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Simple Stability Conditions of Linear 
Discrete Time Systems with Multiple Delay 

Sreten B. Stojanovic1, Dragutin LJ. Debeljkovic2 

Abstract: In this paper we have established a new Lyapunov-Krasovskii method 
for linear discrete time systems with multiple time delay. Based on this method, 
two sufficient conditions for delay-independent asymptotic stability of the linear 
discrete time systems with multiple delays are derived in the shape of Lyapunov 
inequality. Numerical examples are presented to demonstrate the applicability of 
the present approach. 

Keywords: Discrete time-delay systems, Lyapunov-Krasovskii method, Delay-
independent stability, Liner matrix inequality. 

1 Inotrduction 

During the last three decades, the problem of stability analysis of time 
delay systems has received considerable attention and many papers dealing with 
this problem have appeared. In the literature, various stability techniques have 
been utilized to derive stability criteria for time delay systems by many 
researchers. The techniques can be grossly classified into two categories: 
frequency domain approach (which are suitable for systems with a small 
number of heterogeneous delays) and time-domain approach (for systems with a 
many heterogeneous delays). 

The second approach is based on the comparison principle based 
techniques for functional differential equations [1, 2] or the Lyapunov stability 
approach with the Krasovskii and Razumikhin methods [3, 4]. In the past few 
years stability problems are thus reduced to one of finding solutions to 
Lyapunov [5] or Riccati equations [6] solving linear matrix inequalities (LMIs) 
[7] or analyzing eigenvalue distribution of appropriate finite-dimensional 
matrices [8]. 

It is well-known that the choice of an appropriate Lyapunov–Krasovskii 
functional is crucial for deriving stability conditions [9]. The general form of 
this functional leads to a complicated system of partial differential equations 
                                                           
1Faculty of Technology, University of Nis, Leskovac, Serbia, e-mail: ssreten@ptt.rs 
2Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia; E-mail: ddebeljkovic@mas.bg.ac.rs 

UDK: 681.511.2.037:517.938 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26884145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


S.B. Stojanovic, D.LJ. Debeljkovic 

70 

[10]. Special forms of Lyapunov–Krasovskii functional lead to simpler delay-
independent [2, 7, 9] and less conservative delay-dependent conditions 
[9, 11, 12]. In the past few years, there have been various approaches to reduce 
the conservatism of delay-dependent conditions by using new bounding for 
cross terms (Park’s and similarly inequalities) [2, 13] or choosing new 
Lyapunov–Krasovskii functional and model transformation. However, the 
model transformation may introduce additional dynamics [14]. In [15] it is 
shown that descriptor transformation leads to a system which is equivalent to 
the original one, does not depend on additional assumptions for stability of the 
transformed system and requires bounding of fewer cross-terms. 

Since most physical systems evolve in continuous time, it is natural that 
theories for stability analysis are mainly developed for continuous-time. 
However, it is more reasonable that one should use a discrete-time approach for 
that purpose because the controller is usually implemented digitally. Despite 
this significance mentioned, less attention has been paid to discrete-time 
systems with delays [16-23, 25, 26]. It is mainly due to the fact that the delay-
difference equations with known delays can be converted into a higher-order 
delay less system by augmentation approach. However, for systems with large 
known delay amounts, this scheme will lead to large-dimensional systems. 
Furthermore, for systems with unknown delay the augmentation scheme is not 
applicable. 

In this paper, new delay-independent asymptotic stability conditions are 
derived for discrete state-delayed systems with multiple delays. These 
conditions are derived using Lyapunov-Krasovskii method for discrete time-
delay systems which is presented in [26]. 

Throughout this paper we use the following notation. ℜ  denote real vector 
space or the set of real numbers, Z+ denotes the set of all non-negative integers. 
The superscript T denotes transposition. For real matrix F  the notation 0F >  
means that the matrix F  is positive definite. I and 0 represent identity matrix 
and zero matrix. In symmetric block matrices or long matrix expressions, we 
use an asterisk (*) to represent a term that is induced by symmetry. Blockdiag 
{.} stands for a block-diagonal matrix. Matrices, if their dimensions are not 
explicitly stated, are assumed to be compatible for algebraic operations. v  and  

denote norm of vector v and matrix F , while 2
2 1

n
ii

v v
=

= ∑  and 

max2
( )TF FF λ=  denote their Euclid norms. ( )Fλ  is the eigenvalue of 

matrix F and ( )Fσ  denotes singular value of matrix F ( max 2
( )F Fσ = ). 
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2 Model Description and Preliminaries 

A linear, autonomous, multivariable discrete time-delay system can be 
represented by the difference equation 

 0 1
1

( 1) ( ) ( ), 0
N

j j N
j

x k A x t A x k h h h
=

+ = + − < <∑ , (1) 

with an associated function of initial state  
  

 ( ) ( ) { }, , 1, ... , 0N Nx h hθ = ψ θ θ∈ − − + Δ , (2) 

( ) nk ∈ℜx , n nA ×∈ℜ  is a constant matrix of appropriate dimension and h Z +∈  
is unknown time delay in general case.  

Let ( ) ( 1) ( )
TT T T

k Nx x k x k x k h⎡ ⎤− −⎣ ⎦ , is state vector, ( , )nD Δ ℜ  - space 

of continuous functions mapping the discrete interval Δ  into nℜ  and 
sup ( )

D
θ∈Δ

φ = φ θ , ( ) : nφ θ Δ ℜ  - the norm of an element φ  in D . Further, 

{ }: ,
D

D D Dγ = φ∈ φ < γ γ∈ℜ ⊂ . For initial state, the next condition is 

assumed 
 

D
D∞ψ ∈ . (3) 

Evidentially, 
: ( ) ( )k kx x x k Dθ θ + θ ∈  and ( ) ( , )x k x k= ψ . 

Definition 1.  The equilibrium state 0x =  of (1) is asymptotically stable if any 
function of initial state ( )ψ θ  which satisfies 

 ( ) D∞ψ θ ∈ , (4) 

holds 
 lim ( , ) 0

k
k

→∞
ψ →x . (5) 

Lemma 1. [25] If there exist positive numbers α  and β  and continuous 
functional :V D →ℜ  such that  

 20 ( ) , 0, (0) 0k k kD
V x x x V< ≤ α ∀ ≠ = , (6) 

 2
1( ) ( ) ( ) ( )k k kV x V x V x x k+Δ − ≤ −β , (7) 

kx D∀ ∈  satisfying (1), then the equilibrium state 0x =  of (1) is global 
asymptotically stable. 
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Definition 2. Discrete system with time delay (1) is asymptotically stable if and 
only if it’s the equilibrium state 0x =  is asymptotically stable. 

Lemma 2. For any two matrices F  and G  of dimension n m×  and for any 

square matrix 0TP P= >  of dimension n, the following statement is true 

 ( ) ( ) ( ) ( )11 1T T TF G P F G F PF G PG−+ + ≤ + ε + + ε , (8) 

where ε  is some positive constant. 

Lemma 3. Thebyshev’s inequality holds for any real vector iv  

 
1 1 1

Tm m m
T

i i i i
i i i

v v m v v
= = =

⎛ ⎞ ⎛ ⎞
≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ . (9) 

3 Main Results 

Theorem 1. The linear discrete time-delay system (1) with 0 2
0A ≠  is 

asymptotically stable if there exists real symmetric matrix 0P >  such that 

 

( ) 0 0
1

1
22 1

0 22
1

(1 )1 0.

.

N
T Tm

m j j
jm

N

m j
j

NA PA A PA P

N A A

=

−

=

+ ε
+ ε + − <

ε

⎛ ⎞
ε = ⎜ ⎟

⎝ ⎠

∑

∑
 (10) 

Proof. Let the Lyapunov functional be  

 
( ) ( ) ( ) ( ) ( )

1 1
,

0, 0,

jhN
T T

k j
j l

T T
j j

V x x k Px k x k l S x k l

P P S S
= =

= + − −

= > = ≥

∑∑  (11)  

where 

 ( )kx x k= + θ , { }, 1, ... , 0N Nθ h h∈ − − + . (12) 

The forward difference along the solutions of system (1) is 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 0
1 1

1 1

1 1

1 1

.

j

j

T
N N

k j j j j
j j

hN
T T

j
j l

hN
T

j
j l

V x A x k A x k h P A x k A x k h

x k Px k x k l S x k l

x k l S x k l

= =

= =

= =

⎡ ⎤ ⎡ ⎤
Δ = + − ⋅ + − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

− + + − + − −

− − −

∑ ∑

∑∑

∑∑

 (13) 

Applying Lemma 2 on (13), one can get 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 0

1

1 1

1

1

1

1

.

T T
k

N N
T T

j j j j
j j

N
T T

j
j

N
T

j j j
j

V x x k A PA x k

x k h A P A x k h

x k Px k x k S x k

k h S k h

−

= =

=

=

Δ ≤ + ε +

+ + ε − −

− + −

− − −

∑ ∑

∑

∑ x x

 (14) 

Based on Lemma 3 follows 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 0
1

1

1

1

1

1

,

N
T T

k j
j

N
T T

j j j j
j

N
T

j j j
j

V x x k A PA S P x k

N x k h A PA x k h

k h S k h

=

−

=

=

⎡ ⎤
Δ ≤ + ε + − +⎢ ⎥

⎣ ⎦

+ + ε − −

− − −

∑

∑

∑ x x

 (15) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

0 0
1

1

1

1

1 .

N
T T

k j
j

N
T T

j j j j
j

V k A PA S P k

k h N A PA S k h

=

−

=

⎡ ⎤
Δ ≤ + ε + − +⎢ ⎥

⎣ ⎦

⎡ ⎤+ − + ε − −⎣ ⎦

∑

∑

x x x

x x
 (16) 

If one adopt 

 ( )11 T
j j jS N A PA−= + ε , (17) 

then 
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 ( ) ( ) ( ) ( ) ( )1
0 0

1
Δ 1 1

N
T T T

k j j
j

V k A PA N A PA P k−

=

⎤
⎡≤ + ε + + ε − ⎥⎣

⎦
∑x x x . (18) 

Let us define the following function 

 ( )( ) ( ) ( ) ( ) ( )1
0 0

1
, 1 1

N
T T T

j j
j

f k k A PA N A PA k−

=

⎤
⎡ε = + ε + + ε ⎥⎣

⎦
∑x x x . (19) 

Since matrices 0 0
TA PA  and T

j jA PA , 1, 2, ,j N=  are symmetric and 
positive semidefinite then, based on Rayleigh and Amir-Moez inequalities 
[23, 24] 

 

( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
max 0 0 max

1

2
max 2

,

1 1

,

N
T T T

j j
j

f k

k A PA N A PA k

g P k

−

=

ε ≤

⎤⎡≤ + ε λ + + ε λ ⎥⎣ ⎦

= ε λ

∑

x

x x

x

 (20) 

where 

 ( ) ( ) ( ) ( ) ( )2 1 2
max 0 max

1

g 1 1
N

j
j

A N A−

=

ε = + ε σ + + ε σ∑ . (21) 

Minimum of the scalar function ( )g ε  is obtained from condition 

 ( ) ( )2 2
max 0 max2

1
( ) 0 0

N

j
j

d Ng A A
d =

ε = ⇒ σ − σ =
ε ε ∑ , (22) 

 ( ) ( )
1 1
2 22 11

m max max 0 0 22
1 1

N N

j j
j j

N A A N A A −−

= =

⎛ ⎞ ⎛ ⎞
ε = ε = σ σ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ , (23) 

where from follows  

 ( ) ( )( ) ( )( )mΔ , ,kV f k f k≤ ε ≤ εx x x . (24) 

Putting mε  instead of ε into (18) we obtain 

 1
0 0

1
( ) ( ) (1 ) (1 ) ( )

N
T T T

k m m j j
j

V k A PA P N A PA k−

=

⎡ ⎤
Δ ≤ + ε − + + ε⎢ ⎥

⎣ ⎦
∑x x x  (25) 

If the condition (10) is satisfied then 

 ( ) { } { }2 2
min min2 2

( ) ( ) 0, 0kV Q x k x k QΔ ≤ −λ = −β < β λ >x . (26) 
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Likewise, for 0kx ≠  holds 

 

( )

( ) ( ) ( ) ( ) ( )

{ } ( ) { }

{ } ( ) { }

1

1 1

2 21
max max2

1

21
max max

1

2

0

max 1

( ) 1 ( )

1 ( )

( ) ,

j

k

hN
T T T

m j j
j l

N
T

m j j j D
j

N
T

m j j j D
j

D

V

k P k N k l A PA k l

P x k N h A PA x k

P N h A PA x k

x k

−

= =

−

=

−

=

< ≤

⎧ ⎫⎪ ⎪≤ + + ε − −⎨ ⎬
⎪ ⎪⎩ ⎭

≤ λ + + ε λ

⎡ ⎤
≤ λ + + ε λ⎢ ⎥
⎣ ⎦

= α

∑∑

∑

∑

x

x x x x

 (27) 

where 

 { } ( ) { }1
max max

1

1 0
N

T
m j j j

j

P N h A PA−

=

α λ + + ε λ >∑ . (28) 

So, based on Lemma 1, system (1) is asymptotically stable.  

Corollary 1. The linear discrete time-delay system (1) is asymptotically stable 
if there exist real symmetric matrix 0P >  and scalar 0ε >  such that 

 
0

1

(1 ) (*) (*) (*)

(1 ) (*) (*)

(1 ) 0 (*)

(1 ) 0 0

0

N

N P

N PA NP

N PA P

N PA P

+ ε

+ ε

+ ε ε

+ ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ >
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (29) 

Proof. From (10), for  

 ( )0 0
ˆ ˆ( ) 1 , ( ) 1 /j jA A A A Nε = + ε ε = + ε ε  (30) 

follows 

 ( ) 11
0 0

1

ˆ ˆ ˆ ˆ 0, 0
N

T T
j j

j
P A PA A P A P

−−

=

− − > >∑ . (31) 

Using Schur complements [7] it is easy to see that the condition (31) is 
equivalent to 
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0

1

1
0

ˆ ˆ ˆ
0, 0

ˆ

N
T T

j j
j

P A PA A
P

A P
=

−

⎡ ⎤
−⎢ ⎥ > >⎢ ⎥

⎢ ⎥⎣ ⎦

∑
. (32) 

Similarly, the condition (32) is equivalent to 

 

( ) 10 11
2 1

1
0

0 1
2

1
0

1
1

ˆ ˆ ˆ ˆ ˆ 0 0
0ˆ

ˆ ˆ ˆ ˆ

ˆ 0 0.
ˆ 0

N
T T T

j j
j

N
T T T

j j
j

P A PA A A P A
A P

P A PA A A

A P

A P

−−
=

−

=

−

−

⎡ ⎤
− ⎡ ⎤⎢ ⎥ ⎡ ⎤− > ⇔⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥⇔ >
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑  (33) 

Finally, the condition (31) is equivalent to 

 

0 1

1
0

1
1

1

ˆ ˆ ˆ

ˆ 0 0
ˆ 00 0

ˆ 0 0

T T T
N

N

P A A A

A P

A P

A P

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ >⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (34) 

Pre and post multiply (34) with { , , , }blockdiag I P P  we obtain  

 

0 1

0

1

ˆ ˆ ˆ

ˆ 0 0
ˆ 00 0

ˆ 0 0

T T T
N

N

P A P A P A P

PA P

PA P

PA P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ >⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (35) 

Using (30) and pre and post multiply (35) with blockdiag{I, 1 / (1 )I + ε , 

/ (1 )I Nε + ε , … , / (1 )I Nε + ε } we obtain 
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0

1

0 1

0 0

0 0

0 0

1
1

0
(1 )

(1 )N

T T T
NP A A A

PA P

PA P

PA P

P P P

N

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ ε
⎢ ⎥ε⎢ ⎥ >

+ ε⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ε
⎢ ⎥+ ε⎣ ⎦

. (36) 

With / ( (1 ))P N + ε  replaced by P we obtain (29). 

4 Numerical Example 

Example 1. Let us consider a discrete delay system described by 

 ( ) ( ) ( ) ( )0 1 1 2 21k A k A k h A k h+ = + − + −x x x x , 

 0

0.2 0.3
0.1

A
⎡ ⎤

= ⎢ ⎥α⎣ ⎦
, 1

0.3 0
0.2 0.1

A
⎡ ⎤

= γ ⎢ ⎥
⎣ ⎦

, 2

0.01 0.05
0.03 0.02

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

where γ is adjustable parameter and system scalar parameter α  takes the 
following values: –0.15 and 0.5. 

To determined the largest parameter γ  for various values of ε  by 
Corollary 1, the feasibility of equation (36) with γ  as a variable can be cast into 
a generalized eigenvalue problem 

 
0

min
P>

α ,    1 /γ = α , 

 0

2

1

(1 ) (*) (*) (*)

(1 ) (*) (*)

0 0 (*)

(1 ) 0 0

0 (*) (*) (*)
0 0 (*) (*)

(1 ) 0 0 (*)
0 0 0 0

N P

N PA NP

P

N PA P
N PA

+ ε

+ ε

ε

+ ε ε

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ < α
⎢ ⎥⎢ ⎥− + ε
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

. 

The delay-independent asymptotic stability conditions are characterized by 
means of range of parameter γ  and are summarized in Table 1. 
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Table 1 
Stability Conditions. 

 Parameter α  

Conditions – 0.15 + 0.50 

Theorem 1 1.370γ <  1ε =  1.022γ <  1ε =  

Theorem 1 1.468γ <  2.066mε = ε =  1.023γ <  0.886mε = ε =  

Corollary 1 1.469γ <  2.144opε = ε = 1.050γ <  0.767opε = ε =  

5 Conclusion 

In this paper we have established a new Lyapunov-Krasovskii method for 
linear discrete time systems with multiple time delay. Based on this method, 
two sufficient conditions for delay-independent asymptotic stability of the linear 
time systems with multiple delays are derived. These conditions stabilities have 
been expressed in the shape of Lyapunov inequality. Numerical examples are 
presented to demonstrate the applicability of the present approach. 
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