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Abstract. A recently developed atmospheric pressure in-
terface mass spectrometer (APi-TOF) measured the negative
and positive ambient ion composition at a boreal forest site.
As observed in previous studies, the negative ions were dom-
inated by strong organic and inorganic acids (e.g. malonic,
nitric and sulfuric acid), whereas the positive ions consisted
of strong bases (e.g. alkyl pyridines and quinolines). Sev-
eral new ions and clusters of ions were identified based on
their exact masses, made possible by the high resolution,
mass accuracy and sensitivity of the APi-TOF. Time series
correlograms aided in peak identification and assigning the
atomic compositions to molecules. Quantum chemical cal-
culations of proton affinities and cluster stabilities were also
used to confirm the plausibility of the assignments. Acids in
the gas phase are predominantly formed by oxidation in the
gas phase, and thus the concentrations are expected to vary
strongly between day and night. This was also the case in
this study, where the negative ions showed strong diurnal be-
havior, whereas the daily changes in the positive ions were
considerably smaller. A special focus in this work was the
changes in the ion distributions occurring during new parti-
cle formation events. We found that sulfuric acid, together
with its clusters, dominated the negative ion spectrum dur-
ing these events. The monomer (HSO−

4 ) was the largest
peak, together with the dimer (H2SO4·HSO−

4 ) and trimer
((H2SO4)2·HSO−

4 ). SO−

5 also tracked HSO−4 at around 20%
of the HSO−

4 concentration at all times. During the strongest
events, the tetramer and a cluster with the tetramer and am-
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monia were also detected. Quantum chemical calculations
predict that sulfuric acid clusters containing ammonia are
much more stable when neutral, thus the detection of a single
ion cluster implies that ammonia can be an important com-
pound in the nucleation process. We also believe to have
made the first observations of an organosulfate (glycolic acid
sulfate) in the gas phase. This ion, and its cluster with sul-
furic acid, correlates with the HSO−4 , but peaks in the early
afternoon, some hours later than HSO−

4 itself. A list of all
identified ions is presented in the supplementary material,
and also a list of all detected masses not yet identified.

1 Introduction

Ions in the atmosphere are produced mainly by cosmic radia-
tion and radioactive decay (e.g. Harrison and Carslaw, 2003).
The primary ions formed in this process, such as N+

2 , O+

2 ,
O−

2 and H3O+, subsequently collide with various trace gases,
which may result in charge transfer when energetically favor-
able. In this way, over time, the charges will be transported,
through a series of collisions leading to charge transfer, to-
wards the compounds with the highest (positive charges) and
lowest (negative charges) proton affinities. Once an ion col-
lides with an aerosol particle or surface, it is considered to
be lost. Thus, the ambient ion distribution obtains a pseudo
steady state between ion production, transfer, and loss (e.g.
Hõrrak et al., 2008, and references therein).

Formation of new aerosol particles via nucleation of low-
volatile trace gases has been observed to take place through-
out the atmosphere (Kulmala et al., 2004; Kulmala and
Kerminen, 2008). Nucleated particles constitute a globally
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important source of cloud condensation nuclei, with poten-
tially large implications on the Earth’s climate system (Wang
and Penner, 2009; Merikanto et al., 2009; Andreae and
Rosenfeld, 2008). The contribution of ions to atmospheric
nucleation has been studied both theoretically (Kerminen et
al., 2007; Yu and Turco, 2001; Kazil and Lovejoy, 2004; Yu
et al., 2008) and by using various experimental approaches
(Gagńe et al., 2009; Eisele et al., 2006; Hõrrak et al., 2003;
Mirme et al., 2010; Laakso et al., 2007). While many of these
studies are suggestive of a minor contribution of ions to the
overall nucleation rate (Kulmala et al., 2007; Kulmala et al.,
2010), especially in the lower troposphere, no general con-
sensus on this issue has been received (Enghoff and Svens-
mark, 2008; Kazil et al., 2008). Regardless of their exact
role in atmospheric aerosol formation, ions are expected to
provide valuable information on this process, since the trace
gases participating in nucleation are very likely to influence
the number size distribution and chemical composition of at-
mospheric small ions.

The concentration and size distribution of ions can be mea-
sured with time resolutions of minutes or less by using var-
ious kinds of ion spectrometers, such as the Balanced Scan-
ning Mobility Analyzer (BSMA, Tammet, 2006), Air Ion
Spectrometer (AIS, Mirme et al., 2007), and Neutral clus-
ter and Air Ion Spectrometer (NAIS, Kulmala et al., 2007;
Manninen et al., 2009b). With these instruments, physical
characteristics of atmospheric ions have recently been in-
vestigated in a number of different environments around the
world (e.g. Suni et al., 2008; Vana et al., 2008; Laakso et al.,
2008; Manninen et al., 2010). Unfortunately, due to the low
mobility resolution associated with ion spectrometers (Asmi
et al., 2009), no information on the chemistry of atmospheric
ions has been obtained from these studies.

To determine the chemical composition of atmospheric
ions, mass spectrometer (MS) techniques need to be em-
ployed. The first mass spectrometric measurements of tropo-
spheric ions were performed during the 1980s (Eisele, 1989a,
b, and references therein), and the same or similar kind of in-
struments have been used until the last decade (Eisele et al.,
2006). These studies have shown that negative ions below
a few hundred atomic mass units are dominated by strong
acids, such as sulfuric and nitric acid, and their clusters,
whereas positive ions consist of molecules and clusters of
ammonia, amines and pyridines. The quadrupole MS is lim-
ited in applicability due to close to integer mass resolution,
in addition to the long integration times needed to sample the
entire ion spectrum. With these instruments, a more specific
determination of the chemical composition requires MS-MS
operation, where additional information is gained by frag-
menting selected ions.

Recently, a new atmospheric pressure interface time-of-
flight mass spectrometer (APi-TOF) was developed and
tested (Junninen et al., 2010). A time-of-flight MS provides a
better mass and time resolution than a quadrupole MS. Thus,
Junninen et al. (2010), identified several ions in the ambi-

ent air with high certainty, purely based on their (high res-
olution) masses and temporal behavior, consistent with the
previous characterization with the quadrupole MS methods
(Eisele, 1989a, b).

In this study, we have deployed an APi-TOF in Hyytiälä,
southern Finland, to measure the composition of ambient
ions. The aim was to compare the composition of ions in the
boreal forest with existing data available by Eisele (1989a,
b) and Junninen et al. (2010), and continue the identification
work. With the improved sensitivity, the temporal behavior
of the ions could also be studied. A special focus was put on
determining the changes in the ion composition during new
particle formation events, and how this is related to the initial
steps of nucleation and growth.

2 Materials and methods

This study utilized both experimental and theoretical meth-
ods in the characterization of the ambient ion chemical com-
position in a boreal forest environment. A suite of instru-
ments were deployed at SMEAR II in Hyytiälä (Hari and
Kulmala, 2005). The station is a rural site, located within the
boreal forest, with a large range of basic meteorology, par-
ticle and gas phase instruments measuring year-round. The
experimental characterization of the ambient ions was con-
ducted as a part of the EUCAARI project (Kulmala et al.,
2009; Kerminen et al., 2010) intensive observation period
in April–May, 2009. The results presented below were col-
lected over the period 30 April–8 May 2009, starting in neg-
ative ion mode, and switching to positive ion measurements
on 5 May.

Quantum chemical calculations were performed to aid in
the interpretation of the measured ion distributions. Proton
affinities and gas phase acidities were calculated for several
compounds, providing a measure for the stability of the ions.
Although the bulk liquid values for proton affinity and acidity
for a certain compound is well known, the gas phase values
may differ from these. Additionally, formation free energies
of selected molecular clusters were calculated. Specific com-
putational details are presented in the supplementary mate-
rial.

2.1 Ambient ion chemical composition

An atmospheric pressure interface time-of-flight mass spec-
trometer (APi-TOF) was used to measure the mass spectrum
of ions of both polarities. The instrument is previously de-
scribed by Junninen et al. (2010), and only a brief descrip-
tion will be given here. The instrument inlet is a critical
orifice drawing a sample flow of 0.8 l min−1, and the aim
is to transport all the ions into the TOF to determine their
mass per charge (m/Q). This is done by using two guid-
ing quadrupoles and an ion lens assembly, in three separate
differentially pumped chambers, leading into the TOF. The
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TOF, manufactured by Tofwerk AG in Switzerland, has a re-
solving power specified to 3000 Th/Th and a mass accuracy
<20 ppm in “V mode”. The ion flight paths can be set to ei-
ther single (“V mode”) or double (“W mode”) reflections,
optimizing either for signal (V) or resolution (W). In this
study only the V mode was used. We will use the Thomp-
son (Th) as the unit form/Q, which closely corresponds to
the mass unit Dalton (Da) for singly charged ions.

The APi-TOF currently provides mass spectra of ions with
a transmission efficiency of 0.1–1% (Junninen et al., 2010)
in the range 80–800 Th. Effectively the TOF is a band-pass
filter for the ions, where there is a sharp cut-off at lowm/Q, a
relatively stable transmission in the intermediatem/Q range,
and a slow decrease at highm/Q. The position of the sharp
drop-off at lower sizes, and the rate of transmission loss at
higher masses can to some extent be optimized to allow for
better throughput of either the small or large ions. In this
work, with a focus on studying new particle formation and
growth, the transmission range was optimized for the larger
ions, which in practice meant a sharp cut-off at around 70 Th
(positive ions) and 80 Th (negative ions), and a transmission
drop of at least a factor 10 at 1000 Th (both polarities).

In addition to the internal ion losses, the sampling inlet
tubing will also produce (size dependent) losses. The inlet
of the APi-TOF consisted of stainless steel tubing, roughly
60 cm in length. The first 45 cm was 10 mm outer diameter
(OD) tube with a flow rate of 15 l min−1, followed by 15 cm
of 6 mm OD tube with a flow of 6 l min−1. Simulated dif-
fusion losses in the inlet tubing showed a transmission of
25–50% in the mass range 100–1000 Da, assuming laminar
flow. The final total detection efficiency of the instrument
during this campaign was determined by comparing the to-
tal ion counts measured by the APi-TOF and a BSMA (see
Sect. 2.2.2). No size dependence was taken into account, as
this could not be done reliably enough. The uncertainty of
the BSMA is reported to be<20%, and this uncertainty will
translate to the reported APi-TOF concentrations.

In the expansion into lower pressure, and during ion-gas
collisions in the guiding quadrupoles, weakly bound clusters
may fragment. The most likely perturbation of the ions is
the loss of clustered water molecules. In a recent comparison
between the APi-TOF and two ion mobility instruments, very
good agreement from sampled ambient ion distributions was
found (Ehn et al., 2010). The transmission estimates from
that comparison agreed well with the calibrations made in
the laboratory, with molecules and clusters as described by
Junninen et al. (2010). The fact that the instruments agreed,
suggest that no major fragmentation happens inside the APi-
TOF.

2.2 Ancillary instrumentation and data analysis

2.2.1 Gas phase sulfuric acid and malonic acid

A chemical ionization mass spectrometer (CIMS, Eisele and
Tanner, 1993; Petäjä et al., 2009) measured next to the APi-
TOF, providing neutral sulfuric acid concentrations for the
measurement period. The CIMS introduces NO−

3 ions into
its sample flow, and based on the selectivity of the nitrate
ion, only a few stronger acids will transfer a proton to it, the
strongest being H2SO4. Besides the normal measurement
mode of the CIMS, for this period it was also measuringm/Q
103 Th, believed to be de-protonated malonic acid.

2.2.2 Air ion physical characterization

A balanced scanning mobility analyzer (BSMA, Tammet,
2006) also measured during the EUCAARI intensive cam-
paign in Hyytïalä. The BSMA consists of two plane-type dif-
ferential mobility analyzers, one for each polarity. It scans 16
mobility channels in the range 3.2–0.032 cm2 V−1 s−1 with a
time resolution of 10 min. The extremely high flow rate of
about 3000 l min−1 provides good sensitivity and low diffu-
sion losses inside the instrument.

2.2.3 Data analysis

The mass spectra were analyzed using the tofTools toolbox
developed by Junninen et al. (2010). The BSMA was used
as a reference to account for inlet and transmission losses in
the APi-TOF. We compared the total ion concentrations mea-
sured by the APi-TOF and the BSMA, and selected appro-
priate multipliers for the APi-TOF data. The resulting values
for the negative ions was 3000, and the positive ions 1000,
corresponding to total transmissions of 0.033% and 0.1%,
respectively. These values are low compared to the labora-
tory calibrations performed by Junninen et al. (2010), but the
calibrations did not include any inlet losses, and this is be-
lieved to be the reason for the discrepancy. The difference
between the polarities is most likely due to different tuning
of the voltages in the APi.

3 Results and discussion

3.1 Typical features in the mass spectra

3.1.1 Negative spectra

Typical negative ion mass spectra from 80 to 700 Th are
presented in Fig. 1, averaged to integer mass resolution
for clarity. The spectrum in panel A shows a 3 h average
from 09:00–12:00 on 30 April, which was a sunny day and
consequently had a high photochemical activity. The ions
were dominated by de-protonated sulfuric acid (bisulfate ion
HSO−

4 ) and its clusters with sulfuric acid and other species.

www.atmos-chem-phys.net/10/8513/2010/ Atmos. Chem. Phys., 10, 8513–8530, 2010
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Fig. 1. Negative ion mass spectra during the measurements in Hyytiälä, averaged over 3 h.(A) shows a typical daytime spectrum and(B) a
typical nighttime spectrum. The ions are colored based on the identified composition.

The highest peaks were sulfuric acid monomer (96.96 Th),
dimer (194.93 Th) and trimer (292.89 Th). The dimer/trimer
in this context refers to a cluster of one/two H2SO4 molecules
clustered with HSO−4 . Other selected sulfuric acid peaks are
also shown in Fig. 1, including clusters with nitric acid, mal-
onic acid, and ammonia. Additionally, SO−

5 (111.95 Th) was
typically detected together with HSO−4 , and the concentra-
tion of SO−

5 was roughly 20% of that of HSO−4 . Several
studies have presented data on HSO−

4 in the atmosphere (e.g.
Eisele, 1989b; Eisele et al., 2006), but to our knowledge the
only previous atmospheric observations of the SO−

5 ion was
by Junninen et al. (2010). Model studies on the role of HSO5
in the nucleation process has also been performed by Kurtén
et al. (2009), and this metastable radical has been found to
be significantly stabilized by hydration, i.e. by forming clus-
ters with water molecules, in ambient conditions. However,
if SO−

5 would be produced by de-protonation of HSO5, there
would need to be a very high concentration of HSO5 in the
atmosphere, but to our knowledge there are no reports of this.
On the other hand, Salcedo et al. (2004) showed that SO2 can
be ionized by CO−3 , producing end products such as CO2,
SO−

3 an SO−

5 . However, SO−5 tracks HSO−4 so closely in our
data, that it cannot be formed purely from SO2 which usually
peaks in the early morning.

The range around 400 Th in Fig. 1a is plotted in more de-
tail in the inset figure. During this day we also observed the
sulfuric acid tetramer, and the tetramer cluster with ammonia
(NH3). Both of these peaks were very small, but had clear
negative mass defects, i.e. the peaks were clearly below the
integer masses, distinguishing them from all the surround-
ing (most likely organic) peaks. The same peaks were ob-
served in the laboratory by Junninen et al. (2010) when mix-

ing a sulfuric acid laden sample with laboratory air. Further-
more, Junninen et al. (2010) did not observe any NH3 affili-
ated clusters smaller than the sulfuric acid tetramer, but at the
higher masses the NH3-containing clusters dominated. That
may also be the case in this study, but the concentrations of
the larger clusters were not high enough to be distinguished.
The period shown in Fig. 1 coincided with a strong new par-
ticle formation event, as will be shown in Sect. 3.3, and the
implications of the observation of a H2SO4/NH3 ion cluster
for the nucleation mechanisms are discussed in Sect. 3.4.

Figure 1b shows a 3 h average from 00:00–03:00 on 1
May. During night the H2SO4 production was consider-
ably lower, but nevertheless HSO−

4 was still one of the
largest peaks in the spectrum. Other distinct peaks were
found at 103.00 Th (malonic acid, C3H3O−

4 ), 166.00 Th
(HNO3·C3H3O−

4 ), 124.98 Th (HNO3·NO−

3 ), and 157.94
(SO4·NO−

3 ). All these have been previously identified by
Eisele and Tanner (1990) in Georgia, USA. The last ion may
have a different molecular structure but the elemental com-
position is probably correct.

Based only on the bulk liquid acidity of malonic acid (pKa
= 2.83), it is surprising that the ambient concentrations of the
ion were so high. However, the gas-phase acidity of small
dicarboxylic acids, and especially malonic acid, is consider-
ably higher than what would be expected based on their bulk
liquid acidities, as measured by Kumar et al. (2005). They
speculated that this is due to the formation of a strong internal
hydrogen bond in the corresponding conjugate ions. For in-
stance, for malonic acid, it has been computationally demon-
strated (albeit at a fairly qualitative level of theory) that
C3H3O−

4 prefers a cyclic structure in the gas phase, but an
open structure in the aqueous phase (Mavri and Hadzi, 1998).

Atmos. Chem. Phys., 10, 8513–8530, 2010 www.atmos-chem-phys.net/10/8513/2010/
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Our calculations confirm this hypothesis. The minimum-
energy structures of de-protonated oxalic, malonic, and suc-
cinic acids all contain an internal hydrogen bond (between
the remaining COOH hydrogen and the negatively charged
oxygen on the COO− group), as shown in Fig. A1 in Ap-
pendix A. However, only the ring in the malonic acid ion
contains precisely six atoms, which makes malonic acid a
stronger acid in the gas phase than oxalic or succinic acid
(calculated proton affinities found in Table A1, Appendix A).
More importantly, in the gas phase, malonic acid is also sig-
nificantly stronger than nitric acid, which explains the abun-
dance of C3H3O−

4 measured by the APi-TOF, and why mal-
onic acid can be detected with the CIMS instrument.

The night time spectrum was dominated by a large amount
of peaks at high masses. The largest pattern is seen in the
range 300–400 Th, with a second pattern forming at 500–
600 Th. These peaks have not yet been identified with as
high certainty as the previously mentioned ions, partly due
to a decrease in the absolute mass accuracy at higher masses,
and an increase in the amount of elemental composition per-
mutations possible. A peculiarity is that all the largest peaks
between 280 and 400 Th fall on even integer masses. This
implies an odd number of N atoms in each ion, according to
the nitrogen rule as described in the peak identification sec-
tion in Junninen et al. (2010).

The instrument transmission for the negative ions during
this experiment was optimized for larger masses, and thus
there was a sharp cut-off in the lower end of the spectrum.
The smallest detectable ions were seen at integer mass 80
Th. This means that we could not detect ions like NO−

3 and
CO−

3 . Especially the former is expected to be found in fairly
high concentrations based on previous measurements by e.g.
Eisele and Tanner (1990) and Junninen et al. (2010).

3.1.2 Positive spectra

The positive ion spectra were more evenly spread out over
many masses than the corresponding negative spectra, as
seen in Fig. 2. Some positive ion peaks do stick out, mainly
n-alkyl pyridines and quinolines, with protonated pyridine at
80.05 Th, and protonated quinoline at 130.07 Th. However,
throughout the measurement range there are peaks visible at
nearly every mass. The limit at whichm/Qwe no longer can
identify peaks with a high degree of certainty is lower for the
positive ions, as the signals are spread out over more masses,
yielding generally lower signals. The inset figure shows the
mass spectrum in 200–500 Th range, where a pattern typical
for organic compounds. Only a daytime spectrum is shown
for the positive ions, as the day and nighttime differences
are much more subtle than for the negative ions. During the
night, the pyridine peaks typically increase around a factor
of two, whereas signals at the higher masses decrease.

Similar to the negative ion spectra, also the positive spec-
tra suffer from a sharp transmission cut-off at low masses.
The most important ion that we cannot measure is protonated
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Fig. 2. Typical daytime positive ion mass spectrum during the mea-
surements in Hyytïalä, averaged over 3 h.

ammonia (NH+4 ). If present, also protonated water (H3O+)

and small protonated water clusters would not have been de-
tected.

3.2 Peak identification

Identifying the elemental composition of the detected peaks
was done principally by looking at the high resolution
masses. For a mass accuracy of∼20 ppm in the APi-TOF,
the absolute mass can typically be calibrated to up to three
decimals, up to a few hundred Thomson. To confirm this
first result, and also to provide hints on the chemical formula
of the ions, we used time series correlograms and Kendrick
analysis (Junninen et al., 2010; Kendrick, 1963). Examples
of both these techniques are presented below. A detailed list
of all ions identified in this study can be found in the sup-
plementary material, Tables S1 and S2. Tables S3 and S4
list all ions that were detected, but not necessarily identified.
The large majority of the identified ions have received their
charge by proton transfer to (positive ions) or from (negative
ions) the originally neutral molecules. We will refer to pro-
tonated and de-protonated ions with the name of the corre-
sponding neutral molecules, except where it may cause con-
fusion.

3.2.1 Negative ions

The time series correlation of each integer mass with other
integer masses was calculated after averaging the data to a
time resolution of 30 min. Although higher mass resolution
data were available, most unit masses were dominated by
only one ion, so to optimize the signal to noise for the time
series, only unit masses were used for this analysis. Once a
correlation was observed, identification was performed based
on the high resolution peaks.

Figure 3 shows the time series correlation of each inte-
ger m/Q with m/Q 97. These plots, termed (time series)
correlograms in this work, were found to be very useful
in comparing the temporal behavior of different ions. The
peak atm/Q 97 was believed to be dominated by sulfuric

www.atmos-chem-phys.net/10/8513/2010/ Atmos. Chem. Phys., 10, 8513–8530, 2010



8518 M. Ehn et al.: Composition and temporal behavior of ambient ions

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

C
or

re
la

tio
n 

co
ef

fic
ie

nt
, R

400300200100
m/Q   [Th]

 Molecules/clusters with sulfuric acid
 Sulfur isotopes

 Molecules/clusters with nitric acid
 Other species

SO3
-

H3S2O9
-

C2H3SO6
-

H2SO4 C2H3SO6
-

C3H4O4 C2H3SO6
-

Fig. 3. Correlogram showing time-series correlation of ions with HSO−

4 . The dimer, trimer and tetramer all stand out, together with some
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be the first observation of an organosulfate in the gas phase. For reference, the coloring is kept the same as in Fig. 1 although additional
peaks were found to contain sulfuric acid.

acid monomer, HSO−4 , and very high correlations (R > 0.8)
are found between the monomer and the dimer, trimer and
SO−

5 , at masses 195, 293 and 112 Th, respectively. Also the
tetramer at 391 Th, and the HNO3·HSO−

4 cluster at 160 Th
haveR > 0.5. All of the aforementioned ions were tagged
in Fig. 1, and are not tagged in Fig. 3. The peaks tagged in
Fig. 3 are those with lower concentrations but that stand out
in the correlogram. The first is SO−3 (at 80 Th), which may
correspond to de-protonated HSO3 which is a short-lived in-
termediate in the oxidation process of SO2 into H2SO4. An-
other possibility was mentioned in Sect. 3.1.1, in which SO−

3
is formed directly from reactions between SO2 and CO−

3 (and
possibly other ions). At 211 Th, the peak was identified as
having the elemental formula H3S2O−

9 . This could possibly
be an ion cluster of H2SO4 and Caro’s acid (H2SO5), but
since the HSO−5 ion was not separately detected, we could
not verify this using correlograms.

At integerm/Q 155 Th, we detected an ion matching the
elemental formula C2H3SO−

6 , and atm/Q 253 and 259 Th
its probable clusters with sulfuric and malonic acid, respec-
tively). At unit mass 201 in Fig. 1, the ion C4H5SO−

8
was attributed to a cluster of sulfuric and malonic acid
(C3H4O4·HSO−

4 ). For C2H3SO−

6 it is tempting to again
assume a cluster with sulfuric acid, which would result in
C2H2O2·HSO−

4 , i.e. a cluster of glyoxal and sulfuric acid.
The quantum chemical calculations of formation energies of
clusters for selected molecules with HSO−

4 (Table A2 in Ap-
pendix A) showed that, while malonic acid is strongly bound
to HSO−

4 , glyoxal does not bind particularly strongly to it,
as could be expected from its low dipole moment and lack of
efficiently hydrogen-binding functional groups. In particular,
the binding of glyoxal to HSO−4 is only slightly stronger than
that of water to HSO−4 . Given the much lower concentra-

tion of glyoxal compared to water in the atmosphere, and the
fact that the H2O·HSO−

4 clusters either are not present in the
ambient ion distribution, or evaporate in the instrument be-
fore they can be detected, it does not seem plausible that the
C2H4SO−

6 peak would consist of HSO−4 – glyoxal clusters.
We are then left with two alternatives, the peak may corre-
spond to a cluster of some other organic molecule with some
other sulfur-containing molecule, or it may correspond to a
single molecule. The former was ruled out, as no molecular
combinations were found that produced particularly strongly
bound clusters. However, the latter possibility is intriguing,
as a peak at unit mass 155 Th was observed in the particle
phase by Galloway et al. (2009) after reactions of glyoxal
oxidation products on ammonium sulfate particles. Based
on chromatography experiments, they attributed the peak to
glycolic acid sulfate (C2H3O2HSO4).

We computed the proton affinities of both the organosul-
fate ions proposed by Galloway et al. (2009) (see Fig. A3
in Appendix A for their structures and for more discus-
sion) and we found them to be extremely low; 294.9 and
292.8 kcal mol−1 for glyoxal sulfate and glycolic acid sul-
fate, respectively. These proton affinities are even lower than
for HSO−

4 , indicating that these organosulfate ions, if they
exist in the gas phase, are likely to be the most stable anions
around, and the corresponding neutral organosulfates could
be charged even by HSO−4 . To our knowledge, this would be
the first time organosulfates have been identified in the gas
phase.

We have also detected another compound, C5H5O−

6
(161.01 Th), which can be produced by adding up the
elements in malonic acid and glyoxal. However, with
the same arguments as above, this is also believed to
be a single molecule, possibly a tricarboxylic acid. We
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earlier speculated that the ion at integerm/Q 259 was
C3H4O4·C2H3SO−

6 , but it may also be a cluster of C5H6O6

with HSO−

4 . The time series correlation between integerm/Q
155 and 259 Th was 0.59, whereas for 161 and 259 Th the
corresponding value was 0.52.

The night time negative ion spectrum was dominated by
a pattern of peaks at 280–420 Th, with a second similar, but
weaker, pattern of peaks at around 460–620 Th. We will here
focus on the first pattern, in which the majority of the large
ions were found at even integer masses, implying an odd
number of N in the molecules. The pattern suggests organic
compounds. Based on this assumption, the high resolution
masses, and anticipating that each ion contained one N atom,
the best guess for the two dominant peaks at integerm/Q
308 and 340 Th, were C10H14NO−

10 and C10H14NO−

12. Fig-
ure S1 in the supplementary material shows how accurately
this can be determined for the ion at 340 Th. Two other large
peaks at 342 and 372 Th, are proposed to be C10H16NO−

12
and C10H14NO−

14. The lack of peaks with similar time traces
at lower masses suggests that these are single molecules and
not clusters. As all of these compounds contain ten carbon
atoms, it is tempting to attribute these molecules to highly
oxidized products of monoterpenes (C10H16). At this high O
to C ratio and low H to C ratio, the molecules have to contain
a large number of carboxyl groups, which in turn would fa-
cilitate that they become ionized and subsequently detected
by the APi-TOF. The best correlation at lower masses with
the ions at 300–400 Th was found for tartaric (C4H5O−

6 ,
149.01 Th) and malic acid (C4H5O−

5 , 133.01 Th), which both
have very high O to C ratios, possibly produced in reactions
leading to fragmentation of the larger ions.

An overview of the entire negative spectrum can be gained
by plotting the mass defects, i.e. exact mass – nominal
mass, as a function ofm/Q (Fig. 4). For instance, the ex-
act mass of HSO−4 is 96.960 Da, which gives it a mass de-
fect of 96.960 Da–97.000 Da=−0.040 Da. The plotted data
are a two-day average, and only peaks with a mean concen-
tration above 0.5 cm−3 are plotted for clarity. The size of
each marker is a measure of the ion concentration. The inor-
ganic ions are easily distinguished based on their low mass
defects. The dashed lines are examples of where specific
combinations of functional groups fall on the graph. The
shaded area around each line shows the 20 ppm accuracy of
the instrument. As all identified organic molecules contain
two carboxyl groups (COOH), the origin of these molecu-
lar functions is oxalic acid (COOH-COO−). Adding CH2
groups corresponds to simple dicarboxylic acids (dashed
black line), of which malonic acid is the following one. How-
ever, form/Q>150 Th, observed ions clearly have mass de-
fects smaller than the simple dicarboxylic acids, indicative
of higher oxygen content. At the other extreme, adding
only carbonyl groups (CO, dashed orange line) produces
molecules with too low mass defects. The middle two dashed
lines (purple and blue) fit the data better, corresponding to ad-
ditions of only hydroxyl groups (CHOH), or equal amounts
of hydroxyl and carbonyl groups, respectively. In reality, the
molecules with high carbon number are not expected to be
straight chains, in which case they can contain more carboxyl
groups, at the same time increasing their charging probabil-
ity. As seen from the dashed lines, the O to C ratios can be
narrowed down fairly well, although the larger organic ions
cannot be unambiguously identified. No N atoms were con-
sidered here, although the larger molecules were suggested
to contain some nitrogen. The mass defect of N itself is only
0.003 and will not shift the molecules very much in Fig. 4.
However, adding a functional group containing N may have
very different effects, as an amino group (NH2) has a mass
defect of 0.018, and a nitroxy group (NO3) has a mass defect
of −0.012.

Highly oxidized molecules are expected to readily con-
dense onto pre-existing aerosol particles, and the ions present
in the negative spectra are assumed to be the most oxidized
gas phase molecules. Based on elemental analysis of con-
densed secondary organics via aerosol mass spectrometry
(Aiken et al., 2008), the maximum level of oxidized aerosol
corresponds to O:C:H ratio of 1:1:1 (Heald et al., 2010) plot-
ted as the dotted blue line in Fig. 4. Clearly there is over-
lap of the composition of the observed negative ions with
that of condensed SOA, with smaller (<200 Th) and larger
(>250 Th) negative ions somewhat more and less oxidized,
respectively, than the typical ensemble average for highly ox-
idized SOA. Moreover, the O:C:H of 1:1:1 corresponds to
a carbon oxidation state of +1, consistent with the limiting
value discussed by Kroll et al. (2010) for organic oxidation
in the atmosphere.
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3.2.2 Positive ions

The temporal variability of the positive ions was smaller than
that of the negative ions, and thus correlograms were not as
effective tools in the peak identification. Mass defect dia-
grams, as shown in Fig. 4, on the other hand can aid the
detection of patterns in the mass spectra when alkyl groups
of different lengths are typical building blocks of the ions.
This is best done by changing to the Kendrick mass scale
(Kendrick, 1963) where the mass of12CH2 is defined as
14.0000. In other words, the measured mass of an ion is
divided by m(12CH2)/14, and thus (CH2)n will always fall
exactly on integer masses. As a result of this, the addition of
CH2 groups will not change the mass defect, and molecule
groups differing by (CH2)n will form a horizontal line. Fig-
ure 5 shows a mass defect diagram in Kendrick mass scale
of the positive ion mass spectrum, averaged over two days
to include as many ions as possible (for a better comparison
with Fig. 4, the unscaled mass defects are plotted in Fig. S2
in the supplementary material). As an example, pyridine
and alkyl pyridines all fall on the same horizontal line, de-
notedZ = −4 N. The Z value is described in detail elsewhere
(Hughey et al., 2001; Junninen et al., 2010), but briefly, the
number is a rough measure of how many rings and/or dou-
ble bonds the molecules contain. The Z value is defined as
h−2c, where the letters signify the amount of H and C atoms
in the molecule (as in CcHh). If the molecules contain other
atoms than C and H, these are listed after the numeric value.

All the molecules with the same Z value belong to the
same homologous series. The colored dots on the horizontal
lines in Fig. 5 mark where possible ions for each series could
be found. The black dots show the ions with even integer
masses, whereas the grey triangles represent the odd masses.
According to the nitrogen rule, the even masses most likely
contain an odd number of N atoms, and the odd masses an
even number.

The clearest homologous series in Fig. 5 were−4 N and
−10 N, corresponding to alkyl pyridines and alkyl quino-
lines, respectively. TheZ = −5 N series is in violation of
the nitrogen rule, but is still believed to have been correctly
identified. This series starts with C6H7N+, which is the el-
emental formula of phenylamine (aniline), but in this case it
would have been charged by loss of an electron and not by
addition of a proton as is the case for practically all other
identified species. Another possibility is that C6H7N+ forms
a stable seven membered ring of some sort. TheZ = 0 N
and Z = −2 N series are classified as alkyl pyrrolines and
pyrroles, respectively. The 4N series corresponds to alkyl
amines, which may be an important precursor for new par-
ticle formation (Loukonen et al., 2010; Smith et al., 2009).
A large peak at 214 Th may be an amine (C14H32N+), but
this could not be reliably determined. Recently Smith et
al. (2009), measured the chemical composition of 10 nm par-
ticles during a nucleation event in Hyytiälä, and found that
the new particles contained considerable amounts of amines
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Fig. 5. Mass defects in Kendrick mass scale of the positive ion
spectrum. The mass defect becomes lower with increasing mass,
possibly due to increasing ring structures, or additions of N and/or
O. The clearest homologuous series is that of alkyl pyridines atZ =

−4 N, and quinoline atZ = −10 N.

(23% of the detected ions were attributed to aminium salts).
The ion atm/Q74 Th close to the 4 N line has been identified
as an amine, but in the two day average used for this analysis,
there is a double peak at thism/Qand thus the exact mass is
not fit accurately enough for it to fall on the 4 N line.

One major feature of the positive mass spectrum is a
steady decrease in the mass defect in the Kendrick mass scale
with increasingm/Q(Fig. 5). Based on the ions identified so
far, most of the positive ions include only C and H atoms,
together with one N. If this is true also for the larger ions,
they will most likely contain more ring structures, as the ad-
dition of CH2 groups would not cause a decrease in the mass
defect. Other possibilities are the additions of more nitrogen
and oxygen. In Fig. 5, the majority of the ions fall closely
on a decreasing curve, but there were approximately 10 ions,
all at even masses in the range 70–150 Th, that clearly fell
below this curve. Most of these have not been identified yet,
but many of them seem to cluster readily with water. For in-
stance, a series of peaks at 108.92, 126.93, and 144.94 Th are
all separated by 18.01 Th, the mass of water being 18.010 Da.

Considering the typical compounds identified in the pos-
itive and negative ion spectra, an additional important re-
sult was that the average bulk densities are very different
between the polarities. The highly oxidized negative ions
had very few H atoms, and the densities were mostly around
1.6 g cm−3 or above, whereas the positive ions contained
very few O atoms, and were often composed of several
straight chain alkyl groups, with densities around 1.0 g cm−3

or below. This difference becomes particularly crucial when
comparing the ion mobility measurements of positive and
negative ions, where ions with the same mass have different
mobilities depending on their density (Ku and de la Mora,
2009; Ehn et al., 2010).
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3.3 Time series and diurnal cycles

Owing to the high sensitivity of the APi-TOF, reasonable
mass spectra could typically be observed for 5 min averag-
ing. The longer the average, however, the better the obtained
signal-to-noise ratio. When analyzing the time series of the
selected ions, we used 30 min averages. Figure 6 shows the
temporal behavior of some previously mentioned ions, to-
gether with CIMS measurements (dotted lines) of H2SO4 and
C3H4O4, and particle, radiation and wind direction measure-
ments at SMEAR II.

All the sulfuric acid related peaks had very similar time
trends (panel B), as expected based on the high correlations
presented in Fig. 3. The temporal behavior of HSO−

4 mea-
sured by the APi-TOF and neutral H2SO4 concentration re-
ported by the CIMS agreed very well. This was not surpris-
ing as HSO−4 is one of the anions with the lowest proton affin-
ity, and is therefore very unlikely to transfer its charge upon
collisions with other molecules. Thus the concentration of
HSO−

4 should follow the concentration of the neutral H2SO4.
This is not the case for the ions of weaker acids, which are
limited not only by the neutral parent concentration, but also
by the concentration of all the stronger acids to which they
upon collision will donate their charge.

In Fig. 6a, the ion at 340.05 Th was used as a surrogate
for all the night time molecules observed at the high masses,
as their time behavior was similar. During the daytime, the
signal of these peaks was down by a factor of 10 or more
from their nighttime values. The malonic acid (103.00 Th)
and malonic/nitric acid cluster (166.00 Th) signals tracked

each other very closely indicating that the cluster concentra-
tion was mainly dependent on the malonic acid signal. The
CIMS was designed and calibrated to measure sulfuric acid,
but in this campaign it was also set to measure malonic acid.
The ion signal was converted to a neutral concentration in
the same way as for sulfuric acid and with the same calibra-
tion coefficient (Peẗajä et al., 2009), which could introduce
a bias. Nevertheless, during certain periods such as May 1
the trends were very similar. Malonic acid also seemed to
be photochemically produced as the highest concentrations
were observed during the sunny days.

Finally, the nitric acid dimer (124.98 Th) did not seem to
have any clear diurnal cycle, although there was a fair amount
of variability. As the H2SO4 dimer tracked the monomer
very well, we assumed that the nitric acid dimer also gave
some representation of the nitric acid monomer behavior al-
though we did not directly measure it due to negligible trans-
mission below 80 Th for the APi-TOF configuration during
this study.

For a closer look at average diurnal patterns, we plotted
some selected negative ions as a function of time of day
(Fig. 7) for the period shown in Fig. 6. Some picture of the
prevailing meteorology during this period is seen in Fig. 6c.
Pure sulfuric acid peaks and SO−

5 behaved in a very similar
way, roughly following the radiation intensity. SO−

3 was at
the edge of our transmission curve, and the signal was there-
fore very low, but it also seemed to track the HSO−

4 signal.
On the other hand, when clustered with NO−

3 , both SO3 and
SO4 peaked in the early morning, as did pure SO−

4 . This may

www.atmos-chem-phys.net/10/8513/2010/ Atmos. Chem. Phys., 10, 8513–8530, 2010



8522 M. Ehn et al.: Composition and temporal behavior of ambient ions

120

100

80

60

40

20

0

C
on

ce
nt

ra
tio

n 
  [

cm
-3

]

181260
Hour of day

6

5

4

3

2

1

0

C
oncentration   [cm

-3]

On right axis:

 C2H3SO6
-

 H2SO4 • C2H3SO6
-

 SO3
-

 SO3 • NO3
-

 SO4
-

 SO4 • NO3
-

On left axis:

 HSO4
-

 H2SO4 • HSO4
-

 (H2SO4)2 • HSO4
-

 SO5
-

In arbitrary units:
 Radiation
 Temperature

Fig. 7. Diurnal trends for selected sulfuric acid related negative
ions. The data is averaged over 30 April–5 May, 2009.

be a result of SO2 typically peaking in the early morning, and
as briefly discussed in Sect. 3.1.1, being ionized to form SO−

3
and possibly other charged sulfur oxides.

The two green traces representing the organosulfate and its
cluster with H2SO4 peaked in the afternoon, when the H2SO4
concentration was already going down. This could have been
caused by a higher concentration of glyoxal (or its oxidation
products) in the afternoon, producing more organosulfates
through gas phase reactions at that time. Another possibility
is that, as these molecules have been found in aerosol parti-
cles (Galloway et al., 2009), the formation occurred via het-
erogeneous reactions inside the particles and a small amount
evaporated and was subsequently detected in the gas phase.
This would explain the diurnal behavior which peaked a few
hours after H2SO4, and thus a large amount of H2SO4 had al-
ready condensed onto the particles, increasing the probability
of reactions in the particle phase. Although evaporation of
an organosulfate is thought to be very unlikely, the concen-
tration peaked at the same time as the ambient temperature
reached its maximum value, making it the most probable pe-
riod when evaporated species could be detected. In Fig. 2 by
Eisele et al. (2006), they presented a mass spectrum of neg-
ative ions measured during high H2SO4 concentrations. It
showed a large unidentified peak at integerm/Q253 Th, and
possibly a smaller peak at 155 Th, perhaps corresponding to
a cluster of the organosulfate with sulfuric acid, and the pure
organosulfate, respectively, suggesting that these are not spe-
cific to Hyytiälä.

As seen in Fig. 8, malonic acid, nitric acid, and their clus-
ter had very weak diurnal cycles. At the other extreme, the
ions around 300–400 Th peaked during the night and were
10–20 times lower during the day. There was also an internal
pattern visible, with 372.04 Th peaking first, and 308.06 Th
peaking last. Assuming that the peaks were correctly identi-
fied as C10H14NO−

14 and C10H14NO−

10, this implies that the
relative abundance of the most oxidized ions like 372.04
(O:C = 1.4) decreased during the night, and less oxidized
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ions like 308 (still with O:C = 1) increased. This makes
sense qualitatively, as the primary night time oxidation hap-
pens by O3 and NO3 (which is formed from O3), and the O3
in Hyytiälä usually decreased during night to reach a mini-
mum in the early morning.

The last three plotted ions in Fig. 8 are related to the
161.01 Th peak (C5H5O−

6 , possibly a tricarboxylic acid). In
addition to C5H5O−

6 , its clusters with nitric acid and with
malonic acid were detected atm/Q224.00 and 265.03 Th, re-
spectively. The diurnal patterns of these peak in the evening,
with a local maximum in the early morning. In the previously
discussed Fig. 2 in Eisele et al. (2006), a peak at 224 Th is
tagged, possibly corresponding to HNO3·C5H5O−

6 .
The time traces for positive ions (Fig. 9) do not show

as much variability as the negative ions. All the n-alkyl
pyridines, which are the most abundant ions, correlate fairly
well with the exception of pure (protonated) pyridine, which
at times even seems to anti-correlate with the pyridines with
alkyl groups. The quinolines track both each other and most
of the pyridines, implying that either the sources for these are
the same, or that the lifetime of these molecules in the atmo-
sphere is long enough that the ion concentration variations
are controlled by the total amount of ions available.

Some ions that show more temporal variability are plotted
in the bottom panel of Fig. 9. A very interesting ion was the
tropylium ion C7H+

7 (91.05 Th), to our knowledge measured
for the first time in ambient air, which is the only positive ion
that we have identified which did not contain a nitrogen atom.
The largest amine peak was C6H16N+ detected at 102.13 Th,
possibly corresponding to triethyl amine. Some sharp peaks
of short duration in time suggest that they may have a local
source nearby, as these peaks are not seen in the other traces
and is thus not due to total ion fluctuations. Finally, ion 302.2
Th, representing the organic pattern between 250 and 400 Th,
showed the clearest diurnal pattern, peaking in the early af-
ternoon and thus anti-correlating with the pattern of ions at
the same masses in the negative spectrum.
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Fig. 9. Time trends of selected positive ions in Hyytiälä measured by the APi-TOF, with pyridines in the top panel, quinolines in the middle,
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3.4 Implications for new particle formation
mechanisms

Ion-induced nucleation typically accounts for about 10% of
the total nucleation in Hyytiälä (Gagńe et al., 2009, and ref-
erences therein). If the majority of the nucleation and growth
occurs via neutral pathways, we must assess what insight into
the new particle formation we can gain through the investi-
gation of ambient ions.

The main candidate for the initial nucleation steps has
long been sulfuric acid (Weber et al., 1997; Kulmala et
al., 2006). Since sulfuric acid ionizes very easily, the
APi-TOF is very sensitive to it, and also its clusters, as
shown above. The composition of the neutral clusters and
molecules and the ions are not expected to be exactly the
same, but the ion composition is governed by available neu-
tral molecules. The total ion concentration is determined
by production (mainly cosmic rays/radon) and loss (coag-
ulation/deposition/recombination) rates, but the distribution
of the ions is determined by the concentrations and proton
affinities of the neutral molecules/clusters. If the composi-
tion of the new particles/clusters is mainly sulfuric acid, then
they should also be easily ionized and thus detected by the
APi-TOF. At ambient pressure and RH, most neutral sulfu-
ric acid molecules and clusters will have water molecules at-
tached to them. Although to a much lesser extent than ammo-
nia or amines, water can also stabilize pure sulfuric acid clus-
ters. Recently Smith et al., 2009, proposed that the stability
of newly nucleated particles is largely due to acids and bases
forming salts. In this case, the APi-TOF would be optimal
for measuring the precursor vapors, as the strongest bases
and acids should make the most stable salts, and should also

be most easily ionized in the atmosphere. However, once the
salts have been formed in the new particles/clusters, they will
no longer become easily charged, and any mass spectromet-
ric detection with the APi-TOF without a charging mecha-
nism is no longer possible.

Although only clearly visible during one day, the detec-
tion of the sulfuric acid tetramer clustered with ammonia
can be a very strong indication of a particle formation path-
way. As seen in Fig. 6c, the highest sub-5 nm concentra-
tions were also measured during that specific day. Accord-
ing to the results of Hanson and Lovejoy (2006) and Ortega
et al. (2008) pure, neutral sulfuric acid clusters are not ther-
modynamically stable enough to be present in any significant
concentrations in the lower troposphere. However, if nega-
tively charged, or if clustered with e.g. ammonia or amines,
the clusters become much more stable. The observation
of clusters with the APi-TOF requires them to be charged,
but the evaporation rate of NH3 from ion clusters with low
H2SO4/NH3 ratio is very high (Hanson and Lovejoy, 2006),
which explains why we have not measured ammonia clus-
tered with the H2SO4 dimer or trimer. The detection of a
charged sulfuric acid/ammonia cluster strongly implies the
presence of many more of corresponding neutral clusters.

Amines were detected in the positive ion spectrum, and
although not the dominant species, the importance of these
may be significant in nucleation even at low concentrations
as they can stabilize sulfuric acid clusters even more effi-
ciently than ammonia (Loukonen et al., 2010). No sulfuric
acid/amine clusters were observed in our measurements, in-
dicating that the concentration of ammonia was higher than
any of the amines, as could be expected. However, as typ-
ical particle formation rates during new particle formation
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in Hyytiälä is of the order of 1 cm−3 s−1 (Manninen et al.,
2009a; Dal Maso et al., 2005), the absolute cluster concen-
trations need not be very high to be important.

Organosulfates were identified in the gas phase, implying
that chemical reactions of sulfuric acid in the gas or parti-
cle phase are occurring during photochemical production of
H2SO4 and secondary organics. The importance of this find-
ing is still unclear. The same organosulfate was detected pre-
viously in a chamber study (Galloway et al., 2009), and pos-
sibly also observed (though not firmly identified) on another
continent (Eisele et al., 2006).

4 Conclusions

The APi-TOF was deployed in a boreal forest site in southern
Finland, where it measured the composition of positive and
negative ambient ions. Although the reported measurements
only cover 9 days during the peak new particle formation sea-
son in Hyytïalä, we believe that these measurements make a
good representation of spring/early summer time ion compo-
sition and dynamics in this region. The elemental composi-
tion of close to 80 ions was identified with a high degree of
certainty. Several of these ions were identified for the first
time, and for many ions also the molecular formulas were
estimated. Quantum chemical calculations were carried out
to assist the identification process. A list of all identified ions
is given in the supplementary material, together with a com-
plete list of masses of all observed ions.

During sunny days the negative ion spectrum is dominated
by sulfuric acid and its clusters. SO−

5 was also observed,
usually making up∼20% of the HSO−4 signal. The di-, tri-,
and tetramer sulfuric acid clusters correlated with new par-
ticle formation events in Hyytiälä, in line with studies on
the important role of sulfuric acid in atmospheric nucleation
(Weber et al., 1997; Petäjä et al., 2009; Sipil̈a et al., 2010).
Additionally, the sulfuric acid tetramer was found in a cluster
with ammonia, suggesting that sulfuric acid/ammonia nucle-
ation may be significant in Hyytiälä. The observation of a
H2SO4/NH3 ion cluster means that these clusters are abun-
dant in the neutral cluster distributions.

No strong diurnal behavior was seen in the positive ion
spectrum. In both day and night time, the spectrum below
200 Th was dominated by alkyl pyridines and quinolines, and
at 200–400 Th a more continuous spectrum of peaks was vis-
ible. Kendrick analysis revealed additional homologous se-
ries below 200 Th, of alkyl amines, pyrroles, and pyrrolines.

The first observations of organosulfates in the gas phase
were made during this study, possibly formed from the reac-
tion of sulfuric acid with the oxidation products of glyoxal,
either in the particle phase or the gas phase. Whatever the
formation mechanism, these organosulfates are expected to
be extremely low-volatile, and formed from sulfuric acid, a
low-volatility trace gas itself, making the expected concen-
trations extremely low. Nevertheless, they are visible in the

ion spectrum, proving how sensitive the APi-TOF can be to
certain species. The importance of these molecules for new
particle formation is still unclear.

During night, the negative ion spectrum was dominated by
ions in the range 280–420 Th. These are thought to be highly
oxygenated organic acids, possibly formed from the oxida-
tion of monoterpenes emitted from the vegetation, but more
work needs to be done to confirm the composition of these
ions, as is the case with the ions at similar masses in the pos-
itive spectrum. The average mass defect of the negative ions
corresponds to O:C:H ratio of 1:1:1, very similar to the com-
position of highly oxidized organics observed in secondary
aerosol via high resolution mass spectrometry.

We established the APi-TOF measurements of ambient
ions as a powerful tool in studying nucleation in the atmo-
sphere, whether neutral or ion-induced. In the future, the
peak identification schemes will be improved and the APi-
TOF instrument as an ambient ion detector will be deployed
in various environments to probe the differences in the chem-
ical composition of the atmospheric ions. Ionization schemes
will be developed to be able to quantitatively investigate the
composition of neutral clusters in the atmosphere.

Appendix A

Quantum chemical calculations

A1 Computational details

All calculations were performed using the Gaussian 09 pro-
gram suite (Frisch et al., 2009) and the CBS-QB3 method
(Montgomery et al., 1999, 2000). CBS-QB3 is a compos-
ite method involving geometry optimizations and harmonic
vibrational frequency calculations with the B3LYP density
functional and a triple-zeta basis set, followed by a series of
energy calculations aiming at estimating the basis-set limit
CCSD(T) energy. Errors in vibrational frequencies and the
imbalance of electron spin contributions are accounted for
by using empirical scaling factors. For a test set of single
molecules, the CBS-QB3 binding energies are accurate to
within about 1 kcal/mol (Montgomery et al., 2000). Proton
affinities (PA) for all species X were computed as−1 times
the standard (298 K and 1 atm reference pressure) enthalpy
change of the X+H+ =>XH+ reaction, with the enthalpy
of the free proton taken to be exactly 2.5RT , whereR is
the gas constant. Gas-phase acidities (GA) for all species
XH were similarly computed as the standard (298 K and
1 atm reference pressure) Gibbs free energy change of the
XH=>X−+H+ reaction, with the entropy of the free pro-
ton computed from the translational partition function as
26.013 cal/K mol at 298.15 K. It should be noted that some-
what counter-intuitively, low numerical values for proton
affinities or gas-phase acidities correspond to strong acids. In
the text, “high gas phase acidity” will refer to strong acidity
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Table A1. Deprotonation electronic energies, conjugate anion proton affinities and gas-phase acidities for selected acids, computed at the
CBS-QB3 level.

Species Deprotonation Proton affinity of Gas-phase
1Eelec, kcal/mol conjugate anion, kcal/mol acidity, kcal/mol

C2H2O4 (oxalic acid) 329.6 322.6 314.6 (316.2± 0.15a)
C3H4O4 (malonic acid) 326.5 318.2 311.3 (314.8± 0.03a)
C4H6O4 (succinic acid) 331.1 322.8 316.3 (317.8± 0.01a)
HNO3(nitric acid) 332.1 323.5 (324.5± 0.2b) 317.2 (317.8± 0.2b)

CH3SO3H (methylsulfonic acid) 323.5 317.3 310.5 (315.0a)
H2SO4 (sulfuric acid) 317.4 311.1 (306.4± 3.1c) 302.7 (299.0± 3.1c)

a Experimental value, (Kumar et al., 2005);
b Experimental value; (Davidson et al., 1977);
c Experimental value, (Wang et al., 2000).

Fig. A1. Minimum-energy structures (at the CBS-QB3 level) of hydrogenoxalate (left), hydrogenmalonate (center) and hydrogensuccinate
(right) ions. Color coding: red = oxygen, brown = carbon, white = hydrogen.

in the chemical sense (i.e. low numerical PA values for the
conjugate ions or low numerical GA values for the acids).

A2 Computed proton affinities and gas-phase acidities,
and error analysis

The computed de-protonation electronic energies (not in-
cluding zero-point energies), conjugate base anion proton
affinities and gas-phase acidities for oxalic, malonic, suc-
cinic, nitric, sulfuric and methylsulfonic acid are given in Ta-
ble A1. Available experimental data are also given. All data
agree on the general relative ordering of these six species. In
the gas phase, sulfuric acid is the strongest acid, followed by
methylsulfonic, malonic, oxalic, succinic and nitric acid. The
values for methylsulfonic and malonic acid are very close to
each other, as are the values for succinic and nitric acid.

As shown in Fig. A1, the hydrogenoxalate, hydrogen-
malonate and hydrogensuccinate ions all contain an inter-
nal hydrogen bond. While the rings formed by the hydrogen
bonding in the hydrogenoxalate and hydrogensuccinate ions
contain five and seven atoms, respectively, and are somewhat
strained, the ring in the hydrogenmalonate ion contains pre-
cisely six atoms, and is hence much stronger. This is reflected
in the computed hydrogen bond lengths (1.669Å for hy-
drogenoxalate, 1.364̊A for hydrogenmalonate and 1.437Å
for hydrogensuccinate) as well as the proton affinities of the
ions and gas-phase acidities of the acids (Table A1).

Given the 1 kcal/mol accuracy of the CBS-QB3 method
for the test set of Montgomery et al., 2000, the differences
of around 2–4 kcal/mol between the experimental and com-
puted proton affinities or gas-phase acidities for all but the
nitric and succinic acids (and corresponding ions) are both
surprising and disappointing. For oxalic and malonic acid,
part of the difference between computed and measured val-
ues is likely caused by internal rotations in the neutral acid
molecules, which serve to lower the entropy and thus sta-
bilize the neutral acids compared to the more rigidly bound
ions. This leads to larger GA values (weaker acidities) than
predicted using the harmonic oscillator approximation. Test
calculations using the hindered rotor package of the Gaussian
09 program indicate that the magnitude of this error is around
0.5 kcal/mol with respect to the free energies. The free acids
are also likely to have a larger number of low-energy con-
formers, which might further increase their entropy, and af-
fect the GA values by a similar amount. For sulfuric acid,
part of the errors in the free energies are likely caused by
the internal rotations of the HSO−4 ion, as described e.g. by
Kurtén et al. (2007). Methylsulfonic acid may be associated
with similar problems due to the almost unhindered rotation
of the methyl group.

An even larger problem than the internal rotations is the in-
accurate description of the vibrations of the functional groups
involved in the strong internal hydrogen bond of the hydro-
genmalonate ion. This hydrogen bond is extremely short,
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Fig. A2. Minimum-energy structures of the HSO−

4 ·C2H2O2 (left) HSO−

4 ·C3H4O4 (middle) and C3H3O−

4 ·C3H4O4 (right) clusters, at the
CBS-QB3 level. Color coding: yellow = sulfur, red = oxygen, brown = carbon, white=hydrogen. Note that the minimum-energy structure of
HSO−

4 ·C3H4O4 actually corresponds to H2SO4·C3H3O−

4 as the negatively charged carbonyl oxygen is stabilized by two strong hydrogen

bonds (one intramolecular and the other intermolecular). Also, the C3H3O−

4 ·C3H4O4 minimum-energy structure is predicted to contain only
one intermolecular hydrogen bond, as two of the hydroxyl groups prefer to participate in intramolecular bonds.

Fig. A3. Minimum-energy structures of the neutral (left) and ionic
(right) forms of glycolic acid sulfate (top) and glyoxal sulfate (bot-
tom), at the CBS-QB3 level. Color coding: yellow = sulfur, red =
oxygen, brown = carbon, white = hydrogen.

and the potential energy surface is described by a double well
rather than a single minimum. This leads to very large errors
in the computed vibrational frequencies. Instead of one typ-
ical bonded O-H stretching vibration around 3000 cm−1, the
hydrogenmalonate ion has four different vibrations in the re-
gion between 1500 and 2000 cm−1, all of which correspond
to some type of motion of the O-H. . . O group. A test cal-
culation at the MP2/6-311++G(2d,2p) level yielded a similar
structure and similar frequencies, indicating that the problem
is neither the lack of diffuse functions in the basis set nor
the (known) deficiencies in the B3LYP description of hydro-
gen bonding. An anharmonic frequency calculation using the
same level of theory as the CBS-QB3 geometry optimiza-
tion (B3LYP/6-311G(d,p)) decreased two of the O-H. . . O
group’s vibrational frequencies to below 800 cm−1 (a de-
crease of over 1000 cm−1!) indicating the large effect of the
double well potential on the computed values. Note that the
anharmonic frequencies, which are also computed assuming
a single minimum, are certainly not a good starting point for
entropy calculations, either – they simply illustrate the mag-
nitude of the problem. A full statistical-mechanical treatment
of vibrational motion in a multidimensional double-well po-

Table A2. CBS-QB3 formation enthalpies and free energies (at
298 K and 1 atm reference pressure) for selected anion dimer clus-
ters.

Species Formation Formation
1H◦, kcal/mol 1G◦, kcal/mol

HSO−

4 ·C2H2O2 −18.2 −6.6
HSO−

4 ·C3H4O4 −36.7 −23.6
C3H3O−

4 ·C3H4O4 −32.2 −21.3
HSO−

4 ·H2O −13.5 −5.1
HSO−

4 ·H2SO4 −49.2 −35.7

tential is beyond the scope of this study. Similar problems are
encountered in treating the short internal hydrogen bond of
butene diol (H. Kjaergaard, personal communication, 2010).

Other possible error sources, in addition to inaccuracies
in the CBS-QB3 energies, may include different definitions
for the thermodynamic values for the free proton, as well as
issues related to the choice of reference compounds in the ex-
periments. For our purposes, the precise values in any case
matter less than the relative ordering, on which all the differ-
ent data agree.

A3 Clustering

To investigate the possible chemical identity of the peaks
seen at 155 and 201 Th (corresponding to elemental compo-
sitions of C2H3SO−

6 and C4H5SO−

8 , respectively) we com-
puted the formation enthalpies and free energies of clusters
of HSO−

4 with glyoxal and malonic acid, as these could ex-
plain the two peaks. Several structural isomers have been
studied for each cluster type, but only the most stable ones
are displayed and discussed here. These are given in Ta-
ble A2. The corresponding cluster structures are shown in
Fig. A2. Shown also for comparison are the binding ener-
gies for HSO−

4 ·H2O and HSO−4 ·H2SO4 clusters, as well as
the malonic acid – hydrogenmalonate cluster. We also com-
puted the CBS-QB3 proton affinities of both organosulfate
ions that could explain the ion at 155 Th (see Fig. A3 for their
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structures). As for hydrogenmalonate, the low proton affini-
ties are caused by the formation of very strong intermolecular
hydrogen bonds in the ions.

When comparing clusters of HSO−

4 with sulfuric acid and
malonic acid, it should be noted that the evaporation rates
corresponding to these formation free energies are both low
enough to be completely negligible. Evaporation rates are
on the order of 10−16 s−1 and 10−8 s−1 for HSO−

4 ·H2SO4

and HSO−

4 ·C3H4O4, respectively. Thus, the difference in the
formation free energies does not in practice play a role in
determining their relative concentrations. For practical pur-
poses, whenever a cluster of HSO−

4 with sulfuric or malonic
acid is formed, it never evaporates, but is removed solely by
growth, coagulation and/or neutralization. Similar consider-
ations very probably apply also for clusters of the hypotheti-
cal 155 Th organosulfate ion with other strong acids such as
sulfuric acid. It is important to stress that the concentrations
of the small ionic clusters is not in thermodynamic equilib-
rium (in which e.g. free HSO−4 would not exist at all) but at
best in a dynamic steady state, to which the evaporation in
the measurement instrument adds its own signature.

Supplementary material related to
this article is available online at:
http://www.atmos-chem-phys.net/10/8513/2010/
acp-10-8513-2010-supplement.pdf.
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Laakso, L., Gagńe, S., Peẗajä, T., Hirsikko, A., Aalto, P. P., Kulmala,

M., and Kerminen, V.-M.: Detecting charging state of ultra-fine
particles: instrumental development and ambient measurements,
Atmos. Chem. Phys., 7, 1333–1345, doi:10.5194/acp-7-1333-
2007, 2007.

Laakso, L., Laakso, H., Aalto, P. P., Keronen, P., Petäjä, T.,
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Peẗajä, T., Mauldin, III, R. L., Kosciuch, E., McGrath, J., Niem-
inen, T., Paasonen, P., Boy, M., Adamov, A., Kotiaho, T., and
Kulmala, M.: Sulfuric acid and OH concentrations in a boreal
forest site, Atmos. Chem. Phys., 9, 7435–7448, doi:10.5194/acp-
9-7435-2009, 2009.

Salcedo, D., Villalta, P. W., Varutbangkul, V., Wormhoudt, J. C.,
Miake-Lye, R. C., Worsnop, D. R., Ballenthin, J. O., Thorn,
W. F., Viggiano, A. A., Miller, T. M., Flagan, R. C., and
Seinfeld, J. H.: Effect of relative humidity on the detection
of sulfur dioxide and sulfuric acid using a chemical ioniza-
tion mass spectrometer, Int. J. Mass Spectrom., 231, 17–30,
doi:10.1016/j.ijms.2003.09.005, 2004.
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