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Abstract. A weakly nonlinear evolution model that accounts tenucci et al.2000. In a continuously stratified fluid, as is
for multi-modal interaction in a small, continuously stratified well-known from linear analysis, the vertical distribution of
lake of variable depth is derived. In particular, an evolution fluid velocities and displacement of isopyicnal surfaces pos-
model for the first two vertical modes in a lake that is sub- sess multi-modal structures. The two-layer model accounts
ject to wind stress forcing is numerically simulated. Defining only for the first baroclinic mode, and it implicitly neglects
modal energies, energy transfer between the first and the seell the other baroclinic modes in the field.
ond vertical modes is calculated for several different forms | the first vertical mode, the isopycnal displacement is
of the density stratification. Modal energy transfer mainly only pronounced near the thermocline, and the entire fluid
occurs during reflection of mode-one waves at the verticalcolumn moves vertically in the same direction. In the sec-
end walls, and it is shown that the amount of energy transpnd mode, the isopycnal displacement is pronounced at the
fer from the first to the second mode is greatly dependent ofypper and lower parts of the thermocline, and the vertical
the Shape of the stratification prOfile. AISO, the initial modal fluid motions there take place in opposite directionS, stretch-
energy partition at the wind setup is shown to depend signif-ing and compressing the metalimnion (the thermoclinic layer
icantly on the penetration depth of the internal shear strespetween the epilimnion and the hypolimnion). The second
induced by the wind stress, especially if the stress distribuertical velocity mode has a single vertical node at the ther-
tion extends into the upper levels of the metalimnion. mocline. There are increasing numbers of nodes for higher
vertical modes, and their locations are spread increasingly to-
ward the upper and bottom surfaces, providing even shorter
1 Introduction vertical length scales. Many field observations have been
made which capture the multi-modal nature. Early discovery

Thermally stratified lakes are often subject to wind stressof multi-modal response was achieved dyprtimer (1952.
forcing, generating basin scale internal waves that are théﬂe identified the second vertical mode from a vertical tem-
primary energy source for driving material transport in lakes.Perature record in Windermere, and applied a model having
For modeling of such long internal waves in lakes, a simplethree homogeneous layers to calculate the frequency of the
two-layer stratification model has been preferably used sincéecond mode seiche. Years later, field observations in several
its establishment in early 20th century. The model is a realakes revealed internal responses dominated by the first and
sonable approximation as long as the lake is strongly stratsecond modesWiegand and Chamberlaid987 Munnich

ified (e.g., during summer) and the density stratification is€t al, 1992 Roget and Zambonil997, Boehrer 2000. In
confined to a thin layer between a homogeneous epilimniorfmall lakes, when the frequency of the second vertical mode
(upper warm, mixed layer) and a homogeneous hypolimnionis near that of diurnal wind forcing, a resonant response of the
(lower cold, stagnant layer). The stratification is generally sSeécond mode may occur. Observations have been reported of
continuous, and its structure varies seasonally, with conseapparent resonance in actual lakééiggand and Chamber-

quent seasonal effects on the evolution of internal waas ( lain, 1987 Munnich et al. 1992. Responses higher than the
second mode have been also reported in small lakes (seventh

to tenth mode dominated response in Frains lakedXerte

Correspondence tol. Sakai 198Q third mode dominated response in lake Banyoles by
BY (tsakai@usc.edu) Roget and Zambonil997). The multi-modal feature is not
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tion, we neglect Coriolis acceleration of fluid elements. As-
suming width of the lake is sufficiently narrow and uniform,
we start with the two-dimensional, incompressible, Boussi-
hy nesq approximated, inviscid equations of motion that are per-
turbed from the basic state of hydrostatic equilibrium:

— X
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o
— X
I
-

uy +w; =0,
Fig. 1. Basin configuration. Uy +uly + Wy = —px + 1z, )
W + UWy + WW; = —p; — 0,

an isolated phenomenon in lakes, but has also been reported + uo, + wo, = N2w.
in oceanography (e.g3ogucki et al, 2005 Gerkema2003. ) . ) o

Itis routine to solve the vertical normal mode equation for N these equations, subscripts denote partial derivatves,
a given stratification profile to obtain eigenfrequencies and'S the density normalized pressureis the density normal-
eigenfunctions for particular modes of interest. However, iZ€d horizontal stress to account for wind forcing and bottom
such normal mode equations are based on linear theory, arigiction along the horizontal( axis,o is the perturbed buoy-
the solutions therefore are linearly independent, yielding no®NCy €=pg/po), andN is buoyancy frequency defined by
information about modal interactions. Gerker@a@s, 2003  using a reference densipy, static density; (z) and gravity
adopted a multi-modal approach, and formulated a weakly$ 8S
nonlinear and weakly-dispersive multi-modal evolution sys-
tem that was successfully applied to the oceanography prosz(Z) =
lem. Utilizing a stratification profile in the Bay of Biscay in
which the third vertical mode is dominant, he demonstrated We assume the field domain that is enclosed by a non-
that energy may leak (not dissipation) from the third mode deformable upper surface, vertical end walls and nonuniform
to lower modes. Also, the amount of energy leakage wagvariable depth) bottom surface (FD.
shown to be highly dependent on the strength of the stratifi- Solutions of Eq. ) are dictated by slip-free, impermeable
cation.Hittemann and Hutt¢P001) observed emergence of and non-deformable boundary conditions:
solitary waves of the second vertical mode when a mode-one

_ 8 (@)
po dz

&)

soliton ran over a sill in a long laboratory channel. At the ¥ = 0 atz =0,

same time\Vlasenko and Hutte2001) simulated the two- dhy, )
dimensional Navier-Stokes equations in the same configu®’ = ~% 4~ atz = —hy,

ration as Hittemann’s experiment, and detailed structure of , — o atx = 0andx = L.

the flow field was obtained, confirming that both the first and

the second mode solitons are very close to those obtained by The length of the lake is denoted by andh;, is the vari-

Korteweg—de Vries (KdV) theory. able depth of the fluid. We introduce a long wave scaling to
To understand the full basin energetics in lakes, it is essenhorizontal space and time coordinates, and also define a slow

tial to determine the modal energy distribution among domi-space coordinatg,

nant vertical modes in a system allowing full bi-directional 3

propagation of the linearly independent modes. Nonlin-(X’ T)=px, 1), §=puwx, )

ear models are the essential for capturing inter-mode €Nwhere u~h /1«1 is the long wave scaling parameter with
ergy transfer. In this paper, we derive a weakly-nonlinear,, 5 gepth scale (e.g., thickness of surface mixed layer) and
wind-forced evolution model by applying the multi-modal ; js typical (long) wave length scale. We assume that the
approach that yields an evolution equation for each verticakgnography varies slowly in space (i.&,, is a function of
mode with inter-modal interactions through nonlinear terms.gn|ly) so that topographic interaction terms will appear in the

For fundamental study, we limit the vertical modes in the second-order approximation. We then expand the dependent

nant in many cases. The model is numerically solved, and
we study the modal energetics for various parameters of theu, p, o) = @™, p®, o) + 2u®@, .. ) + ...,
modeled stratification and the wind forcing. w = pew® + ew® 4., )
o _ . T =pe?@ +er@ 4.0,
2 Derivation of a nonlinear, multi-modal system

wheree~a/h<«1 is the amplitude parameter, represent-
We consider a closed basin containing continuously stratifiedng a typical amplitude of long internal waves. Scaling of
fluid. Toisolate the physics from the effect of the earth’s rota-the stresg is intentionally taken to be second-order in the
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amplitude parameter so that wind forcing or benthic fric- All dependent variables are now expanded using the con-
tional dissipation appears first in the second order balancsistency implied by Eq.6):

(i.e., weak forcing and weak damping), as do the leading ef-

fects of variable depth. We introduce the familiar KdV scal- u® = Z UD(X, &, T, (&, 2),

ing (i.e.,e=u?), in order to balance weak nonlinearity and n

leading-order non-hydrostatic correction at the same level of,,(D) _ Z WO (X, &, T (&, 2),

approximation.

Transforming independent variables using E4), (and _ ZP(l)(X £ TV (E. 2) (11)
substituting Eq. §) into Eq. (1), the leading-order balance Tl e <
gives the linear equation set

Ly V=3 "z X, E TN @ (€ ).

WD 4+ w® =0, .
u(Tl) + ngl) =0, Substituting Eq.11) into Eq. ), employing Eg. 10), and

(6)  eliminatingw,” and P, we obtain the coupled pair of evo-

1) @D _ i i
p: +0'P =0, lution equations

1 2..(D
New' =0. (l) 2 (@)
U +ciZ,x=0,

Cnlpx =
From Eqg. 6) one can obtain a single equation in favor of 7
D). n

@ (12)
7 +Ux =0.

w

As evidentin Eq.11) Z, is the modal isopycnal amplitude
and U, is the modal amplitude for the horizontal velocity.
g. @2 defines a set of independent, linear, bi-directional
waves propagating with their respective eigenspegds

Proceeding to the next order balance using Bpleads to

(1) 2, D
Weert + Nw Wyx = =0. (7)

One can seek, in the sense of a consistent asymptotic adz
proximation, a slowly-varying normal mode solution in the

form .
the inhomogeneous set
@

X 2 = U
where¢=0 atz=0 (upper surface) ang=—h, (bottom sur-

2 @,,@ @,,@ (@))
face) to satisfy leading order boundary conditions. The de-#7~ =+ P —{uPuy” +wPu 4 (13)
pendence of the eigenfunction on the slow longitudinal coor- @ 4@ = D
dinate¢ arises from the inhomogeneity of the wave guide i in ? re
the propagation direction (i.e., variable deptl§)). We note UT —N?2w@ = (Ve D)y + (wDPeD)_}.

that the analysis can be readily extended to include a slowly-
varying wave guide width, as in the single-mode model pre- Note that the leading-order stress tetf? appears and
sented in our unpublished report, but we choose to not inthat the boundary condition in the vertical direction gives
clude that further complication in the present study. Sub-

ituti - w® =0 atz =0,
stituting Eq. 8) into Eq. (/) one can construct a standard
boundary value problem along the vertical line for every d (14)

w? = DL gtz = —p

. N2(2) b

¢n/ + 6‘2(%') on = 0; Pulz=0 = ¢n|z:—hb =0 (9)
" The term uél) in the first equation in Eq.1Q3) is the

n=12--, leading-order effect of slowly varying depth; the brack-

wherec, is an eigenvaluep, is the corresponding eigenfunc- €t€d terms in the second equatiorrngomentum) co)n'Faln
tion, and primes denote partial derivatives with respect to  the leading-order nonlinear acceleration; the tanf® in

The corresponding orthogonality relation is the third equationz-momentum) is the leading-order non-
hydrostatic correction; and the bracketed terms in the last

0 0 ; S : X
I -
by dz = _C’; Sn’ /h N2¢m¢ndz — L5 equation (continuity) define the leading-order buoyancy flux

n —np

_ correction.
0 (10) We expand the second-order variabié®, p@ ando @
andl, = N?¢2dz, in the same manner as in Eq.1j, albeitw® can not be
—hy expanded byp, becausep, does not satisfy Eq.l1d). It is
wheres,,, is Kroneker’s delta. not necessary to expand® to define the evolution at this

level of approximation. Substituting the expansion of the de-
pendent variables into the conservation of mass equation (the
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first equation in Eql3), multiplying by ¢/, then integrating
over the physicat domain and using Eq10), one obtains

_U<2> / o w@d; =

Z U(l) ! %d (15)

i ~hy

Using Eqg. (4), the integral term on the left side of EQ.H)
can be evaluated via integration by parts

dh
w(z)dz_z[¢n e,

(€8]
U
—hy dg !

0
_ q&”w(z)dz,
—hp "

(16)
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appearing in Egs (7, 18) are defined by the following set of

relations:
N? |
<—2 ¢n¢i¢j>,
€

N? |
<c—r21¢n¢i¢j>,

2

cl’l /
e =—hp>»
In ¢n |Z b

(u) () _
nll] <¢n¢ ¢ > bnblfj -

40 N_2¢ oy p©@) _
nij — C}% nyivy [ nij —
(19

2

C
dnj = ($n®j). kon = 0} lz=0. kon =

n

2 [0
where (- ) = —”/ (-++)dz.

—hyp

The termU(l)Z( ) appearing in Eq.18) (i.e., continuity
equation) denves from the vertical buoyancy flux term, and
one observes that the equation cannot be integrated with re-
spect toX because of the presence of this term. Hence the
velocity and isopycnhal amplitudes can not be decoupled into
a single, second-order-in-time wave equation. Combining

and w® can be eliminated by using the last equation in Eq. (12) and Egs. {7, 18), and transforming the indepen-

Eq. (13). Through this procedure EqlY) yields an evolu-
tion equation for the isopycnal amplitude functi@p. The

evolution equation fot/,, can be obtained by substituting the

expansions into momentum equations in Eg) @nd using

Eq. (10). After some algebraic manipulation, the evolution
of the leading-order field variables is obtained in the form:

UrEZT) +CZZ(2) Z[ r(llf;U(l)U(l)—I—b(”)U(l)U/(.l)}

n“nX — nij
ij
+ ZdniUi()l()XT
i
dc? 1 2,1 I\ 2
—3—5”251) 2z - Z<¢;La_§l c?z{?
l
1
+ kot — kon 7y + 5 (V207 ®) (17)
C}’l
and
@ 2
ZnT + UnX =
©@) 77D 5D @) 77D D) @
_Z{n‘l’](u ZMx + b uR 7} - U
diy ¢\l o
—Z{—mm_hb & <¢n8$>}U,-. (18)

We point out that the first-order stres§” has been di-
vided into two parts: r(l)
face, andrb
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dent variables back to their non-scaled form, we obtain the
weakly-nonlinear evolution equation set:

Unt + (ngn)x = - Z { ;(1th])Ul Ujx + bmj UixU }
ij

+ Z dpiUixxr — Z rnicl'zzi
i i

1
+ ksnTs — kpntp + — <N OuT > (20)
n
and
Znt +Upx = — Z{ r(nj)(U Z )x +bn(lrj)Utx j}
ij
— ZS”iUi’ (21)
i
where
ni = ¢ 8¢l/ [¢ ¢ li=—n +rm (22)
" dx =Ty

The r,; coefficient, contammg effects of variable depth
(alt., spatially varying eigenvalue), can be further evaluated
by using Eq. 9) and Eq. £0). The final expression is given
here without derivation:

(cn/c)2 [qﬂ 1,Ad|nc,.2 fisn
T R A 29

1d L\ .
Eal (—), ifi =n.

In evolution equations Eqs2Q, 21) there are essentially

three kinds of modal-coupling terms: nonlinear ones, non-
is the wind stress at the lake sur- hydrostatic ones, and topography induced ones. The non-
is the bottom shear stress. The coefficients hydrostatic coupling in Eqs20, 21) derives from the fact

www.nonlin-processes-geophys.net/16/487/2009/
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that the hydrostatic representation of the modal structure isnodes in the system. To reduce the nhumber of free parame-
no longer valid at second order. The linear terms scaled byers in the evolution equation, we introduce non-dimensional
the coefficients;; ands;; appearing on the right hand side variables by use of the following scales:by L; Z, andz

of the equations capture the effect of self-modal distortionby the surface mixing layer thickness; ¢ by 2L /co, where

and cross-modal transfer resulting from variable depth ef-cg is a reference phase speed taken as a spatial average of V1
fects. That these terms appear at this order is a direct corphase speed;, (or cg) by Noh1, whereNg is the maximum
sequence of the slowly-varying depth assumption, which inbuoyancy frequency; antl,, by Nohf. After recasting the
turn is required in order to derive a rationally-based evolutionEgs. @0, 21) in a dimensionless form, we have an evolution
system where the underlying dynamics is represented by thequation set for V1 in the form:

linear modes of the system. A more general derivation of the

topographic coupling terms for uni-directional wave propa-

) . 2
gation over topographies that vary both along and transversey, + —(c V), = —{M111UUx + 112UV,
to the propagation direction has been developehffiths
and Grimshaw(2007) in their study of internal tide at conti- + /L121VUX + 122V Vi) + S%{d11Uxxr + di2Viexs}

nental shelf regions.

The wind stress; can be expressed in terms of a friction
velocity u .0 and a prescribed, dimensionless stress distribu- , .
tion function F (x, t). - co_SkbleU|U¢1 +Voli=—n, (28)

2 2c0 ~
— —{k11Y +k12Z} + — ka1 F(x,t)
co w

Ty = u%yF (x, ). (24)  and

2 2
The vertical distribution of the horizontal stress induced Y, + Ly, = _{ o111(UY), — 0112(UZ),

by the wind, varying from its surface value, is also needed
to determine the coefficieriiv2¢, ) in Eq. (20). Assuming - 0121(VY)x —0122(VZ)x
only the wind stress contributes to the integral, we madel + v111Y Uy + v112Y Vi + v121ZUy + v122Z V)

using a static, vertical stress distribution functiog) 2
2 - . — —{*U + 112V}, (29)
T =uioF(x, 1)7(2) = 7,7(2), (25) €0

where# is dimensionless, anf(0)=1. The bottom stress, ~ 2nd corresponding set for V2 in the form:

can be modeled assuming that the boundary layer is turbulent

and using a friction coefficient ;- 2 (22) 2 UU Uv
+ - c52)x = CO{M211 x + 212U Vy

7y = C yuplup| + 221V Uy + 1222V Vi) + S{d1Uvxs + d22Viexs)

2 2c0 ~
— —{k21Y +k22Z} + — k2 F(x, 1)
co w

=Cy Y UiGx, D le=py, | D U;j(x, O le=—n, | - (26) ]
’ ' = —k2CyVIUG, + Vlem, (30)
The value ofC ; for shallow water flows is typically quite 0
small, of order 102 (cf., Baines 1995, with recommended  and
value C y=0.0025 for weakly nonlinear long wave theory 2 2
(Grimshaw 2009. We fixedC at this value throughout this  Z, + —V, = —{—0211(UY)x — 0212(U Z),
study, and the value af, in Eq. (26) is the inviscid, wave- €0 €0
induced velocity at the bottom surface. We take the contri- — 0221V Y)x — 0222(V Z)x
bution of bottom friction to a particular mode in the form + v211Y Ux + v212Y Vi +v201ZU, + v220Z V)
— E{)»2;|_U + A22V} (31)
T = Ton = CrUn@p ety | Y Ujb)li=ny| - (27) co

J The variabled/ andY in these equations are the velocity

amplitude and the isopycnal amplitude of V1, respectively,

3 The two-mode evolution model and V and Z are the V2 counterparts. The terms on the
right hand side, as for example in EQ8], represent nonlin-

In this study we limit the number of active vertical modes ear self-modal and cross-modal interactions, non-hydrostatic

to the lowest two (V1: mode-one; V2: mode-two). This re- (dispersive) effects, variable depth effects, followed by wind

striction is made in order to reduce the complexity of the forcing and bottom frictional damping, respectively.

evolution model while retaining the energetically-dominant

www.nonlin-processes-geophys.net/16/487/2009/ Nonlin. Processes Geophys., 562480069
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(a) 0 : be roughly estimated by the reIaticWi%1055U1‘02, where

’ Uno is the wind speed in m3 measured at an elevation of
10 m above the mean water surface. Data from both labora-
tory experiments and field measurements reveal that signif-
icant internal wave dynamics are observed when the Wed-
derburn number lies in the range<¥W <5 (cf., Horn et al,
2007). The quantityky, in Eq. 28) and Eq. 80) is the modi-

fied wind forcing factor defined as

lzsn = kgn + %(szbnf(z))- (33)
C

n

70, With this evolution model in hand, we set up the ver-
L tical structure which qualitatively represents typical strati-
IS fication profiles in lakes. We adopt a three-layer, contin-
o uously varying density structure comprising a well-mixed

> \'\\\ layer (epilimnion) of thicknesa1, a thermoclinic layer (met-

i alimnion) of thicknessi, having uniform density gradient,

/ and a weakly-stratified deep water (hypolimnion) of thick-
7 nesshz. The square of the corresponding buoyancy fre-
= 0 ] quency is expressed by a simple formula in a dimensionless
0 form:

-2

-3

-4

N 1 z4+1
N2(z) = = |1 —tanh

7 7 1+h
-3 S //, +1- Nf) [tanh(%#) — 1“ , (34)

|
-4 ﬁl— c—-hy=2 / /
i —moohg=3 | g / where§ is a smoothing parameter across the interface be-
5 tween the metalimnion and either the epilimnion or hy-
polimnion, ande is the buoyancy frequency in the hy-
polimnion relative to the value in the metalimnion.

-5

1 0 1 -1 0

Fig. 2. Profile of buoyancy frequencyz, vertical mode-1 eigen-

function ¢ and vertical mode-2 eigenfunctigi for different (a) We presentin Fig2 s_elected prOf”?S dVZ(Z) for di_ﬁel’ent
metalimnion thicknes#p, (b) hypolimnion stratificationV?, and /2, N2 andhs, and their corresponding eigenfunctions of V1
(c) hypolimnion thicknes#s. (¢1) and V2 @).

The eigenfunctions are normalized by their maximum

) values. If there is no stratification in the hypolimnion

The shallow water parametgy defined as=h1/L, enters  (gjg. 23, ¢), ¢ attains the maximum value within the met-
as a quadratic scaling factor in the dispersive terms appeajimnion, andg, has extremal values near the top and the
ing in Eq. @8) and Eq. 80), and as an inverse scaling factor pottom portions of the metalimnion, implying that isopycnal

multiplying the bpttom friction terms in.the same equations. displacements of V1 and V2 are both pronounced in the met-
Also appearing in Eq.28) and Eq. 80) is the Wedderburn  gjimnion, which is stretched and squeezed by V2. A slight

numberW. This parameter is inversely proportional to the jncrease in the stratification of the hypolimnion leaves the
magnitude of the wind stress (cimberger and Patterspn  ghane ofp; nearly unchanged, by is significantly altered
1990andHorn et al, 2001), is defined by the relation having its maximum value shifted downward into the hy-
c2/L c2hy polimnion (Fig.2b). Stratification in the hypolimnion en-
0 0 . ; : - .
= = (32) hances vertical displacements in the hypolimnion via V2,
o/ ol and also enhances the horizontal motions at the lake bottom
The Wedderburn number measures the baroclinic pressurehere the gradient af, is maximum. Itis evident, therefore,
gradient relative to the vertical gradient of the imposed windthat weak stratification in the hypolimnion can significantly
stress represented in terms of the water friction velacity =~ enhance benthic stimulation from wind-forced V2 internal
Using measured values of the drag coefficient induced bywaves.
wind blowing over a wavy free surface, as summarized by The vertical structure oN?(z) determines all the coef-
Phillips (1966), typical values of the Wedderburn number can ficients in Eqgs. 28-31). The coefficients are computed by

Nonlin. Processes Geophys., 16, 48@2 2009 www.nonlin-processes-geophys.net/16/487/2009/
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Table 1. Coefficients of selected nonlinear terms for different Table 3. Coefficients of selected nonlinear terms for different hy-

metalimnion thicknes&,. The thickness and the stratification of
the hypolimnion are fixed ak3=3 andN,%:O, respectively. The
smoothing parameter is chosendas0.1 for h,=1 and 2,§=0.05

for h5=0.5, and§=0.025 forh,=0.25.

ho 0.25 0.5 1 2
“111 0.943 0.792 0.554 0.222
o111 —0.314 -0.264 -0.185 -0.074
V111 0.314 0.264 0.185 0.074
ui22  12.166 6.460 3.329 1.234
o122 —0.089 -0.087 -0.078 -0.049
V122 0.175 0.169 0.148 0.090
uooo 14.834 7.169 3.312 1.383
o229 —4.945 —-2.390 -1.104 -0.461
V222 4,945 2.390 1.104 0.461
1211 0.413 0.336 0.237 0.130
0211 0.467 0.426 0.373 0.331
vo11 15195  7.200  3.345  1.522

polimnion thicknes#3. The thickness of the metalimnion, the strat-
ification of the hypolimnion and the smoothing paramter are fixed
ashp=1, N?=0 ands=0.1.

h3 1 2 3 4

p111 0.000 0389 0554  0.642
o111 0.000 —0.130 -0.185 —0.214
v111  0.000 0130 0.185 0.214
p1z2  0.000 2195  3.329  4.048
o122  0.000 —0.058 -0.078 —0.088
v12p  0.000 0109 0.148  0.168

U222 3.113 3.275 3.312 3.325
o222 —1.038 —-1.092 -1.104 -1.108

V222 1.038 1.092 1.104 1.108
211 0.271 0.254 0.237 0.225
0211 0.548 0.429 0.373 0.341
V211 3.248 3.345 3.345 3.328

Table 2. Coefficients of selected nonlinear terms for different strati- COMes larger for thinr_1er metalimnion (see F1g). Depend-
ficatioan in the hypolimnion. The thicknesses of the metalimnion iNg on the wave amplitudes, the appearance of these large co-

and the hypolimnion are fixed as=1 andh3=1, respectively. The

smoothing parameter is fixed &s:0.1.

N? 0 0.1 0.2 0.5
pi11 0554 0495 0412 0.155
o111 —0.185 —0.165 -0.137 -0.052
vi;1 0185 0165 0137  0.052
niz2  3.329 —0.097 —0.563 —0.534
o122 —0.078  0.003  0.026  0.034
vig 0148 -0.006 -0.048 —0.059
na22 3312 0592 0189  0.218
022 —1104 -0.197 -0.063 -0.073
vp2p 1104 0197 0063  0.073
up11 0237 0247 0122 0.018
o211 0373 0490 0423  0.358
vp11 3345 2969 1532 0792

numerical integration for several different valueshof(Ta-
blel), Nf (Table2) andh3 (Table3), where we provide only
coefficients of self-nonlinea11, 1222, - - -) and coupling-
nonlinear termsy{122, 211, - - -) for the sake of later discus-

sions.

efficients can cause the corresponding nonlinear terms to be
larger than linear terms. The asymptotic assumption that was
used to derive the evolution model then becomes disordered,
necessitating that the model be restricted to wind-forcings
that yield smaller amplitudes. In fact, when the evolution
model was simulated (numerical method and run configura-
tion are briefly described in Seat), numerical instability
was encountered as the strength of the wind stress forcing
was increased. In Fi@, for example, the threshold Wedder-
burn number for achieving stable numerical integration up
to two V1 seiche periods as a function of the metalimnion
thickness for a fixed total depth is plotted.

For thinner metalimnion, our numerical code is not capa-
ble of performing long-time integration for strong wind forc-
ing. We also found during numerical testing that the insta-
bility is pronounced for higher numerical resolution. When
all the nonlinear coupling terms between the two modes are
turned off, numerical integration becomes stable even for
strong wind forcing. The precise mechanism of how the
instability is triggered is not straight forward. We conjec-
ture that the large nonlinear coefficients enhance excessive
energy transfer between V1 and V2 (i.e., widely disparate
length scales), and also generate excessive energy levels at
high wave numbers.

The most notable result is the sensitivity of the coefficients Based on the data presentedHbgrn et al.(2001), show-
with respect to the thickness of the metalimnion (see Ta-ing that the regime of active, wind-driven, V1 nonlinear in-

ble 1). Some of the coefficientgug22, v211, 122) become
very large as the metalimnion thickness decreases.

ternal wave motion occurs when2xW—1<1, and the rep-

Selfresentation of the Wedderburn number in terms of the shal-

nonlinear coefficients of V2 are larger than their V1 counter- low water parametes and the 10 m wind spedd o given in
parts by roughly an order of magnitude. This is due to the factthe discussion following Eq3Q), it is clear that the present

that the gradient o$, in the middle of the metalimnion be-
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1.8 : : : : : : : : 4 Wind forced response of two-mode model
141 When the wind stress is applied over the lake surface, a hor-
2l izontal shear stress progressively penetrates across the epil-
unstable (t > 2) imnion. Heaps and Ramsbotto(t966 found an analytical
1} solution for the shear stress distribution by solving the two-

- dimensional, linear hydrostatic equations. In this case, the
= 08¢ stable (t < 2) ] wind induced shear stress decreases to zero linearly across
06 | the epilimnion. For a continuously stratified field, however,

the shear stress distribution is not well known. The most
04} commonly assumed form takes the shear stress diminishing
linearly to a zero value at the base of the epilimnion, and the
02T T stress is zero beyond (e.g., 9denismith 1987). With this
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ assumption, the stress teXmi%g, 7) in the wind stress factor
0 02 04 06 08 1 12 14 16 18 ks is identically zero. In this study, we adopt the linear stress
hs function, but allow the stress to penetrate the metalimnion
(see Fig4).
Fig. 3. Model stability limit in inverse Wedderburn numbgf—1 The stress function is expressed by introducing a stress

as a function of the metalimnion thicknessfor a fixed total depth  penetration depth; as a parameter:
(h1+ho+h3=b); (hs=1.0).

hy .

it —if —hy <z2<0,

Ts i)=1 " (35)
A 0, otherwise.

Furthermore, in this study the wind stress functiogx, ¢)
hs T (Z) h1 is uniform over the surface of the lake and, is switched on
and off in time. Lake response to variations in the spatio-
temporal character of the wind forcing was studied in some
detail in the uni-modal study by authors (unpublished report).
1 h2 Equations 28-31) are solved numerically using the 4th-
order compact finite difference schenmelg, 1992 for spa-
— Y tial discretization, and a forward-in-time 3rd-order Adams—
Bashforth scheme. The 4th-order compact filtexl¢, 1992
2 Slinn and Riley 1998 is applied every 10 time steps for
N (Z) dealiasing and stabilization. Numerical resolution that fol-
low was chosen using 1025 points for spatial domain and a
time stepAr=5x10-°. This high resolution configuration,
in conjunction with the spatial descretization scheme with
Fig. 4. Penetration of the wind stress into the metalimnion. “spectral-like” resolution, sufficiently resolves steep nonlin-
ear fronts and oscillatory waves.

Figure5 shows the evolution of isopycnal amplitudes (
'and Z) at several selected times following the initiation of a
wind event in a lake of uniform depth withh=1, h3=3.

In what follows, a smoothing paramet&=0.1 used in
Eqg. 34), and a shallow water parameter$£1/500, defin-

wave dynamics provided the metalimnion is not too thin (i.e.
h2>0.8, say).

Adding stratification to the hypolimnion decreases the
magnitude of the nonlinear coupling coefficients (see Ta-

ble 2), making the model less nonlinear and, hence, aIIOW'ing the basin length in terms of the upper mixed layer depth,

ng larger wind energy m_put o the system. Reo_lucmg theare used except as otherwise noted. Uniform, rightward wind
thickness of the hypolimnion decreases the magnitude of V]stress oW=15 is applied for the first quarter V1 seiche pe-

nonlinear coefficients, while V2 counterparts change onlyriod (t=1/4), and the wind is turned off thereafter. The wind

S"%hrtlly'n": Isr\i,tvei” li(gormn flrlon; *fd;’ rtheor?r/] tr‘? Ithe Vr;?zlkt stress penetration depth is chosemas1 (no penetration
sefi-noniineartly Is identically zero for a Completely Symmet- ) y,q metalimnion). The model was integrated from an ini-

E'; Slrtfl‘l) s;%g?;ilu-erglsf Itshr;ece;l(l)zsesdn:)nnl-irr?gfgrh?’z(j tial condition at rest. L.ooking at Vi, at the gznd of the Wind
1=02= 2 & . . ML setup time{=1/4), the isopycnal surface is tilted almost lin-
paz1, - ), which are not included in the table, are non-zero early across the domain. After the wind setup, the surface
for this configuration. tends to return dynamically to its initial equilibrium state,
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(a) (b)

t=0.25

t=0.75

t=1.25

t=1.75

t=2.25

t=25

t=2.75

Fig. 5. Evolution of the isopycnal amplitude f¢a) mode-1 andb) mode-2 with the wind stress penetration depth=1. The abscissa
covers the full lengti{0, 1) of the basin in the scaledtcoordinate.

forming a basin scale seiche. After one-seiche period, a nonv2 domain just during the V1 wave reflection process (e.g.,
linear wave front develops (as indicated by arrow in the fig-see V2 panels at=1.75, 2.25, 2.75 in Fig5), which implies
ure), and the front steepens as it propagates. When the frotthat energy is transferred from V1 to V2 during V1 wave
becomes steeper (abaut1.75), an oscillatory wave packet reflections. Footprints of V2 waves can also be seen in the
forms behind the front, owing to the realization of an approx- V1 domain, but their amplitudes are very small and not so
imate balance between the weak nonlinearity and the leadingignificant energetically.

non-hydrostatic effect. The oscillatory waves spread as the The space-time dynamics associated with the reflection of
degenerating front moves back and forth in the domain. V1 serves as an effective generator of V2. This arises be-
iicause the “stagnation” of V1 induces a bulging of the met-

should be noted that the V2 response immediately following2/imnion, which at leading-order resembles a V2 modal dis-
the wind setup has an oppositely-signed displacement of th&rtion of the isopycnals. There may well be a generation
reference isopycnal relative to the V1 response, but of com©f higher modes in this reflection precess, but the reflection
parable magnitude. The shorter horizontal scale of the th@f V1 (alt., the collision of V1 waves) will principally in-
V2 displacement at=1/4, as compared to the V1 displace- ducel an energy transfer to V2 so_long as the pgak of the
ment, is a direct consequence of their different long waveY1 €igenfunction and the nodal point of the V2 eigenfunc-
phase speeds. tion are posmoneq near the mid-point of the metahmn.lon.
) o _The symmetry/anti-symmetry of these modes will be shifted
The negative volume on the left side is steepened, and iy ihe presence of stronger stratification in the hypolimnion,

evolves into a high wave number oscillatory wave packet agyhereupon one expects greater energy flow to higher modes
it propagates toward the basin interior. The wave phase spee(q/3 Va4, etc.) during reflection.

of V1 is about one-third of V2¢;=0.939; ¢2=0.284). A
distinct wave packet appearsrat2 for V1, andr~0.75 for

The initial response of V2 appears near the end walls.

The numerical result discussed above, however, should be
’ , : . looked at with caution. The field response for both modes de-
V2. Since the self nonlinearity of V2 is much stronger than henqs quite sensitively on the wind stress penetration depth
that of V1 (see Tabld, 11111=0.554; 122,=3.312), wave ;" Figure6 shows several corresponding fields for evolution

lengths in the V2 wave packet are much shorter than theigyop, the wind stress penetrates down to the mid-level of the
V1 counterparts. More interesting, when V1 waves reﬂeCtmetaIimnionh —1.5)
s=1.5).

from the end walls, footprints of V1 waves are evident in the
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(b)

t=0.25

t=2.25

t=2.75

Fig. 6. Evolution of the isopycnal amplitude f¢a) mode-1 andb) mode-2 with the wind stress penetration defpth-1.5. The abscissa
covers the full lengti0, 1) of the basin in the scaled-coordinate.

The response of V1 is qualitatively similar to that in Fag. Substituting Eqg.39) into Eq. 38), and evaluating the in-
but the response of V2 is quite different, exhibiting a substan-tegral assuming the lake depth is uniform, one obtains:
tially diminished wind energy input to V2. Hence, there is no
generation of a V2 nonlinear front. Energy transfer from V1

to V2 during wave reflection is still clearly observed. 1n [ 2 2 ]
o . . . =1z [(U d11{U d12(U,V,
It is instructive to define the modal energy and to quantify 2 c% W5+ d1afU;) + dia(Us Vi)
aspects of the modal energetics. From the Euler and continu- 1
ity equations in the Boussinesq limit, one can show (e.g., see +5 [11((Y2) — cdo111(Y3))

Gerkema2003 that the conserved energy density is )
+ I2(v211 — 2021D)(ZY )]}

dE = 22 + w?) +i By o™ (36) v
=-w+tw —
1 N2 11

2 a0 (12N - [Ec—z[(VZ)+d22(Vx2>+d21(UxVx>]

where 2 1
B +3 [2(7?) = ozt Z?)

Bo=1 Byi1=-— ) 37 2

: a=-{ms) @)

+hnz-20122(Y 73]} . (40)
The energy density given in E®6) has the familiar struc- v2
ture as a sum of kinetic energy and potential energy. How~yhere(. - .) denotes integration over the horizontal domain,
ever, the potential energy is expressed by an infinite seriesand all coefficients are related to coefficients in EQ8—(

For a reasonable Ca|CU|ati0n Of the energy, we deﬁne the togl) Termsin Eq‘q_o) are Se|ective|y grouped into V1 or V2.

tal energy in the system with a variable buoyancy frequencyin each group, the first bracketed term represents the kinetic

by the integral relation energy and the last bracketed term represents the potential
1/, 142 energy.
E = // {5 (u + w2) + SN2 Using Eq. 40), modal energies were calculated at the end
oy of wind forcing ¢=1/4) as a function o, and results are

1 3 exhibited in Fig.7.
+ —(NZ)/G—e} dzdx, (38) Energies are normalized by the total energy for evolution
6 N with a stress penetration depth correspondingte0. En-
where only a leading order correction of the potential energy€dY INPut to V2 dramatically decreases as the wind stress
for non-uniformN2(z) is included. Field variables are ex- penetrates the metalimnion. The V1 energy qlso decrgases as
pressed by using two vertical modes: the stress pengtrates down, but the_ change in energy is much
less than that in V2. In the same figure, values of the wind
u=Ug¢|+ V), forcing factork,, are shown for the same range/gf. The
forcing factor and modal energies exhibit the same trend. The
w = U1+ Vido, (39) forcing factor of V2 decreases to zero as the wind stress pene-
o =N2(Yd1+ Z¢2). trates down to the half depth of the metalimnion. In this case,
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(a) (b)
0.8 0.8
mode-1

mode-1

04 mode-2 1 1x” 04 |

02 frmmmmmmmmemee //\ ]

0.8 1 1.2 1.4 1.6 0.8 1 1.2 1.4 1.6

Energy

Fig. 7. (a) Modal energies an(b) modal forcing coefficients as a function of the wind stress penetration dgpibr the metalimnion
thicknesgio=1 (solid line) andi>=2 (dash line). §3=3, W=1.5)

the wind energy is not injected to V2 directly. Energy of V2  We interpret that ifE;, >0, the amount of energyg,,| is
does not vanish completely, however, because energy is stitfansferred from V2 to V1, and vice versa By, <O.
transferred from V1 to V2 during the wind forcing through ; ; ;
nonlinear coupling. In Figz, corresponding results for thick timz%g:iij%szh?gga\,lvﬁgzrilis arig, as a function of
metalimnion ;=2) are also presented. Their trends are the , . i

same as those of former case, but the decrease in modal ener-EN€rdies are normalized by the total energy at the end of

gies ash, increases is slower. Although it is not shown in the forcing ((=1/4). The total energy is not necessarily con-
figure, the forcing factol, | vanishes as the wind stress pen- S€rved after the wind forcing, because Et)(s still an ap-

etration increases to near the half-depth of the metalimnionProximation, and the evolution model includes bottom fric-

Modal energy partition becomes more sensitive as the metalt—ion dgmping. Fluctuation amplitugies O,f the total energy for
imnion becomes thinner. ho=1Iis larger than that fo¥,=2. This quite probably occurs

In EQ. (@0), the most interesting terms at&Y?) in V1 because the nonlinearity of the evolution model for a thinner
and (Y Z2) in,V2. These terms are the correlation between metalimnion is larger, requiring a higher-order correction in

the potential energy of one mode and isopycnal amplitude of 1€ €N€rgy expression. Looking at the=2 case, energy
another mode. We call these terms the energy transfer termg.amp'ng due to the bottom frlct|on is negligible. Total energy
Of course, energy transfer is processed through ‘all’ depeniO the/iz=1 case seems slightly damped due to the numer-
dent variables which are governed by the evolution equa_|cal filtering to suppress high wave number noises that arise
tion set, but the energy transfer terms solely provide explicit!™o™M larger nonlinearity of V2. In all cases, the modal ener-

modal energy exchange among all the other energy termgies oscillate in time, and tr_ley are out of phase. The_ amount
in Eq. 40). Another type of the modal interactici/, V) of energy transfer also oscillates in every half V1 seiche pe-

with non-hydrostatic coupling coefficients (i.g3» andds1) riod. Furthermore, the energy is transferred from V1 to V2

can be equally distributed to both modes (note the identity©" Most of the time £, <0). Comparing with Fig5, the

(Cf/ll)d12=(cg/lz)d21 in Eq.40), hence there is no explicit energy transfer occurs W_hen_Vl waves r_eﬂect against the end
energy transfer through this term. Here we define, for conveVallS, 1eaving their footprints in V2 domain. When V1 waves
nient quantification purposes, the amount of explicit moda|leave the wall after the reflection, the energy transferred into

energy transfer,, as a difference of the energy transfer V2 during reflection is returned to V1, Wlth no permanent
terms energy transfer between the modes. Figdrghows verti-

1 1 cally integrated potential and kinetic energy densities of each
E, = Eal(zyz) - Eaz(yzz), (41)  mode during V1 wave reflection at the right end wak().

We chosei;=1.5 with hp=1 to focus more particularly
on the energy transfer from V1 to V2 during reflection by
suppressing initial energy input to V2. In the V1 packet, the
a1 = I2(v211 — 20211); a2 = I1(v122 — 20129). (42) potential energy is larger than the kinetic energy by more

wherewa; andwy are abbreviated representations of the en-
ergy transfer coefficients
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(a) (b)
1.2 : : : : : 1.2 : :
total
1| total | l
0.8 mode-1 1 0.8
3 3 mode-1
2 06 2 06}
w i1}
0.4} mode-2 1 0.4} mode-2
0.2+t : 0.2t
0 . : : : . 0 : : : : :
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
t t
0.02 : : : : : 0.02 : :
to mode-2 to mode-2
0 A 0
-0.02} 1 -0.02¢ to mode-1
= 004} to mode-1 £ 004
i ]
-0.06 | E -0.06 t
-0.08 } -0.08 ¢
-0.1} 1 -0.1
_012 L L L L L _012 L L L L L
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 25 3

Fig. 8. Modal energies (upper row) and corresponding energy tra@sfeflower row) as a function of time fofa) 7o=1 and(b) hy=2.
(W=1.5, hy=1, hq + ho + h3=D).

(b)

(PE) Vo

1 DN,
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
X X

Fig. 9. The isopycnal amplitude (upper row), kinetic energy density (middle row) and potential energy density (bottony te82atover
the right half domain fofa) mode-1 andb) mode-2. Energies are normalized by the total system endrgy:1(, h3=3, W=1.5, h;=1.5)

than a factor of two. In the V2 packet, the potential energywaves and, also, the horizontal velocity (kinetic energy) ap-
is much larger than the kinetic energy which is almost negli-proaches zero at the end wall. The dominance of potential
gible. During V1 wave reflection, the potential energy of V1 energy in V1 is preferably transferred to V2.

dominates near the end wall, because the isopycnal ampli- |n Taple 4, the maximum amount of the energy trans-
tude increases due to superposition of incident and reflectegby from V1 to V2 and values of the modal energy transfer
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Table 4. The modal energ¥;, transferred from vertical mode-1 to 0.3
mode-2 and the energy transfer coefficiem{sand s for various
hp, N? andhg (W=15.)
Eqsr o 02}
ho N}% h3 o1 oD (hs =1) (hy =1.5)
1 0o 3 1.387 0.262 0.120 0.113 W
1.5 0 3 1.206 0.318 0.041 0.037
2 0 3 0.99 0.302 0.017 0.016 01 |
3 0 3 0.506 0.000 0.004 0.004
1 01 3 0582 -0.012 0.049 0.035
1 02 3 0.293 -0.108 0.016 0.011
1 05 3 0.084 -0.195 0.002 0.002 0
1 0 1 1210 0000  0.058 0.045 02
1 0 2 1351 0.196 0.095 0.083
1 0 4 1.39 0.294 0.138 0.136

Fig. 10. Modal energy transfek;, (from mode-1 to mode-2) as a
function of inverse Wedderburn numb®t—1 for different stratifi-

coefficients ¢1 anday) are tabulated for various sets iof, cation profiles. §3=3, 1;=1.5)

N2, h3 andh.
The energy transfer becomes larger for smaiteor N2, Table 5. Mode-1 (V1) and mode-2 (V2) seiche periods for different

as indicated by the fact that becomes much larger thaa. lake lengthsL with h1=5[m], ho=h1, hg=3h1, Np=0.02[s1],

Values ofw; are much larger thaa, for all choices ofi3, in- Np=0ands=0.1. Values in parenthesis are for thicker hypolimnion

dicating a dominance of energy transfer from V1 to V2. The with h3=5h;. Each of the seiche periods is defined @sdvided

coefficientsvp11 andop11 in aq arise from the vertical inte- by the respective eigenspeeg ),

gral of the buoyancy flux terms ¢ andow) of V1, which

are coupled in the V2 evolution equation (Bf). v>11 arises L[km] V1 seiche period [hour] V2 seiche period [hour]
from the vertical buoyancy fluxs(w), ando»11 arises form 5 12 (11) 39 (39)

the horizontal buoyancy flux). As seen in Tablé—3, v211 5 30 (28) 98 (97)

is much larger tham,11. This implies that the vertical buoy- 10 59 (51) 196 (194)

ancy flux of V1 plays an important role in transferring en-
ergy from V1 to V2. Especially, a thinner metalimnion cor-
responds to larger11, resulting in more pronounced energy
transfer to V2. It can also be observed from Tabtkat wind . .

stress penetration into the metalimnion gives little change inthan th&.lt.Of V1 Howeyer, the nonlinear steepening of the_V2
the amount of energy transfer. In FifDwe show the amount T“”.“ arising from a wind event clearly occurs much earlier
of energy transfer from V1 to V2 as a function of the Wed- in time than does the steepening of the V1 front. As a conse-

derburn number for selected profiles of buoyancy frequency.quence’ the se_lf-modal nonllnea_lr interaction of V2 is contin-
The fractional amount of energy transfer increases quadratiyally propagating thr_ough a var!able b_ackground_ formed by
cally with respect to the inverse of the Wedderburn numberthe Iarger—scal_e V1 field. Sustamed_wmd f°? periods on t_he
for all cases. order of one-eight to one-half V1 seiche period leads to sig-

nificant energy deposited into the basin-scale internal wave

field, which subsequently cascades to smaller scales through
5 Discussions process studied here.

Examination of our evolution model shows that the modal

In order to provide some insight as to nominal time scalesenergy partition to V1 and V2 depends greatly on the pene-
one might encounter in applications, we present in Table tration depth of the wind stress into the metalimni®oni-
data for the V1 and V2 seiche periods in lakes with a Brunt-smith (1987 observed in his laboratory experiment the dom-
Vaisala frequency of 0.02 [s'] in the metalimnion, and with  inant response of V1 without appearance of V2 for strong
respective depth and length scales as given. The seiche p®4nd stress forcing. He also observed that V1 and V2 coex-
riod for V1 is the normalizing time scale for dynamics shown ist in response to weak wind stress forcing. This suggests that
in Fig. 5, and in all following figures. Itis evident that the V2 the wind stress penetration depth may depend on the strength
seiche period is typically a factor of three or four times longer of the wind stress (Wedderburn number), and such vertical
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wtrr—————————— === === Table 6. Coefficients of variable topography terms for different val-
L e :I 2h, ues of the slope heiglits; .
5h,
h3s 1 2 3 4
! | | K11 0.178  0.414 0730  1.155
0.5L 0.3L K12 —0.015 -0.037 -0.070 —0.119
A1 0.014 0031 0.048  0.058
A2 —-0.361 -0.879 -1.643 -2.810
Fig. 11. Sloping depth configuration.
K21 0.002 0.005 0.010 0.017
penetra’Fit')n Qf the and stress'in conju'n(:t'ion with the verti- ;ii _8:82? _0955()27 —0(.)1.(())14 _03'7082 3
cal stratification profile determines the initial energy input to Ao 0012 0.027 0049 0.078

each vertical mode.

Recently, Stashchuk et al(2005 conducted numerical k12/k11  —-009  -009 -010 -0.10
experiments to simulate the fully-nonlinear, baroclinic re- M2/M1 _(2)57'111 _208'762 _33';13 _43'35
sponse of a near two-layer fluid in a rectangular, long, narrow gijgi 182 1957 205 _227
tank, an experimental configuration similar to that employed
by Horn et al.(200)). Stashchuk et al(2005 discovered
that the metalimnion (interfacial) layer thickens behind the
nonlinear wave front (see Figs. 6 and 7 in their paper). They
concluded that the layer thickening is attributed to the inter-
action of the wave front with the vertical side walls (see Fig. 8
in their paper). They did not conclude that the widening is at-
tributed to V2, due to the fact that the field velocity profile did
not comply with typical V2 eigenprofiles. However, V1 and
V2, or even higher vertical modes, can coexist in the field,
and they are superimposed, at least in a linear sense. Th
requires a decomposition of the disturbance field into verti-
cal modes, which indeed the present multi-modal approacl?exp
does, to determine the modal energy spectrum. Their result
exhibited that the widening part of the density layer persis-
tently follows the tail of the nonlinear wave train. If this
layer widening is attributed to V2, this phenomenon implies
the permanent energy transfer from V1 to V2, which is not
observed in the model simulations presented here. Their de
sity layer is very thin (about.@#1), and the initial V1 wave
amplitude is large (®h1). This configuration, however, is
outside the operational range of the present weakly-nonline
model.

Although the variable depth terms in the evolution model
admit modal energy transfer, our model simulations exhib-
ited that inter-mode transfer is negligible in variable depth
cases. For example, Fig2 shows evolution of isopycnal
amplitudes in a lake having a sloping topography as depicte@
in Fig. 11.

Wind stress penetration depth was chosen th,b€el.5 to
suppress energy input to V2 in order to see modal mteracuoqh
during V1 waves propagating over the sloping bottom. At
t=3, V1 waves are about to pass over the slope, but at thi
time no significant interaction is observed in the V2 packet.
Modal interaction during V1 wave reflection is rather out-
standing as observed at2.75 andr=3.25. In Fig.13, cor-
responding pictures for the uniform depth configuration are
shown.

Wave amplitudes are larger than the former case because
the wind forcing factok,, and nonlinearity are larger in the
uniform depth case. It can be observed that there are a se-
ries of small footprints of the V1 oscillatory waves in the
V2 domain, but the V1 wave reflection contributes a much
larger footprint to the V2 domain. Qualitative structures of
the modal components of the wave field in the variable depth
Base and the uniform counterpart are still very similar.
The weak cross-modal transfer due to varying depth was
lored further by examining the coefficiertg anda,; ap-
Bearlng in Egs.48-31) for a range of topographic slopes.
Using a linear slope prescribed bys=hzo—(h3s/ls)x,
where h3g, h3, andl; are the maximum depth of the hy-
polimnion, the change in hypolimnion depth, and the hor-
izontal length of the slope, respectively, coefficient values
Nvere computed and presented in Tail& he coefficient val-
ues shown pertain to a configuration witkp=5h1, [;=L/3,
ho=h1, andN2 0. Furthermore, coefficient values are re-
a}50rted at the m|d -slope depth position (i.e.xatl;/2). One
notes that the coefficient values in Taliere significantly
less than unity, except for the self modal coefficient ap-
pearing in the V1 velocity evolution equation EQ8J, and
for the cross modal coefficient» appearing in the V1 isopy-
nal evolution equation Eqz9). Corresponding ratios of the
ross-modal to the self-modal coefficients are shown, and the
ratios are typically order one except for those correspond-
ng to the V1 amplitude evolutions. This suggests that in
e present slow-topography formulation the energy transfer
due to variable depth, even though relatively small, can oc-
IZur in the V1 field principally through the V1 self-modal,
topographic interaction, and through the V2-induced, cross-
modal interaction if the amplitudes of the V2 field are suffi-
ciently large.
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t=2.75

t=3
t= 3.25
t= 3.5

Fig. 12. Isopycnal amplitudes ofa) mode-1 andb) mode-2 over sloping topography at different tim&-1.5, h;=1.5). The abscissa
covers the full lengti0, 1) of the basin in the scaled-coordinate.

t=2.75

t=3
t= 3.25
t= 3.5

Fig. 13. Isopycnal amplitudes ofa) mode-1 andb) mode-2 over uniform topography:4=5) at different time =15, h;=1.5). The
abscissa covers the full lengt@, 1) of the basin in the scaledtcoordinate.

6 Conclusions ergy partition following wind setup is very important because
the subsequent evolution (especially mode-2) is strongly de-
A multi-modal, weakly-nonlinear model for the wind-forced pendent on the modal energy input.
response of basin-scale internal waves in an inhomogeneous Modal energy exchange via nonlinear processes is
environment was derived. The two-vertical-mode interac-captured by the evolution model derived here. Modal
tion was investigated by numerically simulating the evolu- energy transfer occurs predominantly during mode-1 wave
tion model for several modeled Bruntaié&la profiles and  reflection against vertical end walls where the potential
several wind forcing functions. Energy distribution among energy of mode-1 is much larger than the kinetic energy.
the modes was studied by defining modal energy and energ¥he energy transfer from mode-1 to mode-2 during mode-1
transfer functions in truncated form. wave reflection is not a permanent process. During the
Initial modal energy partition right after uniform wind reflection, mode-1 energy is transferred to mode-2, and the
forcing of specified duration strongly depends on verticaltransferred energy into mode-2 is returned to mode-1 after
structures of both the stratification and the wind stress. Penthe reflection. The amount of energy transfer between modes
etration of the wind stress into the metalimnion can signifi-is a function of the Wedderburn number, and it strongly
cantly change the modal energy input, especially for mode-Zlepends on the stratification profile. Vertical buoyancy
and for a thin metalimnion. Determining the initial modal en- flux of mode-1 plays an important role in energy transfer
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to mode-2. Thin metalimnion configurations increase theHuttemann, H. and Hutter, K.: Boroclinic solitary waves in a two-
vertical buoyancy flux of mode-2 that is induced by mode-1 layer fluid system with diffusive interface, Exp. Fluids, 30, 317—
via nonlinear modal coupling, enhancing the energy transfer 326, 2001.

from mode-1 to mode-2. Imberger, J. and Patterson, J. C.: Physical Limnology, Adv. Appl.
Mech., 27, 303-475, 1990.
Edited by: R. Grimshaw La_Zerte, B. D The dominating hlgher order vertical modes of the
) internal seiche in a small lake., Limnol. Oceanogr., 25, 846—854,
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