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  In this paper, a new formulation model for cellular manufacturing system (CMS) design 
problem is proposed. The proposed model of this paper considers assembly operations and 
product structure so that it includes the scheduling problem with the formation of 
manufacturing cells, simultaneously. Since the proposed model is nonlinear, a linearization 
method is applied to gain optimal solution when the model is solved using direct 
implementation of mixed integer programming. A new genetic algorithm (GA) is also proposed 
to solve the resulted model for large-scale problems. We examine the performance of the 
proposed method using the direct implementation and the proposed GA method. The results 
indicate that the proposed GA approach could provide efficient assembly and product structure 
for real-world size problems.  
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1. Introduction 
 

Cellular manufacturing system (CMS) is one of the most important tools on improving the flexibility 
of any production planning (McAuley, 1972). CMS is considered to be one of the most interesting 
applications of group technology (GT) and it can significantly influence the batch production and 
increases the overall performance of a production plan. CMS is a successful alternative in response to 
today's manufacturing requirements and it can reduce the unnecessary transportation among different 
cells. On the other hand, a good assembly plans can reduce the makespan of the final product which 
leads to lower total production cost. During the past two decades, there have been tremendous works 
dedicated on developing meta-heuristic approaches for CMS to provide efficient solutions (Gosh, et 
al., 2010). There are different types of mathematical models to address various aspects of CMS 
problem and one of the interesting ones is to study on assembly operations and product structure. The 
CMS problem can be categorized into three following groups. 
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The first CMS group is dedicated to the assignment of parts to machines. One of the basic 
applications of CMS design is to propose a plan to allocate different parts to various groups of 
machines. Schaller et al. (2000) considered scheduling part families and jobs within each part family 
in a flowline manufacturing cell where the setup times for each family were sequence dependent and 
it was desired to minimize the makespan. Park and Kim (2000) focused on a production scheduling 
problem in a tree-structured assembly system and considered due dates as constraints in the problem 
without considering tardiness. They suggested a branch-and-bound algorithm to solve the proposed 
mixed integer linear programming model and used a Lagrangian relaxation method in which a 
subgradient method was also employed to obtain lower bounds for the subproblems. Park and 
Mutingi (2001) presented a meta-heuristic based cell formation procedure where the problem was to 
simultaneously group machines and part families into cells. The cell formation problem (CFP) was 
modeled with three different objectives: minimization of inter-cellular movements due to exceptional 
parts, minimizing intra-cell work load imbalances, and combination of these two options. The GA 
was used to solve the problems and allowed to specify the number of cells required a priori and 
impose lower and upper bounds on cell size to make the GA scheme flexible to solve the CFPs. 
Franca et al. (2005) considered the makespan minimization while considering processing parts (jobs) 
in each family, simultaneously. This type of scheduling problem includes part families and jobs in 
which each part family in a flowshop manufacturing cell with sequence dependent family setups 
times was also considered. Boulif and Atif (2006) proposed a graph partitioning formulation of CFP 
which combines the branch-and-bound and GA methods. They considered some of the real-world 
circumstances including both practical input data (e.g. operation sequence and part demands) and 
realistic constraints (e.g. machine cohabitation and non-cohabitation). Also, cohabitation and non-
cohabitation constraints were also considered to treat the special cases of machines. Hu and Yasuda 
(2006) considered cell formation problem with alternative processing routes where the number of 
manufacturing cells was unknown in advance. They also adopted grouping genetic algorithm (GGA) 
in which a new chromosome representation, a local optimization algorithm for crossover operator and 
special mutation operators were developed to solve their problem formulation. Wu et al. (2007) 
proposed a new approach to concurrently determine the cell formation (CF), group layout (GL) and 
group scheduling (GS) decisions in CMS design. A conceptual framework and mathematical model, 
which integrates these three decisions, were presented. Also, a hierarchical genetic algorithm was 
developed to solve the integrated cell design problem. The results from their study indicated that 
these three decisions (i.e. CF, GL and GS) must be considered simultaneously in order to obtain 
better results. Tavakkoli-Moghaddam et al. (2008) presented a group scheduling problem for 
manufacturing by considering inter-cell scheduling and the sequence of cells. They also considered 
the cell scheduling problem in the presence of bottleneck machines and exceptional elements 
incurring inter-cell movement costs in CM. They proposed genetic and memetic algorithms to solve 
the given problem and evaluated the performance of their proposed algorithms by generating 
numerous data, randomly. 

 
The second group of CMS problems deals with converting from assembly lines to assembly cells. 
The assembly cells are usually formed by creating teams of workers where each team is responsible 
for a specific set of assembly tasks. The performance improvement from conversion of an assembly 
line to assembly cells and the factors which influence these improvements are different than the 
tradeoffs to be investigated when a functional layout is converted to cells. Sengupta and Jacobs 
(1998) stated that the cellular systems outperform an unpaced assembly line when teamwork is 
efficient and task time variances and setup times are high. In contrast, the assembly line outperforms 
the cells when task time variances and setup times are low and/or when teamwork in the cells causes 
an increase in assembly task time. In addition, Sengupta and Jacobs (2004) compared a conventional 
serial assembly line with two different configurations of assembly cells using the simulation models. 
They implemented their models on a real-world case study of television industry to understand the 
effects of the different factors in order to see which type of system works better. Johnson (2005) also 
emphasized that prior researches on various factors influencing performance improvement through 
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cell conversions primarily focused on the conversion from a functional to a cellular layout. He also 
used simulation model using some real-world data to measure the impact of each factor on the 
estimated performance improvement resulted by converting assembly lines to assembly cells. 
 
The third group of CFM problems is the integration of part assembly and CMS design problem. 
Panchalavarapu and Chankong (2005) studied assembly aspects in the context of cell formation 
problem (CFP) and proposed a new idea of assembling the parts in the same cells where the 
production of the parts happen. They also proposed a mathematical model which uses a new 
similarity coefficient among part, machine and subassembly to determine the suitable assignments to 
manufacturing cells. Their model employed a part-subassembly incidence matrix derived from the 
product structure. Aryanezhad and Aliabadi (2010) developed a nonlinear model to integrate the 
assembly details and product structure to the CFP where both machining and assembly operations 
were considered together to minimize the intercellular movements.  
In this paper, we present a new integrated method to consider both assembly operations and cell 
formation. The resulted problem formulation is nonlinear mixed integer optimization problem. The 
resulted problem is reformulated into a standard mixed integer programming where a traditional 
optimization toolbox could find the optimal solutions for small-scale instances. We also develop a 
GA method to provide solution procedure for real-world large-scale problems. This paper is 
organized as follows. The problem statement of the proposed method is given in section 2. Section 3 
develops a new GA to solve the aforementioned model for large-size problems. The computational 
results by LINGO and proposed GA for different examples in literature are reported in Section 4. 
Finally, Section 5 summarizes the contribution of the research. 

 
2. Problem description of and modeling 
 
As we explained before the proposed model of this paper considers the assembly details to form the 
manufacturing cells and scheduling the operations, simultaneously. The assembly operations are 
required to be performed in a specific order for making the final products. This order is usually 
represented with product structure known as bill of material (BOM). This tree diagram can be 
composed in any number of levels in which a set of lower level components called child are 
transformed to a component of  higher level called parrent. In this paper, one final product with 
simple structure is considered in which the assembled components are divided into two types: 
individual parts or the parts which contain only the machining consecutive operations and their role is 
always child and assembly items which are the items such as final product and they are composed 
from a number of components and do not need any machining operations. Fig.1 shows an example of 
product structure for one finished product in which the subassemblies are indicated with SAi and 
individual parts are placed in the lowest levels.  

 
 
 
 

 
 
 
 
 
 
 
 
 

Fig.1. An example of product structure 

Product

SA3SA2SA1 

4315  7 

SA6SA5SA4
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The following assumptions are used for the proposed model of this paper. 

 Production volume of each component depends on demand for final product and it is 
identified based on the production volume of higher level components. 

 Each parent item could have any number from a type of its children. 
 Both machining and assembly operations are just accomplished in one cell and each cell is 

limited by a lower bound and an upper bound. 
 On the contrary to the traditional models, we assume that the number of cells is one of the 

unknown variables and it is not predefined. 
 Intra-cell and inter-cell movement times of each component and duration times for setting up 

and performing machining operations are given. In addition, assembly times and setup times 
for assembly are also known. 

 The setup times on each machine are specified based on the precedence of parts. This 
assumption obviates the common drawback in other studies in which the machine setup time 
is considered when different part families are substituted on a certain machine. However, part 
families are not predefined, because grouping parts into some families does not need to be 
considered as a stage of cell formation and also defining a decision variable for assigning the 
part family number to each part is not helpful. On the other hand, grouping different types of 
parts in one family and for any reason like similarities in processing does not mean that the 
parts have equal setup time. Therefore, we consider ′

m
ppST  as the required time for preparing 

the machine m for processing part p' after the previous processing task on part p by the same 
machine. 

 
2.1. Indices 

p : 
Index indicating individual part types which contain only the machining 
operations (p=1,2,…,P); 

r : Index of alternative process routes (APR) for individual part type p (r=1,2,…,Rp);
q : Index of operations on route r of individual part type p (q=1,2,…,Qpr); 
m : Index of machine types (m=1,2,…,M); 

i : 
Index of assembly items which are composed from a number of components and 
do not have machining operations (i=P+1,P+2,…,I; i=I is the finished product); 

IDEi {j}: 
Immediate children set of parent I; each j can be either individual part or assembly 
item 

l : Index of cells (l=1, 2,…, C); 
 
2.2. Input parameters 

vp (vi) : 
Production volume of individual part type p (assembly item type i) in terms of 
cycle time. 

TAp 
(TAi): Time of intra-cell movement for batch of individual part p (assembly item i) 

TEp 
(TEi): Time of inter-cell movement for batch of individual part p (assembly item i) 

prqt : Duration time for processing the q-th operation on route r of part type p per unit 

it : Assembly time of one unit of parent item type i 
m

ppST ′ : 
Setup time for processing part type p' on machine type m after processing  part type 
p 
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iST : Setup time for assembling parent item type i 
Tm : Time capacity of machine type m 
LB : Minimum number of machines allowed in each cell 
UB : Maximum number of machines allowed in each cell 
L∞ : Large positive number 

q
prm

a =
1, if q-th operation on route r of part type p is processed by machine type m 
 
0, otherwise 

 
2.3. Decision variables 

mlX =
1, if machine type m  is allocated to cell l 
 
0, otherwise 

In the proposed model, q
prm sometimes is substituted to m in the mlX to indicate the machine 

type m is assigned to q-th operation on route r of part type p. In fact, ( )q
prm l

X is equal to 

q
pr

mlm
a X⋅  and is used instead of the aforementioned multiplication. 

Ypl =
1, if route r is selected for part type p 
 
0, otherwise 

Zil =

1, if item i is assembled in cell l 
 

0, otherwise 

Cl =

1, if cell l is formed 
 

0, otherwise 

m
ppu ′ =

1, if part type p is processed by machine m before part type p'  
 

0, otherwise 

'
m

ooST : Start time of q-th operation on route r of part type p 

iS : Start time of assembly operation of parent item type i 

 
2.4. Mathematical model 
 
The following represents the mathematical formulation of the proposed model. The objective function 
in Eq. (1) minimizes the cycle time of producing the given volume of finished product in 
manufacturing system.  For this purpose, Eq. (2) to Eq. (8) are considered to compute the start time of 
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finished product (SI). Eq. (2) computes the time of movement between two consecutive operations for 
each part. Constraint (3) is to ensure that the starting time of machining operations performed on each 
part depends on their sequences. 

{ }III tvSCT +=min (1) 
subject to  

( )1 1( , 1) ( ) ( ) ( )
1

(1 )+ ++
=

⎡ ⎤= + −⎢ ⎥⎣ ⎦∑ q q q
pr pr pr

C

pr q q pr p pm l m l m l
l

t Y X TA X TE X  , ,∀ < prp r q Q  (2) 

 ( , 1) ( 1) (1 ) , ,+ + ∞+ + ≤ + − ∀ <prq p prq pr q q pr q pr prS v t t S Y L p r q Q  (3) 

( ) '

( )( )

(1 ) (1 )

(1 )

q
pr

q
pr

m m
prq p prq pp prq pp prm

prm

S v t ST S L u a Y

a Y

′ ′ ∞

′′

⎡+ + ≤ + − + −⎣

⎤+ − ⎥⎦

 , , ( )m prq prq ′∀  (4) 

 
( )( , ) ( )

1
(1 ) , ,

=

⎡ ⎤= + − ∀ ∈⎢ ⎥⎣ ⎦∑ Q
jr

C

jrQ i jr j il j il i jm l
l

t Y X TA Z TE Z i j IDE r
 

(5) 

 ( , ) (1 ) , ,∞+ + + ≤ + − ∀ ∈jrQ j jrQ jrQ i i i jr i jS v t t ST S Y L i j IDE r (6) 

 
( )( , )

1
(1 ) ,

=

⎡ ⎤= + − ∀ ∈⎣ ⎦∑
C

j i jl j il j il i
l

t Z TA Z TE Z i j IDE  (7) 

 ( , ) ,+ + + ≤ ∀ ∈j j j j i i i iS v t t ST S i j IDE (8) 

 
1

1
=

= ∀∑
pR

pr
r

Y p  (9) 

 
1

1
=

= ∀∑
C

il
l

Z i  (10) 

 
1

1
=

= ∀∑
C

ml
l

X m  (11) 

 2 , ,≥ + ∀l il mlC Z X i m l  (12) 

 1=

⋅ ≤ ≤ ⋅ ∀∑
C

l ml l
m

LB C X UB C l  (13) 

1 1 1= = =

⎡ ⎤ ≤ ∀⎢ ⎥⎣ ⎦∑∑∑
p pr

q
pr

R QP

p pr prq mm
p r q

v Y t a T m  (14) 

 

, , , {0,1} , , , , ,

, 0 , , ,

{0,1} , , ( )′

= ∀

≥ ∀

′= ∀

pr ml il l

i prq

m
pp

Y X Z C p r q i m l

S S p r q i

u m prq prq
 (15) 

 
Constraint (4) considers precedence of parts which need to be processed on a given machine so that 
only one operation can be done, simultaneously. Eq. (5) and Eq. (7) calculate the transfer time of 
child item j to place of assembling parent item i depending on whether child item has the machining 
operation or it is assembly item, respectively. Eq. (6) and Eq. (8) adjust the requirement conditions of 
assembly start times based on product structure, correspondingly. Constraint (9) indicates that only 
one route for each part type which contains machining operation must be selected. Constraints (10) 
and (11) indicate that each assembly operation and machine type respectively are assigned to one cell. 
Constraint (12) ensures that a cell is formed if assembly or machining operation is assigned to it. 
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Constraint (13) limits the minimum and the maximum number of machines in each cell. Time 
capacity allowed of each machine is limited by constraint (14). Finally, Eq. (15) specifies situation of 
decision variables. 

 

2.5. Linearization 
As we can observe, there are some nonlinear terms in the structure of problem formulation such as 
the existing term 1( ) ( )+q q

pr pr
pr m l m l

Y X X  in equation (8). For each nonlinear term, a new auxiliary variable 

is defined as follows, 
 

1( ) ( ) ( )
, , ,+= ∀ <q q q

pr pr pr
pr prm l m l m l

U Y X X p r q Q l  (16) 

1( ) ( ) ( )
(1 ) , , ,+= − ∀ <q q q

pr pr pr
pr prm l m l m l

W Y X X p r q Q l  (17) 

, ,= ∀ ∈ijl jl il iG Z Z i j IDE l (18) 
(1 ) , ,= − ∀ ∈ijl jl il iH Z Z i j IDE l (19) 

( )
, , ,= ∀ ∈Q

jr
ijrl jr il i jm l

QAU Y X Z i j IDE r l (20) 

( )
(1 ) , , ,= − ∀ ∈Q

jr
ijrl jr il i jm l

QAW Y X Z i j IDE r l (21) 

Based on Eq. (16) and Eq. (17), ( )q
prm l

U is equal to zero when two consecutive operations q and q+1 of 

part p are performed in two distinct cells; but in this situation, ( )q
prm l

W is equal to 1. For the 

parent/child relationships where both components are the assembly items, if the cell  assigned to 
assembly operation of parent item (related to Zil) is different from the corresponding cell of child 
(related to Zjl), Gijk is equal to 0 and Hijk is equal to 1. Similarly, QAWijrl is equal to  1 and QAUijrl is 
equal to 0 when for a pair of parent and child where child has machining operation, the assembly 
operation of the parent and the last machining operation of child is not performed in the same cell. 
Thus, in terms of the right hand side value of each new variable, two corresponding linearization 
constraints are also added which are as follows, 

 
♦ Constraints of new decision variable ( )q

prm l
U  

 1( ) ( ) ( )
2 , , ,+≥ − ∀ <q q q

pr pr pr
pr prm l m l m l

U Y X X p r q Q l  (22) 

 1( ) ( ) ( )
3 , , ,+≤ ∀ <q q q

pr pr pr
pr prm l m l m l

U Y X X p r q Q l  (23) 

♦ Constraints of new decision variable ( )q
prm l

W  

 1( ) ( ) ( )
(1 ) 2 , , ,+≥ − − ∀ <q q q

pr pr pr
pr prm l m l m l

W Y X X p r q Q l  (24) 

 1( ) ( ) ( )
3 (1 ) , , ,+≤ − ∀ <q q q

pr pr pr
pr prm l m l m l

W Y X X p r q Q l  (25) 

♦ Constraints of new decision variable ijlG  

 1 , ,≥ + − ∀ ∈ijl jl il iG Z Z i j IDE l  (26) 

 2 , ,≤ + ∀ ∈ijl jl il iG Z Z i j IDE l  (27) 

♦ Constraints of new decision variable ijlH  
 (1 ) 1 , ,≥ + − − ∀ ∈ijl jl il iH Z Z i j IDE l  (28) 
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 2 (1 ) , ,≤ + − ∀ ∈ijl jl il iH Z Z i j IDE l  (29) 

♦ Constraints of new decision variable ijrlQAU  

 ( )
2 , , ,≥ + + − ∀ ∈Q

jr
ijrl jr il i jm l

QAU Y X Z i j IDE r l  (30) 

 ( )
3 , , ,≥ + + ∀ ∈Q

jr
ijrl jr il i jm l

QAU Y X Z i j IDE r l  (31) 

♦ Constraints of new decision variable ijrlQAW  
 ( )

(1 ) 2 , , ,≥ + + − − ∀ ∈Q
jr

ijrl jr il i jm l
QAW Y X Z i j IDE r l  (32) 

 ( )
3 (1 ) , , ,≥ + + − ∀ ∈Q

jr
ijrl jr il i jm l

QAW Y X Z i j IDE r l  (33) 
3. Proposed genetic algorithm 
In this section, we present a GA to solve the proposed model for some large-size problems. GA, 
popularized by Holland (1975), has been employed effectively to get good quality solutions for a 
wide range of optimization problems such as scheduling problems (e.g. Reeves, 1995;  Ruiz et al. 
2006). GA begins with an initial set of solutions, namely, population of chromosomes, which are 
promoted during consecutive iterations by genetic operators (i.e. selection, crossover and mutation).  
In addition, a fitness value is assigned to each chromosome in accordance with the objective function.  
The new offspring are produced regarding to current population for each iteration. 
 
3.1. Chromosomes representation 
In the proposed algorithm, the decision variables are represented as follows. 
1. Cells dedicated to each machine (CDM): A chromosome is considered which has as many genes 
as the number of the machines and array genes contain the cell number assigned to each machine. For 
example, suppose we have 5 machines and 3 cells, the solution for assigning machines number 2 and 
4 to cell number 1, machines number 1 and 3 to cell number 2, and machine number 5 to cell number 
3 is represented in an array of the following form: 
 

2 1 2 1 3 
 
2. Cells assigned to assembly operations (CAO): To show this, assume as many genes as existing 
parts in the system. If part has assembly operation, corresponding gene is assigned the cell number 
where the assembly is performed in, or else corresponding gene is assigned 0. 
 

0 2 0 0 2 1
 
3. Processing routes of parts (PRP): For each part which has machining operation, the processing 
route number is stored in a distinct gene otherwise it is assigned 0. For example, if there are 7 parts, 
we can put them in 7 genes from left to right, as shown below. Each gene number shows the number 
of selected route for corresponding part. So, it is clear that part 5 does not have machining operation. 
 

1 3 2 1 0 2 1 
 
4. Order of parts for entrancing to objective functions (OPE): This chromosome shows priority of 
parts concerning together for entrancing to time objective function. To show this parameter, assume 
as many genes as existing parts and sort parts according to their priorities. For instance, if we have 7 
parts, the following shows the processing priority of parts. 
 

4 2 3 1 5 7 6
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3.2. Parents' selection mechanism  
In this paper, one of the parents is selected based on roulette wheel method and the other one is 
selected, uniformly. The selection mechanism in roulette wheel is that the parents with more value of 
fitness are more appropriate to be selected. In other words, chromosomes with shorter waiting time 
are chosen for crossover. Thus, chromosomes are sorted in descending order so that the probability of 
selection for each chromosome is calculated in the following way. 

2 1,...,
( 1)k

kP k popsize
M M

= =
+

 (34) 

The cumulative probability of chromosomes to point s is calculated using the below equation. 

1
2

s

s s
j

q p s popsize
=
∑= ≤ ≤  (35) 

Then, for each chromosome in population, a random number r between 0 and 1 is generated. If 1r q<
, the first chromosome is selected, otherwise the s-th chromosome is selected such that 1s sq r q− < ≤ . 
 
3.3. Crossover and Mutation Operators 
The crossover operators used in the proposed genetic algorithm are single-point and the mutation 
approach is displacement in which a random point is selected randomly and inserted in another place. 
These operators are considered for all iterations of the algorithm so that the infeasible solutions are 
not generated. 

 
3.4. Proposed algorithm 

The following shows the steps of the proposed algorithm. 
 

Step 1: Generate initial population 

Step 2: Sort population in decreasing order of fitness function 

Step 3: if termination criteria satisfied {END} Else {Go to 4;} 

Step 4: Let X=RANDOM [0,1]; If X<Rc {Go to 5;} Else {Go to 6;} 

Step 5: Select two chromosomes for CDM, CAO and PRP  

Step 6: Let X=Random [0,1]; if X<Rm {Go to 7;} Else {Go to 8;} 

Step 7: Mute crossed chromosome for CDM, CAO and PRP 
Step 8: if Generated solution is better than a solution among population replace it among 

population;  

Step 9: Set i=0; 

Step 10: if i<Rep {Go to 11} Else {Go to 17;} 

Step 11: Let X=RANDOM [0,1]; If X<Rc {Go to 12;} Else {Go to 13;} 

Step 12: Select two chromosomes for OPE 

Step 13: Let X=Random [0,1]; if X<Rm {Go to 14;} Else {Go to 15;} 

Step 14: Mute crossed chromosome for OPE 

Step 15: if Generated solution is better than a solution among population replace it among 
population; Else {Go to 9;} 

Step 16: Set i=i+1; Go to 10; 

Step 17: Go to 2 
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4. Computational results 
 
4.1 Calibration of algorithm parameters; Taguchi method 
 

We use an experimental design of Taguchi to calibrate the parameters of our proposed 
algorithm. In this method, controllable factors are placed in inner orthogonal array, noise factors 
in the outer orthogonal array. This method changes the quality attributes into signal to noise 
ratio in order to locate the optimized levels of the useful factors in the experiments. In this 
design of experiment method, signal to noise ratio minimizes the variance and mean quality 
attributes to make them closer to the expected values. The details of Taguchi design method is 
as follows (Wu & Hamada, 2002): 

• For each experiment, S/N ratio and its ANOVA table of mean quality attributes are 
calculated. 

• For important factors, the factor with the highest S/N is selected. 
• Each factor which does not have any important impact on S/N ratio and has significant 

impact on mean of the response will be selected in a way that is closer to the objective 
point. 

• Factors which have important impact neither on S/N ratio nor on mean of response, are 
taken into consideration as economical factors. 

 
Initial experiments show that different levels of considered parameters in Table 1 generate 
better results compared with other values. We use Taguchi method L16 to calibrate the 
parameters according to the levels and the number of the parameters shown in Table 1. In case 
we did not use this method, the number of necessary experiments for each instance would be 
10×43=640. 
 
Table 1 
Algorithm parameters 
Parameters Levels 
Crossover Rate (Rc) 0.7, 0.8, 0.9, 1.0 
Mutation Rate (Rm) 0.025, 0.05, 0.1, 0.2 
Population Size (popsize) 20, 30, 50, 100 
Termination Criteria 100 iterations 
Rep 20 
 
For each instance, a relative percentage deviation (RPD) is defined as follows: 
 

1..min ( )

1..
100

min ( )
i d iitr S

i d i

S
RPD

S
=−

=
= ×

 

Itr, Si and d denote index of trial, objective function value for trial i and total number of trials in 
the orthogonal array L16, respectively. 20 instances were considered for the adjustment of 
parameters. The main advantage of using RPD instead of objective function as response 
variable is the dimensionless property of these parameters which would not depend on the 
configuration of parts and machines. For each parameter, the related parameters are selected 
stochastically from the previous parameters. The RPDs for each instance are considered as a 
repeat for Taguchi method analysis. Tables 2 and 3 show the ANOVAs analysis related to 
RPDs. Also means of RPD and S/N ratio are depicted in Fig. 2 and Fig. 3. According to these 
tables and figures we can select the levels 0,025, 1.0 and 30 for mutation rate, crossover rate and 
population size, respectively. 
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Fig. 2. The average S/N ratio plot at each level for RPD for algorithm calibration 

 

Fig. 3. Main effects plot for RPD values for algorithm calibration  

Table 2 
ANOVA input data for S/N ratios 

Source DF Seq SS Adj SS Adj MS F P 
Rm 3 2.74 2.74 0.9133 0.13 0.941 
Rc 3 17.715 17.715 5.9049 0.82 0.528 
Pop size 3 84.549 84.549 28.1829 3.92 0.073 
Residual Error 6 43.129 43.129 7.1881 
Total 15 148.132 
 
Table 3 
ANOVA RPD input data 

Source DF Seq SS Adj SS Adj MS F P 
Rm 3 0.06569 0.06569 0.0219 0.05 0.982 
Rc 3 1.03122 1.03122 0.34374 0.83 0.522 
Pop size 3 5.40573 5.40573 1.80191 4.37 0.059 
Residual Error 6 2.4717 2.4717 0.41195 
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4.2 Results 
To evaluate the performance of the proposed model, eight different problems are considered shown 
in Table 4. Note that we consider the small-size problems since we compare the performance of GA 
algorithm and exact solution together. Since assembly details and scheduling aspects are not 
considered in the literature as the proposed models, the required data related are not available. 
Therefore, these input data are generated randomly. For each test problem, the model has been solved 
by LINGO 8.0 and compared with other two cases as follows: 

1- For the first case, the model does not consider the scheduling. Therefore the objective function 
is to minimize the intercellular movements resulting due to processing and assembly operations. 

2- For the second case, the model does not consider both the scheduling and the assembly details. 

 
Table 4 
The information of the eight benchmark problems  

Problem # Ref. 
Problem specification 

Number of non-
assembly Items 

Number of 
assembly items 

Number of 
Operations 

Number of 
Machines 

Number of 
Cells 

1 McCormick et al. 
(1972) 4 - 8 4 2 

2 Xiaodan et al. (2007) 5 - 11 5 2 
3 Heragu (1997) 6 - 15 7 2 
4 Irani (1999) 6 - 14 10 3 
5 Panchalavarapu and 

Chankong (2005) 7 7 15 8 2 
6 Singh et al (1996) 8 - 23 6 2 
7 Chan & Milner 

(1982) 10 - 46 15 3 
8 McAuly (1972) 10 - 39 12 3 
 

Table 5 summarizes the results of solutions and a comparison between the intercellular movements 
(IM) and cycle times (CT) for three situations. The computer machine used for solving is Pentium IV 
with CPU 2.GHz and RAM 1 GB. 
 
Table 5 
Computational experiments of intercellular movements (IM) and cycle time (CT) in three situations 

Problem 
# 

Proposed Model Model without scheduling 
considerations 

Model without scheduling and 
assembly considerations 

IM due to 
processing 

IM due to 
assembly CT value IM due to 

processing
IM due to 
assembly CT value IM due to 

processing 
IM due to 
assembly CT value 

1 0 5 14216 0 0 16796 0 5 14216 

2 51 4 7961 0 0 10009410 0 0 10584 

3 2090 15 21855 0 9 10003100 0 11 30163 

4 455 10 11504 130 4 17585 130 12 17596 

5 0 5 300 1 1 320 1 11 10000260

6 2014 8 16709 1590 8 28193 1590 19 28221 

7 4732 23 31623 0 20 54859 0 29 54253 

8 1596 15 35376 1246 15 62966 1246 19 10001260
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In addition, using the proposed GA, the solutions are obtained and they are compared with 
corresponding solution of LINGO. The deviation of GA solution from the optimum value is 
calculated to compare the performance of the proposed GA with optimal solutions.   
 

*

*

−
=

GACT CTDeviation
CT

 

Table 6 
Computational results of the proposed method using direct implementation and GA 
Problem 

# 
(i) 

Optimum solution of LINGO Best solution of GA Deviation (Di)
% CT* value CPU Time CT value CPU Time 

1 14216 00:00:01 14216 00:00:02 0.00% 
2 7961 00:00:00 8017 00:00:03 0.70% 
3 21855 00:00:01 23122 00:00:04 5.80% 
4 11504 00:00:01 12896 00:00:03 12.10% 
5 300 00:00:03 320 00:00:04 6.67% 
6 16709 00:00:05 16709 00:00:04 0.00% 
7 31623 00:01:58 32362 00:00:07 2.34% 
8 35376 00:00:18 37054 00:00:07 4.74% 

 
Based on results of Table 5, we can see that the CT* values of the integrated model are lower than the 
time the model do not consider the scheduling parameters. Also, it is clear that the number of 
intercellular movements (IM) resulting due to assembly for model without assembly consideration is 
higher than the time this aspect is integrated with the CMS design problem. Table 6 also shows the 
details of the performance of the proposed model in terms of the CPU times and the objective 
function. As we can observe, there are two cases where both methods find the same optimal results 
and in other cases, the near-optimal solutions achieved by GA are fairly close to the optimal 
solutions.  

 
5. Conclusion 
 
In this paper, we have presented a new mathematical model for CMS design problem included cell 
formation and scheduling simultaneously where also the assembly operations and product structure 
are taken into consideration. The proposed model was formulated as nonlinear mixed integer 
programming and then has been simplified using some auxiliary binary variables. The resulted model 
was solved for some small problems and a GA method has been introduced to solve the proposed 
model for large-scale problems. The results of the proposed GA were compared with optimal 
solutions for some different problems in the literature. As a possible future research, one could 
consider the model with two objective functions including minimizing intercellular movements and 
minimizing cycle time of finished product.  
 
 
References 
Aryanezhad M. B. & Aliabadi J. (2010). Considering assembly operations and product structure for 

manufacturing cell formation. In proceeding of International Conference of Manufacturing 
Systems Engineering, Penang, Malaysia. 

Boulif M. & Atif K. (2006). A new branch-&-bound-enhanced genetic algorithm for the 
manufacturing cell formation problem, Computers & Operations Research 33: 2219–2245. 



  546

Chan, H. & Milner, D. (1982). Direct Clustering Algorithm for Group Formation in Cellular 
Manufacture, Journal of Manufacturing Systems, 1(1), 64-76. 

Franca, P. M., Gupta, J. N. D., Mendes, A.S., Moscato, P., & Veltink, K.J. (2005). Evolutionary 
algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups, 
Computers & Industrial Engineering 48, 491–506. 

Ghosh, T., Sengupt, S., Chattopadhyay, M. &  Dan, P. K. (2010). Meta-heuristics in cellular 
manufacturing: A state-of-the-art review. International Journal of Industrial Engineering 
Computations, 2(1), 87-122. 

Heragu, S. S. (1997). Facilities Design, Boston: PWS Publishing Company. 
Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan 

Press. 
Hu, L. & Yasuda, K. (2006). Minimizing material handling cost in cell formation with alternative 

processing routes by grouping genetic algorithm, International Journal of Production Research, 
44(11), 2133–2167. 

Irani S., (1999). Handbook of Cellular Manufacturing Systems, New York, NY: John Wiley & Sons, 
Inc. 

Johnson, D. J., (2005). Converting assembly lines to assembly cells at Sheet Metal Products: insights 
on performance improvements, International Journal of Production Research, 43(7), 1483–1509. 

McAuley J. (1972), Machine grouping for efficient production, The Production Engineer, 51, 53–57. 
McCormick, W.T., Schweitzer, P.J., & White, T.W. (1972). Problem decomposition data 

reorganization by a clustering technique. Operation Research, 20(5), 993–1009. 
Onwubolu G.C. & Mutingi M. (2001). A genetic algorithm approach to cellular manufacturing 

systems, Computers & Industrial Engineering 39: 125-144. 
Park, M.W. & Kim, Y. D. (2000). A branch and bound algorithm for a production scheduling 

problem in an assembly system under due date constraints. European Journal of Operational 
Research, 123, 504-518. 

Panchalavarapu P. R. & Chankong V. (2005). Design of cellular manufacturing systems with 
assembly considerations, Computers & Industrial Engineering, 48, 449–469. 

Reeves, C. (1995). A genetic algorithm for flow shop sequencing, Computers and Operations 
Research, 22 (1), 5-13. 

Ruiz R., Morato C. & Alcazar J. (2006). Two newrobust genetic algorithms for the flowshop 
scheduling problem, Omega, 34, 461–476. 

Schaller, J.E., Gupta, J. N. D.,  & Vakharia, A.J. (2000). Scheduling a flowline manufacturing cell 
with sequence dependent family setup times, European Journal of Operational Research, 125, 
324-339. 

Sengupta, K. & Jacobs, F. R. (2004). Impact of work teams: a comparison study of assembly cells 
and assembly line for a variety of operating environments, International Journal of Production 
Research, 42(19), 4173–4193. 

Singh, N. & Rajamaani, D. (1996). Cellular Manufacturing Systems: Design, Planning and Control, 
Chapman and Hall, New York. 

Tavakkoli-Moghaddam, R., Gholipour-Kanani, Y., & Cheraghalizadeh R., (2008). A genetic 
algorithm and memetic algorithm to sequencing and scheduling of cellular manufacturing 
systems, International Journal of Management Science and Engineering Management 3(2), 119-
130. 

Wu J. & Hamada M., (2002). Experiments: Planning, Analysis, and Parameter Design Optimization. 
Wiley. 

Wu X., Chu C. H., Wang Y., & Yue D. (2007). Genetic algorithms for integrating cell formation with 
machine layout and scheduling. Computers & Industrial Engineering, 53, 277–289. 

 


	A new approach for cell formation and scheduling with assembly operations and productstructure
	1. Introduction
	2. Problem description of and modeling
	2.1. Indices
	2.2. Input parameters
	2.3. Decision variables
	2.4. Mathematical model

	3. Proposed genetic algorithm
	3.1. Chromosomes representation
	3.2. Parents' selection mechanism
	3.3. Crossover and Mutation Operators
	3.4. Proposed algorithm

	4. Computational results
	4.1 Calibration of algorithm parameters; Taguchi method
	4.2 Results

	5. Conclusion
	References


