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Abstract. A weakly nonlinear evolution model that accounts
for multi-modal interaction in a small, continuously stratified
lake of variable depth is derived. In particular, an evolution
model for the first two vertical modes in a lake that is sub-
ject to wind stress forcing is numerically simulated. Defining
modal energies, energy transfer between the first and the sec-
ond vertical modes is calculated for several different forms
of the density stratification. Modal energy transfer mainly
occurs during reflection of mode-one waves at the vertical
end walls, and it is shown that the amount of energy trans-
fer from the first to the second mode is greatly dependent on
the shape of the stratification profile. Also, the initial modal
energy partition at the wind setup is shown to depend signif-
icantly on the penetration depth of the internal shear stress
induced by the wind stress, especially if the stress distribu-
tion extends into the upper levels of the metalimnion.

1 Introduction

Thermally stratified lakes are often subject to wind stress
forcing, generating basin scale internal waves that are the
primary energy source for driving material transport in lakes.
For modeling of such long internal waves in lakes, a simple
two-layer stratification model has been preferably used since
its establishment in early 20th century. The model is a rea-
sonable approximation as long as the lake is strongly strat-
ified (e.g., during summer) and the density stratification is
confined to a thin layer between a homogeneous epilimnion
(upper warm, mixed layer) and a homogeneous hypolimnion
(lower cold, stagnant layer). The stratification is generally
continuous, and its structure varies seasonally, with conse-
quent seasonal effects on the evolution of internal waves (An-
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tenucci et al., 2000). In a continuously stratified fluid, as is
well-known from linear analysis, the vertical distribution of
fluid velocities and displacement of isopyicnal surfaces pos-
sess multi-modal structures. The two-layer model accounts
only for the first baroclinic mode, and it implicitly neglects
all the other baroclinic modes in the field.

In the first vertical mode, the isopycnal displacement is
only pronounced near the thermocline, and the entire fluid
column moves vertically in the same direction. In the sec-
ond mode, the isopycnal displacement is pronounced at the
upper and lower parts of the thermocline, and the vertical
fluid motions there take place in opposite directions, stretch-
ing and compressing the metalimnion (the thermoclinic layer
between the epilimnion and the hypolimnion). The second
vertical velocity mode has a single vertical node at the ther-
mocline. There are increasing numbers of nodes for higher
vertical modes, and their locations are spread increasingly to-
ward the upper and bottom surfaces, providing even shorter
vertical length scales. Many field observations have been
made which capture the multi-modal nature. Early discovery
of multi-modal response was achieved byMortimer (1952).
He identified the second vertical mode from a vertical tem-
perature record in Windermere, and applied a model having
three homogeneous layers to calculate the frequency of the
second mode seiche. Years later, field observations in several
lakes revealed internal responses dominated by the first and
second modes (Wiegand and Chamberlain, 1987; Münnich
et al., 1992; Roget and Zamboni, 1997; Boehrer, 2000). In
small lakes, when the frequency of the second vertical mode
is near that of diurnal wind forcing, a resonant response of the
second mode may occur. Observations have been reported of
apparent resonance in actual lakes (Wiegand and Chamber-
lain, 1987; Münnich et al., 1992). Responses higher than the
second mode have been also reported in small lakes (seventh
to tenth mode dominated response in Frains lake byLaZerte,
1980; third mode dominated response in lake Banyoles by
Roget and Zamboni, 1997). The multi-modal feature is not
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Fig. 1. Basin configuration.

an isolated phenomenon in lakes, but has also been reported
in oceanography (e.g.,Bogucki et al., 2005; Gerkema, 2003).

It is routine to solve the vertical normal mode equation for
a given stratification profile to obtain eigenfrequencies and
eigenfunctions for particular modes of interest. However,
such normal mode equations are based on linear theory, and
the solutions therefore are linearly independent, yielding no
information about modal interactions. Gerkema (2001, 2003)
adopted a multi-modal approach, and formulated a weakly-
non1inear and weakly-dispersive multi-modal evolution sys-
tem that was successfully applied to the oceanography prob-
lem. Utilizing a stratification profile in the Bay of Biscay in
which the third vertical mode is dominant, he demonstrated
that energy may leak (not dissipation) from the third mode
to lower modes. Also, the amount of energy leakage was
shown to be highly dependent on the strength of the stratifi-
cation.Hüttemann and Hutter(2001) observed emergence of
solitary waves of the second vertical mode when a mode-one
soliton ran over a sill in a long laboratory channel. At the
same time,Vlasenko and Hutter(2001) simulated the two-
dimensional Navier–Stokes equations in the same configu-
ration as Ḧuttemann’s experiment, and detailed structure of
the flow field was obtained, confirming that both the first and
the second mode solitons are very close to those obtained by
Korteweg–de Vries (KdV) theory.

To understand the full basin energetics in lakes, it is essen-
tial to determine the modal energy distribution among domi-
nant vertical modes in a system allowing full bi-directional
propagation of the linearly independent modes. Nonlin-
ear models are the essential for capturing inter-mode en-
ergy transfer. In this paper, we derive a weakly-nonlinear,
wind-forced evolution model by applying the multi-modal
approach that yields an evolution equation for each vertical
mode with inter-modal interactions through nonlinear terms.
For fundamental study, we limit the vertical modes in the
model to the first two modes which are energetically domi-
nant in many cases. The model is numerically solved, and
we study the modal energetics for various parameters of the
modeled stratification and the wind forcing.

2 Derivation of a nonlinear, multi-modal system

We consider a closed basin containing continuously stratified
fluid. To isolate the physics from the effect of the earth’s rota-

tion, we neglect Coriolis acceleration of fluid elements. As-
suming width of the lake is sufficiently narrow and uniform,
we start with the two-dimensional, incompressible, Boussi-
nesq approximated, inviscid equations of motion that are per-
turbed from the basic state of hydrostatic equilibrium:

ux + wz = 0,

ut + uux + wuz = −px + τz,

wt + uwx + wwz = −pz − σ,

σt + uσx + wσz = N2w.

(1)

In these equations, subscripts denote partial derivatives,p

is the density normalized pressure,τ is the density normal-
ized horizontal stress to account for wind forcing and bottom
friction along the horizontal (x) axis,σ is the perturbed buoy-
ancy (σ=ρg/ρ0), andN is buoyancy frequency defined by
using a reference densityρ0, static densityρs(z) and gravity
g as

N2(z) = −
g

ρ0

dρs(z)

dz
. (2)

We assume the field domain that is enclosed by a non-
deformable upper surface, vertical end walls and nonuniform
(variable depth) bottom surface (Fig.1).

Solutions of Eq. (1) are dictated by slip-free, impermeable
and non-deformable boundary conditions:

w = 0 atz = 0,

w = −u
dhb

dx
at z = −hb,

u = 0 atx = 0 andx = L.

(3)

The length of the lake is denoted byL, andhb is the vari-
able depth of the fluid. We introduce a long wave scaling to
horizontal space and time coordinates, and also define a slow
space coordinateξ ,

(X, T ) = µ(x, t), ξ = µ3x, (4)

whereµ∼h/l�1 is the long wave scaling parameter with
h a depth scale (e.g., thickness of surface mixed layer) and
l is typical (long) wave length scale. We assume that the
topography varies slowly in space (i.e.,hb is a function ofξ
only) so that topographic interaction terms will appear in the
second-order approximation. We then expand the dependent
variables in an asymptotic series of the form

(u, p, σ ) = ε(u(1), p(1), σ (1)) + ε2(u(2), · · ·) + · · · ,

w = µε(w(1)
+ εw(2)

+ · · ·),

τ = µε2(τ (1)
+ ετ (2)

+ · · ·),

(5)

whereε∼a/h�1 is the amplitude parameter,a represent-
ing a typical amplitude of long internal waves. Scaling of
the stressτ is intentionally taken to be second-order in the
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amplitude parameter so that wind forcing or benthic fric-
tional dissipation appears first in the second order balance
(i.e., weak forcing and weak damping), as do the leading ef-
fects of variable depth. We introduce the familiar KdV scal-
ing (i.e., ε=µ2), in order to balance weak nonlinearity and
leading-order non-hydrostatic correction at the same level of
approximation.

Transforming independent variables using Eq. (4), and
substituting Eq. (5) into Eq. (1), the leading-order balance
gives the linear equation set

u
(1)
X + w

(1)
z = 0,

u
(1)
T + p

(1)
X = 0,

p
(1)
z + σ (1)

= 0,

σ
(1)
T − N2w(1)

= 0.

(6)

From Eq. (6) one can obtain a single equation in favor of
w(1):

w
(1)
zzT T + N2w

(1)
XX = 0. (7)

One can seek, in the sense of a consistent asymptotic ap-
proximation, a slowly-varying normal mode solution in the
form

w(1)
= W(X, ξ, T )φ(ξ, z), (8)

whereφ=0 atz=0 (upper surface) andz=−hb (bottom sur-
face) to satisfy leading order boundary conditions. The de-
pendence of the eigenfunction on the slow longitudinal coor-
dinateξ arises from the inhomogeneity of the wave guide in
the propagation direction (i.e., variable depthh(ξ)). We note
that the analysis can be readily extended to include a slowly-
varying wave guide width, as in the single-mode model pre-
sented in our unpublished report, but we choose to not in-
clude that further complication in the present study. Sub-
stituting Eq. (8) into Eq. (7) one can construct a standard
boundary value problem along the vertical line for everyξ :

φ′′
n +

N2(z)

c2
n(ξ)

φn = 0; φn|z=0 = φn|z=−hb
= 0;

n = 1, 2, · · · ,

(9)

wherecn is an eigenvalue,φn is the corresponding eigenfunc-
tion, and primes denote partial derivatives with respect toz.
The corresponding orthogonality relation is∫ 0

−hb

φ′
mφ′

ndz =
In

c2
n

δmn;

∫ 0

−hb

N2φmφndz = Inδmn;

andIn =

∫ 0

−hb

N2φ2
ndz,

(10)

whereδmn is Kroneker’s delta.

All dependent variables are now expanded using the con-
sistency implied by Eq. (6):

u(1)
=

∑
n

U (1)
n (X, ξ, T )φ′

n(ξ, z),

w(1)
=

∑
n

W (1)
n (X, ξ, T )φn(ξ, z),

p(1)
=

∑
n

P (1)
n (X, ξ, T )φ′

n(ξ, z),

σ (1)
=

∑
n

Z(1)
n (X, ξ, T )N2(z)φn(ξ, z).

(11)

Substituting Eq. (11) into Eq. (6), employing Eq. (10), and
eliminatingW

(1)
n andP

(1)
n , we obtain the coupled pair of evo-

lution equations

U
(1)
nT + c2

nZ
(1)
nX = 0,

Z
(1)
nT + U

(1)
nX = 0.

(12)

As evident in Eq. (11) Zn is the modal isopycnal amplitude
andUn is the modal amplitude for the horizontal velocity.
Eq. (12) defines a set of independent, linear, bi-directional
waves propagating with their respective eigenspeedscn.

Proceeding to the next order balance using Eq. (5) leads to
the inhomogeneous set

u
(2)
X + w

(2)
z = −u

(1)
ξ ,

u
(2)
T + p

(2)
X = −{u(1)u

(1)
X + w(1)u

(1)
z } + τ

(1)
z ,

p
(2)
z + σ (2)

= −w
(1)
T ,

σ
(2)
T − N2w(2)

= −{(u(1)σ (1))X + (w(1)σ (1))z}.

(13)

Note that the leading-order stress termτ (1) appears and
that the boundary condition in the vertical direction gives

w(2)
= 0 atz = 0,

w(2)
= −u(1) dhb

dξ
at z = −hb.

(14)

The term u
(1)
ξ in the first equation in Eq. (13) is the

leading-order effect of slowly varying depth; the brack-
eted terms in the second equation (x-momentum) contain
the leading-order nonlinear acceleration; the termw

(1)
T in

the third equation (z-momentum) is the leading-order non-
hydrostatic correction; and the bracketed terms in the last
equation (continuity) define the leading-order buoyancy flux
correction.

We expand the second-order variablesu(2), p(2) andσ (2)

in the same manner as in Eq. (11), albeit w(2) can not be
expanded byφn becauseφn does not satisfy Eq. (14). It is
not necessary to expandw(2) to define the evolution at this
level of approximation. Substituting the expansion of the de-
pendent variables into the conservation of mass equation (the
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first equation in Eq.13), multiplying byφ′
n, then integrating

over the physicalz domain and using Eq. (10), one obtains

In

c2
n

U
(2)
nX +

∫ 0

−hb

φ′
nw

(2)
z dz = −

In

c2
n

U
(1)
nξ

−

∑
i

U
(1)
i

∫ 0

−hb

φ′
n

∂φ′

i

∂ξ
dz. (15)

Using Eq. (14), the integral term on the left side of Eq. (15)
can be evaluated via integration by parts

∫ 0

−hb

φ′
nw

(2)
z dz =

∑
i

[φ′
nφ

′

i]z=−hb

dhb

dξ
U

(1)
i

−

∫ 0

−hb

φ′′
nw(2)dz, (16)

and w(2) can be eliminated by using the last equation in
Eq. (13). Through this procedure Eq. (15) yields an evolu-
tion equation for the isopycnal amplitude functionZn. The
evolution equation forUn can be obtained by substituting the
expansions into momentum equations in Eq. (13) and using
Eq. (10). After some algebraic manipulation, the evolution
of the leading-order field variables is obtained in the form:

U
(2)
nT + c2

nZ
(2)
nX =

∑
ij

{
a

(u)
nijU

(1)
i U

(1)
jX + b

(u)
nijU

(1)
iX U

(1)
j

}
+

∑
i

dniU
(1)
iXXT

−
∂c2

n

∂ξ
Z(1)

n − c2
nZ

(1)
nξ −

∑
i

〈
φ′

n

∂φ′

i

∂ξ

〉
c2
i Z

(1)
i

+ ksnτ
(1)
s − kbnτ

(1)
b +

1

c2
n

〈
N2φnτ

(1)
〉

(17)

and

Z
(2)
nT + U

(2)
nX =

−

∑
ij

{
a

(σ )
nij (U

(1)
i Z

(1)
j )X + b

(σ )
nij U

(1)
iX Z

(1)
j

}
− U

(1)
nξ

−

∑
i

{
c2
n

In

[φ′
nφi]z=−hb

dhb

dξ
+

〈
φ′

n

φ′

i

∂ξ

〉}
U

(1)
i . (18)

We point out that the first-order stressτ (1) has been di-
vided into two parts:τ (1)

s is the wind stress at the lake sur-
face, andτ (1)

b is the bottom shear stress. The coefficients

appearing in Eqs. (17, 18) are defined by the following set of
relations:

a
(u)
nij =

〈
φ′

nφ
′

iφ
′

j

〉
, b

(u)
nij =

〈
N2

c2
j

φ′
nφiφj

〉
,

a
(σ )
nij =

〈
N2

c2
n

φnφ
′

iφj

〉
, b

(σ )
nij =

〈
N2

c2
n

φ′
nφiφj

〉
,

dnj =
〈
φnφj

〉
, ksn =

c2
n

In

φ′
n|z=0, kbn =

c2
n

In

φ′
n|z=−hb

,

where 〈· · ·〉 ≡
c2
n

In

∫ 0

−hb

(· · ·)dz.

(19)

The termU
(1)
iX Z

(1)
j appearing in Eq. (18) (i.e., continuity

equation) derives from the vertical buoyancy flux term, and
one observes that the equation cannot be integrated with re-
spect toX because of the presence of this term. Hence the
velocity and isopycnal amplitudes can not be decoupled into
a single, second-order-in-time wave equation. Combining
Eq. (12) and Eqs. (17, 18), and transforming the indepen-
dent variables back to their non-scaled form, we obtain the
weakly-nonlinear evolution equation set:

Unt + (c2
nZn)x = −

∑
ij

{
a

(u)
nijUiUjx + b

(u)
nijUixUj

}
+

∑
i

dniUixxt −

∑
i

rnic
2
i Zi

+ ksnτs − kbnτb +
1

c2
n

〈
N2φnτ

〉
(20)

and

Znt + Unx = −

∑
ij

{
a

(σ )
nij (UiZj )x + b

(σ )
nij UixZj

}
−

∑
i

sniUi, (21)

where

rni =

〈
φ′

n

∂φ′

i

∂x

〉
; sni =

c2
n

In

[φ′
nφ

′

i]z=−hb

dhb

dx
+ rni . (22)

The rni coefficient, containing effects of variable depth
(alt., spatially varying eigenvalue), can be further evaluated
by using Eq. (9) and Eq. (10). The final expression is given
here without derivation:

rni =


(cn/ci)

2

1 − (ci/cn)2

[
φ′

n

φ′

i

]
z=−hb

Ii

In

d lnc2
i

dx
, if i 6= n,

1

2

d

dx
ln

(
In

c4
n

)
, if i = n.

(23)

In evolution equations Eqs. (20, 21) there are essentially
three kinds of modal-coupling terms: nonlinear ones, non-
hydrostatic ones, and topography induced ones. The non-
hydrostatic coupling in Eqs. (20, 21) derives from the fact
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that the hydrostatic representation of the modal structure is
no longer valid at second order. The linear terms scaled by
the coefficientsrij andsij appearing on the right hand side
of the equations capture the effect of self-modal distortion
and cross-modal transfer resulting from variable depth ef-
fects. That these terms appear at this order is a direct con-
sequence of the slowly-varying depth assumption, which in
turn is required in order to derive a rationally-based evolution
system where the underlying dynamics is represented by the
linear modes of the system. A more general derivation of the
topographic coupling terms for uni-directional wave propa-
gation over topographies that vary both along and transverse
to the propagation direction has been developed byGriffiths
and Grimshaw(2007) in their study of internal tide at conti-
nental shelf regions.

The wind stressτs can be expressed in terms of a friction
velocity u∗0 and a prescribed, dimensionless stress distribu-
tion functionF(x, t).

τs = u2
∗0F(x, t). (24)

The vertical distribution of the horizontal stress induced
by the wind, varying from its surface valueτs , is also needed
to determine the coefficient〈N2φnτ 〉 in Eq. (20). Assuming
only the wind stress contributes to the integral, we modelτ

using a static, vertical stress distribution functionτ̃ (z)

τ = u2
∗0F(x, t)τ̃ (z) = τs τ̃ (z), (25)

whereτ̃ is dimensionless, and̃τ(0)=1. The bottom stressτb

can be modeled assuming that the boundary layer is turbulent
and using a friction coefficientCf :

τb = Cf ub|ub|

= Cf

∑
i

Ui(x, t)φ′

i |z=−hb

∣∣∣∣∣∑
j

Uj (x, t)φ′

j |z=−hb

∣∣∣∣∣ . (26)

The value ofCf for shallow water flows is typically quite
small, of order 10−3 (cf., Baines, 1995), with recommended
value Cf =0.0025 for weakly nonlinear long wave theory
(Grimshaw, 2002). We fixedCf at this value throughout this
study, and the value ofub in Eq. (26) is the inviscid, wave-
induced velocity at the bottom surface. We take the contri-
bution of bottom friction to a particular mode in the form

τb ≡ τbn = Cf Unφ
′
n|z=−hb

∣∣∣∣∣∑
j

Ujφ
′

j |z=−hb

∣∣∣∣∣ . (27)

3 The two-mode evolution model

In this study we limit the number of active vertical modes
to the lowest two (V1: mode-one; V2: mode-two). This re-
striction is made in order to reduce the complexity of the
evolution model while retaining the energetically-dominant

modes in the system. To reduce the number of free parame-
ters in the evolution equation, we introduce non-dimensional
variables by use of the following scales:x by L; Zn andz

by the surface mixing layer thicknessh1; t by 2L/c0, where
c0 is a reference phase speed taken as a spatial average of V1
phase speed;cn(or c0) by N0h1, whereN0 is the maximum
buoyancy frequency; andUn by N0h

2
1. After recasting the

Eqs. (20, 21) in a dimensionless form, we have an evolution
equation set for V1 in the form:

Ut +
2

c0
(c2

1Y )x =
2

c0
{µ111UUx + µ112UVx

+ µ121V Ux + µ122V Vx} + S2
{d11Uxxt + d12Vxxt }

−
2

c0
{κ11Y + κ12Z} +

2c0

W
k̃s1F(x, t)

−
2

c0S
kb1Cf U |Uφ′

1 + V φ′

2|z=−hb
(28)

and

Yt +
2

c0
Ux =

2

c0
{−σ111(UY )x − σ112(UZ)x

− σ121(V Y )x − σ122(V Z)x

+ ν111YUx + ν112YVx + ν121ZUx + ν122ZVx}

−
2

c0
{λ11U + λ12V }, (29)

and corresponding set for V2 in the form:

Vt +
2

c0
(c2

2Z)x =
2

c0
{µ211UUx + µ212UVx

+ µ221V Ux + µ222V Vx} + S2
{d21Uxxt + d22Vxxt }

−
2

c0
{κ21Y + κ22Z} +

2c0

W
k̃s2F(x, t)

−
2

c0S
kb2Cf V |Uφ′

1 + V φ′

2|z=−hb
(30)

and

Zt +
2

c0
Vx =

2

c0
{−σ211(UY )x − σ212(UZ)x

− σ221(V Y )x − σ222(V Z)x

+ ν211YUx + ν212YVx + ν221ZUx + ν222ZVx}

−
2

c0
{λ21U + λ22V }. (31)

The variablesU andY in these equations are the velocity
amplitude and the isopycnal amplitude of V1, respectively,
and V and Z are the V2 counterparts. The terms on the
right hand side, as for example in Eq. (28), represent nonlin-
ear self-modal and cross-modal interactions, non-hydrostatic
(dispersive) effects, variable depth effects, followed by wind
forcing and bottom frictional damping, respectively.
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The shallow water parameterS, defined asS=h1/L, enters
as a quadratic scaling factor in the dispersive terms appear-
ing in Eq. (28) and Eq. (30), and as an inverse scaling factor
multiplying the bottom friction terms in the same equations.
Also appearing in Eq. (28) and Eq. (30) is the Wedderburn
numberW . This parameter is inversely proportional to the
magnitude of the wind stress (cf.,Imberger and Patterson,
1990andHorn et al., 2001), is defined by the relation

W =
c2

0/L

u2
∗0/h1

=
c2

0h1

u2
∗0L

. (32)

The Wedderburn number measures the baroclinic pressure
gradient relative to the vertical gradient of the imposed wind
stress represented in terms of the water friction velocityu∗0.
Using measured values of the drag coefficient induced by
wind blowing over a wavy free surface, as summarized by
Phillips(1966), typical values of the Wedderburn number can

be roughly estimated by the relationW≈105SU−2
10 , where

U10 is the wind speed in ms−1 measured at an elevation of
10 m above the mean water surface. Data from both labora-
tory experiments and field measurements reveal that signif-
icant internal wave dynamics are observed when the Wed-
derburn number lies in the range 1<W<5 (cf., Horn et al.,
2001). The quantityk̃sn in Eq. (28) and Eq. (30) is the modi-
fied wind forcing factor defined as

k̃sn = ksn +
1

c2
n

〈N2φnτ̃ (z)〉. (33)

With this evolution model in hand, we set up the ver-
tical structure which qualitatively represents typical strati-
fication profiles in lakes. We adopt a three-layer, contin-
uously varying density structure comprising a well-mixed
layer (epilimnion) of thicknessh1, a thermoclinic layer (met-
alimnion) of thicknessh2 having uniform density gradient,
and a weakly-stratified deep water (hypolimnion) of thick-
nessh3. The square of the corresponding buoyancy fre-
quency is expressed by a simple formula in a dimensionless
form:

N2(z) =
1

2

{
1 − tanh

(
z + 1

δ

)
+ (1 − N2

h)

[
tanh

(
z + 1 + h2

δ

)
− 1

]}
, (34)

whereδ is a smoothing parameter across the interface be-
tween the metalimnion and either the epilimnion or hy-
polimnion, andN2

h is the buoyancy frequency in the hy-
polimnion relative to the value in the metalimnion.

We present in Fig.2 selected profiles ofN2(z) for different
h2, N2

h andh3, and their corresponding eigenfunctions of V1
(φ1) and V2 (φ2).

The eigenfunctions are normalized by their maximum
values. If there is no stratification in the hypolimnion
(Fig. 2a, c), φ1 attains the maximum value within the met-
alimnion, andφ2 has extremal values near the top and the
bottom portions of the metalimnion, implying that isopycnal
displacements of V1 and V2 are both pronounced in the met-
alimnion, which is stretched and squeezed by V2. A slight
increase in the stratification of the hypolimnion leaves the
shape ofφ1 nearly unchanged, butφ2 is significantly altered
having its maximum value shifted downward into the hy-
polimnion (Fig.2b). Stratification in the hypolimnion en-
hances vertical displacements in the hypolimnion via V2,
and also enhances the horizontal motions at the lake bottom
where the gradient ofφ2 is maximum. It is evident, therefore,
that weak stratification in the hypolimnion can significantly
enhance benthic stimulation from wind-forced V2 internal
waves.

The vertical structure ofN2(z) determines all the coef-
ficients in Eqs. (28–31). The coefficients are computed by
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Table 1. Coefficients of selected nonlinear terms for different
metalimnion thicknessh2. The thickness and the stratification of
the hypolimnion are fixed ash3=3 andN2

h
=0, respectively. The

smoothing parameter is chosen asδ=0.1 for h2=1 and 2,δ=0.05
for h2=0.5, andδ=0.025 forh2=0.25.

h2 0.25 0.5 1 2

µ111 0.943 0.792 0.554 0.222
σ111 −0.314 −0.264 −0.185 −0.074
ν111 0.314 0.264 0.185 0.074
µ122 12.166 6.460 3.329 1.234
σ122 −0.089 −0.087 −0.078 −0.049
ν122 0.175 0.169 0.148 0.090

µ222 14.834 7.169 3.312 1.383
σ222 −4.945 −2.390 −1.104 −0.461
ν222 4.945 2.390 1.104 0.461
µ211 0.413 0.336 0.237 0.130
σ211 0.467 0.426 0.373 0.331
ν211 15.195 7.200 3.345 1.522

Table 2. Coefficients of selected nonlinear terms for different strati-
ficationN2

h
in the hypolimnion. The thicknesses of the metalimnion

and the hypolimnion are fixed ash2=1 andh3=1, respectively. The
smoothing parameter is fixed asδ=0.1.

N2
h

0 0.1 0.2 0.5

µ111 0.554 0.495 0.412 0.155
σ111 −0.185 −0.165 −0.137 −0.052
ν111 0.185 0.165 0.137 0.052
µ122 3.329 −0.097 −0.563 −0.534
σ122 −0.078 0.003 0.026 0.034
ν122 0.148 −0.006 −0.048 −0.059

µ222 3.312 0.592 0.189 0.218
σ222 −1.104 −0.197 −0.063 −0.073
ν222 1.104 0.197 0.063 0.073
µ211 0.237 0.247 0.122 0.018
σ211 0.373 0.490 0.423 0.358
ν211 3.345 2.969 1.532 0.792

numerical integration for several different values ofh2 (Ta-
ble1), N2

h (Table2) andh3 (Table3), where we provide only
coefficients of self-nonlinear (µ111, µ222, · · ·) and coupling-
nonlinear terms (µ122, µ211, · · ·) for the sake of later discus-
sions.

The most notable result is the sensitivity of the coefficients
with respect to the thickness of the metalimnion (see Ta-
ble 1). Some of the coefficients (µ222, ν211, µ122) become
very large as the metalimnion thickness decreases. Self-
nonlinear coefficients of V2 are larger than their V1 counter-
parts by roughly an order of magnitude. This is due to the fact
that the gradient ofφ2 in the middle of the metalimnion be-

Table 3. Coefficients of selected nonlinear terms for different hy-
polimnion thicknessh3. The thickness of the metalimnion, the strat-
ification of the hypolimnion and the smoothing paramter are fixed
ash2=1, N2

h
=0 andδ=0.1.

h3 1 2 3 4

µ111 0.000 0.389 0.554 0.642
σ111 0.000 −0.130 −0.185 −0.214
ν111 0.000 0.130 0.185 0.214
µ122 0.000 2.195 3.329 4.048
σ122 0.000 −0.058 −0.078 −0.088
ν122 0.000 0.109 0.148 0.168

µ222 3.113 3.275 3.312 3.325
σ222 −1.038 −1.092 −1.104 −1.108
ν222 1.038 1.092 1.104 1.108
µ211 0.271 0.254 0.237 0.225
σ211 0.548 0.429 0.373 0.341
ν211 3.248 3.345 3.345 3.328

comes larger for thinner metalimnion (see Fig.2a). Depend-
ing on the wave amplitudes, the appearance of these large co-
efficients can cause the corresponding nonlinear terms to be
larger than linear terms. The asymptotic assumption that was
used to derive the evolution model then becomes disordered,
necessitating that the model be restricted to wind-forcings
that yield smaller amplitudes. In fact, when the evolution
model was simulated (numerical method and run configura-
tion are briefly described in Sect.4), numerical instability
was encountered as the strength of the wind stress forcing
was increased. In Fig.3, for example, the threshold Wedder-
burn number for achieving stable numerical integration up
to two V1 seiche periods as a function of the metalimnion
thickness for a fixed total depth is plotted.

For thinner metalimnion, our numerical code is not capa-
ble of performing long-time integration for strong wind forc-
ing. We also found during numerical testing that the insta-
bility is pronounced for higher numerical resolution. When
all the nonlinear coupling terms between the two modes are
turned off, numerical integration becomes stable even for
strong wind forcing. The precise mechanism of how the
instability is triggered is not straight forward. We conjec-
ture that the large nonlinear coefficients enhance excessive
energy transfer between V1 and V2 (i.e., widely disparate
length scales), and also generate excessive energy levels at
high wave numbers.

Based on the data presented byHorn et al.(2001), show-
ing that the regime of active, wind-driven, V1 nonlinear in-
ternal wave motion occurs when 0.2<W−1<1, and the rep-
resentation of the Wedderburn number in terms of the shal-
low water parameterS and the 10 m wind speedU10 given in
the discussion following Eq. (32), it is clear that the present
model is capable of simulating stable, two-mode internal
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Fig. 4. Penetration of the wind stress into the metalimnion.

wave dynamics provided the metalimnion is not too thin (i.e.,
h2≥0.8, say).

Adding stratification to the hypolimnion decreases the
magnitude of the nonlinear coupling coefficients (see Ta-
ble 2), making the model less nonlinear and, hence, allow-
ing larger wind energy input to the system. Reducing the
thickness of the hypolimnion decreases the magnitude of V1
nonlinear coefficients, while V2 counterparts change only
slightly. It is well known from KdV theory that the weak
self-nonlinearity is identically zero for a completely symmet-
ric vertical structure. This is realized in Table3 for h3=1
(h1=h2=1), albeit values of the cross nonlinear terms (µ112,
µ121, · · ·), which are not included in the table, are non-zero
for this configuration.

4 Wind forced response of two-mode model

When the wind stress is applied over the lake surface, a hor-
izontal shear stress progressively penetrates across the epil-
imnion. Heaps and Ramsbottom(1966) found an analytical
solution for the shear stress distribution by solving the two-
dimensional, linear hydrostatic equations. In this case, the
wind induced shear stress decreases to zero linearly across
the epilimnion. For a continuously stratified field, however,
the shear stress distribution is not well known. The most
commonly assumed form takes the shear stress diminishing
linearly to a zero value at the base of the epilimnion, and the
stress is zero beyond (e.g., seeMonismith, 1987). With this
assumption, the stress term〈N2φnτ̃ 〉 in the wind stress factor
k̃s is identically zero. In this study, we adopt the linear stress
function, but allow the stress to penetrate the metalimnion
(see Fig.4).

The stress function is expressed by introducing a stress
penetration depthhs as a parameter:

τ̃ (z) =


z + hs

hs

, if − hs < z ≤ 0,

0, otherwise.

(35)

Furthermore, in this study the wind stress functionF(x, t)

is uniform over the surface of the lake and, is switched on
and off in time. Lake response to variations in the spatio-
temporal character of the wind forcing was studied in some
detail in the uni-modal study by authors (unpublished report).

Equations (28–31) are solved numerically using the 4th-
order compact finite difference scheme (Lele, 1992) for spa-
tial discretization, and a forward-in-time 3rd-order Adams–
Bashforth scheme. The 4th-order compact filter (Lele, 1992;
Slinn and Riley, 1998) is applied every 10 time steps for
dealiasing and stabilization. Numerical resolution that fol-
low was chosen using 1025 points for spatial domain and a
time step1t=5×10−5. This high resolution configuration,
in conjunction with the spatial descretization scheme with
“spectral-like” resolution, sufficiently resolves steep nonlin-
ear fronts and oscillatory waves.

Figure5 shows the evolution of isopycnal amplitudes (Y

andZ) at several selected times following the initiation of a
wind event in a lake of uniform depth withh2=1, h3=3.

In what follows, a smoothing parameterδ=0.1 used in
Eq. (34), and a shallow water parameter ofS=1/500, defin-
ing the basin length in terms of the upper mixed layer depth,
are used except as otherwise noted. Uniform, rightward wind
stress ofW=1.5 is applied for the first quarter V1 seiche pe-
riod (t=1/4), and the wind is turned off thereafter. The wind
stress penetration depth is chosen ashs=1 (no penetration
to the metalimnion). The model was integrated from an ini-
tial condition at rest. Looking at V1, at the end of the wind
setup time (t=1/4), the isopycnal surface is tilted almost lin-
early across the domain. After the wind setup, the surface
tends to return dynamically to its initial equilibrium state,
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Fig. 5. Evolution of the isopycnal amplitude for(a) mode-1 and(b) mode-2 with the wind stress penetration depthhs=1. The abscissa
covers the full length(0, 1) of the basin in the scaledx-coordinate.

forming a basin scale seiche. After one-seiche period, a non-
linear wave front develops (as indicated by arrow in the fig-
ure), and the front steepens as it propagates. When the front
becomes steeper (aboutt=1.75), an oscillatory wave packet
forms behind the front, owing to the realization of an approx-
imate balance between the weak nonlinearity and the leading
non-hydrostatic effect. The oscillatory waves spread as the
degenerating front moves back and forth in the domain.

The initial response of V2 appears near the end walls. It
should be noted that the V2 response immediately following
the wind setup has an oppositely-signed displacement of the
reference isopycnal relative to the V1 response, but of com-
parable magnitude. The shorter horizontal scale of the the
V2 displacement att=1/4, as compared to the V1 displace-
ment, is a direct consequence of their different long wave
phase speeds.

The negative volume on the left side is steepened, and it
evolves into a high wave number oscillatory wave packet as
it propagates toward the basin interior. The wave phase speed
of V1 is about one-third of V2 (c1=0.939; c2=0.284). A
distinct wave packet appears att≈2 for V1, andt≈0.75 for
V2. Since the self nonlinearity of V2 is much stronger than
that of V1 (see Table1, µ111=0.554; µ222=3.312), wave
lengths in the V2 wave packet are much shorter than their
V1 counterparts. More interesting, when V1 waves reflect
from the end walls, footprints of V1 waves are evident in the

V2 domain just during the V1 wave reflection process (e.g.,
see V2 panels att=1.75, 2.25, 2.75 in Fig.5), which implies
that energy is transferred from V1 to V2 during V1 wave
reflections. Footprints of V2 waves can also be seen in the
V1 domain, but their amplitudes are very small and not so
significant energetically.

The space-time dynamics associated with the reflection of
V1 serves as an effective generator of V2. This arises be-
cause the “stagnation” of V1 induces a bulging of the met-
alimnion, which at leading-order resembles a V2 modal dis-
tortion of the isopycnals. There may well be a generation
of higher modes in this reflection precess, but the reflection
of V1 (alt., the collision of V1 waves) will principally in-
duce an energy transfer to V2 so long as the peak of the
V1 eigenfunction and the nodal point of the V2 eigenfunc-
tion are positioned near the mid-point of the metalimnion.
The symmetry/anti-symmetry of these modes will be shifted
by the presence of stronger stratification in the hypolimnion,
whereupon one expects greater energy flow to higher modes
(V3, V4, etc.) during reflection.

The numerical result discussed above, however, should be
looked at with caution. The field response for both modes de-
pends quite sensitively on the wind stress penetration depth
hs . Figure6 shows several corresponding fields for evolution
when the wind stress penetrates down to the mid-level of the
metalimnion (hs=1.5).
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Fig. 6. Evolution of the isopycnal amplitude for(a) mode-1 and(b) mode-2 with the wind stress penetration depthhs=1.5. The abscissa
covers the full length(0, 1) of the basin in the scaledx-coordinate.

The response of V1 is qualitatively similar to that in Fig.5,
but the response of V2 is quite different, exhibiting a substan-
tially diminished wind energy input to V2. Hence, there is no
generation of a V2 nonlinear front. Energy transfer from V1
to V2 during wave reflection is still clearly observed.

It is instructive to define the modal energy and to quantify
aspects of the modal energetics. From the Euler and continu-
ity equations in the Boussinesq limit, one can show (e.g., see
Gerkema, 2003) that the conserved energy density is

dE =
1

2
(u2

+ w2) +

∞∑
n=0

Bn

(n + 2)!

σ n+2

N2
, (36)

where

B0 = 1; Bn+1 = −

{
Bn

N2(z)

}
z

. (37)

The energy density given in Eq. (36) has the familiar struc-
ture as a sum of kinetic energy and potential energy. How-
ever, the potential energy is expressed by an infinite series.
For a reasonable calculation of the energy, we define the to-
tal energy in the system with a variable buoyancy frequency
by the integral relation

E =

∫
x

∫
z

{
1

2

(
u2

+ w2
)

+
1

2

σ 2

N2

+
1

6
(N2)′

σ 3

N6

}
dzdx, (38)

where only a leading order correction of the potential energy
for non-uniformN2(z) is included. Field variables are ex-
pressed by using two vertical modes:

u = Uφ′

1 + V φ′

2,

w = Uxφ1 + Vxφ2,

σ = N2(Yφ1 + Zφ2).

(39)

Substituting Eq. (39) into Eq. (38), and evaluating the in-
tegral assuming the lake depth is uniform, one obtains:

E =

{
1

2

I1

c2
1

[
〈U2

〉 + d11〈U
2
x 〉 + d12〈UxVx〉

]
+

1

2

[
I1(〈Y

2
〉 − c2

1σ111〈Y
3
〉)

+ I2(ν211 − 2σ211)〈ZY 2
〉

]}
V1

+

{
1

2

I2

c2
2

[
〈V 2

〉 + d22〈V
2
x 〉 + d21〈UxVx〉

]
+

1

2

[
I2(〈Z

2
〉 − c2

2σ222〈Z
3
〉)

+I1(ν122 − 2σ122)〈YZ2
〉

]}
V2

, (40)

where〈· · ·〉 denotes integration over the horizontal domain,
and all coefficients are related to coefficients in Eqs. (28–
31). Terms in Eq. (40) are selectively grouped into V1 or V2.
In each group, the first bracketed term represents the kinetic
energy and the last bracketed term represents the potential
energy.

Using Eq. (40), modal energies were calculated at the end
of wind forcing (t=1/4) as a function ofhs , and results are
exhibited in Fig.7.

Energies are normalized by the total energy for evolution
with a stress penetration depth corresponding tohs=0. En-
ergy input to V2 dramatically decreases as the wind stress
penetrates the metalimnion. The V1 energy also decreases as
the stress penetrates down, but the change in energy is much
less than that in V2. In the same figure, values of the wind
forcing factork̃sn are shown for the same range ofhs . The
forcing factor and modal energies exhibit the same trend. The
forcing factor of V2 decreases to zero as the wind stress pene-
trates down to the half depth of the metalimnion. In this case,
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Fig. 7. (a) Modal energies and(b) modal forcing coefficients as a function of the wind stress penetration depthhs for the metalimnion
thicknessh2=1 (solid line) andh2=2 (dash line). (h3=3, W=1.5)

the wind energy is not injected to V2 directly. Energy of V2
does not vanish completely, however, because energy is still
transferred from V1 to V2 during the wind forcing through
nonlinear coupling. In Fig.7, corresponding results for thick
metalimnion (hs=2) are also presented. Their trends are the
same as those of former case, but the decrease in modal ener-
gies ashs increases is slower. Although it is not shown in the
figure, the forcing factor|k̃s | vanishes as the wind stress pen-
etration increases to near the half-depth of the metalimnion.
Modal energy partition becomes more sensitive as the metal-
imnion becomes thinner.

In Eq. (40), the most interesting terms are〈ZY 2
〉 in V1

and〈YZ2
〉 in V2. These terms are the correlation between

the potential energy of one mode and isopycnal amplitude of
another mode. We call these terms the energy transfer terms.
Of course, energy transfer is processed through ‘all’ depen-
dent variables which are governed by the evolution equa-
tion set, but the energy transfer terms solely provide explicit
modal energy exchange among all the other energy terms
in Eq. (40). Another type of the modal interaction〈UxVx〉

with non-hydrostatic coupling coefficients (i.e.,d12 andd21)
can be equally distributed to both modes (note the identity
(c2

1/I1)d12=(c2
2/I2)d21 in Eq.40), hence there is no explicit

energy transfer through this term. Here we define, for conve-
nient quantification purposes, the amount of explicit modal
energy transferEtr as a difference of the energy transfer
terms

Etr =
1

2
α1〈ZY 2

〉 −
1

2
α2〈YZ2

〉, (41)

whereα1 andα2 are abbreviated representations of the en-
ergy transfer coefficients

α1 = I2(ν211 − 2σ211); α2 = I1(ν122 − 2σ122). (42)

We interpret that ifEtr>0, the amount of energy|Etr | is
transferred from V2 to V1, and vice versa forEtr<0.

Figure8 shows modal energies andEtr as a function of
time forh2=1 andh2=2 with hs=1.

Energies are normalized by the total energy at the end of
forcing (t=1/4). The total energy is not necessarily con-
served after the wind forcing, because Eq. (40) is still an ap-
proximation, and the evolution model includes bottom fric-
tion damping. Fluctuation amplitudes of the total energy for
h2=1 is larger than that forh2=2. This quite probably occurs
because the nonlinearity of the evolution model for a thinner
metalimnion is larger, requiring a higher-order correction in
the energy expression. Looking at theh2=2 case, energy
damping due to the bottom friction is negligible. Total energy
for theh2=1 case seems slightly damped due to the numer-
ical filtering to suppress high wave number noises that arise
from larger nonlinearity of V2. In all cases, the modal ener-
gies oscillate in time, and they are out of phase. The amount
of energy transfer also oscillates in every half V1 seiche pe-
riod. Furthermore, the energy is transferred from V1 to V2
for most of the time (Etr<0). Comparing with Fig.5, the
energy transfer occurs when V1 waves reflect against the end
walls, leaving their footprints in V2 domain. When V1 waves
leave the wall after the reflection, the energy transferred into
V2 during reflection is returned to V1, with no permanent
energy transfer between the modes. Figure9 shows verti-
cally integrated potential and kinetic energy densities of each
mode during V1 wave reflection at the right end wall (x=1).

We chosehs=1.5 with h2=1 to focus more particularly
on the energy transfer from V1 to V2 during reflection by
suppressing initial energy input to V2. In the V1 packet, the
potential energy is larger than the kinetic energy by more
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Fig. 8. Modal energies (upper row) and corresponding energy transferEtr (lower row) as a function of time for(a) h2=1 and(b) h2=2.
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than a factor of two. In the V2 packet, the potential energy
is much larger than the kinetic energy which is almost negli-
gible. During V1 wave reflection, the potential energy of V1
dominates near the end wall, because the isopycnal ampli-
tude increases due to superposition of incident and reflected

waves and, also, the horizontal velocity (kinetic energy) ap-
proaches zero at the end wall. The dominance of potential
energy in V1 is preferably transferred to V2.

In Table 4, the maximum amount of the energy trans-
fer from V1 to V2 and values of the modal energy transfer
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Table 4. The modal energyEtr transferred from vertical mode-1 to
mode-2 and the energy transfer coefficientsα1 andα2 for various
h2, N2

h
andh3 (W=1.5.)

Etr Etr

h2 N2
h

h3 α1 α2 (hs = 1) (hs = 1.5)

1 0 3 1.387 0.262 0.120 0.113
1.5 0 3 1.206 0.318 0.041 0.037

2 0 3 0.999 0.302 0.017 0.016
3 0 3 0.506 0.000 0.004 0.004

1 0.1 3 0.582 −0.012 0.049 0.035
1 0.2 3 0.293 −0.108 0.016 0.011
1 0.5 3 0.084 −0.195 0.002 0.002

1 0 1 1.210 0.000 0.058 0.045
1 0 2 1.351 0.196 0.095 0.083
1 0 4 1.396 0.294 0.138 0.136

coefficients (α1 andα2) are tabulated for various sets ofh2,
N2

h , h3 andhs .
The energy transfer becomes larger for smallerh2 or N2

h ,
as indicated by the fact thatα1 becomes much larger thanα2.
Values ofα1 are much larger thanα2 for all choices ofh3, in-
dicating a dominance of energy transfer from V1 to V2. The
coefficientsν211 andσ211 in α1 arise from the vertical inte-
gral of the buoyancy flux terms (σu andσw) of V1, which
are coupled in the V2 evolution equation (Eq.30). ν211 arises
from the vertical buoyancy flux (σw), andσ211 arises form
the horizontal buoyancy flux (σu). As seen in Table1–3, ν211
is much larger thanσ211. This implies that the vertical buoy-
ancy flux of V1 plays an important role in transferring en-
ergy from V1 to V2. Especially, a thinner metalimnion cor-
responds to largerν211, resulting in more pronounced energy
transfer to V2. It can also be observed from Table4 that wind
stress penetration into the metalimnion gives little change in
the amount of energy transfer. In Fig.10we show the amount
of energy transfer from V1 to V2 as a function of the Wed-
derburn number for selected profiles of buoyancy frequency.
The fractional amount of energy transfer increases quadrati-
cally with respect to the inverse of the Wedderburn number
for all cases.

5 Discussions

In order to provide some insight as to nominal time scales
one might encounter in applications, we present in Table5
data for the V1 and V2 seiche periods in lakes with a Brunt-
Väis̈alä frequency of 0.02 [s−1] in the metalimnion, and with
respective depth and length scales as given. The seiche pe-
riod for V1 is the normalizing time scale for dynamics shown
in Fig.5, and in all following figures. It is evident that the V2
seiche period is typically a factor of three or four times longer
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Fig. 10. Modal energy transferEtr (from mode-1 to mode-2) as a
function of inverse Wedderburn numberW−1 for different stratifi-
cation profiles. (h3=3, hs=1.5)

Table 5. Mode-1 (V1) and mode-2 (V2) seiche periods for different
lake lengthsL with h1=5 [m], h2=h1, h3=3h1, N0=0.02 [s−1],
Nh=0 andδ=0.1. Values in parenthesis are for thicker hypolimnion
with h3=5h1. Each of the seiche periods is defined as 2L divided
by the respective eigenspeed (cn).

L [km] V1 seiche period [hour] V2 seiche period [hour]

2 12 (11) 39 (39)
5 30 (28) 98 (97)
10 59 (51) 196 (194)

than that of V1. However, the nonlinear steepening of the V2
front arising from a wind event clearly occurs much earlier
in time than does the steepening of the V1 front. As a conse-
quence, the self-modal nonlinear interaction of V2 is contin-
ually propagating through a variable background formed by
the larger-scale V1 field. Sustained wind for periods on the
order of one-eight to one-half V1 seiche period leads to sig-
nificant energy deposited into the basin-scale internal wave
field, which subsequently cascades to smaller scales through
process studied here.

Examination of our evolution model shows that the modal
energy partition to V1 and V2 depends greatly on the pene-
tration depth of the wind stress into the metalimnion.Moni-
smith(1987) observed in his laboratory experiment the dom-
inant response of V1 without appearance of V2 for strong
wind stress forcing. He also observed that V1 and V2 coex-
ist in response to weak wind stress forcing. This suggests that
the wind stress penetration depth may depend on the strength
of the wind stress (Wedderburn number), and such vertical
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Fig. 11. Sloping depth configuration.

penetration of the wind stress in conjunction with the verti-
cal stratification profile determines the initial energy input to
each vertical mode.

Recently, Stashchuk et al.(2005) conducted numerical
experiments to simulate the fully-nonlinear, baroclinic re-
sponse of a near two-layer fluid in a rectangular, long, narrow
tank, an experimental configuration similar to that employed
by Horn et al.(2001). Stashchuk et al.(2005) discovered
that the metalimnion (interfacial) layer thickens behind the
nonlinear wave front (see Figs. 6 and 7 in their paper). They
concluded that the layer thickening is attributed to the inter-
action of the wave front with the vertical side walls (see Fig. 8
in their paper). They did not conclude that the widening is at-
tributed to V2, due to the fact that the field velocity profile did
not comply with typical V2 eigenprofiles. However, V1 and
V2, or even higher vertical modes, can coexist in the field,
and they are superimposed, at least in a linear sense. This
requires a decomposition of the disturbance field into verti-
cal modes, which indeed the present multi-modal approach
does, to determine the modal energy spectrum. Their results
exhibited that the widening part of the density layer persis-
tently follows the tail of the nonlinear wave train. If this
layer widening is attributed to V2, this phenomenon implies
the permanent energy transfer from V1 to V2, which is not
observed in the model simulations presented here. Their den-
sity layer is very thin (about 0.2h1), and the initial V1 wave
amplitude is large (0.9h1). This configuration, however, is
outside the operational range of the present weakly-nonlinear
model.

Although the variable depth terms in the evolution model
admit modal energy transfer, our model simulations exhib-
ited that inter-mode transfer is negligible in variable depth
cases. For example, Fig.12 shows evolution of isopycnal
amplitudes in a lake having a sloping topography as depicted
in Fig. 11.

Wind stress penetration depth was chosen to behs=1.5 to
suppress energy input to V2 in order to see modal interaction
during V1 waves propagating over the sloping bottom. At
t=3, V1 waves are about to pass over the slope, but at this
time no significant interaction is observed in the V2 packet.
Modal interaction during V1 wave reflection is rather out-
standing as observed att=2.75 andt=3.25. In Fig.13, cor-
responding pictures for the uniform depth configuration are
shown.

Table 6. Coefficients of variable topography terms for different val-
ues of the slope heighth3s .

h3s 1 2 3 4

κ11 0.178 0.414 0.730 1.155
κ12 −0.015 −0.037 −0.070 −0.119
λ11 0.014 0.031 0.048 0.058
λ12 −0.361 −0.879 −1.643 −2.810

κ21 0.002 0.005 0.010 0.017
κ22 0.003 0.007 0.014 0.023
λ21 −0.021 −0.052 −0.101 −0.178
λ22 0.012 0.027 0.049 0.078

κ12/κ11 −0.09 −0.09 −0.10 −0.10
λ12/λ11 −25.4 −28.6 −34.4 −48.9
κ21/κ22 0.71 0.72 0.73 0.75
λ21/λ22 −1.82 −1.92 −2.05 −2.27

Wave amplitudes are larger than the former case because
the wind forcing factorksn and nonlinearity are larger in the
uniform depth case. It can be observed that there are a se-
ries of small footprints of the V1 oscillatory waves in the
V2 domain, but the V1 wave reflection contributes a much
larger footprint to the V2 domain. Qualitative structures of
the modal components of the wave field in the variable depth
case and the uniform counterpart are still very similar.

The weak cross-modal transfer due to varying depth was
explored further by examining the coefficientsκij andλij ap-
pearing in Eqs. (28–31) for a range of topographic slopes.
Using a linear slope prescribed byh3=h30−(h3s/ls)x,
whereh30, h3s and ls are the maximum depth of the hy-
polimnion, the change in hypolimnion depth, and the hor-
izontal length of the slope, respectively, coefficient values
were computed and presented in Table6. The coefficient val-
ues shown pertain to a configuration withh30=5h1, ls=L/3,
h2=h1, andN2

h=0. Furthermore, coefficient values are re-
ported at the mid-slope depth position (i.e., atxs=ls/2). One
notes that the coefficient values in Table6 are significantly
less than unity, except for the self modal coefficientκ11 ap-
pearing in the V1 velocity evolution equation Eq. (28), and
for the cross modal coefficientλ12 appearing in the V1 isopy-
cnal evolution equation Eq. (29). Corresponding ratios of the
cross-modal to the self-modal coefficients are shown, and the
ratios are typically order one except for those correspond-
ing to the V1 amplitude evolutions. This suggests that in
the present slow-topography formulation the energy transfer
due to variable depth, even though relatively small, can oc-
cur in the V1 field principally through the V1 self-modal,
topographic interaction, and through the V2-induced, cross-
modal interaction if the amplitudes of the V2 field are suffi-
ciently large.
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Fig. 12. Isopycnal amplitudes of(a) mode-1 and(b) mode-2 over sloping topography at different time (W=1.5, hs=1.5). The abscissa
covers the full length(0, 1) of the basin in the scaledx-coordinate.
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Fig. 13. Isopycnal amplitudes of(a) mode-1 and(b) mode-2 over uniform topography (h3=5) at different time (W=1.5, hs=1.5). The
abscissa covers the full length(0, 1) of the basin in the scaledx-coordinate.

6 Conclusions

A multi-modal, weakly-nonlinear model for the wind-forced
response of basin-scale internal waves in an inhomogeneous
environment was derived. The two-vertical-mode interac-
tion was investigated by numerically simulating the evolu-
tion model for several modeled Brunt–Väis̈alä profiles and
several wind forcing functions. Energy distribution among
the modes was studied by defining modal energy and energy
transfer functions in truncated form.

Initial modal energy partition right after uniform wind
forcing of specified duration strongly depends on vertical
structures of both the stratification and the wind stress. Pen-
etration of the wind stress into the metalimnion can signifi-
cantly change the modal energy input, especially for mode-2
and for a thin metalimnion. Determining the initial modal en-

ergy partition following wind setup is very important because
the subsequent evolution (especially mode-2) is strongly de-
pendent on the modal energy input.

Modal energy exchange via nonlinear processes is
captured by the evolution model derived here. Modal
energy transfer occurs predominantly during mode-1 wave
reflection against vertical end walls where the potential
energy of mode-1 is much larger than the kinetic energy.
The energy transfer from mode-1 to mode-2 during mode-1
wave reflection is not a permanent process. During the
reflection, mode-1 energy is transferred to mode-2, and the
transferred energy into mode-2 is returned to mode-1 after
the reflection. The amount of energy transfer between modes
is a function of the Wedderburn number, and it strongly
depends on the stratification profile. Vertical buoyancy
flux of mode-1 plays an important role in energy transfer
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to mode-2. Thin metalimnion configurations increase the
vertical buoyancy flux of mode-2 that is induced by mode-1
via nonlinear modal coupling, enhancing the energy transfer
from mode-1 to mode-2.
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