in this region is employed in agriculture as smallholder farmers (Jagwe et al., 2014; 

FAO, 2015; IFAD, 2018; Uganda Investment Authority, 2018). This high population 

density and heavy dependence on agriculture has resulted in small and fragmented 

farms characterized by declining soil fertility. For example, farm landholdings in 

banana producing areas of Rwanda, Burundi and eastern DR Congo have been 

reported to vary between 0.5 and 2 ha (Jagwe et al., 2014). van Asten et al. (2004) 

report low soil fertility as one of the major constraints to banana production in the 

region. To compound the problems of ever reducing farm sizes and declining soil 

fertility, external inputs such as manure, inorganic fertilizers are not widely used in 

the region (Tinzaara et al., 2018). For example, in Uganda, in 2013, only 2.8% of the 

land under key crops received fertilizers (accounting for 30 kg ha-1 of fertilizer on the 

fertilized soils), with banana accounting for 25% of this land area (Sunday and Ocen, 

2015). Moreover, previously important cultural practices for managing soil fertility, 

and pests and diseases such as crop rotation, agroforestry, shifting cultivation and 

fallowing are no longer feasible or optimally practiced due to the small farm sizes 

and more intensive farming systems (Nandwa and Bekunda, 1998; Ocimati et al., 

2013). The declining farm sizes and soil fertility have severely impacted banana 

production in the region. Exploring for sustainable nutrient management options 

that do not compromise other production objectives is thus critical. Farmers 

commonly intercrop banana with other annual crops, more specially legumes to 

optimally use the available land and mitigate potential risks (Ntamwira et al. 2014; 

Blomme et al., 2018). The incorporation of food and/or fodder legumes within 

banana fields has been reported to: increase land and resource use efficiency of 

smallholder banana farms; suppress weeds; and minimise risks related to climate 

change and pests and diseases (Dapaah et al., 2003; Zinsou et al., 2004; Nyabyenda, 

2006; Amanullah et al., 2007; Sileshi et al., 2007; Ouma, 2009; Ocimati et al., 2019; 
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Blomme et al., 2018). Intercropping with legumes may also be a strategy to offset 

soil fertility depletion (Chakeredza et al., 2007; Ouma, 2009). A high functional 

biodiversity and interaction between crop species has also been reported to enhance 

agroecosystem sustainability (Vandermeer, 1995). However, the integration of 

annual crops in banana fields across several landscapes in the AGLR has been 

hampered by the shading effect from the banana leaf canopy. As a copying strategy, 

farmers often prune banana leaves to allow for light penetration to the shorter 

understory crops (Ntamwira et al., 2013; Ocimati et al., 2019). However, leaf pruning 

has been reported to reduce the productivity of the banana crop (Robinson, 1992; 

Ntamwira et al., 2013) and overall economic efficiency of the intercrop (Ocimati et 

al., 2019). This practice additionally enhances the risk for spreading 

Xanthomonas wilt (XW) of banana, a key constraint to banana production in the 

AGLR (Blomme et al., 2017). Given the negative effects of leaf pruning and 

associated risk of spreading XW disease, leaf pruning could undermine the benefits 

associated with a high level of functional biodiversity.  

 Several empirical experiments have been conducted to understand the effect 

of banana leaf pruning and intercropping with different legumes in the region 

(Ntamwira et al., 2013; 2014; Ocimati et al., 2019). These studies have mainly 

focused on the effect of farmer’s practices on productivity and profitability of the 

system. However, other potential environmental objectives that support system 

resilience and productivity and the nutritional objectives given the production 

constraints were not assessed. For example, though integration of legumes in this 

system is primarily aimed at meeting household nutritional needs, it is also 

anticipated to offset the soil nitrogen depletion through biological nitrogen fixation 

in the system. Understanding the trade-offs and synergies associated with the 

management of the banana-bush bean system is crucial for generating relevant 

recommendations for improving the system. Exploring such objectives through 

empirical experiments can however be challenging and/or require observations over 

longer time frames/larger durations. Environment related objectives are also 

knowledge intensive and as such often ignored or difficult to conceptualize, 

especially by resource poor smallholder farmers. Farm models can overcome 

limitations associated with dealing with multiple and complex objectives 

simultaneously, and have been widely used to explore new technologies, 

management options, innovations and new scenarios (Groot et al., 2007a, b; Janssen 

and van Ittersum, 2007; Ditzler et al., 2019).  

 This study complements the above-mentioned empirical experiments on 

banana canopy management to integrate legumes. This study used the FarmDESIGN 

model to: i) identify the effect of farmers practice of banana leaf pruning to integrate 
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legumes on multiple production objectives (i.e. maximising operating profit, protein 

yield and soil organic matter balance (SOM), and minimising external nitrogen input), 

ii) identify potential optimal banana-legume system configurations for the various 
production objectives, and iii) explore performance of potential scenarios for 
improving the nutrient balance of the system. The computer-based FarmDESIGN 
model overcomes the limitation in complexity of systems by coupling a multi-

objective optimization algorithm that generates a large set of Pareto-optimal 
alternative farm/field arrangements to a bio-economic farm model that evaluates 
productive, economic and environmental farm performance (Groot et al., 2011; 
2012). The generated alternatives are Pareto-optimal when they do not perform 
worse than any other alternatives for all the objectives (Groot et al., 2012).

7.2  Materials and methods 

This study used data from a field experiment conducted at the Institut National 

d’Etudes et Recherches Agronomiques (INERA), Mulungu research station in the 

Democratic Republic of Congo as input for exploring trade-offs and optimization of 

banana leaf-pruning and banana-legume intercropping options using the 

FarmDESIGN model. INERA is located at 02°20.042’ S, 028°47.311’ E, and at 1,707 m 

above sea level. The soils are Andosols with a pH of 8.5 (1:2.5 soil: water extract), 

soil organic matter (SOM) of 4.9%, total N of 0.25% (using salicylate method 

(Kempers and Zweers, 1986)), 126 ppm of phosphorus (P), 1921.1 ppm of 

exchangeable potassium (K), 2385.6 ppm of exchangeable calcium (Ca) and 1411.1 

ppm of exchangeable magnesium (Mg). Mehlich 3 extraction method (Mehlich, 

1984) was used for the extraction of P, K, Ca and Mg. The site receives 1,500 mm of 

annual rainfall distributed over two seasons (February-May and September-

December). 

Field experiment 

The on-station experiment was conducted between December 2009 and March 

2012. The field experiment was described by Ocimati et al. (2019). The experiment 

comprised seven treatments: a bush bean monocrop (T7), banana monocrops at 

three leaf pruning levels i.e. retaining all (T1), seven (T2) and four (T3) fully expanded 

functional green leaves per plant, and bush beans intercropped with banana in which 

all (T4), seven (T5) and four (T6) fully expanded green leaves are retained per plant. 

Each treatment was replicated four times in a randomized complete block design. 

The leaf pruning treatments were applied to increase the amount of light reaching 

the bush bean crop. The ‘all leaf’ treatment had on average nine leaves while 
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retention of four-leaves mimicked the severe banana leaf-pruning scenario often 

observed on farmers’ fields in eastern DR Congo. Sole banana (subjected to the three 

leaf pruning regimes) and legume plots served as controls. The legumes were 

introduced under banana plants in the 3rd, 9th, 15th, 21st and 27th months after banana 

planting, which corresponds with the onset of the rainy seasons. A common cooking 

east African highland banana cultivar in the area, ‘Barhabesha’ (genome AAA) was 

planted at a spacing of 2 m  2 m and a common bush bean cultivar (Phaseolus 

vulgaris L, cv. MLB49) were used in this study. Aboveground biomass (dry weight 

basis) and yield for two banana cropping cycles and five consecutive legume crops 

were measured over a 3 years period and mean yields over a one-year period 

computed (Table 1). The cultivation costs e.g. labour and cost of inputs were 

recorded. No external inputs were applied on the fields whereas the crop residues 

were retained and recycled within the plots.  

Table 1. Mean yields and aboveground biomass (crop residue) per ha and year of bush bean 
(cv. MLB49) and banana (cv. ‘Barhabesha’) in experiments conducted in eastern DR Congo. 
The experiment was conducted over a period of 3 years (i.e. 5 annual crop harvests and 2 
rounds of bunch harvests). 

Treatments 
Mean yield (kg/ ha/ y) 

Cultivation costs (US$)* 
Grain yield Bean residue 

T7 1,163 2,795 922.4 

T4 562 1,731 # 

T5 515 1,524 # 

T6 408 1,098 # 

Bunch yield Banana residue 

T1 26,720 7,600 1,382 
T2 32,840 9,000 1,392 
T3 35,040 10,100 1,398 

T4 23,680 7,600 2,184 
T5 33,520 9,600 2,174 
T6 36,840 10,500 2,115 

“*” Cultivation costs include the cost of labour (for ploughing, planting, weeding, pruning of leaves and 
other operations), seed and other inputs; #Values are lumped together with corresponding costs for the 
banana crop. T1 to T3 denote monocrops of banana in which all, seven and four fully open green leaves 
are retained; T4-T6 bush bean intercrop with banana having all, seven and four fully open green leaves; 
and T7 a bush bean monocrop. 

The FarmDESIGN model 

The FarmDESIGN optimization model links a static bio-economic farm balance model 

to a multi-objective Pareto-based Differential Evolution algorithm (Groot et al., 

2012). The model based on the decision variables e.g. land allocation, management 

decisions, simultaneously maximises or minimises different objective functions to 

generate alternative farm configurations, making explicit the trade-offs and 

synergies between objectives (Groot et al., 2007). Based on the Pareto ranking 
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criterion (Goldberg, 1989), configurations that do not violate the constraints and 

perform equal to or better for at least one of the objectives (i.e. are non-dominated) 

are retained (Groot et al., 2012). These configurations receive rank 1 and form the 

trade-off frontier. Through repeating the process, other solution sets are assigned 

lower ranks 2, 3…, until all solution sets are assigned a rank (Fig. 1). From the trade-

off frontier solution sets that perform better than the original configuration for all 

objectives can be assigned a superior rank “0”. The model through visualization tools 

makes explicit trade-offs and synergies between the different objectives, leading to 

an increased knowledge on the interactions between the objectives and 

agroecosystems (Groot et al., 2012). 

Figure 1. An illustration of a Pareto-based ranking for a solution space of two objectives U1 
and U2 that are maximised. The green and blue circles are the rank 0 and 1 Pareto-optimal 
solutions while the yellow circles with ranks 2 to 4 are not Pareto-optimal. The Pareto-optimal 
solutions with rank 0 (blue circles) outperform the original farm configuration (red square) for 
all objectives (Source: Groot et al., 2012).   

Field conceptual model 

FarmDESIGN is based on a farm model consisting a large array of interrelated 

components of various types including: the biophysical environment, socio-

economic setting, crops and crop groups, crop products, rotations, animals and 

animal products, on-farm produced manures, imported inputs (e.g. fertilizers, 

manures, herbicides), buildings and equipment’s (Groot et al., 2012). It computes 

farm resource flows of SOM, carbon, N, P, K and other soil nutrients through and 

from a farm and the resulting material balances. In addition, farm and household 

labour balances, household nutrition, economic results (e.g. operating profit, 

household budgets) are calculated on a yearly basis (Groot et al., 2013; Ditzler et al., 

2019).  

 The current study is however, based on a single field with two crop species, 

thus a simpler conceptual model (Fig. 2) was developed. The field conceptual model 
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was thus conceived as an entity comprising of the soils (biophysical environment), 

interacting crops (banana and legume) and the management of the crops (pruning 

of banana leaves, intercropping or monocropping) and fields (e.g. manure 

application) (Fig. 2). The field components are influenced by the crop management 

practices, the environment and socio-economic factors such as prices, input and 

labour costs. 

Figure 2. Schematic representation of the original field conceptual model. The solid boxes 
indicate the field system components; the arrows, the flow of resources (red and black arrows) 
and influence (green arrows) from management practices, the environment and socio-
economic factors. The dashed lines denote the boundary of the of the field system with the 
external environment. 

Model inputs, outputs and exploration 

The performance of the above field was explored without any additional external 

inputs (i.e. business as usual, BaU) and with alternative improvements for addressing 

the soil nutrient balances. The different input scenarios are described below.  

i. Business as usual (BaU): farmyard manure was only applied at planting and

no additional inputs added during a 3-year period of the banana crop;

ii. Hedges (H): border/ alley hedge crops rich in N and or K were explored as

an alternative for nutrient recycling within the system. The hedge species

used in the model are calliandra (Calliandra calothyrsus) and tithonia

(Tithonia diversifolia). Calliandra and tithonia have been reported to be

good sources of N and K (Orwa et al., 2009; Heuzé et al., 2017) that are often

limiting in banana systems;
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iii. Inorganic input source of N, P and K: the model was allowed to chose

between different inorganic input sources so as to bridge input gaps in the

system (I);

iv. Addition of a combination of inorganic input and the hedge species in (ii)

and (iii) (H+I);

v. Addition of a combination of the hedge species and goat manure (H+M);

vi. Addition of a combination of the inorganic inputs, the hedge species and

goat manure (H+I+M);

Model inputs and outputs were explored as decision variables, constraints and 

objectives (Groot, 2018).  

Decision variables: The decision variables used for the explorations included land 

allocation to the seven banana-bush bean treatments (described in the section on 

‘field experiment’) and two hedge crops (calliandra and tithonia); crop product 

destinations; five different fertilizer options and their respective amounts and 

manure from goats. The edible crop products were all assumed to be sold while crop 

residues were returned as mulch. The fertilizer options included NPK (17%N, 17%P 

and 17%K; 0.8 US$/kg), CAN (26%N; 0.5 US$/kg), DAP (18%N, 46%P; 0.78 US$/kg), 

MOP (61%K; 0.78 US$/kg) and Urea (46%N; 0.65 US$/kg). The fertilizers also differed 

in their market prices. The manure from goats (0.111 US$/kg) is included as an 

alternative source of N, P and K and SOM. The model can thus select either the 

inorganic fertilizers or/ and the manure and/ or the hedge crops.   

Constraints: In the FarmDESIGN model, constraints were set to limit the scarce 

resources that include the available land area for the crops and soil nutrients, N, P 

and K balances. The total available land area for each banana-bush bean treatments 

could vary between 0 and 1 ha whereas the total subsistence land area varied 

between 0.95 and 1 ha. The land allocated to each of the two hedges was restrained 

to between 0 and 10% of the available land area. Before model optimization, 

computations for the economic, environmental and nutrition outcomes of the 

alternative treatments were obtained from the Explain window of the FarmDESIGN 

model for the BaU scenario (Table 2). The K balance for the treatments with extreme 

banana leaf pruning i.e. banana with four leaves-bush bean intercrop (T6) that 

served as starting point for all optimisations was negative (-131 kg ha-1 year-1) while 

the N and P balances were positive (Table 2). Soil K balance was thus constrained to 

a minimum of -131 kg ha-1 year-1 for BaU and H scenarios and to 0 kg ha-1 year-1 for 

the other input scenarios that could offset the negative K balance.  The total amounts 

of the different fertilizers applied were constrained between zero and amounts 

slightly above the nutrient requirement for banana based on the main nutrient 
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supplied by the fertilizer type. These rates were based upon recommended fertilizer 

rates of 100 kg ha-1 year-1 of N, 30 kg ha-1 year-1 of P and 200 kg ha-1 year-1 of K for 

East African highland bananas (Nyombi, 2014). NPK, CAN and Urea were targeted at 

attainment of the soil N needs and were respectively, allowed to vary to a maximum 

of 700, 400 and 300 kg ha-1 year-1 of fertilizer input. DAP was aimed at P while MOP 

at K supply and the two were respectively, constrained to maximums of 70 and 500 

kg ha-1 year-1 of fertilizer input. The amount of manure was varied between 0 and 8 

Mg ha-1 year-1. 

Table 2. The performance of 7 different banana-banana treatment combinations for different 
potential production objectives (i.e. income, nutrient yield and environmental) if each was 
subjected to one hectare of land.   

Variable 
Banana monocrop 

Banana-bush bean 
intercrop 

T7 

T1 T2 T3 T4 T5 T6 

Operating profit (US$/ha-1 year-1) 5482 4193 3794 5299 4471 2575 -9 

N input (kg ha-1 year-1) 161 161 161 179 185 188 211 

Protein yield (persons ha-1 year-1) 25 21 19 31 29 23 15 

Soil OM balance (kg ha-1 year-1) 15514 14942 14152 16294 16009 14962 11393 

Soil K balance (kg ha-1 year-1) -302 -216 -189 -321 -261 -131 161 

Soil N balance (kg ha-1 year-1) 47 67 74 45 62 94 164 

Soil P balance (kg ha-1 year-1) 105 107 108 102 104 107 114 

T1 to T3 denote monocrops of banana in which all, seven and four fully open green leaves are retained; 
T4-T6 bush bean intercrop with banana having all, seven and four fully open green leaves; and T7 a bush 
bean monocrop. 

Input data: Input data for the FarmDESIGN model were obtained from the field 

experiment, local markets, FarmDESIGN repository and other secondary data. Input 

data obtained from the empirical experiment included crop yields (kg/ha/year) 

(Table 1); cultivation costs (cost of labour, seed and other inputs, Table 1); and the 

soil nutrient levels. The price of bush bean grains and banana in the market was 

US$1/kg and US$0.15/kg, respectively. Values available in FarmDESIGN and 

secondary literature were used for obtaining other environmental variables such as 

deposition and fixation of nitrogen; nitrogen, phosphorus, potassium and dry matter 

content of the crop residues; and the organic matter decomposition rates. 

HarvestPlus food composition table for Central and Eastern Uganda (Hotz, et al. 

2012; HarvestPlus, 2017) and the USDA food composition table (USDA, 2017) were 

used to determine the nutritional compositions for the two crop species. Nutrient 

contents available in literature were used for calliandra and tithonia (Heuzé et al., 
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2017). Variable yields have been reported for calliandra (7 to 55 Mg ha-1; Jilna et al., 

2018; Wiersum and Rika, 2016; Orwa et al., 2009) and a modest yield estimate of 20 

Mg ha-1 was used for calliandra while a yield of 25 Mg ha-1 was used for tithonia 

(Nguyen et al., 2010). For the goat manure, nutrient levels (1.36%N, 0.06% P and K) 

from on farm experiments in Uganda (Songyo et al., 2014) with similar settings to 

the current study area are used for the model. 

Objectives: Four objectives were explored in this study: operating profit 

maximisation, N input minimisation, soil organic matter (SOM) balance 

maximisation, and protein yield maximisation. Operating profit and dietary diversity 

are important objectives for smallholder farmers in the study region, related to 

income and food security, with beans integrated within banana to primarily meet 

their protein needs. Nutritional yield of proteins was determined as the number of 

adults that can obtain 100% of their recommended daily reference intake (DRI) per 

year (DeFries, et al., 2015) from a hectare of land planted with the crop(s) of interest. 

SOM, N, P and K balances are crucial for supporting the productivity of the system. 

For example, K and N are respectively, required in large quantities by the banana 

crop and systems (Nyombi et al., 2010; Taulya, 2013).  

Model exploration 

In all explorations, the practice of intercropping bush beans with banana plants 

having four leaves (i.e. treatment T6) served as a starting point. The model was set 

to generate 1000 alternative solutions over 2000 iterations of optimisation with the 

evolutionary algorithm. The optimization aimed at searching for improvements 

relative to the current or original farm configuration (Groot et al., 2012). The model 

was separately optimized for the scenarios, first for BaU scenario and for the other 

five scenarios for improving the soil nutrient balances. The model outcomes (solution 

sets) from the different runs were compared with each other. From the cloud of the 

FarmDESIGN solution sets, Pareto-frontier configurations that performed better 

than the original configuration for pairs of objectives (marked “0” in Fig. 1 above) 

were examined and plotted to simplify the output and to make the trade-offs and 

synergies between the objectives explicit. The model trends were also examined for 

the allocation of land to the treatments and hedges with respect to the objectives.  

7.3  Results 

Treatment comparisons prior to exploration 

Table 2 shows a comparison of the 7 banana-bush bean treatments for BaU prior to 

optimization. As expected, the highest N input was observed in the legume plot due 
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to symbiotic N fixation followed by the intercrops, with N input in the intercrops 

increasing with leaf pruning levels. N balances were higher in the bush beans 

followed by the bush bean-banana intercrop with four leaves. N balances generally 

increased with the leaf pruning levels for both the intercrops and sole banana crop. 

N for the sole banana plots was contributed by the residual soil N and the 

atmospheric N input. Lower balances occurred for intercrops in which 7 and all 

leaves had been retained compared to their corresponding monocrops. Soil K 

balances were only positive for the bush bean monocrop (T7). Higher protein yield 

and SOM balance occur for the intercrops though this declines with subsequent leaf 

pruning levels. In contrast, the sole banana crops outperform the intercrops in terms 

of operating profit, suggesting a trade-off with N input, protein yield and SOM 

balance. 

Banana-bush bean field explorations with different input scenarios  

Model exploration for the scenario business as usual (BaU, without extra inputs) only 

resulted in configurations that are superior to the original field configuration 

(legume intercropped with banana having four leaves) for operating profit and N 

input (Fig. 3). Lower performances relative to the original field configuration are 

observed for protein yield and the SOM balance for BaU (Fig. 3b-f). Soil K balance 

was also negative for the BaU scenario. Thus, improvements in the system for these 

objectives and K balance are not feasible and viable through re-arranging the field 

components alone in the BaU scenario. Compared to T6 the starting point of the 

exploration, treatments T1-T5 had lower N input values to be adopted by the model 

for the BaU scenario. In contrast, T7 was low in productivity (operating profit, protein 

yield and SOM balance) to be adopted by the model. 

 Profound improvements in model explorations and overall system 

performance compared to BaU occurred with most of the input scenarios and 

objectives (Fig. 3). The scenarios with BaU and H generally had small clouds of the 

solution sets, with the hedges often performing more poorly than BaU for some 

objectives (Fig. 3, Table 3).  
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Figure 3. FarmDESIGN modelled alternative banana-bush bean field intensification configu-

rations (represented by dots) for different pairs of objectives: minimising soil nitrogen (N) input; 
maximising operating profit, protein yield and soil organic matter (SOM) balance for five different nutri-
ent input scenarios. The input scenarios include: i) business as usual i.e. no supplementation (BaU); sup-
plementation with ii) live hedges (H); iii) inorganic N, P and K sources (I); iv) H+I; v) H and goat ma-
nure (M) and vi) H+I+M. The circles (for the BaU scenario) and triangles represent the original field 
configuration (i.e. intercrop of bush beans with banana pruned to four leaves).

Overall, scenarios with inorganic input performed better for operating profit, protein 

yield and N input while those with manure had the highest improvements for SOM 

balance. For example, the maximum operating profits varied between 4810 and 

5085 US$ for input scenarios with inorganic fertilizers compared with 3279 US$ for 

BaU, 3385 for hedges only and 4298 US$ for the combination of hedges and manure 

(Table 3). The minimum N inputs varied between 162-186 kg for inorganic inputs 

compared with 170, 176, and 474 kg for BaU, hedges and hedges with manure, 

respectively. The combination of hedges with manure generally had the worst 

performance for N input. With exception of BaU and H (protein yield between 17 

and 25 persons/ha/y), protein yield increased to a maximum of 31 persons/ha/y 

from 23 persons/ha/y (Figs. 3b, 3c, 3e; Table 3). Zones of trade-offs and synergies 
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were visible in the clouds of alternative solutions for the different scenarios. The 

model also differently allocated land that was a constraint across the input scenarios 

and objectives. For BaU and H were the supply of soil nutrients was low or limiting 

the model seemed to spread the available land to a large number of treatments, 

whereas, fewer treatments are allocated for the other input scenarios.  

Table 3. The range of the performance scores for different production objectives in a banana-
bush bean system under different soil nutrient improvement scenarios. 

N input 

(kg/ha/y) 

Operating profit 

(US$/ha/y) 

Protein yield 

(persons/ha/y) 

SOM balance 

(kg/ha/y) 

Min Max Min Max Min Max Min Max 

BaU 170 199 2575 3279 18 25 13875 15604 

H 176 318 2524 3385 17 24 14147 17957 

I 162 574 1403 5085 23 31 14962 16851 

H + I 185 697 1403 4811 23 31 14962 18585 

H + M 474 640 1321 4298 23 31 15534 21373 

H + I + M 186 735 1321 4810 23 31 13875 22116 

BaU= Business as usual (i.e. no additional external inputs), H = hedges, I = inorganic fertilizer and M = goat 
manure 

Operating profit: For the BaU and hedge scenarios, low operating profit was 

associated with a higher relative area for bush bean intercrop with banana having 

four leaves (T6) (Figs. 4a, 4e) while land was predominantly allocated to the intercrop 

of bush beans with banana having all leaves retained (T4) for the other input 

scenarios (Figs. 4i, 4m, 4q, 4u). At high operating profit levels, the model allocated 

land to combinantion of T2 (banana-7 leaves monocrop), bush bean monocrop (T7) 

and T4 for the BaU (Fig. 4a) whereas to T2, T1 (banana-all leaves monocrop) and T7 

for the hedge scenario (Fig. 4e). For the inorganic input (Fig. 4i) and combination of 

hedge with manure (Fig. 4q), the model increased land allocation to T1 while for 

combinations of hedge with inorganic fertilizer (Fig. 4m) and hedge, manure and 

inorganic fertilizer (Fig. 4u), the share for T4  increased with increasing profit. For 

combinations of hedge with inorganic fertilizer and hedge, manure and inorganic 

fertilizer, low amounts of the hedges (calliandra (T8) and tithonia (T9)) are observed 

at lower levels of operating profit.  

N input: A low N input for BaU was mainly associated with sole banana crops with 7 

(T2) or 4 (T4) leaves (Fig. 4b). In contrast, a higher relative land area was allocated to 

T2, T1 and T7 for hedges (Fig. 4f), T1 and T4 for inorganic fertilizers (Fig. 4j) and 

combination of hedge with manure (Fig. 4r), T4 for combinations of hedge with 
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inorganic fertilizer (Fig. 4n) and hedge with inorganic fertilizer and manure (Fig. 4v). 

At high N input, BaU was mainly associated with T7 and T4 compared with T6, T5 

(intercrop of bush beans with banana having 7 leaves) and T7 for hedges and T4 for 

the ther input scenarios.   

Figure 4. Model allocation of relative land area to different alternative treatments (i.e. 
banana-bush bean management options) optimized for minimising soil nitrogen (N) input; 
maximising operating profit, protein yield and soil organic matter (SOM) balance for five 
different nutrient input scenarios. The input scenarios include: i) business as usual i.e. no 
supplementation (BaU); supplementation with ii) live hedges (H); iii) inorganic N, P and K 
sources (I); iv) H+I; v) H and goat manure (M) and vi) H+I+M. Treatments T1 to T3 depict 
banana monocrops in which all, 7 and four leaves have been respectively, retained, T4 to T6 
bush bean intercrops with banana having all, 7 and four leaves, T7 a bush bean monocrop, T8 
a calliandra hedge and T9 a tithonia hedge. 
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Protein yield: Land allocation with protein yield varied across the input options. A 

low protein yield was predominantly associated to treatment T2 for BaU (Fig. 4c) and 

treatments T2 and T1 for hedges (Fig. 4g). For the inorganic input and the 

combination of hedges with manure, a low protein yield was mainly associated to 

the banana monocrop T1, while the remaining scenarions were mainly associated 

with T4. At high protein yield, large allocations to the bush bean monocrop (T7) 

occurred for BaU and hedges, with T4 for BaU and T6 and T5 for hedges accounting 

for the other key treatments. In contrast, T4 predmoniates for the other input 

scenarios at high protein yield.  

Soil organic matter (SOM) balance: For the BaU, a low SOM balance was associated 

to treatments T2, T5 and T7 while to treatment T2, T7 and T1 for the hedge scenario. 

For scenarios inorganic fertilizer and hedge-manure combination, more land is 

allocted to T1 a low SOM balance while to T4 when inorganic fertilizers are combined 

with hedges or hedges and manure.  At high SOM balance, most of the land is 

allocated to T6 for BaU, combination of T6, T5 and T1 for hedges and to T4 for other 

input options. 

Pareto-frontier trade-offs and synergies between production objectives 

At the rank “0” Pareto frontier (c.f. Fig. 2), trade-offs and synergies between the four 

production objectives explored were explicit. Figure 5 explores the relations 

between the four production objectives i.e. minimisation of N input, maximisation 

of operating profit, protein yield and SOM balance at the rank “0” Pareto-optimal 

frontier of the plots in figure 3.  

N input vs operating profit: Apart from a small section of the scenario combining 

hedges with inorganic input and manure, synergies were explicit between N input 

and operating profit across the input scenarios at the rank “0” Pareto-optimal 

frontier (Fig. 5a). The model predominantly allocated land to un-pruned banana-

bush bean intercrop (T4, 97-100%) at the rank “0” Pareto-frontier for the scenarios 

combining hedges with inorganic fertilizer and manure, and hedges with inorganic 

fertilizer. For the inorganic input only, 99% of land allocation was allocated to un-

pruned sole banana crop (T1) at the high operating profit vs low N input end of the 

rank “0” Pareto-optimal frontier while 98% to T4 at low operating profit vs high N 

input. BaU and hedges had a small window of exploration, having low score for N 

input but performing poorly for operation profit (Fig. 5a). The allocation of land 

between treatments was also not precise for BaU and hedges at the rank “0” Pareto-

optimal frontiers. The model had the highest allocations of 20%, 28%, 49% of the 

land to T7, T3 and T2, respectively at high operating profit and low N input for BaU, 

while between 20 and 29% to T7, T2, T4 and T6 at low operating profit and high N 
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input. For the hedge scenario, the model allocated 26%, 28% and 41% of the land to 

T6, T1 and T2 respectively at the rank “0” Pareto frontier. Hedge and manure 

performed sub-optimally for N input, with high N input levels above 450 kg ha-1 year-

1 at the rank “0” Pareto-optimal frontier (Fig. 3a, 5a). 97% of land was assigned to T1 

at high operating profit vs low N input while 83% and 17% to T4 and T1, respectively 

at lower operating profit and high N input for hedge and manure scenario.  

Figure 5. Plot of the Pareto-optimal frontiers of the FarmDESIGN solution spaces - comparing 
5 alternatives/ or combinations for improving soil nutrient balance in a banana bush bean 
system. Input sources included i) inorganic fertilizers (I), ii) calliandra and tithonia hedge (H), 
iii) a combination of inorganic fertilizer and the hedges (H+I), iv) a combination of goat manure 
and the hedges (H+M) and v) a combination of the inorganic fertilizers, hedges and goat
manure (H+I+M).

N input vs protein yield: No solution sets for BaU and hedge scenarios had a rank 

“0” score at the Pareto-frontier for N input vs operating profit (Fig. 5b). A trade-off 

between N input and protein yield is observed for the remaining input scenarios. For 

these scenarios, protein yield was observed to be nearly constant between N input 

levels of 600 and 200 kg/ha/y and thereafter declined with further decline in N input. 

At the extreme ends of the rank “0” Pareto-optimal frontier, 83-100% of the land 

was allocated to T4 for scenarios combining hedges with inorganic fertilizer and 

manure, hedges with manure and hedges with inorganic fertilizer. For the inorganic 

fertilizer only, 98% of land was assigned to T1 at low N input vs high protein yield 
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end while 100% to T4 at high N input vs high protein yield end of the rank “0” Pareto-

optimal frontier. 

N input vs SOM balance: No field configuration had a rank “0” Pareto rank for hedges 

for these two objectives (Fig. 3d, 5c). A trade-off was observed for all the other input 

scenarios for N input vs SOM balance. N input (minimised) increased with increasing 

SOM balance (maximised) (Fig. 5c). Input scenarios with manure had the highest 

scores for SOM whereas they performed more poorly for N input. The inorganic input 

had the best performance for N input though with a low SOM balance. For BaU, at 

high N and SOM balance end of the rank “0” Pareto-optimal frontier, 9%, 33% and 

50% of land was allocated to T7, T6 and T2, respectively while 12%, 39% and 43% to 

T7, T6 and T2 at low N input and SOM balance end. For the hedge plus inorganic 

fertilizer and manure, 75-96% of the land was assigned to T4. For hedge plus manure, 

hedge plus inorganic fertilizer and inorganic fertilizer only, about 75-95% of the land 

at the rank “0” Pareto-optimal frontier was assigned to T4 at high N input and SOM 

balance while 90-98% to T1 at low N input and SOM balance.  

Operating profit vs protein yield: The input scenarios responded differently for 

operating profit and protein yield along the rank “0” Pareto-frontier (Fig. 5d). 

Synergies were visible for BaU, the combination of hedges with inorganic fertilizer 

and manure, and the combination of hedges with inorganic fertilizer. Land allocation 

at the rank “0” Pareto frontier for BaU varied from 31-37% for T1 and 43-55% for T4, 

area under both treatments increasing with increasing operating profit and protein 

yield. At low operating profit and protein yield, 11% of land is also allocated to T2 for 

BaU. For hedges plus inorganic fertilizer and manure and hedges plus inorganic 

fertilizer at the rank “0” Pareto-optimal frontier, between 75 and 99% of land is 

assigned to T4 with the other proportion going to the hedges, the proportion to T4 

increasing with operating profit and protein yield. In contrast, trade-offs occurred 

for hedge,  hedge plus manure and inorganic fertilizer scenarios (Fig. 5d). For the 

hedge scenario, the model apportions land to a large number of treatments, with 

the highest going to T5 (34%) and T6 (32%) at low operating profit vs high protein 

and to T2 (48%), T1 (28%) and T7 (28%) at high operating profit and low protein yield. 

Land alloctaion for hedge plus manure and inorganic fertilizer at the rank “0”Pareto-

optimal frontier was similar, with 94-99% of land assigned to T1 at high operating 

profity vs low protein yield and 95-100% to T4 at lower operating profit and higher 

proteing yield. 

Operating profit vs SOM balance: With the exception of hedges that had both points 

of synergy and trade-offs, trade-offs occurred for all other input scenarios between 

operating profit and SOM balance at the rank “0” Pareto-frontier (Fig. 5e). For BaU, 

86% of land was assigned to T6 at low operating profit vs high SOM end of the rank 
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“0” Pareto-optimal frontier whereas 33% and 52% of land were assigned to T7 and 

T4 at high operating profit vs low SOM balance end of the rank “0” Pareto-optimal 

frontier. For the hedge scenario, no clear pattern occurred for the allocation of land 

to the treatments at the extreme ends of the rank “0” Pareto-optimal frontier, with 

T6 (28%) accounting for the highest land portion at low operating profit vs SOM 

balance and T2 (33%) and T1 (33%) at th high operating profit vs low SOM balance 

end. For the hedge plus inorganic fertilizer and manure, and hedge plus inorganic 

manure, 75 and 99% of land assigned to T4 at the low operating profit vs high SOM 

balance and the high operating profit vs low SOM balance ends of the rank “0” 

Pareto-optimal frontier, respectively. High SOM balance in these scenarios was also 

associated with a high land allocation to hedges. In the hedge plus manure and the 

inorganic fertilizer scenarios, a high operating profit vs low SOM balance had 96-99% 

of the land allocated to T1 while a low operating profit vs high SOM balance had 86-

99% of land allocated to T4. 

Protein yield vs SOM balance: Trade-offs were explicit between protein yield and 

SOM balance at the rank “0” Pareto-frontier (Fig. 5f). BaU and hedges recorded the 

least performance for both objectives. For BaU, 23, 27 and 34% of the land was 

assigned to T6, T7 and T4, respectively at low protein yield and SOM balance while 

33% and 53%  to T7 and T4, respectively at high protein vs low SOM balance.  For the 

hedges T5 had the highest land allocation (37 and 42%)  at both ends of the rank “0” 

Pareto-optimal frontier while T7 (18-27%), T4 (16-18%) and T6 (16%) also received 

significant land allocations. Land allocations at the rank “0” Pareto-optimal frontier 

were similar for the remaining input scenarios. 75-100% of the land for these input 

options was allocated to T4, with the share of T4 increasing with increasing protein 

yield. At high SOM balance, 18-20% of the land was assigned to the hedges for 

scenarios with hedges.  

7.4  Discussions 

The FarmDESIGN model has been used to unravel complexities at farm level through 

determining of trade-offs and synergies between farm objectives and exploring 

windows of opportunities for improving farm performance. In the current study, the 

model was applied at field level to address complexities assocaited with the 

management and the interaction in a banana-bush bean intercrop. Complexities in 

this system also arise from the difficulties in measuring environment and nutrition 

related objectives that are often subtle to farmers and directly observable or 

measurable. The computer based FarmDESIGN model explored the trade-offs and 
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synergies, the most economically viable and environmentally sound management 

alternatives, and scenarios for improving the banana-bush bean system. 

 Pruning of banana leaves to integrate legumes profoundly reduced the 

operating profit, and SOM balance of the system, whereas N input into the system 

increased with increasing leaf pruning. Reduction in operating profit and SOM 

balances with increased leaf pruning can be attributed to the reduced 

photosynthetic capacity that affects overall growth and development and fruit filling. 

Leaf area of the banana crop has been reported to be positively correlated to bunch 

weight and overall performance of the crop (Stover and Simmonds, 1987; Mukasa et 

al., 2005). Ocimati et al. (2019) reported the cutting of leaves to integrate legumes 

to result in an economically inefficient system despite a higher agronomic efficiency 

for moderate leaf pruning. Increase in N input with increasing levels of leaf pruning 

can be attributed to increased vigour of the bush bean due to higher access to light 

and higher biological nitrogen fixation. This is supported by the fact that N balances 

were lower for intercrops in which seven and all banana leaves had been retained 

compared with the sole banana crops. Profound reduction in root growth and 

nodulation with a subsequent depression in biological N fixation in legume spp. has 

been reported due to shading (Butler et al., 1959; Bloom et al., 1985; Fujita et al., 

1992). Bloom et al. (1985) reported a higher allocation of dry matter to shoots when 

light is limiting, thus the poor root and nodule development. N, P and K balances also 

increased with increasing leaf pruning levels possibly due to the better performance 

of the legume component as described above and reduced uptake by the banana 

crop. The reduced uptake by the banana crop can be attributed to a reduced root 

mass associated with leaf pruning (Blomme et al., 2001).  

  Model exploration without extra inputs (BaU) i.e. re-arranging the field 

components alone and addition of hedges only did not result in profoundly superior 

alternative solutions for most objectives. In contrast, explorations with scenarios 

that included addition of inorganic fertilizer and goat manure profoundly improved 

the performance of the system for most objectives explored. This suggests soil 

nutrients were a major limiting factor for the banana bush-bean system. The dismal 

performance of the hedge scenario is possibly because hedges mainly helped in 

nutrient recycling (Fairhurst, 2012). More still, hedges reduced the total area that 

could be allotted to the banana and the legume crop.  

  The inorganic N, P, K sources outperformed the other input scenarios for the 

operating profit (maximised), protein yield (maximised) and N input (minimised) 

objectives. This can be attributed to a relatively lower cost of, and the ease to 

adequately fulfil the multiple nutrient requirements of the system through the 

inorganic sources. In contrast, the goat manure only scenario had a very high N input 
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and SOM balance. The goat manure had a low K content (i.e. 0.06%). Soil K is the 

most limiting nutrient for banana production (Nyombi et al., 2010; Taulya, 2013) and 

the east African highland bananas are for example, reported to ‘worry’ more about 

potassium than other factors (Taulya, 2013).  Thus, large amounts of goat manure 

need to be applied to reach sufficient levels of K content, leading to above optimal 

levels of N input. In contrast the amount of carbon in the goat manure was large. 

The N input ranges for all the input scenarios (162-735 kg ha-1 year-1) were higher 

than the recommended blanket rate (i.e. 100 kg/ha) for east African highland banana 

systems in Uganda (Ssali et al., 2003) but corresponded to recommendations for high 

yielding banana plantations (i.e. 300–450 kg N/ha) elsewhere (Lahav and Turner, 

1983; Robinson, 1996). More recent studies (e.g. Nyombi et al., 2010; Taulya, 2013) 

show better response of the east African highland banana to high higher levels of N, 

P, K (i.e. 150-400 kg N ha-1 year-1, 50 kg P ha-1 year-1 and 250-600 kg K ha-1 year-1) and 

these N input values are comparable to the outcome from the FarmDESIGN model 

in this study.   

  Land allocations to treatments across the input scenarios were influenced 

strongly by the availability of nutrients. For BaU and hedges that had a smaller 

window of exploration due to lack of additional inputs, land was predominantly 

allocated to treatments that had a lower demand for nutrients. These predominantly 

included the severe case of banana leaf pruning to integrate legumes, legume 

monocrop and intercrops under moderate leaf pruning. In contrast, for scenarios 

that included inorganic fertilizer or a mixture of inorganic fertilizers and manures, 

the models predominantly selected intercrop of bush beans with un-pruned banana 

and/or a sole un-pruned banana monocrop that demanded more nutrients. The 

prioritisation of intercrops with severely pruned treatments under low input 

scenarios suggests that severe leaf pruning on farmers’ fields though primarily to 

improve light interception can lower nutrient uptake enabling the fields to remain 

productive for longer time periods. Pruning of the banana plants potentially reduces 

banana root mass and the plants ability to take up nutrients whereas the improved 

light to the legume results in better biological nitrogen fixation and N balances. A 

sole un-pruned banana as a monocrop or intercrop would result in a higher nutrient 

uptake, a more rapid soil nutrient depletion and in the long run potentially affecting 

the productivity and resilience of the systems in absence of external inputs. Ocimati 

et al. (2019) observed the practice of severe leaf pruning to be agronomically and 

economically in-efficient and recommend its discouragement. However, such a 

move will need to be supported with efforts to supplement the soils with external 

inputs. More still, the ability to grow a sole crop could be limited with declining sizes 

of the fields. 
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 Trade-offs and synergies were visible between the objectives at the Pareto-

optimal frontiers. Synergies occurred between N input and operating profit, 

suggesting that both could be improved jointly. Synergies were also observed for 

operating profit and protein yield when input scenarios contained hedges. The 

observed synergies could be attributed to the fact that the FarmDESIGN model is 

static, thus unable to capture yield responses due to improved nutrition. Trade-offs 

were profoundly visible between the other interactions of the objectives. Strategies 

to manage these trade-offs will be crucial and may be more dependent on farmers 

priorities and access to resources. For example, a resource endowed – market-

oriented farmer may be willing to invest more in external inputs to increase his 

profitability with the contrary when a farmer is producing for home consumption.  

 A strong association was observed between a large land area allocation to 

hedges (tithonia and calliandra) and a high SOM balance and N input. This suggests 

that hedges could potentially help in improving the SOM and N balances. Planting 

hedges along boundaries of homesteads and farms primarily to secure and beautify 

homes, and to demarcate farms is a common practice in the study region and could 

be exploited. N fixing and N-rich hedges with high biomass production ability have 

been reported to potentially improve soil fertility (Fairhurst, 2012; Ocimati et al. 

2018). These hedges could as well be a good source of fodder for integrating zero-

grazed livestock; and improving nutrient recycling. They can also be used as mulch 

or green manure thus reducing wind and water erosion on these smallholder farms. 

Hedges are also known to harbour natural enemies of crop pests and increase 

agrobiodiversity within farms (Groot et al., 2010). Calliandra is reported to be 

beneficial for rehabilitation of erosion-prone areas and lands exhausted by 

agriculture, providing shade for partially shade-tolerant trees and crops, fixing N 

through its symbiotic Rhizobium bacteria and root fungus, improving soil through its 

high N rich leaf biomass yields and well-developed lateral rooting system (Orwa et 

al., 2009). It is reported to be compatible with crops having both extensive fibrous 

roots and deep roots, thus suitable for hedgerow boundaries (Orwa et al. 2009). 

Positive effects of tithonia on subsequent rice and maize crops have also been 

reported (Devide, 2013; Olabode et al., 2007). Tithonia is omnipresent in the study 

region, growing wildly, as a hedge or weed on farms. Enlightening farmers on its 

potential benefits could increase its role in nutrient recycling within this production 

systems. 

 The FarmDESIGN model provided an opportunity for an additional, deeper 

analysis of the empirical experiment and unravelled the relations between 

production objectives (i.e. operating profit, N input, protein yield and SOM 

balances), constraints and decision variables, which would be challenging to explore 
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using the empirical experiment only. The model generated numerous rank “0” 

Pareto-optimal alternative farm configurations, giving a large set of alternative 

choices that farmers can choose from. It also made the synergies and trade-offs 

between the objectives explicit. Trade-offs and synergies with environmental and 

nutrition objectives are especially very crucial given they are often ignored or 

unknown to farmers and difficult to measure. The model could thus facilitate 

discussions between extension and/or research staff with farming communities to 

support and improve farm decision making with respect to moderating of the 

different farm objectives, production constraints and decision variables.  However, 

the high variability within farms across the study area and data demand suggest the 

need for good data collection and management to support decision making based 

on this tool. Available literature and databases e.g. on nutrient composition tables 

(Harvest plus, 2017; USDA, 2017) are useful inputs for the FarmDESIGN model. 

Important to note is that the FarmDESIGN model is static, as such does not adapt 

crop yields to management practices like increased fertilizer levels (Groot et al., 

2012), but uses production activities that represent discrete steps in fertilizer input 

and nutrient sufficiency as reflected in nutrient balances. The model was thus not 

able to reflect a continuous relation to reach potential yield and incomes that could 

have arisen from the improved soil nutrient balances associated with the input 

scenarios in this study. Factoring nutrient response curves to capture the effect of 

fertilizers through linking the model to existing algorithms for nutrient responses 

could be a pathway to arrive at more robust outcomes.  

7.5  Conclusion 

Severe leaf pruning to integrate legumes resulted in a reduced nutrient demand and 

better N, P and K balances. Though primarily aimed at improving light to the legume 

crop, it could indirectly slow the rate of soil nutrient depletion thus extending the 

productive life span of the soils. However, it compromised the operating profit, SOC 

and nutritional yield of the system. The model results suggest that scenarios that did 

not profoundly improve nutrient availability (i.e. BaU and hedges) stifled model 

exploration, whereas addition of external inputs profoundly generated several 

solution sets that improved the overall performance of the banana-bush bean 

system. FarmDESIGN model was found to be very helpful for exploring trade-offs and 

synergies between multiple objectives, identifying Pareto-optimal field 

configurations for the banana-bush bean system. FarmDESIGN model is as such a 

useful tool and could be widely promoted to support decision making at field level 

for a more sustainable banana production system. 
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Abstract 

 

Yield gaps in banana‐based production systems have increased in the past two 

decades due to declining soil fertility, drought and biotic stresses. Sustainable, 

environmentally sound and economically viable strategies for intensification in these 

systems are urgently needed. Agroecological practices, such as the integration of 

shade‐ and drought‐tolerant crops, nitrogen‐fixing and cover crops could potentially 

improve soil fertility and moisture retention, reduce the weed burden, narrow yield 

gaps and increase overall plot/farm productivity in these systems. In Malaysia, 

leguminous crops like Pueraria phaseoloides, Calopogonium caeruleum and 

Centrosema pubescens are often cultivated as cover crops (to suppress weeds, and 

reduce moisture loss and soil erosion) in young rubber and oil palm plantations with 

low shade levels. Even in mature oil palm plantations with less than 30% light 

intensity, various shade‐tolerant crops are grown, e.g. elephant foot yam, turmeric 

and arrow root. In humid tropical Africa, Colocasia (taro) and Xanthosoma (cocoyam) 

are reported to tolerate shade conditions and hence often planted under perennial 

banana/plantain plantations. Drought tolerance is a less common feature of most 

annual crops grown in the humid tropics. A few root and tuber crops (e.g. cassava, 

taro, yam and sweetpotato) remain in the field during the dry season in Central Africa 

and are then harvested according to household needs. This paper also reports on 

crops (Mucuna, lablab and chickpea) with potential for integration into banana‐

based systems during the dry season, if planted during the last month of the rainy 

season. These crops are reported to use the residual soil moisture content for 

continued growth during the dry season months. The paper concludes with detailed 

descriptions (from a literature review) on drought‐ and shade‐tolerance 

characteristics of various crops which have long been integrated in Central African 

banana‐based cropping systems, crops with a more recent cultivation history and 

crops with potential for system integration. 

Keywords: intensification, resilience, small‐scale farming, year‐round productivity, 

yield gaps. 
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8.1 Introduction 

 

Banana in the East and Central African region is predominantly grown by smallholder 

farmers (<2 ha), who realize low yields of 5‐30 Mg ha‐1 year‐1 (Wairegi et al., 2010; 

Okumu et al., 2011) when compared with >70 Mg ha‐1 year‐1 at experimental stations 

(van Asten et al., 2004). The low yields are attributed to the sub‐optimal crop 

management practices and several abiotic and biotic stresses (pests and diseases). 

Banana weevils (Cosmopolites sordidus), nematodes (Jones, 2000; Tushemereirwe et 

al., 2004), Xanthomonas wilt of banana and enset (XW, caused by Xanthomonas 

campestris pv. musacearum), Fusarium wilt (caused by Fusarium oxysporum f. sp. 

cubense) and banana bunchy top disease (BBTD, caused by the banana bunchy top 

virus (BBTV), genus Nanavirus (Niyongere et al., 2012; Ocimati et al., 2014; Blomme 

et al., 2014) are currently the main biotic constraints to banana production. The life 

span of banana plantations, especially in the low‐altitude areas, has as such been 

drastically reduced to 5‐10 years compared to plantation lifespans of 25‐50 years 

during the mid‐20th century, due to these constraints (Bekunda, 1999; Gold et al., 

1999). The perennial nature of the crop and high population density result in 

fragmented and small land holdings per household across the region, which means 

that most farmers cannot afford to grow banana in mono‐cropped stands (Ocimati 

et al., 2013). Farms are as such under continuous production every season or year 

without permitting the soils to restore their fertility. This is coupled to the fact that 

nutrients are constantly mined through bunch exports. Soil infertility and drought 

have actually been reported as main abiotic constraints to banana production in the 

East and Central African region (Wairegi et al., 2010; van Asten et al., 2011).  

Shade cast by the banana leaf canopy is also an important constraint to 

intensification on smallholder farms as it hinders intercropping with most shorter‐

stature crop species. Banana intercropping with annual crops is widely practiced in 

the rainy seasons and in widely spaced or young banana fields in East and Central 

Africa. The most common advantage of intercropping is the production of greater 

total agricultural yield on a given piece of land by making more efficient use of the 

available growth resources using a mixture of crops of different rooting ability, 

canopy structure, height and nutrient requirements based on the complementary 

utilization of growth resources by the component crops. In addition, intercropping 

often improves soil fertility through nitrogen fixation through the use of legumes, 

reduces pest incidence at the plot level, and increases soil conservation through 

greater ground cover than sole cropping (Ouma, 2009; Lithourgidis et al., 2011; 

Gebru, 2015).  

With an increasing range of biotic and abiotic constraints, sustainable, 
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environmentally sound and economically viable strategies/options for intensification 

in these production systems are urgently needed to bridge yield gaps. The use of 

agroecological approaches, such as the integration of shade‐tolerant crops in mature 

banana fields and drought‐tolerant crops during the dry season months across the 

whole farm, nitrogen‐fixing crops and cover crops to potentially narrow yield gaps in 

these systems and maintain or increase overall whole plot/farm productivity, are 

envisaged.  

Bommarco et al. (2013) suggested the use of ecological approaches that 

optimize ecosystem services in low‐input farming systems as the best option for 

enhancing productivity in such settings with wide yield gaps. This manuscript reviews 

intensification scenarios for obtaining year‐round whole‐plot/farm productivity and 

increased resilience of production systems, tailored to small‐scale, rain‐fed banana 

farm settings in Central Africa. The manuscript reviews potential crop species that 

could be integrated spatially and temporally in banana‐fields to particularly enhance 

systems resilience to shade, drought and XW, a biotic constraint. 

 

8.2 How cultivation constraints (banana shade, drought and 

Xanthomonas wilt) influence crop intensification 

 

High shade levels under banana canopies are a major constraint to intensification 

through intercropping under smallholder banana systems. Field trials carried out in 

South Kivu province, east Democratic Republic of Congo (DR Congo) showed a 75% 

reduction in Photosynthetically Active Radiation during the 3rd annual cropping 

season under expanding banana leaf canopy, i.e. 13‐16 months after establishing 

banana plants at a spacing of 3 x 3 m. As a result, grain yields (kg/ha) of the shade‐

sensitive bush bean ‘HM21‐7’ and climbing bean ‘Namulenga’ were reduced to zero 

during this 3rd annual cropping season. To reduce shade levels for annual intercrops, 

farmers often cut banana leaves at the onset of the rainy season. Modest leaf cutting 

is most often practiced. However, farmers in e.g. North Kivu province, east DR Congo 

sometimes cut off all banana leaves in densely grown plots at the onset of the annual 

cropping season (Fig. 1A), to provide sunlight for the legume intercrop. Field 

experiments to enhance light penetration through banana leaf cutting (as observed 

in farmer fields in South Kivu province) have shown an increase in legume yields with 

a reduction in shade level (Ntamwira et al., 2013a, b; 2014). However, banana leaf 

cutting affects banana bunch weights, and significant reductions in bunch weight of 

1‐11% and 30‐40% have been observed for plants that had respectively 7 and 4 leaves 

retained during their entire lifespan (Ntamwira et al., unpublished). With increasingly 

smaller farm sizes, strategies to enable the use of space under banana with minimal 
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trade‐offs in yield and which could potentially increase overall farm productivity are 

needed. The integration of shade‐tolerant crop species offers a potential alternative 

for improving the overall productivity of these systems. 

 

Figure 1. A. Farmers in North Kivu, eastern DR Congo sometimes cut off all banana leaves in 
densely grown plots at the onset of the annual cropping season to provide sunlight for the 
legume intercrop. B. Taro/cocoyam and yam intercropped with banana in South Kivu, eastern 
DR Congo. 

 

Year‐round and optimum whole‐farm productivity has also been constrained 

by dry seasons and a lack of irrigation options for most small‐scale farmers in Central 

Africa. Apart from banana and some tree species (i.e. multipurpose trees and coffee), 

very few annual crops such as sweetpotato, yam, taro and cassava are present in the 

plots during the dry season. These crops are gradually harvested during the dry 

season according to household needs. Crop species that can withstand the heat 

stress and thrive on low soil moisture contents give a window of opportunity for 

improving biomass production within the banana‐based systems. The integration of 

food or feed crops that can be planted during the latter phase of the rainy season 

and which can use the residual soil moisture for continued growth and yield in the 

dry season should be explored. 

The presence of XW in Central Africa is a particularly important driver for the 

development of sustainable banana‐based production systems. A package of control 

options is available, comprising amongst others whole mat uprooting and Single 

Diseased Stem Removal (Blomme et al., 2014). Through these packages that are 

currently being disseminated and applied across various Central African countries, 

mats or plants are removed from the plots, creating open spaces and increased 

ground level light penetration favourable for annual crop cultivation. Integration of 

annual crops during the recovery phase of previously heavily diseased banana plots 

forms part of the system‐level intensification efforts. However, banana canopies in 

A B 
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new or recovering fields eventually close, creating the need for shade‐tolerant crop 

options. Overall efforts hence need to focus on optimum use of space (ground layers) 

in time (across rainy and dry seasons, and under a growing banana crop) for optimum 

year‐round whole plot/farm productivity, improved soil fertility, reduced erosion, 

increased moisture retention in the dry season and a reduced weed burden. 

 

8.3 Currently cultivated shade- and drought-tolerant crops in banana 
fields in central Africa 
 
The cultivation of shade‐tolerant cover crops has been widely reported. For example, 

in Malaysia, the leguminous crops Pueraria phaseoloides, Calopogonium caeruleum 

and Centrosema pubescens are often cultivated as cover crops (to prevent weed 

growth, moisture loss and soil erosion) in young rubber and oil palm plantations with 

low shade levels. Even in mature oil palm plantations, where the availability of light 

is less than 30%, various shade‐loving and shade‐tolerant crops are grown, e.g. 

elephant foot yam, turmeric and arrow root (Ramachandrudu et al., 2013).  

In Central African banana‐based farms, taro is the main and most widely 

grown crop under banana (Fig. 1B), while yam, cassava and African bird’s eye chili 

pepper are grown to a lesser extent under shade. Taro leaves are harvested year‐

round and prepared as a vegetable in e.g. eastern DR Congo. Yam is grown in shaded 

banana fields (Fig. 1B), although yields reported by farmers were sub‐optimal 

(Ntamwira, J., personal communication, 2016). Cassava is often intercropped in 

sparsely spaced banana plantations for tubers and leaves in eastern DR Congo, while 

monocropping is preferred in western Burundi as the production objective is tuber 

yield. Cassava leaves are important as a vegetable in diet and for income; however, 

its production in highly shaded banana fields has not been explored. Taro, cassava 

and yam stay in the field during the dry season, and the tubers are then harvested 

according to household needs. Sweetpotato is another tuber crop that stays in the 

field during the dry season. This crop is however predominantly grown as a 

monocrop or in widely spaced banana plots, as it is sensitive to shade. African bird’s 

eye chili pepper is a shade‐loving plant observed to grow (mostly as a volunteer crop) 

in heavily shaded banana fields.  

The section below summarizes (from a literature review) drought‐ and shade‐

tolerance characteristics of various crops which have long been integrated in Central 

African banana‐based cropping systems (taro (Colocasia esculenta), cassava 

(Manihot esculenta), yam (Dioscorea esculenta), sweetpotato (Ipomoea batatas)and 

African bird’s eye chili (Capsicum frutescens)), crops with a more recent cultivation 

history (Mucuna (Mucuna spp.) and Lablab (Lablab purpureus) and crops with 

potential for cropping system integration (elephant foot yam (Amorphophallus 

paeoniifolius), cocoyam (Xanthosoma spp.) (Aroid), ginger (Curcuma amada), 

turmeric (Curcuma longa) and chickpea (Cicer arietinum)) (Table 1). 
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Table 1. Crop sensitivity or tolerance to shade and water stress (due to drought and dry 

seasons). 

Crop sensitivity 
or tolerance 

Shade Water stress (due 
to drought and 
dry seasons) 

References 

Sensitive (only 
coping with low 
levels of shade) 

Bush bean, 
climbing bean and 
amaranth 

Bush bean, 
climbing bean 
and amaranth 

 

Semi‐tolerant 
(coping with 
medium levels 
of shade) 

Cassava (for 
leaves), yam, 
mango ginger and 
turmeric 

 Okoli and Wilson (1986); 
Johnston and Onwueme 
(1998); Jayachandran and 
Sreekandan Nair (1998); 
Nybe (2007). 

Tolerant (coping 
with high levels 
of shade) 

Taro, African bird 
eye chili, cocoyam 
and elephant foot 
yam 

Cassava, yam, 
taro, African bird 
eye chili, 
cocoyam and 
elephant foot 
yam 

Onwueme and Johnston 
(2000); Kaudo (2014); 
Johnston and Onwueme 
(1998); Ramesh et al. 
(2007); Agrifarming (2016) 

Tolerant (when 
planted a month 
before the end 
of the rainy 
season; relay 
cropping) 

 Mucuna, lablab 
and chickpea 

Chiu (2004); Maass at al. 
(2010); Guretzki and 
Papenbrock (2014); Kokila 
et al. (2014); Johansen et 
al. (1994); Kumar and Abbo 
(2001); Berger et al. (2004) 

 

8.4 The potential of shade- and drought tolerant root and tuber crops in 
existing banana systems (with commonly applied on farm banana planting 
densities): cocoyam, taro and elephant foot yam 
 

Taro and other aroids such as cocoyam/tannia (Xanthosoma sagittifolium) and 

elephant foot yam, are well adapted to shade conditions and are hence highly 

suitable for intercropping (Lebot, 2009; Verheye, 2010). In experiments to determine 

and compare the relative shade‐tolerance and adaptability of taro, cocoyam/tannia, 

sweetpotato, yam and cassava through examining the effect of shade or full sunlight 

on leaf chlorophyll and carotenoids, all five species of root crops were observed to 

adapt to shade (Johnston and Onwueme, 1998). The leaf area and chlorophyll 

concentration increased, while the chlorophyll a:b ratio, carotenoids per unit 

chlorophyll, and the weight per unit area of leaf were lower in the shade than in the 

sun in all the crops. The extent of the changes, however, differed between species, 

with the aroids (taro and tannia) being more shade‐tolerant (less change in 

chlorophyll a:b ratios) than the other species. This suggests that the light‐harvesting 

systems of aroids may be adapted to shade conditions. Taro and tannia also had a 

greater proportional increase in leaf size, a smaller reduction in leaf weight per unit 
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area and a greater proportional increase in chlorophyll and carotenoids per leaf than 

the other species (Johnston and Onwueme, 1998). Yam compensated for shade by 

having a large proportional increase in leaf size and appeared to be moderately 

tolerant to shade, while sweetpotato and cassava appeared to be the least tolerant 

to shade among these major tropical root crops (Johnston and Onwueme, 1998). 

 

Taro: Taro (Colocasia esculenta) plants grown at 30% of full sunlight have increased 

stomatal and chlorophyll density, probably increasing photosynthetic efficiency at 

low levels of light (Onwueme and Johnston, 2000). Results of experiments conducted 

under artificial shade provided by a canopy of 50% shade cloth gave higher plant 

height and leaf area under shaded conditions compared to full sunlight. Rogers and 

Iosefa (1993) also observed a total increase in taro plant biomass under 50% shade. 

The corm yields were not affected by shade while the number and weight of plant 

suckers increased. Corm percentage dry matter, which reflects quality, was higher 

under shade. The fact that total plant biomass is increased by shade indicates greater 

photosynthetic efficiency (Rogers and Iosefa, 1993). However, a shade/cultivar 

interaction has been reported, suggesting the need to select cultivars appropriate to 

the shade levels found in farmers' fields (Rogers and Iosefa, 1993). Taro has a good 

level of drought tolerance and is currently even cultivated in Sahelian countries such 

as Burkina Faso (Lebot, 2009). 

 

Cocoyam/tannia: Cocoyam/ tannia (Xanthosoma sagittifolium) is highly ranked in 

cultivation and production in tropical regions (Onwueme and Charles, 1994), where 

it is an important food for some 400 million people (Onokpise et al., 1999). It has 

overtaken taro as the main edible aroid in many tropical areas (Matthews, 2002). It 

has the advantage of growing under the full intensity of sunlight and tolerating shade 

(Onwueme and Charles, 1994; Johnston and Onwueme, 1998). Cocoyam is one of 

the most shade‐tolerant food crops (Johnston and Onwueme, 1998; Ramesh et al., 

2007) and is as such often intercropped with perennial food and cash crops such as 

cocoa, bananas, oil palms, etc., especially at the early stage of these plantations in 

West Africa (Onyeka, 2014). It is thus a commonly grown crop in the farming systems 

of the forest and forest/savanna transition zones in most countries in West Africa 

(Onyeka, 2014). In the humid zones of West Africa, plantains and cocoyam are as such 

ecologically complementary, with the moisture‐loving cocoyams grown as 

understory plants beneath the canopy layer formed by the plantains (Harlan, 1976). 

Cocoyam is also considered as drought tolerant and often stays in the field during the 

dry season (Lebot, 2009). 

 

Elephant foot yam: Elephant foot yam (Amorphophallus paeoniifolius) is a native of 

tropical Asia. The elephant foot yam is mainly cultivated in India, Sri Lanka, the 

Philippines and Southeast Asia. The elephant foot yam also belongs to the family 
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Araceae. It is one of the most productive and profitable tuber crops cultivated in 

India. The tubers are consumed as vegetables after thorough cooking, while chips are 

also made from these starch‐rich tubers. Tender stems and yam leaves are also 

consumed as vegetable. Elephant foot yam can also be intercropped in banana, 

coffee, areca nut, rubber and coconut plantations due to its shade tolerance 

(Agrifarming, 2016). The introduction of new crops into the Central African cropping 

systems would however be challenging due to socio‐economic and cultural 

constraints. 
 
8.5 The potential of shade-sensitive and drought-tolerant root and 
tuber crops: yam, cassava, sweet potato 
 

Yam: Yam (Dioscorea esculenta) is not a shade‐loving plant. It has however been 

reported to be moderately tolerant to shade (Johnston and Onwueme, 1998). Yam 

plants grown under shade produce larger leaves, but only to yield extremely small 

tubers (Onwueme and Charles, 1994). Yams grown without stakes have also been 

observed to yield less than those grown with stakes (Coursey, 1967, 1968; Lyonga et 

al., 1973) and this has been attributed to the greater amount of mutual leaf‐shading 

that occurs in the unstacked yam plants. More still, the highest yam yields in the West 

African yam zone have been reported in the northern limits of the forest and in the 

savanna zones, with less cloud cover compared with the zones deeper in the forest, 

that have heavier and longer rainfall with frequent cloud cover (Onwueme and 

Charles, 1994). It therefore seems that yam not only tolerates but requires high 

intensities of sunlight to be maximally productive. FAO (2010) also reported yam 

plants to exhibit early shade tolerance during establishment but require full sun for 

good yields. 

The yam plant is however relatively tolerant to dry conditions (Onwueme and 

Charles, 1994). In many yam‐growing districts, planting is done during the dry season. 

The setts planted in dry soil must remain there for 2‐3 months before the rainy 

season starts. They not only survive this period, but commence sprouting before the 

rains come (Onwueme, 1976; Onwueme and Charles, 1994). Even after sprouting, 

the yam seedling can tolerate periods of drought to a greater extent than many other 

crops, mainly due to moisture stored in the parent sett and vigorous root 

development so that the young plant is able to exploit whatever little moisture might 

be present in the sub‐soil. However, yam yield will be significantly affected even 

though yams are able to cope with drought (Onwueme and Charles, 1994). 

 

Sweetpotato: Sweet potato (Ipomoea batatas) grows best in high‐rainfall areas of 

about 1500‐2500 mm/year. Higher rainfall may induce excessive vegetative growth 

at the expense of tuber growth. The crop grows well in a variety of well‐drained soil 

types but does not tolerate shading (FAO, 2010). Sweetpotato shoot morphological 
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alterations in response to 55 and 73% shade included fewer but larger leaves and 

longer branches (Roberts‐Nkrumah et al., 1986a). Tuber fresh weight in four 

sweetpotato cultivars (A28/7, TIS 2328/6 and C26/7) was not affected in 25% shade, 

but values were lower in 55% shade, and tuber development was almost completely 

suppressed in 73% shade for all cultivars (Roberts‐Nkrumah et al., 1986b).  

Sweetpotato however has a good degree of drought tolerance after 

establishment. Hence, its yield potential is generally greater than that of popular 

staple crops, such as maize (Motsa et al., 2015). The sweetpotato genotypes 420014, 

440286, 189148.7, 44109, 440287 and 187017.1 for Kiboko and genotypes 421066, 

420014, 421006 194573.9, 192033.3 and 189135.9 for Marigat were identified as 

genotypes with good performance, high drought tolerance, high dry matter and high 

levels of beta‐carotene in Kenya (Agili et al., 2012). Drought tolerance in sweetpotato 

is attributed to the ability of its adventitious roots arising from the stem cuttings to 

rapidly penetrate the soil to depths of over 2 meter, enabling the crop to obtain water 

from deeper soil layers (Onwueme and Charles, 1994). The same authors also 

reported that sweetpotato can be cultivated in dry years when other cops such as 

cereals may have failed. 

 

Cassava: Cassava (Manihot esculenta) is grown primarily for its starchy tuberous 

roots, which are an important staple for more than 800 million people, mostly in sub‐

Saharan Africa, but also in other parts of Africa, Asia, the Pacific, South America and 

the Caribbean. Cassava is important for both small‐scale farmers and larger‐scale 

plantations due to its low requirement for nutrients, ability to tolerate dry conditions 

and easy, low‐cost propagation. It is sometimes referred to as the “drought, war and 

famine crop of the developing world”, and reliance upon this crop is expected to 

increase in the coming years as the global climate changes (Burns et al., 2010). 

Onwueme and Charles (1994) reported cassava plants to be relatively drought‐

tolerant except during the first few weeks after planting. Okogbenin et al. (2013) also 

reported that cassava can be produced adequately in dry conditions making it the 

ideal food security crop in marginal environments. Despite cassava’s tolerance to 

drought, 500 mm of rain and a period of six months of rainfall per year is needed, 

with optimum rainfall being between 1000 mm and 1500 mm per year (Raemaekers, 

2001; FAO, 2010). Higher rainfall levels can reduce tuber growth. 

Cassava however, requires high solar radiation for efficient photosynthesis, 

and therefore shade has a considerable effect on cassava growth and production. 

Under shading, the root bulking process starts later and the number of roots per pant 

is reduced. All levels of shade delay root bulking, and at 20, 40, 50, 60 and 70% shade, 

cassava yield reductions of 43, 56, 59, 69 and 80%, respectively, have been reported 

(Okoli and Wilson, 1986). Shading also increases plant height (Okoli and Wilson, 

1986). Shade induced elongated stems and thinner leaves, which resulted in reduced 

tuber yield.  
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8.6 Other shade-tolerant root and tuber crops with potential for 
integration/expansion into banana-based systems: 

Mango‐ginger (Curcuma amada): Field trials on the performance of mango‐ginger 

conducted in Kerala, India for two seasons under varying levels of shade revealed 

that rhizome yield under open and 25% shade were on par indicating that the crop is 

shade‐tolerant and suitable for intercropping situations (Jayachandran and 

Sreekandan Nair, 1998). A possible drawback in intercropping banana with ginger is 

the fact that both crops are highly susceptible to the burrowing nematode 

(Radopholus similis) (Thorne 1961; Orton Williams and Siddiqi 1973; Sipes et al. 

2001), especially when grown at elevations below 1400 meter. 

Tumeric (Curcuma longa): Response of turmeric to different levels of shade (0, 25, 50 

and 75%) was studied by Nybe (2007). The highest turmeric yield was recorded at 

50% shade. The crop is classified as shade loving and it can be successfully 

intercropped with perennial crops such as coconut and poplar trees (Nybe, 2007; 

Kaur et al., 2014). Kaur et al. (2014) also reported cultivar effects on shade tolerance. 

Better finger size and yield were recorded in ginger and turmeric from intercropped 

plots than sole crops (Vanlalhluna et al., 2014). 

8.7 A shade-tolerant spice with potential for integration in banana-
based systems 

African bird’s eye chili pepper: African bird’s eye chili pepper (Capsicum frutescens) 

also sometimes known as Piri or Pili, is a small chili pepper, with red to purple berries 

that typically grow erect and are ellipsoid‐conical to lanceoloid shaped. The African 

bird’s eye chili is one of the most pungent chili types in the world. The plant is a small 

bush that can grow to a height of about 1.5 m with a productive life of 2‐3 years. It 

requires minimal inputs/investments and its hardiness makes it very suitable for 

production by small‐scale farmers in marginal areas (Kaudo, 2014). Historically found 

in the African wild, it has recently been grown commercially in some parts of Africa. 

The crop can provide an additional income source for small‐scale farmers. The 

interest in African bird’s eye chilies is growing rapidly in e.g. Kenya as farmers realize 

that there is a ready market, both locally and international, for the crop. For example, 

Mace Foods, a processing firm based in the town of Eldoret in the Rift Valley, Kenya, 

has marketing contracts with farmers. African bird's eye chilies are used as food 

ingredient (e.g. in soups, stews, hot sauces and chicken dishes), pharmaceuticals, 

organic pest control spray and in making tear gas/pepper spray (Kaudo, 2014). 

Currently, farmers in eastern DR Congo do not see great value of producing the crop 

in large quantities other than using it for spicing their food, making sausages, and as 

a drug for chicken (Bahati L., personal communication, 2016). However, given the 
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crops’ market potential, it could be used to increase the efficiency of using banana 

fields. Wide adoption of the cultivation of this crop would however need to be 

backed by rigorous value‐chain and market studies. Important to note is the fact that 

pepper is a host for various strains of viruses, such as tobacco mosaic virus and 

cucumber mosaic virus (Kenyon et al., 2014). Integrated and pragmatic virus control 

measures will thus have to be sought e.g. combination of cultural practices that 

reduce sources of virus inoculum and decrease the rate of spread of viruliferous 

vectors into the pepper crop and other host crops (Kenyon et al., 2014).   
 
8.8 Crops that could be integrated into banana-based systems during 
the dry season, if planted during the last month of the rainy season 
 

Mucuna spp.: Mucuna spp. is an annual legume and is grown for its good quality 

forage, seeds, its binding capacity of atmospheric nitrogen in the soil (about 100 kg 

of nitrogen fixed per hectare of crop) and soil protection by its cover (Raemaekers, 

2001). Mucuna has two main species: M. pruriens and M. bracteata. Most Mucuna 

spp. exhibit reasonable tolerance to several abiotic stresses, including drought, low 

soil fertility and high soil acidity, although they are sensitive to frost and grow poorly 

in cold, wet soils (Duke, 1981). Mucuna bracteata is drought tolerant because its 

roots can grow 2‐3 meters deep (Chiu, 2004). In recent exploratory studies carried 

out in South Kivu province by the current authors, mono‐cropped M. pruriens sowed 

late in the rainy season (i.e. 3 weeks to onset of the dry season) and before harvest 

of annual crops was observed to grow vigorously during the dry season months and 

cover the ground surface, suppressing weeds and offering a good green manure or 

mulch for the next crop. Intercropped Mucuna grown during the same period had a 

reduced biomass production, indicating significant shade effects. 

Chiu and Bisad (2006) reported that dry matter production of M. bracteata 

under shade (60 to 70%) to be about 40% less than in the open, despite the shaded 

plot being 2 years older. These findings concur with Mathews (1998) who reported 

M. bracteata to grow under shade but at a comparatively slow rate. Despite its 

shade‐tolerant characteristics, Goh (2007) and Surani et al. (2010) found it difficult 

to cultivate M. bracteata under mature palms where their canopies had already 

overlapped. Similar observations have been reported by Mathews (1998), Chiu et al. 

(2001) and Ciza (2013). In Burundi, M. pruriens is commonly grown and is used as 

animal feed (cows, goats) during the dry season. Despite its slow growth and lower 

biomass production under shade, it could be grown in less dense mono‐cropped 

banana plots to reduce water runoff, fix nitrogen, suppress weeds (also reducing 

labour expenses) and to provide fodder for livestock. 
 The integration of Mucuna in plots with low/declining soil fertility in Kenya 
was observed to improve the production and quality of feed resources, cereal crop 
yields and livestock production on low external input smallholder farms (Nyambati, 
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2002), offering an alternative to commercial N sources. Relay‐cropped Mucuna 
survived the dry season producing a total biomass yield of 4 t ha‐1 on the research 
station and 2.3 t ha‐1 on farmers’ fields. Inclusion of the green manures in the maize‐
bean intercrop increased subsequent bean and maize yields (by 21%) compared with 
the natural fallow control (Nyambati, 2002). 

Lablab: Lablab (Lablab purpureus) (for food and forage) is better adapted to drought 

than common beans (Phaseolus vulgaris) or cowpea (Vigna unguiculata), both of 

which have been preferred to lablab in African agricultural production systems 

(Maass et al., 2010). Lablab’s popularity has mainly spread throughout much of South 

and Southeast Asia. The legume has however received less attention in Africa 

because its use is eclipsed by its popular cousin, the soybean. In the face of climate 

change and drought, however, this resilient and delicious plant is likely to make a 

comeback (Stone et al., 2011). Once established, lablab is highly drought resistant, 

often staying green during the dry season (Schaaffhausen, 1963b). Lablab is drought 

tolerant (Guretzki and Papenbrock, 2014; Kokila et al., 2014), producing reliably 

under a wide range of conditions, out‐yielding conventional crops such as velvet bean 

(Stizolobium deeringianum) and cowpea, particularly when grown under conditions 

of drought (Murtagh and Dougherty 1968; Wilson and Murtagh 1962). For example, 

it has been grown in arid, semi‐arid and humid regions with rainfall levels between 

200 and 2500 mm (Hendricksen and Minson, 1985; Cameron, 1988). Staying green 

during the dry season, it has been known to provide up to 6 t.ha‐1 of dry matter 

(Murphy and Colucci, 1999). With its deep tap root, lablab is not only drought 

resistant, but is able to bring minerals, otherwise not available for annual crops, from 

the depths to the top soil (Schaaffhausen, 1963a). This deep root also serves to 

stabilize the landscape as soil erosion and runoff are reduced by leguminous covers. 

Just like for Mucuna, relay cropped/the off‐season integration of lablab in plots with 

declining or poor soil fertility in Kenya was observed to improve the subsequent 

production and quality of feed resources, cereal crop yields and livestock/dairy 

production in smallholder farms under low external input regimes (Nyambati, 2002). 

Chickpea (Cicer arietinum): About 90% of this crop is grown in eastern Africa and the 

Indian subcontinent by resource‐poor farmers under rain‐fed conditions as a post‐

rainy season crop. The crop is most often planted during the latter phase of the rainy 

season and grows under receding soil‐moisture conditions during the dry season 

months (Johansen et al., 1994; Kumar and Abbo, 2001; Berger et al., 2004). 

8.9 Conclusions 

There is an urgent need to identify windows of opportunity to sustainably intensify 

small‐scale banana production systems in East and Central Africa. Integration, 



Chapter 8 

  

194 
 

introduction or expansion of shade‐ and drought‐tolerant crops offer good 

opportunities for optimum and a more sustainable use of the increasingly shrinking 

banana farms in the humid tropical regions in Africa. Aroid crops (e.g. taro, elephant 

foot yam and cocoyam) could be integrated in more mature banana plots with 

medium to high shade levels, while the cultivation of African bird’s eye chili could be 

expanded if additional research on value chains and markets indicates export 

potential. Although promising, the cultivation of cassava (predominantly for leaves) 

and yam (for tubers) under various levels of shade needs more field assessment. 

Similarly, relay planting of Mucuna, lablab and chickpea at 1 month before the end 

of the rainy season, and with subsequent growth during the dry season months using 

residual soil moisture needs further field assessments. Mucuna and lablab 

integration could potentially improve the soil fertility conditions, suppress weeds 

(reducing labour needs) and open doors for livestock integration. Model‐based 

support can be used to further analyse the banana farms/systems to identify 

opportunities for re‐configuration of farms for multiple objectives. Pareto‐based 

multi‐objective optimization models are suitable for exploring trade‐offs and 

synergies in these systems (Groot et al., 2007). Bioversity International and the 

Farming Systems Ecology department of Wageningen University Research (WUR) 

envisage using the FarmDESIGN model, a mechanistic multi‐objective model (Groot 

et al., 2007; 2012) to optimize banana‐based farming systems. This model will take 

biophysical (e.g., drought, shade and plant disease effects), economic and 

environmental production objectives into account, while determining the best‐fit 

land use and agroecological intensification prototypes. 
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9.1 Introduction 

The banana crop serves multiple functions in the banana-based landscapes across the 

African Great Lakes region (AGLR), supporting the resilience of the smallholder 

households and farms. The recent outbreak of XW disease has put the banana-based 

agroecosystems under intense pressure, compromising livelihoods of the households, 

communities and the resilience of the entire production system. This study suggests a 

broader approach for improving the buffering and adaptive capacity of the banana-

based agroecosystems towards XW and other diseases. This chapter briefly determines 

if the evidence generated through the different chapters answer the study hypotheses 

(section 9.2) presented in Chapter 1 and discusses the key lessons from the thesis (9.3-

9.7). Section 9.8 of this chapter discusses the use of computer-based simulation 

models for improving the performance of banana-based agroecosystems while 9.9 

focuses on the applicability of the approaches and findings of the study to the other 

banana diseases and agroecosystems. Section 9.10 draws brief conclusions and 

suggestions for further studying.  

9.2  Answers to the research hypothesis 

The findings of the different chapters of this thesis support the hypotheses advanced 

for objectives 1-3 and 5 whereas a mixed picture is obtained for objective 4. The 

respective hypotheses for the objectives are as below: 

i. XW is driving changes in land-use within farms and landscapes and these changes are

not only independent of the time of exposure to the shock but also negatively impact

on the supply of supporting and regulatory ecosystem services within the landscape.

ii. The spatial risk of XW is influenced by its characteristic biotic and abiotic covariates

such as banana cultivar composition, vegetation, rainfall, temperature, crop

and disease management practices.

iii. Though Xanthomonas campestris pv. musacearum (xcm) can affect or survive on

other crops and weeds in the banana-based agroecosystems, this association poses no

risk to banana or these other crops.

iv. In addition to spreading XW disease, the current practice of banana leaf

pruning to intercrop legumes results in a sub-optimal performance for a broad range

of production objectives and this could form a good basis for discouraging the practice.

v. Best-fit agroecological intensification strategies are needed to mitigate XW effects on the

supply of key ecosystem services within fields, farms and landscapes.

In accordance with hypotheses 1, XW outbreaks reduced the dominance of banana 

across farms and landscapes, whereas crop species richness increased at farm level 

(Chapter 2). In addition, field measurements (Chapter 2) and review of literature 
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(Chapter 3), showed that death of banana plants and the current land-use changes and 

trajectories due to XW had a negative effect on the supply of some supporting and 

regulatory ecosystem services. At landscape level, through regression indicator kriging 

of survey data to environmental and expert generated covariates, in agreement with 

hypothesis 2, the risk of XW was found to be strongly influenced by precipitation and 

XW management (Chapter 4). At field level, in agreement with hypothesis 3, though 

Canna spp. was ranked to offer a moderate-high risk as an alternative host to Xcm the 

pathogen causing XW, it did not influence XW incidence and prevalence on farms. 

Instead, XW incidence and prevalence was reduced by banana cultivar mixtures and 

when farmers have access to information on XW epidemiology and management while 

it was increased by presence of susceptible ABB Musa types on farm. In Chapter 6, in 

agreement with the hypothesis 4, severe banana leaf pruning to integrate legumes was 

found to be inefficient agronomically and economically. Mild pruning was 

agronomically more efficient (Chapter 6) while the un-pruned banana was 

economically more efficient (Chapter 6 and 7). Severe leaf pruning was however 

observed to be the best option for a production system that lacked external inputs 

(Chapter 7). Evidence generated through review of literature (Chapters 3 and 8) and 

model explorations (Chapter 7) are in support of hypothesis 5, that the performance 

of the banana agroecosystems can be improved through integration of some 

agroecological practices.   

9.3  Broad insights from the thesis 

The information generated through the different chapters of this study build on to each 

other and create a strong framework for a comprehensive XW management strategy. 

Chapters 2 and 3 show that XW is driving changes in land-use across the banana-based 

agroecosystem with profound negative environmental effects. Chapter 5 reveals field 

level risk factors that can reduce or hasten XW spread and perpetuation while Chapters 

6 and 7 generate evidence in support or against banana intercrop management 

practices as a basis for dissuading farmers or improving system performance. Findings 

in Chapters 5-7 are usual for reducing XW effects observed in Chapters 2-3. Chapter 8 

explores agroecological strategies for improving the resilience of the banana 

production systems. Through mapping and identification of the key covariates 

responsible for XW spread at landscape level, disease hot spots, fronts and vulnerable 

landscapes (Chapter 4), pro-active measures integrating findings in Chapters 5-8 can 

be developed to prevent spread and mitigate disease effects observed in Chapters 2-

3. The disease map generated in Chapter 4 can help to pin-point regional and national

priority zones for implementation of the disease management and control strategies.
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9.4  Disease effects on land-use, food systems and ecosystems services 

In Chapter 2 of this thesis, the dominance of banana (i.e. area under banana) across 

farms and landscapes had declined while crop species richness at farm level 

had increased due to XW outbreaks. XW effects on crop diversity were not 

influenced by the exposure time, possibly due to its rapid and multiple modes of 

spread (e.g. insect vectors, contaminated farm tools, infected planting materials, 

birds, bats and browsing animals), variable incubation periods (2 weeks to 2 

years) and high levels of latent infections (Ocimati et al., 2013a; 2014; Blomme et 

al., 2014). For example, a single farm operation with a contaminated farm tool, can 

potentially infect an entire plantation while long incubation periods and high 

latent infections slow field recovery thus discouraging farmers. The impact of XW 

unlike most diseases of banana that gradually build up with gradual increase in yield 

losses, is also rapid and extreme (Tinzaara et al., 2013). However, improving access 

to information on disease epidemiology and control could translate into better 

disease management and reduce farmers’ frustration. In eastern DR Congo, that 

had a low access to information, several farmers believed XW to be a curse from 

God while others believed it was soil borne and were thus resigned to it. The 

importance of information on disease epidemiology and control are also 

highlighted by the findings in Chapters 4 and 5.  

 Overall, the ranking of banana in importance had dropped across XW 

affected landscapes and communities. Absence of mitigation measures against 

XW across banana-based agroecosystems will keep farmers discouraged and 

result in a continuous decline in the area under banana and its importance in 

these food systems. This could in the short term increase the vulnerability of 

smallholder households, communities and other actors along the value chain of the 

crop. For example, unlike the other food crops that are seasonal, banana provides a 

year-round supply bunches and is thus important for the stability of food and 

income security. Socially, the loss of the local beer banana has led to influx of 
more potent alcoholic beverages that have reduced the lifespan and 

productivity of youth and men. Smallholder households are also not able 

to meet urgent expenses given the crop is an important source of 

collateral. For example, farmers could easily borrow money using standing 

plants as collateral to meet urgent expenses e.g. school fees and health expenses.

 The loss of banana also negatively impacts on key ecosystem services other 

than provisioning services (Chapters 2-3). For example, higher erosion levels 

(Mg ha-1 year-1) were observed under cassava (1.7-148.9), a major crop 

substituting banana compared with 0.3-10.7 for banana and 0.3-5.9 for tree 

crops. The effects of diseases on supply of ecosystem services other than 

onzim002
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provisioning services from agroecosystems has received little attention (Cheatham et 

al., 2009). This could be due to the more recent interest in the role of ecosystem 

services in a wide range of sectors (MEA (Millennium Ecosystem Assessment), 2005). 

Agroecosystems have also been narrowly defined as ecosystems managed with the 

aim of producing, distributing, and consuming food, fuel, and fibre (Cabell and 

Oelofse, 2012). Consistent with the above definition, most of the studies on XW and 

other diseases have focused on provisioning services. Literature on disease effects on 

regulatory, provisioning and cultural services from agroecosystems was lacking. These 

services were also not clear to the farmers involved in the study. It is critical to 

improve the understanding and experiences of farmers and other actors in the 

agroecosystem on the value of the different ecosystem services, if their benefits are 

to be effectively realised. Disease management strategies also need to target 

mitigation of the negative effects of diseases on the broad range of ecosystem services 

attainable from agroecosystems. In Chapter 3, an Ecosystem Services-broad 

framework drawing all key actors, especially the farmers, extension and research 

bodies and policy makers is proposed and described as a means of attaining this. This 

will need to be supported with rapid and easy to use assessment methods and tools. 

Fig. 9.1. A field previously under banana now planted with sugarcane. 

Though not investigated in this study, banana agroecosystems can be described 

to be vulnerable. This vulnerability arises from the fact that the smallholder banana 

fields are perennial and often interconnected resulting in a large monoculture. This 

leads to a rapid build-up and spread of pests and diseases, making the crop and system 

vulnerable. The banana crop is also a heavy feeder, drawing large amount of nutrients, 
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especially potassium, nitrogen and phosphorus (Okumu et al., 2011; Nyombi et al., 

2010). Given that nutrient exports through harvested bunches are large and 

smallholders in the AGLR hardly apply external inputs, soils under banana systems, 

especially fields away from the homesteads can get rapidly depleted and rendered 

un-productive. Fields close to homesteads receive more nutrient inputs through 

addition of household/ kitchen wastes and manure from livestock that are 

often tethered close to homesteads at night (Bekunda and Woomer, 1996). 

Okumu et al. (2011) reported bunch yields and soil and plant tissue nutrient levels 

to decline with distance from the homesteads. Similar nutrient gradients have 

been reported for maize systems in Kenya (Vanlauwe et al., 2006).  

 On the positive end, the reduction in the dominance of the banana crop and 

subsequent increase in crop diversity in these agroecosystems could in the long run 

strengthen the resilience of households and the production systems. There is 

increasing evidence that diverse cropping systems such as intercropping, 

agroforestry and cover cropping increase functional biodiversity resulting in more 

stable and resource conservation (Altieri, 1995, 1999; Vandermeer, 1995). For 

example, intercropping and cover cropping with crops that have dissimilar rooting 

patterns allows for exploration of a greater soil volume than monocrops, resulting in 

better utilization of growth resources and nutrient recycling (Gliessman, 1985; 

Altieri, 1999; Gebru, 2015). Different crop canopy heights, leaf orientations in mixed 

cropping results in a better soil cover, reduce weed growth, and a more efficient use 

of solar radiation (Gliessman, 1985; Altieri, 1995). High crop diversity is also 

associated with suppression of undesirable organisms (Altieri, 1999; Vidal et al., 

2017; Li et al., 2018).  It also reduces the risk of crop failures e.g. due to drought 

stress and pest and disease attacks (Altieri, 1995; Jassogne et al., 2013). High 

biodiversity also helps in the detoxication of chemicals and regulation of 

microclimate and local hydrological processes (Altieri, 1999). Exploring opportunities 

for increasing the diversity of the banana agroecosystems therefore offers a good 

opportunity for improving its resilience. 

 At landscape level crop species richness did not however change. I attribute this 

to farmers’ reliance on the available species diversity within their landscapes for 

adapting to the disease. The effect of the disease is drastic and does not give farmers 

the opportunity to experiment with alien crop species. This is supported by the fact 

that fast maturing crops, especially cassava, beans, sweet potato, taro and maize 

dominated the crops that replaced the banana. More still, experimenting on new crop 

species is often a time consuming, costly and risky (Le Gal et al., 2011). Supporting 

farmers under such stresses with rapid decision-making tools such as computer-based 
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models would rapidly help to identify viable alternative land-use options and 

potentially minimise the impact of these stresses. 

 

9.5  Farm and field level XW risk factors 

 

At farm/field level XW risk factors related to farm characteristics and management 

were studied. Canna spp. a common weed posed a high risk to the banana crop, though 

no association [in farmer’s fields] occurred between presence of Canna spp. and XW. 

The risk from intercrops varied from zero to moderate. These findings suggest the that 

despite the benefits of biodiversity (emphasized above), the interaction of plant pest 

and pathogens with different crop/ plant species in a system need to be understood to 

avoid negative and exploit the positive interactions. XW incidence in farmer’s fields 

reduced with increasing access to training and the number of banana cultivars in field. 

These emphasize the importance of cultivar mixtures with varying disease 

resistance/tolerance levels on suppression of diseases. This study also stresses the 

importance of equipping farmers with knowledge on the epidemiology and 

management of disease. 

  Some banana intercrop management especially use of tools remove excess 

suckers, cutting fresh leaves to reduce banana canopy cover contribute to XW spread, 

increasing the XW problem. Chapters 6-7 explore the trade-offs associated with 

banana leaf pruning to integrate legumes as a basis for dissuading farmers from it or 

fine tuning for better performance. Severe leaf pruning to integrate legumes was sub-

optimal for all production objectives, though selected by the model as the best option 

for resource poor farmers that were not able to add in external inputs. This can be 

attributed to; i) the fact that pruning reduces banana root mass and ultimately nutrient 

uptake and ii) the high vigour of the legume component thus increasing N input with 

the system. Soil nitrogen, phosphorus and potassium are reported to be the main 

limiting factor to the banana production systems in the region (Nyombi et al., 2010; 

Taulya, 2013). Though not the intended purpose, this practice slows nutrient mining 

and degradation of banana fields, thus potentially enabling farmers to use their fields 

productively for a much longer time. Moderate leaf pruning resulted in higher land use 

efficiency and moderate economic efficiency. The un-pruned banana grown as a sole 

crop or intercrop with legumes was efficient for operating profit, SOM and protein 

yield, but not for N input and was predominantly selected in explorations with external 

input addition(s). The poor performance of the severely pruned treatments could be a 

good basis for dissuading farmers from the practice, given it role in the spread of XW. 

However, such efforts could be hampered by access and knowledge on external inputs. 

These studies (Chapters 6-7) show the importance of recognizing and understanding 
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farmers indigenous practices as a basis introducing innovations. These model 

outcomes will be useful in discussions with farmers towards improving systems 

performance. 

 

9.6  Landscape and field level risk of XW 

 

At landscape level, XW was mainly influenced by precipitation and the level of disease 

management. High moisture offers conducive conditions for pathogen survival 

whereas poor access to information results in a poor disease management. The spatial 

spread map of XW highlighted XW hotspots, front lines and the vulnerable landscapes 

with low (e.g. the northern region of Tanzania) and no XW (e.g. northern Mozambique) 

in the AGLR and tropical banana growing regions of Africa. The maps show that the 

eastern DR Congo, a zone where the plantains (Musa AAB) and the East African 

highland bananas (Musa AAA) meet is a major hotspot, thus a potential gateway of 

infections to the plantain belt of Central and West Africa. With the complexity of XW 

spread and management in mind, these maps form a good basis/ guide for more 

proactive approaches rather than the current reactive or mitigative approaches for XW 

management, targeting mainly the frontline zones and vulnerable landscapes. Being 

proactive is crucial because disease eradication is complicated once XW is established 

due to the diverse modes of spreading, long incubation periods coupled with a high 

rate of latent infections (Ocimati et al., 2013; 2014). Proactive measures could include 

routine XW surveillance in the highlighted vulnerable sites, community sensitisation 

and quarantines. Such measures will in the first place prevent the disease from being 

introduced, and in case of entry result in timely control efforts thus increasing chances 

for disease eradication or at least minimise losses.  

 

9.7  Agroecological intensification for enhancing agroecosystem resilience  

 

Agroecology is the application of ecological concepts and principles to the design and 

manage sustainable agroecosystems (Gliessman, 2000). Agroecological intensification 

has been defined as a way of improving the performance of agriculture while 

minimising environmental impacts and reducing dependency on external inputs 

through integration of ecological principles into farm and system management 

(Milder et al., 2012; Tscharntke et al., 2012; Vanlauwe et al., 2013; CCRP, 2013; 

Wezel et al., 2015). Some of the common agroecological practices mentioned by 

different authors include: intercropping, cover cropping, crop rotation, soil and 

water conservation, integrated soil and nutrient management, judicious use of 

pesticides and inorganic inputs, mulching and use of organic inputs (Altieri, 1999; 
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Gliesseman, 2000; Côte et al., 2010; Milder et al., 2012; Ochola et al., 2013; Karamura et 

al., 2013; Vanlauwe et al., 2013; Wezel et al., 2015; Teixeira et al., 2018). 

 Altieri (1999; Wezel et al., 2015) reports agroecological practices such as 

intercropping, agroforestry, cover cropping, shifting cultivation and other traditional 

farming methods to mimic natural ecological processes. Teixeria et al. (2018) also 

reported agroecological farms to have a great potential to provide a wide range of 

ecosystem services. Making such practices an integral part of managing our 

agroecosystems would thus boast their adaptive and/or buffering capacity. In the case 

of the XW affected banana-based agroecosystem, the buffering and adaptive capacity 

of un-affected and diseased fields and landscapes and new land-uses can be boasted 

through integration of leguminous cover crops, shade and drought tolerant crops, 

hedges and agroforestry species in the production systems (c.f. Chapters 2, 3, 8). For 

example, the high erosion levels under cassava, a common crop replacing banana 

could be reduced by integration of leguminous cover crops and hedge crops. 

Intercropping, a key agroecological practice however, must be deployed with 

caution as some intercrops and/ or their management practices can perpetuate some 

pests and diseases. For the banana crop, to avoid management practices such as 

pruning to increase light to the shorter intercrops that enhance XW, the 

agroecological option of integrating shade-tolerant crop species is recommended 

(Chapter 8). Such species however need to compliment the banana crop to minimise 

both above and below ground competition. Zero tillage under banana is also 

recommended to minimise XW spread through damage to root and corms. Though 

not explored in this study, different banana spacings could also be explored to 

minimise leaf pruning and de-suckering. Highlighting the potential of different 

agroecosystems to supply a broad range of ecosystem services and the potential 

effects of diseases on these services and systems at local, regional and national levels 

is also important for influencing policy decisions and ensuring that resource 

investments match with the disease problem.  

9.8  Role of model simulations in fostering sustainable banana systems 

The FarmDESIGN model has been shown to support with great success farm level 

explorations in several studies (Ditzler et al., 2019; Groot et al., 2007; 2012). However, 

there are no studies focused on field level explorations. The potential of this model to 

explore trade-offs and synergies, and to guide decision making at field level was 

demonstrated using data from empirical experiments simulating farmers’ banana-

bush bean intensification practices in eastern DR Congo (Chapter 7). The model 

revealed that banana leaf pruning lowered nutrient requirements of the system 

whereas  increasing N input  thus  matching the available soil nutrients  to the  nutrient



Chapter 9 

210 

requirements of the mixtures, though possibly not consciously done. The legume 

component increased N input in the severely pruned banana crops under low input 

scenarios. Optimal performance of the system for operating profit, SOM balance and 

protein yields and N input was only attained when external inputs were added, and 

land allocated to a sole banana or intercrop of banana in which all leaves had been 

retained. Beyond the often easy to determine objective of incomes and productivity, 

the model was able to explore objectives such as nutritional yield and soil nutrient 

levels that are often difficult to assess or intangible to smallholder farmers. The model 

also made explicit the trade-offs and synergies, between selected economic, 

environmental and nutritional objectives for different input scenarios for the banana-

bush bean system (Chapter 7). The FarmDESIGN model is thus useful in supporting field 

level explorations and decision making. Such models potentially cut down the time, 

complications, costs and risk in identification of promising technologies and overall 

decision making on farm that would arise from trial and error experiments by farmers 

(Le Gal et al., 2011). Despite the usefulness of this model, it is static in terms of inter 

annual dynamics, and expected yield responses due to improved supply of 

soil nutrients are not simulated. Linking such data through other dynamic models 

to this model could be helpful in improving model performance and needs to be 

explored. Using the current model outcomes to engage with farmers, e.g. using 

focus group discussions is recommended as a next step for improving the 

banana-legume intercropping practice in the region. As a follow up, farm level 

explorations with the FarmDESIGN model of the banana system focusing on 

proposed agroecological intensification practices for improving the banana 

systems in the study region are recommended.   

9.9  Innovativeness and transferability of the approaches and findings 

To understand land-use changes and trajectories, a combination of focus group 

discussions and the four-cell analysis (Chapter 2) were used. The four-cell analysis 

enabled the communities to rapidly rank the changes in land-use along two axes, i.e. 

change in land area and the number of people growing the crop as a result of the 

disease. The use of the four-cell analysis to assess the effect of a disease on land-use 

is particularly novel and relevant for rapid assessment of the impact of similar and 

other production constraints on land-use diversification and biodiversity.   

Past studies on XW management focused mainly on the banana as a sole 

commodity and its roles as a food and income source. I argue that this limited the 

focus and investment in XW management/ control and has greatly contributed to its 

continued spread and persistence. Banana is grown in association with other crop 
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species that can influence the disease through interactions with its pathogens or 

their management. Through a combination of laboratory, screenhouse and field 

studies crops (Chapter 5), Canna spp. was observed to succumb to XW, and its risk 

ranked as moderate to high. No association was however observed between Canna 

spp. prevalence and XW incidence. Xcm was also recovered from other crop species 

and a moderate risk assigned to sugarcane which is perennial. Other studies have 

reported some crop and weed species to act as alternative hosts to pathogens of 

other crops (Ramappa et al., 1998; Grünwald and Flier, 2005, Coutinho et al., 2015; 

Ocimati et al. 2017). The importance of the knowledge of the interactions between 

crop pathogens with other plants in a system is thus relevant for all crop species. The 

combination of methods in this study can also be used for understanding the 

relationship between crop pathogens and other species for other agroecosystems. 

Directly and indirectly, XW also negatively affected the supply of 
other ecosystem services that are crucial for the sustainability of the production 

systems (Chapter 2 and 3). I argue that similar effects will arise from other diseases 

and crops if disease containment is not timely, especially for crops with similar 

characteristics (e.g. perennial tree crops) to banana. The suggested ecosystem 

services-broad framework (c.f. Chapter 3) in this thesis is transferable and should 

be adopted for the management of similar constraints of banana (e.g. banana 

bunchy top disease, Fusarium wilt) as well as for crop species. For example, apart 

from supplying food and income, tree crops supply other services such as 

sequestration of carbon (a public good), nutrient recycling and soil erosion control. 

Thus, the role of these crops in the supply of ecosystem services other than the 

provisioning services needs to be acknowledged and their potentials for different 

services mapped. Quantification and knowledge of the potential losses across all 

services due to a constraint will help inform decision making at the different 

levels, including policies on investments to management the diseases.  

The regression indicator kriging method used for mapping XW risk for 

the AGLR (Chapter 4) has been widely used in other studies (e.g. Goovaerts, 1997; 

Hosmer and Lemeshow, 2000; Bouwmeester et al., 2014, 2016). However, in 

addition to the environmental covariates, through review of available literature and 

expert knowledge, an additional covariate “management” was added to capture the 

level community access to information. For the Africa wide mapping, most of the 

environmental covariates were out or range, as such expert generated covariates 

were developed and used. These two aspects are novel and could be adopted for 

other studies especially where disease spread mechanisms are complex as is for XW 

disease. The mapping reveals disease hotspots, fronts and vulnerable 

landscapes. Successful management of diseases with complex spread mechanisms 
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such as XW will require such knowledge for pro-active control strategies. Such 

strategies could include, routine surveillance at disease fronts, building capacities of 

actors at disease fronts and in vulnerable landscapes on disease diagnosis, 

epidemiology and eradication and institution of active quarantine measures.  

FarmDESIGN model has to date been applied at farm level and this study 

shows that it can effectively be used to explore trade-offs at field level for crop 

intercrops and rotations. More still, combining such models with empirical 

experiments is helpful for more robust outcomes. 

 Chapters 2, 7 and 8 of this study suggest agroecological intensification options 

for improving the adaptive and buffering capacity of the banana agroecosystems. 

These practices are also transferable to other crops/ agroecosystems. 

9.10  Conclusions and recommendations 

Finally, I highlight the following key messages and future perspectives that have 

emerged from this thesis.  

Key messages 

• XW is still a major constraint to banana production across landscapes in the AGLR

and a key threat to other production zones in Africa, especially west of the AGLR.

• Xanthomonas wilt of banana is driving changes in land-use with a higher trajectory

towards short maturing crops with potentially negative effects on the supply of

ecosystem services, households and communities in the affected agroecosystems.

Potential positive effects due to increased crop diversity and more evenness are

anticipated in the long run.

• Effective management of XW should consider a broad framework addressing all the

ecosystem services and involving all the stakeholders. Such measures should be

proactive instead of the current responsive or mitigative approach.

• At field level, XW disease is exacerbated by the presence of ABB Musa types

whereas its incidence is reduced by growing banana in mixtures of cultivars and

increasing access to information on disease epidemiology and management.

• Knowledge of the interaction of plant pests and pathogens with other plant species

in a system is crucial for avoiding or minimising any potentially negative

interactions. With respect to banana, Canna spp. has the potential to harbour and

spread Xcm the XW causing pathogen and thus needs close monitoring.



General discussion 

213 

• Farmers indigenous intensification practices e.g. the management of banana in the

banana-bush intercropping practice, are complex and advice to farmers will require

an in-depth understanding of the trade-offs between the production objectives.

• The management of XW should consider redesign of the production systems to

improve their adaptive and/ or buffer capacity. Agroecological practices such as

cover cropping, hedges, water retention ditches, agroforestry could improve

capacity of new land use options in the supply of key ecosystem services lost

through loss of the banana crop.

• The ability of banana to provide multiple services gives it an edge over other crops

in the landscape. As part of the management, efforts are needed to restore

farmers’ confidence and production in the affected landscapes through improving

access to information on disease epidemiology and management and quality seed.

• The FarmDESIGN model is helpful tools for improving the performance of

smallholder farming systems.

Future perspectives 

- Explore through models and field studies the usefulness of a range of agroecological

practices in fostering the resilience of banana-based agroecosystems.

- Explore best strategies for packaging and communicating the trade-offs, synergies

associated with banana intercrop management practice and other findings of the

study to the farming communities and other key actors in the study region.

- Using models such as FarmDESIGN, jointly with key actor’s co-design banana-based

agroecosystems to foster system resilience at household, field/ farm and landscape

level.

- Mapping of species and their characteristics that minimise trade-offs when

intercropped with banana.

- Explore linkages between the FarmDESIGN model with dynamic fertilizer response

models for more robust outcomes.

- Engage with actors including farmers and policy makers to popularize study findings.

Potential strategies could include meeting, policy briefs and other information,

communication tools.
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English Summary 

Banana (plantains inclusive) provide multiple functions in the banana-based 

landscapes across the African Great Lakes region (AGLR). The crop produces bunches 

all year round, thus a backbone of food and income security for over 70 million people. 

In addition, to these provisioning services, banana plantations are a good source of 

regulatory and supporting services that to date have received little attention within 

agroecosystems. The recent outbreak of Xanthomonas wilt disease (XW) of banana 

(first reported in 2001) has put banana-based agroecosystems under intense pressure, 

compromising food and income security of the households and communities. Disease 

effects on land-use and the other ecosystem services other than the provisioning 

services are not well known and could profoundly reduce the resilience and 

performance of the agroecosystems. Management of the disease has mainly been 

reactive and mitigative, as such the disease has persisted and continues to spread into 

new farms and landscapes. In-depth understanding of the risk factors at landscape and 

field/ farm level are thus crucial.  

 This thesis explored strategies for preventing and minimising shocks caused 

by XW disease outbreaks and improving the adaptive and/or buffering capacity of 

banana-based agroecosystems. Chapter 1 of this thesis describes the research 

context, the problem statements, the research objectives and guiding hypotheses. 

We next characterised retrospectively the XW-driven land-use changes and 

trajectories across landscapes in eastern DR Congo (Chapter 2) and potential effects 

of the disease and the changes in land-use on the supply of key ecosystem services 

in the banana-based agroecosystems (Chapters 2-3). In Chapter 4, with XW incidence 

as a dependant variable and environmental and/ or expert developed covariates as 

independent variables, we developed XW risk maps for the AGLR and banana 

producing zones across Africa. At field/ farm level, we first determined the field level 

risk factors including the role of intercrops and weeds in harbouring and 

perpetuating the disease (Chapter 5). Secondly, we determined the effect of banana 

leaf pruning to integrate legumes on agronomic and economic efficiency (Chapter 

6); and trade-offs and synergies between production and environmental objectives 

(Chapter 7), as a basis for discouraging leaf pruning or improving the intercrop 

management (Chapters 6-7). In addition, we explored agroecological options for 

improving the adaptive and buffering capacity of the banana-based agroecosystems 

(Chapters 3, 7-8). Finally, Chapter 9 provides a synthesis of the whole thesis.  

 The retrospective characterisation of XW affected landscapes through focus 

group discussions and the four-cell analysis showed that XW was driving changes 

within banana-based agroecosystems (Chapter 2). The dominance of the banana 
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crop declined across all the landscapes whereas, the area allocated to other crops 

(especially cassava and other annuals) and the number of people growing the crops 

had increased. Crop diversity increased at household level but not at field level, 

suggesting that farmers relied on crops within the landscapes for adapting to the 

shock. XW effects are not only drastic/fast and experimentation with new crop species 

is a time consuming, costly and risky process. Through laboratory analysis of soil 

nutrient contents of the key land-use trajectories, field measurement of soil erosion 

levels using the Universal Soil Loss Equation for key land-use trajectories (Chapter 2) 

and review of literature (Chapter 3), XW was observed to reduce the supply of key 

ecosystem services other than the provisioning services. This necessitates an 

ecosystem services broad framework for addressing XW and other diseases of 

banana and other crops with similar characteristics (Chapter 2 and 3).   

 At landscape level, XW increased with increasing precipitation and declining 

investment in disease and crop management (Chapter 4). The spatial XW spread map 

highlights XW hotspots and front lines (e.g. eastern DR Congo) and the vulnerable 

landscapes with low (e.g. north-western Tanzania) or no XW (northern Mozambique). 

The eastern DR Congo, a zone where the plantains (Musa AAB) and the East African 

highland bananas (Musa AAA) meet was a major hotspot and is thus a potential 

gateway for XW to spread into the plantain belt of Central and West Africa. These maps 

are a good starting point for guiding proactive strategies for XW prevention, 

eradication and control.  

 In Chapter 5, through screenhouse and laboratory experiments Xanthomonas 

campestris pv. musacearum the causal organism of XW was observed to survive within 

some banana intercrops (e.g. maize, millet, sorghum, sugarcane) and weeds (Canna 

spp. and wild sorghum). XW characteristic symptoms only occurred on millet, sorghum 

and Canna spp. while death only occurred in Canna spp. The risk from the annual crops 

was rated as zero to low because they are wind pollinated and a short cycle, while the 

risk from sugarcane was rated as low-moderate due to its perennial nature and 

propagation through the rhizome. Insect mediated spread in the process of collecting 

nectar, sap and pollen, and spread from one plant to another connected through the 

rhizome play important roles in XW perpetuation while the pathogen does not survive 

for long in absence of a living host. Canna spp. propagates through the rhizome and 

the disease was in some instances observed to cause death in new suckers whereas 

some suckers emerged without symptoms even after death of the parent plants. Given 

the susceptibility, mode of propagation and high prevalence of Canna spp. on farms, it 

was deemed to offer a moderate to high risk to the banana crop. Through survey of 

farms and multivariate analysis (Chapter 5), Canna spp. however did not influence XW 

risk at farm level. Risk on farm was instead lowered by growing banana in mixture of 
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cultivars and increasing access to information on disease epidemiology and access; and 

increased by the presence of ABB banana types that are susceptible to insect mediated 

XW spread. The role of farmers knowledge and ABB banana types is well known 

whereas the impact of mixtures on XW is novel and needs to be integrated into the 

current XW management packages. Though Canna spp. has no association with the 

observed XW risk on farm it warrants close monitoring. 

 Through a field experiment (Chapter 6), farmers practice of severe banana leaf 

pruning to increase light intercepted by the shorter crops that currently enhances XW 

spread found to in efficient both agronomically and economically. Mild pruning 

however improved the agronomic efficiency whereas unpruned banana whether as 

intercrop or sole crop was more efficient economically. Moderate leaf pruning to 

integrate legumes and not pruning at all could thus be considered as a trade-off 

between agronomic and economic efficiency for the banana-legume intercrop system. 

 In Chapter 7, additional, deeper analysis of the empirical experiment is 

conducted using the FarmDESIGN optimisation model to unravel the relations 

between production (maximising income and protein yield) and environmental 

(minimising N input and maximising SOM balance) objectives that are often not easy 

to observe or determine. The FarmDESIGN model was also used to explore scenarios 

of incorporating different external inputs for improving the banana-legume intercrop. 

Trade-offs were observed e.g. between N input and the other production objectives. 

No profound improvements in the system were feasible without addition of external 

inputs. Addition of external inputs, especially inorganic fertilizers and manure greatly 

improved the banana-legume system for all the objectives. The model predominantly 

allocated land to severely pruned banana-legume intercrop and bush bean monocrop 

for scenarios with no or low (planting hedges) external inputs. In contrast, when 

nutrients increased through addition of external inputs, the model allocated land to 

unpruned banana either as a sole crop or intercrop with legumes. In absence of 

external inputs, the farmers current practice of severe leaf pruning is thus more 

feasible. Discouraging severe leaf pruning and improving the performance of the 

system for all objectives will necessitate investments in external inputs. These findings 

are a good basis for discussion to initiate co-innovations for improving the system with 

farmers. FarmDESIGN model is thus useful for supporting field level explorations and 

decision making and overall, co-designing of the banana agroecosystems. 

 Through literature review (Chapters 3 and 8) and model explorations (Chapter 

7), we propose some agroecological practices for improving the buffering and adaptive 

capacity of the banana-based agroecosystems. Chapter 3 suggests agroecological 

practices such as cover cropping, integration of nitrogen fixing hedges for boasting and 

minimising the loss of supporting and regulatory ecosystems services affected by XW 
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disease. In Chapter 7 through scenario explorations with the FarmDESIGN model, the 

study shows the importance of adding external inputs such as artificial fertilizers, 

manure and hedges for improving the performance of the banana intercrop system. In 

Chapter 8, we review literature on potential shade and drought tolerant crops for 

integration within the banana plantations. These practices will increase overall 

biomass yield while at the same time minimising XW spread through leaf pruning.  

 Finally, Chapter 9 discusses the salient issues arising from this thesis. It is 

important to note that effective management of XW disease and other similar diseases 

needs to look beyond disease effects on the supply of provisioning services to include 

other affected ecosystem services that play an important role in the sustainability of 

the agroecosystems. Effective management of diseases also requires a thorough 

understanding of the role of other crops species in a system and the effect of farmers 

practices on farm. This thesis also shows that integration of agroecological practices 

such as cover crops, hedges, crop cultivar mixtures within disease control packages 

have the potential of enhancing the resilience of landscapes to diseases. Moreover, 

existing farm optimisation models will be useful for understanding current 

production systems, management practices and redesigning more agroecological 

resilient agroecosystems. Finally, strategies for controlling complex diseases such as 

XW (with multiple modes of spread, fast spread rates, long incubation and high latency 

rates) will require more proactive measures instead of purely reactive- or mitigation-

based approaches. Such measures will in the first place prevent the disease from 

being introduced and, in case of entry, offer a good buffering capacity and trigger 

timely control measures to reduce and minimize losses. 
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