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Abstract 
In the paper, a study is performed from the perspective of giving a method to reduce the conservatism 
of the well known PIO (Pilot-Induced Oscillation) criteria in predicting the susceptibility of an aircraft 
to this very harmful phenomenon. There are three interacting components of a PIO – the pilot, the 
vehicle, and the trigger (in fact, the hazard). The study, conceived in two parts, aims to underline the 
importance of human pilot model involved in analysis. In this first part, it is shown, following 
classical sources, how the LQG theory of control and estimation is used to obtain a complex model of 
human pilot. The approach is based on the argument, experimentally proved, that the human behaves 
“optimally” in some sense, subject to his inherent psychophysical limitations. The validation of such 
model is accomplished based on the experimental model of a VTOL-type aircraft. Then, the procedure 
of inserting typical saturation nonlinearities in the open loop transfer function is presented. A second 
part of the paper will illustrate PIO tendencies evaluation by means of a grapho-analytic method. 
 
1. Introduction 
From the Wright Flyer to fly-by-wire, the phenomenon of pilot-induced oscillation (PIO) has 
been observed on almost every aircraft, either prototype, experimental or operational, 
military or commercial. Thus, PIO remains a permanent challenge for the aircrafts designers. 
PIO is a phenomenon usually due to adverse aircraft-pilot coupling during some tasks in 
which “tight closed loop control of the aircraft is required from the pilot, with the aircraft not 
responding to pilot commands as expected by the pilot himself” [1]. “Tight closed loop 
control” concerns as a rule takeoff, landing, aerial refueling, and formation flying. PIO 
supposes to have the pilot in the closed loop, but it should be emphasized that there is no 
blame placed on the pilot for the resulting oscillation (therefore other designations, such as: 
pilot-in-the loop oscillation or aircraft-pilot coupling have been suggested instead of PIO). 
Indeed, PIO is homologated as factual if there is at least one measurable aircraft state that is 
180 degrees out of phase with at least one measurable pilot control input [2]. In other words, 
PIO is triggered as an aircraft motion totally adverse to pilot intentions and efforts (the third 
interacting component of the PIO is “a trigger” [2], i.e., in fact, the hazard). 

PIOs have caused numerous accidents with results ranging from minor damage to total 
loss of the aircraft and pilot. 

Predicting PIO is difficult and becomes even more difficult with the advent of new 
technologies such as active control and fly-by-wire flight control systems. This has been 
demonstrated by recent events involving Boeing 767 & 777, YF- 22A, YF-16, JAS-39, X-5, 
X-15, Shuttle, Falcon 900 and the list can continue [2]. Theoretical studies and flight test 
methods lead, however, to recommended practices exposing PIO tendencies, if they exist, so 
that the catastrophic events can be minimized or eliminated. 

According to common references (see, for example, [3]), PIOs are categorized 
depending essentially on the degree of nonlinearity in the event: 
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• Category PIO I: linear oscillations resulting mainly from excessive input or state 
time delay 

• Category PIO II: quasi-linear oscillations resulting mainly from some nonlinear 
dynamics such as rate or position saturation. 

• Category PIO III: enough evasive defined as completely nonlinear oscillations.  
This classification is rather theoretical, didactic, physical events being ever more 

complex and pretty difficult to decipher. 
The analysis of the aircraft dynamics with mathematical models of the pilot-in-the-

loop, understudied by simulations of these models, make up in helpful tools in predicting 
PIOs. As a mathematical model of the human pilot, a static gain [1] is often considered. 

Attempts to describe the behavior of the human pilot in the loop are given in [4], in 
frequency domain, and in [5], [6], in the time domain of the optimal control. 

This paper is a first part of a study of PIO I-II tendencies using as object of application  
the longitudinal channel of a hovering VTOL-type aircraft [7], represented by a five-
dimensional system. Firstly, in Section 2, a model of the human pilot is deduced as Modified 
Optimal Control Pilot (MOCM), nearly following [8]. The pilot’s effective time delay is 
assimilated to a second order linear system by means of a Pade approximation. Then, in 
Section 3, position and rate saturation blocks are inserted in the closed loop scheme in order 
to expose Category II PIO tendencies of the aircraft dynamics. Describing function in the 
case of position saturation is inferred and a general equation susceptible to provide the limit 
cycle as PIO paradigm is presented. In Section 4, the dynamic model of pilot is validated by 
comparison with an experimental model [8]. A conclusive Section 5 underlines the interest 
of the proposed method in the prominence of PIOs.  
 
 
2. Dynamic human pilot model synthesis in terms of optimal control 
Starting from the aircraft dynamics written in the well known invariant linear system 

,x Ax B Ew y Cx D         (1) 

MOCM [8] (see block diagram given in Fig. 1) substitutes the neuromuscular pilot pure 

delay  [4] by a second order dynamics derived from a second order Pade approximation  se

, ,d d d d p d d d p : dx A x B u u C x u u        (2) 

The two dynamics (1), (2) are thus concatenated as an extended plant dynamics 

,s s s s p s s s s px A x B u E w y C x D u       (3) 

where  

 
TT T

0 0
, , , , ,d

s d s s s s d s
d d

A BC B E
x x x A B E C C DC D D

A B

                      
  (3′) 

In the second step, a control law which minimizes the performance index  

 T 2 2E 0,p y yJ y Q y r f Q r f             (4) 

will be performed. By defining a new state vector 
TT T

s px u     , the system (3) is 

expressed in the control-rate formulation 
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where v is the observation zero mean Gaussian white noise with intensity V  and y 0y 
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Fig. 1. Conceptual block diagram of the human pilot dynamic model 
 
Optimal control technique LQG is applied and the result is a full state feedback law  

1 T
0

* ˆ ˆp pu g f B K       (6) 

where  is the estimate of the ̂   and is the solution of the Riccati equation  K

T T
T 1 T

T T
0,

s y s s y s
o o o o c o

s y s s y s

C Q C C Q D
A K KA Q KB f Bo K Q

D Q C D Q D r


 
      
  

 (7) 

In the third step of synthesis, the structure of neuro-motor lag block, Fig. 1, is determined 

   1 1 1 11* *ˆ ˆ, , , : , , , , :p n s n p n p n c p su g g x g u g l g g u l              x  (8) 

and one thus obtains  

* *
p p cu u u    (9) 

A simple way to model the physical limitation of the human pilot is to add a Gaussian noise 
to the control (this maneuver reduces the solution (6) to a suboptimal control law) uv cu

p p c uu u u v          (9′) 

Given the coupled systems (5), (9′) 
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the fourth step of synthesis consists in deriving of the associated Kalman estimator 
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The resulting system (10) will be extended with the estimator dynamics (11) 
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 (12) 

This is the closed loop system pilot-aircraft; the model of the pilot dynamics simply follows 
from (11), (9′), (2) 
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  (13) 

The step five of the synthesis, represented by the explicit determination of the matrices in 
(12), (13), supposes an attentive trial and error procedure for the selection of the noise 

intensities  in order to obtain the signal noise ratios 1, yW V 2 0 003.
i iu uV    and 

2 0 01.
i iy yV   , which correspond to normalized control noise and normalized observation 

noise of −25 dB and −20 dB [5], [6], [7],  respectively. With that end in view, covariance 
value of the state vector in (12), given by the Lyapunov equation  P

0TT  clclclcl QBBPAPA ,  yV,WQ 1diag  (14) 

will be used to calculate the covariance of the vector  T0
T uyy    

T T
cl cl cl cl

TE yy C PC D QD      (14′) 
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3. Linearization of the saturation type nonlinearities. Describing function method 
A typical block diagram for the study of Category PIO I-II is shown in Fig. 2. Herein, two 
basic nonlinearities, usual in flight control, are involved: a position saturation, related to 
control stick displacement limits (corresponding to flight control surface rotation limits) and 
a rate saturation, mainly related to flow rate limits of the hydraulic servoactuator). In figure, 
specifically to the auto-oscillation searching, 0r  is the null reference.  is the model 

of pilot (a constant  will correspond to the static model), 

 sK p

pK p  is the control signal 

elaborated by pilot, n  is the control signal to the output of position saturation element,   is 

the effective control,  sG  is the model of aircraft,  sy  is the output. The angular frequency 

 is in connection with the time constant of the servoactuator. B

     sy p    n0r

- -
 sK p B  1  sG

s
 
 

 
 
 
 

 
Fig. 2. Block diagram of the system with position and rate saturations 

. 
0r  y u 

 
a)   general nonlinearity                              b) position saturation nonlinearity 

Fig. 3. Schemes for the deduction of the describing function     
 
In order to develop a specific PIO paradigm of limit cycle analysis, the first harmonic 

linearization, also called the describing function method, [9] will be applied to the saturation 
nonlinearities. This procedure will give the describing function of the nonlinearity, an 
equivalent gain depending on both amplitude and frequency of the harmonic auto-oscillation 
(limit cycle), susceptible to propagation in the control loop shown in Fig. 2. The procedure is 
legitimate if some basic conditions are fulfilled: a) the system is autonomous  0r  ; b) at 

any point in the system there will be a periodic signal; c)  L s  is a system that is a low pass 

filter (filter hypothesis). 
To specialize, if the input signal to the nonlinear element is a sinusoid 

   0sin 2y t a t  , the output surely is not a sinusoid (for a ideal relay, for instance, the 

- 
 L s  0r   y u 

 L s
- 

 

 yN
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output is +A, when input is positive, and –A, when the input is negative; A is some constant). 
Thus, the output is in fact a square wave. This periodic signal can be described by a Fourier 
series (the symmetry of the signal above also ensures that only odd harmonics are present) 

   0
1 odd

4
sin 2

,

k

n n

A
N t n

n



  
t  

  

 

When this wave goes through the linear system, the transfer function  L s will selectively 

filter out the higher frequencies in the Fourier series, and will selectively pass the lower 
frequencies (in large, only the basic frequency     ). 

Let’s define the describing function of a nonlinear element as the complex ratio of the 
fundamental component of the nonlinear element by the input sinusoid. To illustrate the 
ideas, the case of position saturation is shortly treated. Consider the nonlinearity in Fig. 3b)  
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and the Fourier series development  
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The saturation nonlinearity is an odd function, thus by virtue of the filter hypothesis only the 
coefficient  needs to be calculated. Associating the position saturation value and the 

corresponding argument
1b LP

1 , one obtains 

  1 1
1 1sin sin sin :,L L

L
P P

P a
a a

           
 

 
 

therefore the describing function of the nonlinearity  sat y  is given by the ratio 
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 (15) 

In the case of rate saturation, the gain N , having a more complicate structure, depending of 

: LR

a
 


, LR – rate saturation value, will be used directly in part II of the paper. So far, let’s 

collect the linear parts of the system pilot-aircraft, Fig. 2, into the transfer function 
. The nonlinearities are then represented by the describing function  GsK p  s
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0r  

- 
 0;, ,L LN a P R    sGsK p  

 ;, ,L LN a P R     sGsK p  is a function only of frequency, while , see Fig. 4. Note that N

0,a 

 

is a function of amplitude and frequency. Opening the feedback loop, the stability of the loop 
transfer functions is assessed by a system of two equations with two unknowns  

     0; 1, ,L L pN a P R K s G s 0    (16) 

 
 

 
 

 
 

Fig. 4. Block diagrams showing the insertion of the describing function in the scheme of Fig. 2 
 

 
4. Validation of the human pilot dynamic model 
Let’s now consider the case of human pilot performing the hovering control of a VTOL-type 
aircraft [101], [11] and [7]. Briefly, the pilot’s task was to minimize longitudinal position 
errors while hovering in turbulent air. The aircraft model and the displayed outputs for the 
experiment deployment were  
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(18) 

where  − longitudinal component of the gust velocity [m/s];  − velocity perturbation gu u

hx along the x axis [m/s];   − pitch attitude [rad];  − pitch rate, rad/sec;   − control  q
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stick input [mm];  − speed stability parameter [rad/m-sec];  − pitch rate damping 

[1/sec];  − control sensitivity [rad/sec2/mm];  − longitudinal drag parameter [1/sec]; 

uM qM

M uX

g − gravitational constant, 9.81 [m/sec2];  and  are the first derivatives of u q hx , and , 

respectively.  



Using a second order Pade approximation of the pilot pure time delay  (see 
Fig. 1), the matrices of the equivalent dynamic system (2) are 
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Fig. 5. Validation of the pilot dynamic model. Bode diagrams of the transfer function Y  
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The validation of the dynamic model (13) was performed by a trial and error procedure, 
having as comparison terms the experimental results given in [10], [11], [7]. 
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b) phase angle 

Fig. 6. Validation of  the pilot dynamic model. Bode diagrams of the transfer function xY  

 
A suitable covariance matrix, ensuring the prescribed normalized noises, was found 

 4 3 3 5diag 14 46 6 62 10 2 53 10 4 11 10 1 31 10 6 1 10. . . . . .Q 6          (19) 

The graphs in Figures 5, 6 show an acceptable fitness, at least in the interested domain of 
frequencies, of experimental results versus designed dynamic model. The experimental 
results are expressed by means of two representative transfer functions Y  and  xY which 
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realize a series loop composed by an inner  feedback loop and an outer  hx feedback loop. 

Thus, the machinery of dynamic pilot design is testified. The resulting numerical values of 
the pilot matrices are (see (13)) 
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These numerical data will serve now to evaluate the robustness of the system with the 
designed dynamic pilot. The plant-pilot equations (1) and (13) are such resumed  

, , ,p p p p p p px Ax B x A x y y Cx u C xB         (20) 

and then concatenated 

0
δ: δ, 0

0
:e e d e e p

p p p p p p

x A x xB
A B u C x

x
C

x B C A x

                               



 x



 x


 


 (21) 

in order to get the transfer , in other words, the open loop transfer function du  olG s     
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Fig. 7. Bode characteristics of the system with designed dynamic pilot  
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The transfer function  olG s  is in fact the product    pK s G s , where 

       1 1
,p p p pK s C sI A B G s C sI A B

       (23) 

but from calculus reasons, the variant (22) is preferable. 
The open loop transfer function  olG s provides stability margins of the system, in 

terms of the classical Bode characteristics, see Fig. 7. 
The application of the robust stability analysis criterion for PIO prediction [12] leads 

to the results shown in Fig. 8. The criterion uses the MOCM of the pilot, as defined in 
Section 2, and is based on the so-called vector stability margin. Accordingly to the criterion, 
the vector margin is the minimum distance of the open loop pilot-vehicle transfer function 
from the critical point, 1 j0  , in the Nyquist plane.  
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a) Nyquist plot of the transfer function  olG s  (22) 
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Fig. 8. Robust stability analysis criterion for PIO prediction  
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5. Conclusion 
An approach of PIO I-II tendencies is sketched. The first part of the paper proposes a 
mathematical modeling based on a dynamic model of the pilot. An application is made 
considering the concrete case of a hovering VTOL-type aircraft. Part two of the paper will 
illustrate PIO tendencies evaluation by means of a grapho-analytic method. 
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