
Submitted 2 September 2013
Accepted 4 February 2014
Published 18 March 2014

Corresponding authors
Waseem Hassan,
waseem anw@yahoo.com
João Batista T. Rocha,
jbtrocha@yahoo.com.br

Academic editor
Jie Liu

Additional Information and
Declarations can be found on
page 7

DOI 10.7717/peerj.290

Copyright
2014 Meinerz et al.

Distributed under
Creative Commons CC-BY 3.0

OPEN ACCESS

Differential genotoxicity of diphenyl
diselenide (PhSe)2 and diphenyl
ditelluride (PhTe)2

Daiane Francine Meinerz, Josiane Allebrandt,
Douglas O.C. Mariano, Emily P. Waczuk, Felix Antunes Soares,
Waseem Hassan and João Batista T. Rocha

Departamento de Bioquı́mica e Biologia Molecular, Centro de Ciências Naturais e Exatas,
Universidade Federal de Santa Maria, Santa Maria, RS, Brasil

ABSTRACT
Organoselenium compounds have been pointed out as therapeutic agents. In
contrast, the potential therapeutic aspects of tellurides have not yet been demon-
strated. The present study evaluated the comparative toxicological effects of diphenyl
diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in mice after in vivo adminis-
tration. Genotoxicity (as determined by comet assay) and mutagenicicity were used
as end-points of toxicity. Subcutaneous administration of high doses of (PhSe)2 or
(PhTe)2 (500 µmol/kg) caused distinct genotoxicity in mice. (PhSe)2 significantly
decreased the DNA damage index after 48 and 96 h of its injection (p < 0.05). In
contrast, (PhTe) caused a significant increase in DNA damage (p < 0.05) after 48
and 96 h of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased
the micronuclei frequency, indicating its mutagenic potential. The present study
demonstrated that acute in vivo exposure to ditelluride caused genotoxicity in mice,
which may be associated with pro-oxidant effects of diphenyl ditelluride. In addition,
the use of this compound and possibly other related tellurides must be carefully
controlled.
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INTRODUCTION
Selenium (Se) and Tellurium (Te) belongs to the chalcogen family, sharing similar

electronic configuration and some chemical properties with sulfur (S) (Comasseto

et al., 1997; Comasseto, 2010). Se has a fundamental role in several living organisms

as component of several antioxidant enzymes, including glutathione peroxidase and

thioredoxin reductase (Arner & Holmgren, 2000; Nogueira & Rocha, 2011). Despite its

biological role, the excess of selenium can be toxic due its ability to generate free radicals

and catalyze thiol oxidation (Barbosa et al., 1998; Nogueira, Zen & Rocha, 2004; Rocha et

al., 2012; Hassan & Rocha, 2012; Kade, Balogun & Rocha, 2013). The excess of free radical

formation can damage mammalian tissues including thiol containing enzymes that are

sensitive to pro-oxidant situations (Rocha et al., 2012; Rosa et al., 2007; Maciel et al., 2000).

Diphenyl diselenide (PhSe)2, (Fig. 1) is a simple and stable organoselenium compound
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Figure 1 Structure of diphenyl diselenide and diphenyl ditelluride.

widely used in organic synthesis and it has been proposed as a good candidate for

pharmacological and therapeutic purposes (Nogueira, Zen & Rocha, 2004; Rosa et al., 2007;

Nogueira & Rocha, 2011). (PhSe)2 exhibits thiol peroxidase-like activity superior to that of

ebselen, an organoselenium compound that has been used in clinical trials as antioxidant

and mimetic of native glutathione peroxidase enzymes (Nogueira & Rocha, 2011; Kade

& da Rocha, 2013; Kade, Balogun & Rocha, 2013). However, exposure to high doses of

(PhSe)2 can deplete thiols in different tissues and can be neurotoxic to rodents (Maciel et

al., 2000). The LD50 of diphenyl diselenide is 210 µmol/kg (intraperitoneal) or greater

than 500 µmol/kg (subcutaneous) in adult mice (Nogueira et al., 2003).

There are reports that trace amounts of Te are present in body fluids such as blood

and urine (Chasteen et al., 2009). Te has also been found in the form of tellurocysteine

and telluromethionine in several proteins in bacteria, yeast and fungi but telluroproteins

have not been identified in animal cells (Bienert, Schussler & Jahn, 2008). Thus, in contrast

to selenium, tellurium does not have physiological functions (Taylor, 1996). Literature

has demonstrated immunomodulatory, antioxidant and anticancer properties of various

organotellurides (Nogueira, Zen & Rocha, 2004; Avila et al., 2012), semisynthetic telluro-

subtilisin (Mao et al., 2005) and dendrimeric organotellurides (Francavilla et al., 2001).

More sophisticated telluride molecules were synthesized from polystyrene nanoparticle via

microemulsion polymerization. The nanoenzyme showed higher efficiency and provided

a platform for the synthesis and designing of polymeric nanoparticles as excellent model

of enzyme mimics (Huang et al., 2008). Organotellurium compounds can also mimic

glutathione peroxidase activity (Engman et al., 1995) and, consequently, these compounds

can be potential antioxidants, effective against hydrogen peroxide, peroxynitrite, hydroxyl

radicals and superoxide anions (Andersson et al., 1994; Kanski et al., 2001; Jacob et al., 2000).

Recently, our research group demonstrated that organoselenium and organotellurium

present hemolytic and genotoxic effects in human blood cells (Santos et al., 2009a;

Santos et al., 2009b; Caeran Bueno et al., 2013), which is in accordance with results

published by other laboratories in experimental bacteria and rodent models (Degrandi

et al., 2010). Similarly, organoselenides and tellurides can be toxic in different in vivo and

in vitro models of animal pathologies (Maciel et al., 2000; Taylor, 1996; Stangherlin, Rocha

& Nogueira, 2009; Moretto et al., 2007; Heimfarth et al., 2011; Heimfarth et al., 2012a;

Heimfarth et al., 2012b; Comparsi et al., 2012). In effect, diphenyl ditelluride (PhTe)2 was

found to be extremely toxic to mice and rats after acute or chronic exposure (Maciel et

al., 2000; Heimfarth et al., 2012b; Comparsi et al., 2012). The toxicity of tellurides can

be associated with their pro-oxidant activity, particularly, the oxidation of thiol- and

selenol-groups of proteins (Nogueira, Zen & Rocha, 2004; Comparsi et al., 2012; Hassan &

Rocha, 2012).
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Following our interest to determine the boundary between the potential protective

and toxic properties of organochalcogens, the present study was designed to evaluate the

toxic potential of (PhSe)2 and (PhTe)2 in mice. We have determined the genotoxicity and

mutagenicity of these compounds after acute administration to Swiss male mice, using

DNA damage and micronuclei frequency as end-points of toxicity.

MATERIAL AND METHODS
Chemicals
The chemical structure of organochalcogens tested in this study is shown in Fig. 1

diphenyl diselenide and diphenyl ditelluride. The compounds were dissolved in canola oil

immediately before use. (PhSe)2 and (PhTe)2 were obtained from Sigma-Aldrich. All other

chemicals were of analytical grade and obtained from standard commercial suppliers.

Animals
Male Swiss adult mice weighing 30–40 g were obtained from our own breeding colony

(Animal house-holding, UFSM-Brazil). Animals were kept in separate animal cages, on a

12-h light/dark cycle, at a room temperature of (23 ◦C ± 3) and with free access to food

and water. The animals were used according to the guidelines of the committee on care

and use of experimental animal resources of the Federal University Of Santa Maria, Brazil

(23081.002435/2007-16).

Mice were divided in six groups (n = 5) and received one subcutaneous injection of

(1) canola oil (Control group 48 h, mice were euthanized 48 h after the oil injection);

(2) diphenyl ditelluride (500 µmol/kg in canola oil, euthanized 48 h after injection) ; (3)

diphenyl diselenide (500 µmol/kg in canola oil, euthanized 48 h after injection); (4) canola

oil (Control group 96 h, mice were euthanized 96 h after injection); (5) diphenyl ditelluride

(500 µmol/kg in canola oil, euthanized 96 h after injection) and (6) diphenyl diselenide

(500 µmol/kg in canola oil, euthanized 96 h after injection). The doses were based in a

previous acute toxicological study by Maciel et al. (2000).

Sample preparation for comet assay
Mice were anesthesized with ketamine and 2.5 ml blood samples were collected by heart

puncture and immediately euthanized by decaptation. Mice blood leukocytes were isolated

and used in the comet test but no pre-incubation was carried out (Santos et al., 2009a;

Santos et al., 2009b; Meinerz et al., 2011).

Micronucleus test
In a micronucleus test (MN), two samples of blood from each animal were placed in

a microscope slides and air dried at room temperature. Slides were stained with 5%

May-Grunwald-Giemsa for 5 min. The criteria used for the identification of MN were

a size smaller than one-third of the main nucleus, no attachment to the main nucleus,

and identical color and intensity as in the main nucleus. MN were counted in 2000 cells
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Figure 2 DNA damage quantification. Classifications of DNA damage in human leukocytes. DNA
damage index was calculated from cells in different damage levels, which were classified in the visual
score by the measurement of DNA migration length and in the amount of DNA in the tail. The level 5
was excluded from our evaluation.

with well-preserved cytoplasm and calculated as: % MN = number of cells containing

micronucleus × 100/total number of cells counted. Micronuclei presence was determined

by three investigators that were blind to the animal treatments.

Comet assay
Comet assay is a rapid, simple and sensitive technique for measuring DNA breaks in single

cells. This test has been used to investigate the effect of many toxic agents on DNA (Collins

& Harrington, 2002; Blasiak, Arabski & Krupa, 2004). The comet assay was performed

under alkaline conditions according to the procedures described by Santos et al. (2009a)

and Santos et al. (2009b). The slides obtained from white blood cells of treated mice were

analyzed under blind conditions by at least two individuals. DNA damage is presented as

DNA damage index (DI). The DNA damage was calculated from cells in different damage

classes (completely undamaged: 100 cells × 0 to maximum damaged −100 cells × 4).

Damage index is illustrated in Fig. 2 and classes were determined considering the DNA tail

and DNA migration length.

Statistical analysis
Data are expressed as mean ± SD from five independent experiments performed in

duplicate or triplicate. Statistical analysis was performed using a Kruskal-Wallis Test

followed by Dun’s test. Results were considered statistically significant when p < 0.05.
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Table 1 DNA damage levels in leukocytes from mice treated with diselenide or ditelluride.

Compound Hours of
exposition

Damage levels of DNA DI

0 1 2 3 4

Control 48 h 61.0 ± 0.5 19.6 ± 2.0 13.4 ± 1.4 4.5 ± 0.8 1.0 ± 0.5 63.0 ± 2.5a

(PhSe)2 48 h 77.2 ± 3.6 11.8 ± 1.6 6.6 ± 1.3 3.8 ± 1.1 0.6 ± 0.2 40.8 ± 7.8b

(PhTe)2 48 h 48.0 ± 9.7 32.3 ± 9.6 13.0 ± 3.2 5.0 ± 1.0 1.6 ± 0.6 80.0 ± 9.3c

Control 96 h 63.5 ± 0.5 20.7 ± 6.5 12.5 ± 5.5 3.7 ± 0.5 0.0 ± 0.0 58.0 ± 4.6a

(PhSe)2 96 h 80.0 ± 2.0 10.0 ± 2.0 5.0 ± 3.0 3.0 ± 0.6 2.0 ± 2.0 40.0 ± 1.1b

(PhTe)2 96 h 59.5 ± 3.5 19.0 ± 7.0 12.0 ± 3.0 9.2 ± 0.8 1.6 ± 0.5 76.0 ± 1.2c

Notes.
Distribution of damage levels in mice leukocytes exposed to diphenyl diselenide and diphenyl ditelluride (500 µmol/kg,
s.c.). DNA damage is presented as DNA damage index (DI). Data are expressed as means for five independent
experiments. Statistical analysis by a Kruskal-Wallis Test test followed by Dun’s test.

RESULTS
No animal died during the experimental period. After 48 h of diselenide or ditelluride

treatment, mice did not show symptoms of toxicity such as stereotypical behavior,

ataxia, diarrhea, increased dieresis or abdominal writings. However, after 96 h, the group

treated with (PhTe)2 presented diarrhea, low level of motor activity and a decrease in

body weight (data not shown); which is in accordance with previous finding from our

laboratory (Maciel et al., 2000).

Comet assay
After in vivo administration, diphenyl diselenide caused a significant decrease in DNA

damage index (DI) both after 48 and 96 h. In contrast, diphenyl ditelluride caused

a significant increase in DNA damage index (DI). After 48 h, the damage caused by

ditelluride was about 25 and 100% higher than control and diphenyl diselenide groups,

respectively (Table 1). After 96 h, the DI caused by diphenyl ditelluride was about 30 and

90% higher than control and diselenide treated mice, respectively (Table 1).

Micronucleus test
After 48 or 96 h of a single dose of diphenyl ditelluride, there was a significant increase in

the number of micronuclei in mice when compared with control and diphenyl diselenide

group (Fig. 3). Diphenyl diselenide did not modify the number of micronuclei when

compared to the control group (Fig. 3).

DISCUSSION
The selected dose of both chalcogens was based on our previous report (Maciel et al., 2000),

where we tested different doses for acute and chronic exposure. Similarly, in the same dose

range, diphenyl diselenide has been reported to have interesting pharmacological effects,

such as antinoception and anti-inflammatory effects, among others, (see, for instance,

Savegnago et al., 2008; Savegnago et al., 2007a; Savegnago et al., 2007b and Savegnago et

al., 2006). However, it must be emphasized here that in this range of doses, it also causes
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Figure 3 Micronuclei frequency after treatment with diselenide and ditelluride. Frequency of Mi-
cronuclei (MN) cells in mice exposed to (PhTe)2 or (PhSe)2. Mice were exposed to a single dose of
diselenide or ditelluride (500 µmol/kg, s.c.). Forty eight and 96 h after the injection, blood cells were
examined for the presence of micronuclei. Data are expressed as mean ± SD for 5 mice per group.
∗ denoted p > 0.01 as compared to control group; # Denoted p > 0.01 as compared to diphenyl diselenide.

toxicity in mice and rats (Nogueira et al., 2003; Nogueira & Rocha, 2011). Consequently,

the acute use of diphenyl diselenide may be possible, but its chronic or repeated use is

unfeasible.

The results presented here indicate clear toxic effects of (PhTe)2 when compared with

(PhSe)2. Tellurium (Te) has the potential of redox cycling which leads to formation

of reactive oxygen species (ROS) which can damage biomolecules (Maciel et al., 2000;

Nogueira, Zen & Rocha, 2004; Santos et al., 2009a; Santos et al., 2009b; Degrandi et al., 2010;

Sailer et al., 2004; Caeran Bueno et al., 2013). Organotellurium-induced intracellular ROS

accumulation has been reported to be the cause of cell death in HL-60 and different types

of cancer cells (McNaughton et al., 2004; Sandoval et al., 2010; Ding et al., 2002; Rigobello

et al., 2009). In contrast, exposure of mice to (PhSe)2 caused a significant decrease in the

DNA damage index (DI) both after 48 and 96 h of drug administration as shown in Table 1.

The protective effect can be attributed to its antioxidant or GPx like activity (Nogueira &

Rocha, 2011).

As observed in DNA damage test, the toxic behavior of (PhTe)2 was completely

different than (PhSe)2 in micronucleus assay. The frequency of mutations, showed by

an increase of micronuclei frequency, reinforce the toxicity of (PhTe)2. It is important

to note that (PhSe)2 did not modify the number of micronuclei, when compared to

the control group (Fig. 3). Previous studies have also demonstrated mutagenicicity

of (PhTe)2 at higher concentrations in V79 cells (Rosa et al., 2007). We have also
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reported the mutagenicity of another Te-containing organic compound, (S)-dimethyl

2-(3-(phenyltellanyl) propanamido) succinate in mice leukocytes (Meinerz et al., 2011)

In conclusion, the results presented here indicate that diphenyl ditelluride is toxic to

mice, whereas at the same dose diphenyl diselenide had protective effects. These effects may

be linked to the pro-oxidant activity exhibited by organotellurium compounds. This data

supports studies that have been published about the toxicological and pharmacological

effects of organochalcogens in different pathological models. In effect, our data indicated

that diphenyl diselenide can have protective effects after in vivo administration to mice,

which can be related to its antioxidant properties, whereas diphenyl ditelluride is much

more toxic than diphenyl diselenide. Furthermore, in view of the genotoxic effect of

(PhTe)2, the indication in the literature that organotellurides could be therapeutically

active compounds must be revisited taking into consideration the potential toxicity of this

element. Accordingly, additional studies will be needed to elucidate the mechanism(s)

by which (PhTe)2 mediates its toxicity and whether or not distinct chemical forms of

organotellurides can have a similar toxic effect in animal models.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Financial support was received from TWAS, CAPES, SAUX, PROAP, CNPq, VITAE,

CNPq-INCT for Excitotoxicity and Neuroprotection, FAPERGS-PRONEX and FAPERGS.

Waseem Hassan and JBTR are recipients of CNPq Fellowships. The funders had no role

in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

TWAS, CAPES, SAUX, PROAP, CNPq, VITAE, CNPq-INCT.

FAPERGS-PRONEX and FAPERGS.

Competing Interests
João Batista T. Rocha is an Academic Editor for PeerJ.

Author Contributions
• Daiane Francine Meinerz performed the experiments, analyzed the data, contributed

reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,

reviewed drafts of the paper.

• Josiane Allebrandt performed the experiments, analyzed the data, contributed

reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables.

• Douglas O.C. Mariano performed the experiments, contributed

reagents/materials/analysis tools, reviewed drafts of the paper.

• Emily P. Waczuk performed the experiments, contributed reagents/materials/analysis

tools.

Meinerz et al. (2014), PeerJ, DOI 10.7717/peerj.290 7/11

https://peerj.com
http://dx.doi.org/10.7717/peerj.290


• Felix Antunes Soares conceived and designed the experiments.

• Waseem Hassan conceived and designed the experiments, analyzed the data, con-

tributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or

tables, reviewed drafts of the paper.

• João Batista T. Rocha conceived and designed the experiments, analyzed the data, wrote

the paper, prepared figures and/or tables, reviewed drafts of the paper.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

The guidelines of the committee on care and use of experimental animal resources of the

Federal University Of Santa Maria, Brazil (23081.002435/2007-16).

REFERENCES
Andersson CM, Brattsand R, Hallberg A, Engman L, Persson J, Moldéus P, Cotgreave I. 1994.
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