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ABSTRACT 
 

This study describes the optimization of expression of the bacterial luciferase 

enzyme in mammalian cells.  Previous attempts to express this heterodimeric enzyme 

complex in mammalian cells have been met with only modest success.  In this research 

effort, several vector formats were evaluated to fully determine the optimal format for 

the expression of these genes.  It was determined that the bacterial luciferase enzyme 

produced optimal bioluminescence in mammalian cells when the genes were cloned and 

expressed as a bicistronic transcript fused with an internal ribosomal entry site (IRES).   

To optimize the enzyme expression further, a novel approach to codon optimize 

the genes was performed.  To accomplish this task, completely synthetic versions of the 

codon optimized sequences were generated.  This codon optimization, led to an increase 

in bioluminescence levels greater than two orders of magnitude versus the wild type 

genes.   

Additionally, the availability of the FMNH2 substrate was evaluated and 

determined to be a limiting substrate for the reaction.  In an attempt to alleviate this 

limitation, a flavin oxidoreductase gene (frp) from Vibrio harveyi was cloned and 

expressed along with the codon optimized luxA and luxB genes.  Although the 

expression of this enzyme enhanced the bioluminescence significantly, FMNH2 remains 

the limiting substrate for optimal bioluminescence.   

To produce a usable reporter cell line, the reporter must remain stable within the 

cells for long periods of time.  The overall stability of the engineered cells was assessed 

to determine the persistence of the reporter for long-term monitoring applications.  

These data revealed that the luciferase genes were stable in HEK293 cells for more than 



 vi

forty passages (five months) in culture in the absence of antibiotic, indicating that these 

cell lines would be stable enough for relatively long term monitoring projects and 

applications.  



 vii

TABLE OF CONTENTS 

 

  

CHAPTER 1 .....................................................................................................................1 

INTRODUCTION ........................................................................................................1 
Background and Research Objectives ......................................................................1 
Literature Review......................................................................................................4 

Reporter Gene Technology ...................................................................................4 
Reporter Genes and Proteins.................................................................................5 
Bacterial Bioluminescence..................................................................................10 
Biochemistry of Bacterial Bioluminescence.......................................................10 
Thermostability of Bacterial Luciferase .............................................................13 
Use of the Bacterial Luciferase (luxCDABE) Reporter System..........................16 
Advantages and Disadvantages of Using Bacterial Luciferase as a Reporter ....17 
Expression of Bacterial Luciferase in Mammalian Cells ...................................18 
Internal Ribosomal Entry Sites (IRES)...............................................................20 
Codon Usage.......................................................................................................26 

CHAPTER 2 ...................................................................................................................30 

DETERMINING AN OPTIMAL EXPRESSION FORMAT FOR EXPRESSION OF 
THE BACTERIAL LUCIFERASE GENES (LUXA AND LUXB) ...............................30 

Introduction.............................................................................................................30 
Materials and Methods ...........................................................................................32 

Cell Culture and Plasmid Maintenance...............................................................32 
Antibiotic Kill Curves.........................................................................................36 
Construction of a luxA- luxB Fusion Protein ......................................................36 

Episomal Epression.........................................................................................40 
Chromosomal Expression ...............................................................................40 

Construction of a Dual Promoter Vector for Expression of luxA and luxB ........42 
Episomal Expression.......................................................................................42 
Chromosomal Expression ...............................................................................42 

Construction of GFP vectors for co-transfection Experiments...........................44 
Episomal Expression.......................................................................................44 
Chromosomal Expression ...............................................................................44 

Construction of a Bi-cistronic Vector to Express luxA and luxB........................47 
Ligation Reactions ..............................................................................................47 
Electroporation....................................................................................................49 
Selection of Bacterial Clones..............................................................................49 
Sequencing..........................................................................................................50 
Determination of Thermostability of the luxAB Fusion Protein .........................50 
Transfection of Mammalain Cells ......................................................................50 

HEK293 Cells .................................................................................................51 
COS-7 Cells ....................................................................................................51 

PAGECHAPTER 



 viii

HeLa Cells ......................................................................................................52 
Selection of Mammalian Cell Clones .................................................................52 
Bioluminescence Assays from Mammalian Cells ..............................................53 
In Vitro Transcription/Translation ......................................................................54 
Genomic DNA Isolation .....................................................................................56 
RNA Isolation and Blotting ................................................................................56 

RNA Slot Blotting...........................................................................................57 
Protein Isolation and Western Blotting...............................................................58 
Statistics ..............................................................................................................59 

Results .....................................................................................................................59 
LuxAB Fusion Protein ........................................................................................59 

                Creation of the LuxAB Fusion........................................................................59 
Thermostability of the LuxAB Fusion................................................................60 
 In Vitro Expression ............................................................................................60 
Expression in Mammalian Cell Lines.................................................................63 
LuxAB Fusion with Kozac Modifications..........................................................66 
Alternative Expression Formats..........................................................................66 
Stability of Constructs in Mammalian Cells.......................................................68 
Bicistronic Expression ........................................................................................71 

Discussion...............................................................................................................76 

CHAPTER 3 ...................................................................................................................83 

CODON OPTIMIZATION OF THE BACTERIAL LUCIFERASE FOR 
EXPRESSION IN MAMMALIAN CELLS...............................................................83 

Introduction.............................................................................................................83 
Materials and Methods ...........................................................................................85 

Cell Culture and Plasmid Maintenance...............................................................85 
Determining Codon Optimized Sequence of Photorhabdus luminescens luxA 
and luxB Genes ...................................................................................................88 
Synthesizing the Codon Optimized luxA and luxB Genes ..................................93 
Site Directed Mutagenesis ..................................................................................99 
Construction of a Bicistronic Expression Vector..............................................100 

pWTA-I-WTB...............................................................................................101 
pCOA-I-WTB ...............................................................................................101 
pCOA-I-COB................................................................................................101 

Ligation Reactions ............................................................................................104 
Electroporation..................................................................................................104 
Selection of Bacterial Clones............................................................................104 
Sequencing........................................................................................................105 
Transfection of Mammalain Cells ....................................................................105 

HEK293 Cells ...............................................................................................106 
Selection of Mammalian Cell Clones ...............................................................106 
Bioluminescence Assays from Mammalian Cells ............................................107 
In Vitro Transcription/Translation ....................................................................108 
Genomic DNA Isolation and Southern Blotting...............................................109 

CHAPTER PAGE



 ix

RNA Isolation and Blotting ..............................................................................110 
Northern Blotting ..........................................................................................111 

Protein Isolation and Western Blotting.............................................................112 
Statistics ............................................................................................................113 

Results ...................................................................................................................114 
Determining a Codon Optimized Sequence of P. luminescens luxA and luxB for 
Expression in Mammalian Cells .......................................................................114 
Construction of the Codon Optimized luxA and luxB Genes............................115 
In Vitro Transcription and Translation of the Wild Type and Codon Optimized 
luxA ...................................................................................................................121 
In Vivo Expression of the Wild Type Versus Codon Optimized luxA and luxB 
Genes.................................................................................................................121 
Determining Insertion Number in HEK293 Clones..........................................128 
Determination of luxA Message Levels in HEK293 Clones.............................128 
Determination of LuxA Protein Levels in HEK293 Clones .............................131 
Bioluminescence Levels from Wild Type Versus Codon Optimized Luciferase 
Genes.................................................................................................................131 

Discussion.............................................................................................................135 

CHAPTER 4 .................................................................................................................141 

EVALUATION OF MAMMALIAN CELLS FOR FMNH2 AVAILABILITY AND 
STABILITY OF BACTERIAL LUCIFERASE IN STABLE MAMMALIAN CELL 
LINES .......................................................................................................................141 

Introduction...........................................................................................................141 
Materials and Methods .........................................................................................144 

Cell Culture and Plasmid Maintenance.............................................................144 
Construction of a Mammalian Expression System for frp................................147 
Ligation Reactions ............................................................................................147 
Electroporation..................................................................................................150 
Selection of Bacterial Clones............................................................................150 
Sequencing........................................................................................................151 
Transfection of Mammalian Cells ....................................................................151 

HEK293 Cells ...............................................................................................151 
Selection of Mammalian Cell Clones ...............................................................152 
In Vitro Bioluminescence Assays .....................................................................153 
Whole Cell Bioluminescence Assays ...............................................................154 
Stability of the Bacterial Luciferase Constructs ...............................................155 
Statistics ............................................................................................................155 

Results ...................................................................................................................155 
Evaluation of FMNH2 Bioavailability in Mammalian Cells.............................155 
Expression of the Flavin Oxidoreductase Enzyme ...........................................156 
In Vitro Bioluminescence Assays .....................................................................158 
Whole Cell Bioluminescence Assays ...............................................................158 
In Vitro versus In Vivo Light Measurements ....................................................160 

CHAPTER PAGE 



 x

Stability of Bacterial Luciferase in Mammalian Cells Over Long Periods of 
Time ..................................................................................................................162 

Discussion.............................................................................................................162 

CHAPTER 5 .................................................................................................................168 

SUMMARY AND CONCLUSIONS .......................................................................168 
Determining an Optimal Expression Format for Expression of the Bacterial 
Luciferase Genes (luxA and luxB).....................................................................170 
Codon Optimization of the Bacterial Luciferase for Expression in Mammalian 
Cells ..................................................................................................................176 
FMNH2 Availability..........................................................................................182 
Stability of the Luciferase Constructs in Mammalian Cells .............................184 

LITERATURE CITED .................................................................................................186 

VITA…………………………………………………………………………………………..202 
 

CHAPTER PAGE 



 xi

LIST OF TABLES 
 

TABLE 1.  COMPARISON OF COMMONLY USED REPORTER PROTEINS USED FOR SENSING     
APPLICATIONS. ...........................................................................................................9 

 
Table 2. EXAMPLES OF VIRAL AND CELLULAR IRES ELEMENTS IDENTIFIED TO 

DATE…………..………………………………………………………………….24 
 
TABLE 3.  STRAINS AND PLASMIDS USED IN THE DETERMINATION OF THE OPTIMAL 

EXPRESSION FORMAT FOR BACTERIAL LUCIFERASE IN MAMMALIAN CELLS. .............33 
 
TABLE 4.  CONCETRATIONS OF ANTIBIOTICS USED FOR EACH CELL LINE BASED ON 

RESULTS OF KILL CURVES.........................................................................................37 
 
TABLE 5. FINAL CONSTRUCTS TRANSFECTED INTO MAMMALIAN CELL LINES……………55 
 
TABLE 6.  EFFECT OF TEMPERATURE ON THE LUXAB FUSION PROTEIN’S ACTIVITY.. ......62 
 
TABLE 7.  STRAINS AND PLASMIDS USED IN THE DETERMINATION OF THE OPTIMAL 

EXPRESSION FORMAT FOR BACTERIAL LUCIFERASE IN MAMMALIAN CELLS. .............86 
 
TABLE 8.  CODON USAGE OF WILD TYPE VERSUS CODON OPTIMIZED GENES ....................89 
 
TABLE 9.  OLIGONUCLEOTIDE PRIMER SEQUENCES USED TO SYNTHESIZE THE CODON 

OPTIMIZED LUXA GENE. ............................................................................................95 
 
TABLE 10.  OLIGONUCLEOTIDE PRIMER SEQUENCES USED TO SYNTHESIZE THE CODON 

OPTIMIZED LUXB GENE. ............................................................................................97 
 
TABLE 11.  GENSCAN TRANSCRIPTION AND TRANSLATION PREDICTION SCORES FOR 

EXPRESSION  OF THE LUXA AND LUXB IN A HUMAN HOST.......................................116 
 
TABLE 12.  CONSTRUCTS AND STRAINS USED IN THIS STUDY. .......................................145 
 
TABLE 13.  BIOLUMINESCENCE LEVELS FROM HEK293 CELLS ENGINEERED TO EXPRESS 

LUXA AND LUXB GENES WITH AND WITHOUT THE CO-EXPRESSION OF THE FLAVIN 
OXIDOREDUCTASE (FRP) ENZYME.. ......................................................................1623 



 xii

LIST OF FIGURES 
 

FIGURE 1.  SCHEMATIC REPRESENTATION OF A GENERALIZED EUKARYOTIC BIOREPORTER 
CELL...................................................................................................................……6 

 
FIGURE 2.  SCHEMATIC DIAGRAM OF A GENERALIZED PROKARYOTIC BIOREPORTER CELL..7 
 
FIGURE 3. BIOCHEMISTRY OF THE BACTERIAL BIOLUMINESCENCE     

REACTION…………………………………………………………………………..14 
 
FIGURE 4.  SCHEMATIC REPRESENTATION OF THE FOLDING OF AN ACTIVE LUCIFERASE 

(αβ).  LUXA AND LUXB REPRESENT THE INDIVIDUAL GENES, U DENOTES THE 
UNFOLDED FORM OF THE POLYPEPTIDES, I DENOTES THE INACTIVE FORM BEFORE 
DIMERIZATION, AND X DENOTES THE HOMODIMERIC FORM THAT CAN NO LONGER 
FORM AN ACTIVE LUCIFERASE……………………………………………………..15 

 
FIGURE 5.  SEQUENCE OF THE WILD TYPE LUXAB AND LUXABF…………………………39    
 
FIGURE 6. DIAGRAM OF VECTOR PLASMIDS FOR THE EXPRESSION OF THE LUXAB FUSION  

IN MAMMALIAN CELLS…..……………………………………….……………….. 41 
 
FIGURE 7. DIAGRAM OF VECTOR PLASMIDS  FOR THE EXPRESSION OF LUXA AND LUXB 

FROM INDIVIDUAL PROMOTERS WITHIN THE SAME VECTOR IN MAMMALIAN CELLS...43 
 
FIGURE 8. DIAGRAM OF VECTOR PLASMIDS FOR THE EXPRESSION OF LUXA AND LUXB 

FROM INDIVIDUAL PLASMIDS ALONG WITH A GFP REPORTER PROTEIN IN  
MAMMALIAN CELLS………………………………………………………………..45 

 
 FIGURE 9. DIAGRAM OF VECTOR PLASMIDS FOR THE EXPRESSION OF LUXA AND  

LUXB FROM INDIVIDUAL PLASMIDS IN MAMMALIAN CELLS………..……….……46 
 
FIGURE 10. DIAGRAM OF VECTOR CONSTRUCT FOR THE EXPRESSION OF LUXA AND LUXB  

AS A SINGLE BI-CISTRONIC TRANSCRIPT, PAIRESB………………………………..48 
  
FIGURE 11.  BIOLUMINESCENCE VALUES FROM E. COLI CELLS HARBORING EITHER 

WILD TYPE LUXA AND LUXB, THE LUXAB FUSION PROTEIN, OR THE LUXAB FUSION  
PROTEIN WITH THE KOZAC SEQUENCE MODIFICATIONS GROWN AT 37°C….……….61 

 
FIGURE 12.  LUXA, LUXB AND LUXAB FUSION PROTEINS TRANSLATED IN VITRO IN 

RABBIT RETICULOCYTE LYSATE WITH THE INCORPORATION OF 35S METHIONINE…..64   
 
 
 
 



 xiii

FIGURE 13.  RELATIVE BIOLUMINESCENCE (RLU/MG TOTAL PROTEIN) FROM STABLY 
INTEGRATED PCLUXABF HARBORING THE LUXAB FUSION GENE.  BIOLUMINESCENCE 
WAS MEASURED FROM CELL EXTRACTS UPON THE ADDITION OF 0.002% N-DECANAL 
AND FMNH2……………………………………………………………………….65 

 
FIGURE 14.  RELATIVE BIOLUMINESCENCE (RLU/MG TOTAL PROTEIN) FROM STABLY 

INTEGRATED PCLUXABF HARBORING THE LUXAB FUSION GENE OR  
 PCLUXABFKOZ HARBORING THE LUXAB FUSION WITH THE KOZAC  
 MODIFICATION.  BIOLUMINESCENCE WAS MEASURED FROM CELL EXTRACTS  
 UPON THE ADDITION OF 0.002% N-DECANAL AND 

FMNH2……………………………………………………………………………67 
 
FIGURE 15.  RELATIVE BIOLUMINESCENCE (RLU/MG TOTAL PROTEIN) FROM EITHER 

CHROMOSOMALLY INTEGRATED (SOLID BARS) OR EPISOMAL PLASMIDS (PATTERNED 
BARS) EXPRESSING LUXA AND LUXB AS A FUSION PROTEIN  
(BLACK), ON ONE PLASMID WITH SEPARATE PROMOTERS (RED) OR 
 CO-TRANSFECTED ON SEPARATE PLASMIDS (GREEN)………………………………69 

 
FIGURE 16.   RNA SLOT BLOT ANALYSIS OF HEK293 CLONES HARBORING THE 

PCEPLUXARLUXB CONSTRUCT AS AN EPISOME…………………………………...70 
 
FIGURE 17.  RELATIVE BIOLUMINESCENCE LEVELS (RLU/MG TOTAL PROTEIN) FROM 

STABLE HEK293 CELL LINE CLONES GROWN IN THE ABSENCE OF ANTIBIOTIC……..72 
 
FIGURE 18.  BIOLUMINESCENCE LEVELS (RLU/MG TOTAL PROTEIN) FROM STABLE 

HEK293 CELL LINE CLONES EXPRESSING THE LUXA AND LUXB  AS A BICISTRONIC 
TRANSCRIPT VIA AN IRES ELEMENT……………………………………………... .73 

 
FIGURE 19.  RELATIVE BIOLUMINESCENCE LEVELS (RLU/MG TOTAL PROTEIN) FROM  
 STABLE HEK293 CELL LINE CLONES EXPRESSING LUXAB FUSION (BLACK),  
 LUXA AND LUXB FROM A DUAL PROMOTER VECTOR (RED), CO-TRANSFECTION OF  
  THE LUXA AND LUXB ON SEPARATE PLASMIDS (GREEN) OR AS A BICISTRONIC  
 TRANSCRIPT VIA AN IRES ELEMENT (YELLOW).………………………………...74   

 
FIGURE 20.   RNA SLOT BLOT ANALYSIS OF HEK293 CLONES EXPRESSING THE  

LUXA AND LUXB GENES EITHER AS A FUSION PROTEIN, ON SEPARATE PLASMIDS 
 (CO-TRANSFECTED), WITHIN THE SAME PLASMID BUT WITH SEPARATE  
PROMOTERS (DUAL PROMOTER) OR A TRANSCRIPTIONAL FUSION LINKED 
 WITH AN IRES ELEMENT…………………………………………………………...75 

 
FIGURE 21.  RELATIVE BIOLUMINESCENCE (RLU/MG TOTAL PROTEIN) VERSUS  

AVERAGE  INTENSITY VALUES FROM RNA SLOT BLOT ANALYSIS OF EACH  
CLONE……………………………………………………………………….…..…77 
   



 xiv

FIGURE 22.  SCHEMATIC DIAGRAM OF THE RECURSIVE PCR METHOD USED TO CONSTRUCT 
THE SYNTHETIC LUXA AND LUXB GENES.  OUTSIDE OLIGONUCLEOTIDES WERE ADDED 
AT 25 PMOL FINAL CONCENTRATION WHILE THE INSIDE OLIGONUCLEOTIDES WERE 
ADDED AT 0.25 PMOL FINAL CONCENTRATION. ........................................................94 

 
FIGURE 23.  SCHEMATIC DIAGRAM OF THE FINAL CONSTRUCTS USED TO COMPARE THE 

WILD TYPE LUXA AND LUXB TO THE CODON OPTIMIZED GENES.  A. WILD TYPE LUXA 
AND WILD TYPE LUXB B.  CODON OPTIMIZED LUXA AND WILD TYPE LUXB C. CODON 
OPTIMIZED LUXA AND CODON OPTIMIZED LUXB.  ..................................................102 

 
FIGURE 24.  WILD TYPE AND CODON OPTIMIZED LUXA SEQUENCE ALIGNMENT. ............117 
 
FIGURE 25.  WILD TYPE AND CODON OPTIMIZED LUXB SEQUENCE ALIGNMENT. ........12019 
 
FIGURE 26.  IN VITRO TRANSLATION PRODUCTS OF THE WILD TYPE LUXA AND CODON 

OPTIMIZED LUXA GENES.  PRODUCTS WERE LABELED BY THE INCORPORATION OF 
[35S] METHIONINE. .................................................................................................122 

 
FIGURE 27.  BIOLUMINESCENCE MEASUREMENTS TAKEN AT PASSAGE THREE POST 

TRANSFECTION FOR THE TWENTY CLONES FOR EACH CONSTRUCT.  A.  WTA/WTB 
CLONES  B.  COA/WTB CLONES C. COA/COB CLONES. .....................................123 

 
FIGURE 28.  AVERAGE BIOLUMINESCENCE FROM STABLY TRANSFECTED HEK293 CELL 

LINES.(20 CLONES TESTED FOR EACH CLONE TYPE IN TRIPLICATE).........................127 
 
FIGURE 29.  SOUTHERN BLOT ANALYSIS ON THE STABLE HEK293 CLONES HARBORING 

EITHER WILD TYPE LUXA AND LUXB, CODON OPTIMIZED LUXA AND WILD TYPE LUXB 
OR CODON OPTIMIZED LUXA AND LUXB.  THE BLOT WAS PROBED WITH A 300 BP [32P] 
LABELED PROBE OF BOTH THE WILD TYPE AND CODON OPTIMIZED LUXA SEQUENCE.
...............................................................................................................................129 

 
FIGURE 30.  NORTHERN BLOT ANALYSIS OF THE STABLE HEK293 CLONES HARBORING 

EITHER WILD TYPE LUXA AND LUXB, CODON OPTIMIZED LUXA AND WILD TYPE LUXB 
OR CODON OPTIMIZED LUXA AND LUXB.  ETHIDIUM BROMIDE STAINED 28S RRNA 
WAS USED TO ENSURE RNA QUALITY AND LOADING CONTROLS.  .........................130 

 
FIGURE 31.  WESTERN BLOT ANANLYSIS OF HEK293 CLONES HARBORING EITHER WILD 

TYPE LUXA AND LUXB, CODON OPTIMIZED LUXA AND WILD TYPE LUXB OR CODON 
OPTIMIZED LUXA AND LUXB.  THE β-ACTIN PROTEIN WAS USED AS A LOADING 
CONTROL................................................................................................................132 

 
 
 
 
 



 xv

FIGURE 32.  COMPARISON OF MRNA LEVELS AND PROTEIN LEVELS IN EACH OF THE 
STABLE HEK293 CELL LINE CLONES.  A.  NORTHERN BLOT OF TOTAL RNA (20µG) 
FROM STABLY TRANSFECTED HEK293 CELLS PROBED WITH 32P LABELED 
COMPLIMENTARY LUXA PROBES.  B.  WESTERN BLOT OF TOTAL SOLUBLE PROTEIN 
(250 µG) FROM STABLY TRANSFECTED HEK293 CELLS IMMUNOBLOTTED WITH A 
POLYCLONAL LUXA ANTIBODY...............................................................................133 

 
FIGURE 33.  AVERAGE BIOLUMINESCENCE FROM INDIVIDUAL HEK293 CLONES STABLY 

TRANSFECTED WITH WTA/IRES/WTB, COA/IRES/WTB OR COA/IRES/COB. 134 
 
FIGURE 34.  SCHEMATIC DIAGRAM OF THE EXPRESSION VECTORS USED TO EXPRESS THE 

FLAVIN OXIDOREDUCTASE ENZYME (FRP) FROM V. HARVEYI IN MAMMALIAN CELLS.  
…...........................................................................................................................148 

 
Figure 35. BIOLUMINESCENCE LEVELS (RLU) FROM STABLE HEK293 CLONES BEFORE 

(BLUE BARS)  AND AFTER (MAROON BARS) THE ADDITION OF FMNH2......…157 
 
FIGURE 36. BIOLUMINESCENCE LEVELS FROM CLONE COA/COB2 VERSUS THE 

COA/COB2 CLONE CO-EXPRESSED WITH A V. HARVEYI  FLAVIN OXIDOREDUCTASE 
ENZYME..................................................................................................................159  

 
FIGURE 37. BIOLUMINESCENCE LEVELS FROM HEK293 CELLS UPON THE ADDITION OF 

0.002% N-DECANAL.  BIOLUMINESCENCE MEASUREMENTS WERE TAKEN FROM 
TRIPLICATE 35CM2 WELLS................................…….....................................161 

 
FIGURE 38. AVERAGE BIOLUMINESCENCE LEVELS OF HEK293 CLONES HARBORING LUXA 

AND LUXB CULTURED WITHOUT ANTIBIOTIC VERSUS PASSAGE NUMBER........164   
 

 



 1

CHAPTER 1 
 

INTRODUCTION 
 

 
Background and Research Objectives 

 Bacterial luciferase is a powerful reporter protein system since it allows for the 

development of real-time autonomous sensors that the invasive manipulations required 

by other reporter proteins do not permit.  Mammalian cell lines expressing reporter 

proteins have been widely used in both basic and applied research for the investigation 

of a variety of cellular functions.  These applications include, but are not limited to, 

promoter analysis (Guignard et al., 1998; Zhang et al., 1997), identification of 

transcription factors (Ichiki et al., 1998; Schwechheimer et al., 1998), discovery of 

genes that are potential targets for disease (Watson et al., 1998) evaluation of cross talk 

mechanisms (Naylor, 1999), and in vivo sensing of tumor and/or disease progression 

(Contag et al., 1998).  However, current mammalian bioreporter technology is limited 

due to its inability to function as a stand-alone, real-time reporter in vivo.  Current 

methodologies that use firefly luciferase (Luc) and green fluorescent protein (GFP) 

reporter systems in mammalian cells require lysis and substrate addition or exogenous 

excitation, respectively, to produce a measurable response.  Consequently, these cells 

cannot serve as continuous on-line monitoring devices.  Bacterial luciferase is unique in 

that it is the only bioreporter system available that generates its own substrate, thus 

eliminating the need for cell destruction or exogenous substrate addition.   

 Extensive work has been published using the bacterial lux system in prokaryotic 

organisms for the development of whole cell biosensors (Simpson et al., 1998; Sayler et 
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al., 2001; Ripp et al., 2000; Corbiser et al., 1999; Kohler et al., 2000; King et al., 1990, 

and VanDyk et al., 2001), advancements in biocomputing applications (Simpson et al., 

2001) and in vivo imaging models (Contag et al., 1998 and Francis et al., 2001).  

Recently, a lux-based yeast reporter cell line has been developed for the detection of 

estrogenic compounds (Gupta et al., 2003).  This research was the first successful 

attempt to express the complete lux operon required for autonomous bioluminescence in 

a eukaryotic organism.  Unfortunately, this technology has yet to be successfully 

implemented into mammalian cells. Several attempts by various groups have been made 

to express bacterial luciferase enzyme in mammalian cells.  These efforts have been met 

with only modest success as numerous obstacles have been encountered preventing 

efficient expression of the lux proteins.  A major effort and the first step required to 

realize the ultimate potential of this technology is to achieve efficient expression of the 

heterodimeric luciferase (luxA and luxB) protein.   

The bacterial luciferase enzyme is a heterodimeric protein complex made up of 

an α and β subunit encoded by the genes luxA and luxB, respectively.  Because it is not 

possible to express multiple genes as a polycistronic operon in eukaryotes, alternate 

expression platforms are needed to obtain optimal thermostability and proper folding 

which should aid in obtaining an adequate bioluminescent signal from mammalian cells.  

Furthermore, the availability of the co-factors required for the lux reaction including 

FMNH2 and O2 in mammalian cells has been suspected to be inadequate and levels need 

to be evaluated.  Other strategies for bioluminescence optimization and possible gene 

amplification have not been previously pursued and the potential is unknown.  This 

avenue of research may result in a mammalian cell line able to produce the 
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bioluminescent levels required for sensitive monitoring of target analytes.  Also, for an 

autonomously driven bioluminescent mammalian cell line to realize its full 

technological potential, the expression system must remain stable for long periods of 

time without the need for selective pressure.  The stability of mammalian cell lines 

harboring the luciferase protein remains a question and needs to be evaluated.  In 

response to these questions, the following hypotheses are tested in this research: 

 

• Hypothesis 1:  Expression of the bacterial luciferase (lux) subunits as individual 

proteins rather than as a monomeric translational fusion results in efficient 

folding and thermostability resulting in a higher bioluminescent signal in 

mammalian cells.  

 

• Hypothesis 2:  Codon optimization of the bacterial luciferase (lux) genes is 

required to significantly enhance translation of the message and ultimately result 

in greater bioluminescence levels from mammalian cells harboring these 

optimized genes. 

 

• Hypothesis 3:  Stably integrated constructs will be persistent in the absence of 

selective pressure for long periods of time. 

 

• Hypothesis 4:  Mammalian cells possess or can be engineered to express 

adequate available concentrations of the required co-factor FMNH2 for efficient 

bioluminescence 
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Literature Review 

Reporter Gene Technology 

 Reporter genes are defined as genes that produce a measurable phenotype that 

can be distinguished from other proteins within a cell (Alam and Cook, 1990).  The use 

of reporter genes for applied technologies requires that the signal be easily detected and 

respond rapidly, possess a linear response to the target analyte for quantification and 

produce a reproducible signal (Naylor, 1999 and Wood, 1995).  Several reporter 

proteins have been shown to be valuable tools for advancing both basic and applied 

research. Examples of such basic applications include the development of reporter 

fusions for the identification and analysis of promoter regions (Guignard et al., 1998; 

Zhang et al., 1997), identification of transcription factors and induction/repression 

schemes (Ichiki et al., 1998; Schwechheimer et al., 1998), as well as the discovery of 

genes as potential targets for disease (Watson et al., 1998) and evaluation of cross talk 

and signal transduction mechanisms (Naylor, 1999).  Furthermore, reporter gene fusions 

have been utilized for the creation of whole cell biosensors for environmental 

monitoring (King et al., 1990; Ripp et al., 2000 and Kohler et al., 2000), advancement 

of biocomputing applications (Simpson et al., 2001) and in vivo imaging of disease 

onset and progression (Francis et al., 2001) as well as drug efficacy screening (Contag 

et al., 1998).    

 Reporter genes can be used to study any pathway that is controlled on a 

transcriptional level.  The signals produced are responses to alterations in either gene 

regulation or expression within the cell (Wood, 1995).  Eukaryotic reporter systems 

require receptor proteins for sensing and shuttling of analyte compounds.  These 
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analytes can be extracellular signals that are either detected on the cell surface and 

trigger intracellular signal transduction pathways or bind an intracellular receptor which 

can subsequently bind to specific response elements resulting in transcriptional 

activation (Naylor, 1999).  In either case, by fusing reporter proteins to promoter 

elements within the target pathway, when promoter induction occurs, the reporter 

protein is generated and a detectible phenotypic change occurs within the cell (Figure 

1).  This reporter signal is then measured and provides a simple way to determine if and 

when a particular analyte affects gene expression (Levitzki, 1996).  In prokaryotic 

reporter cell schemes, generally the target analyte can bind directly to the promoter or 

repressor element and induce transcription directly (Figure 2) (Kohler et al., 2000).  

Nevertheless, in either case the ultimate outcome is the same and a detectable and often 

times quantifiable signal is produced.   

 

Reporter Genes and Proteins 

 Several reporter proteins have been shown to be valuable tools in various areas 

of research.  In order for a reporter protein to be useful, the generated signal must have 

a low endogenous background level in the host cell and produce an easily detectable 

response.  Choice of the optimal reporter protein for individual applications is essential 

for success.  There are several criteria that should be considered in the selection process 

of a reporter gene.  (1) The reporter protein should be absent from the host to prevent 

complications in distinguishing signal from background noise. (2) The assay for signal 

detection should either be established or easily measured in a rapid, simple, and cost- 
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Figure 1.  Schematic representation of a generalized eukaryotic bioreporter cell.  

Response elements (RE) are specific for the target analyte. 
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Figure 2.  Schematic diagram of a generalized prokaryotic bioreporter cell.  The 

promoter region is specific for the target analyte.   
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 effective manor.  (3) In order to analyze induction of both small and large changes in 

transcriptional activation, the reporter should have a large linear dynamic range for its 

response  (4) The expression of the reporter gene must not effect the overall physiology 

of the cell (Ausubel et al., 1997).  Each reporter protein identified to date has distinct 

advantages and disadvantages for application.  Table 1 summarizes some of these 

differences between a few of the more commonly used reporter proteins available.   

 There are two main classes of reporter assays available, in vitro and whole-cell 

bioassays.  In vitro reporter applications refer to the protocols in which the 

transcriptional activation is quantified in cell lysates or in the media from excreted 

proteins.  The measurement can be a direct quantification of the protein or an indirect 

response to enzymatic or immunological stimulation (Alam and Cook, 1990).  Although 

these methodologies may be useful under certain circumstances, in vivo or whole cell 

assays provide more reliable data for studies comparing promoter strengths, enhancer 

regions and determining other cell requirements.  Of all of the known reporter proteins, 

the bacterial luciferase (lux) has the distinct advantage in that it is the only bioreporter 

system available able to make its own substrate and generate an autonomous signal.  

This property has made the bacterial bioluminescence reporter system an invaluable 

tool for the creation of whole cell biosensors for remote sensing in prokaryotic 

organisms (Sayler et al., 2001).  Unfortunately, the one caveat in this technology to date 

is that it has not been efficiently expressed in mammalian cells limiting its full potential 

(Meighen, 1991 and Naylor, 1999).   
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Table 1.  Comparison of commonly used reporter proteins used for sensing     
applications. 

Reporter Advantage Disadvantage 

 
Chloramphenicol 

acetyltransferase (CAT) 

No endogenous activity.  
Automated detection 
(ELISA) 

Requires the addition of 
substrate and separation of 
substrate and product. 

 
β-galactosidase 

Stable, Simple colorimetric 
and chemiluminescent 
assay available. 

Endogenous activity 
(mammalian cell). Requires 
the addition of substrate. 

 
Firefly luciferase (LUC) 

High specific activity, no 
endogenous activity, easily 
detectable 

Requires addition of 
substrate (luciferin), O2 and 
ATP. 

 
Green Fluorescent Protein 

(GFP) 

Autofluorescent 
Mutants with altered 
spectral qualities available. 

Moderate sensitivity.  
Background fluorescence 
may interfere. Requires 
exogenous excitation 

 
Bacterial luciferase (lux) 

Broad dynamic range, 
easily measured, no 
exogenous substrate 
addition required. 

 
Requires O2 only 
expressed in prokaryotes 
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Bacterial Bioluminescence 

 Organisms able to generate light have intrigued researchers for centuries.  

Species able to produce bioluminescence are diverse, ranging from fireflies and 

mushrooms to dinoflagellates and bacteria (Harvey, 1952).  The luciferase enzymes 

involved in the catalysis of the bioluminescence reaction are also evolutionarily very 

diverse with the only one true commonality being that they all require O2 as a co-factor 

(Fisher et al., 1996).   

Bioluminescent bacteria are the most abundant of the light emitting organisms 

(Meighen, 1991).  They can be found in a high abundance in marine, freshwater and 

terrestrial environments (Hastings et al., 1985).  Most bioluminescent bacteria have 

been classified into three genera:  Vibrio, Photobacterium and Photorhabdus (formerly 

Xenorhabdus).  Organisms belonging to the first two genera generally can be found in 

marine environments.  These organisms have been identified as free-living planktonic 

bacteria and symbionts with a variety of fish and squid species (Wilson and Hastings, 

1998).   The Photorhabdus genus contains strains that can colonize terrestrial organisms 

and tend to be found acting in symbiosis with worms and caterpillars (Farmer et al., 

1989 and Colepicolo et al., 1989).  

 

Biochemistry of Bacterial Bioluminescence 

 In all bioluminescent organisms, the enzymes that catalyze the luminescent 

reaction are referred to as luciferases, while the required substrates are luciferins 

(Wilson and Hastings, 1998). Further, this light producing reaction requires molecular 

O2, the reducing power of FMNH2 and the energy of ATP as co-factors and substrates.   
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 The bacterial luciferase enzyme is a heterodimeric protein encoded by the luxA 

and luxB genes.  The heterodimeric complex forms a 77 kDa enzyme comprised of α 

(40 kDa) and β (37 kDa) subunit polypeptides.  Because the subunits are related (>30% 

amino acid homology) they are thought to be products of a gene duplication event 

(Baldwin et al., 1979).  The complete luciferase enzyme is a flavin monooxygenase that 

binds a reduced flavin molecule as a specific substrate.  However, only the α subunit 

carries the active center (Fisher et al., 1995).  A specific role of for the β subunit has not 

become clear, but its presence is essential for a high quantum yield reaction (Baldwin et 

al., 1995).  Nevertheless, the β subunit has been shown to have some impact on the 

enzyme’s thermostability (Meighen et al., 1971; Cline and Hastings, 1972 and Szittner 

and Meighen, 1990), binding of FMNH2 (Cline, 1973; Meighen and Bartlett, 1980; 

Welch and Baldwin, 1981 and Watanabe et al., 1982) as well as efficient binding of 

aldehyde (Tu and Henkin, 1983).   

 All bacterial luciferases studied to date catalyze the same overall reaction: 

 FMNH2 + O2 + RCHO  FMN + RCOOH + H2O + hv (λmax = 490nm)  

 

The natural aldehyde for the reaction is thought to be tetradecanal in most 

species of luminescent bacteria, however, the more thermostable forms of luciferase 

(Vibrio harveyi and Photorhabdus luminescens) tend to produce higher 

bioluminescence in the presence of dodecanal and decanal (Schmidt et al., 1989). The 

general 1:1 stoichiometry of the luciferase subunits is conserved throughout all species 

of bioluminescent bacteria known (Meighen, 1991).  However, the amino acid sequence 
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of each polypeptide is somewhat diverse.   Certain motifs within the luciferase enzyme 

are conserved throughout.  There is a 60-85% identity between amino acid sequences of 

the α subunit of reported various Vibrio, Photobacterium and Photorhabdus species 

while the β subunit is less conserved with a 50-65% identity (Szittner and Meighen, 

1990).  The higher conservation of the α subunit sequence may be a direct reflection for 

the need to conserve the active center and catalytic properties of luciferase (Meighen et 

al., 1971).   

Although the aldehyde substrate is not necessary for the luciferase reaction 

itself, its presence significantly increases the light output kinetics (Volkova et al., 1999).  

The genes required for synthesis of aldehydes are catalyzed by a multienzyme fatty acid 

reductase and synthase (Rodriduez et al., 1983).  These genes are all located within the 

lux operon of all bioluminescent bacteria.  Generally, the reductase (luxC) and 

transferase (luxD) are located upstream of the luxA and luxB luciferase genes while the 

synthase (luxE) gene is located immediately downstream.  The primary reaction 

catalyzed by this system is the reduction of fatty acids by the reductase and synthase 

enzymes.  The synthase acts to activate the fatty acid, which results in a fatty acyl-AMP 

intermediate that remains bound to the enzyme.  The acyl group is then transferred to 

the synthase and then further transferred to the reductase, where it becomes reduced by 

NAD(P)H to the corresponding aldehyde.  The transferase subunit is responsible for the 

transfer of activated fatty acyl groups.  The fatty acid is then recycled.  Each 

multienzyme complex responsible for this reaction has been found to consist of a 

central tetramer of reductase subunits bound to one synthase and one weakly associated 

transferase subunit (Li et al., 2000). 
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  To produce light, the bioluminescence reaction appears to go through several 

intermediate steps.  With a stoichiometry of 1:1:1, the α and β subunits bind with a 

reduced flavin molecule (FMNH2) to form a C4a hydroxyflavin.  As this hydroxyflavin 

becomes dehydrated to FMN, a blue-green light is emitted (Baldwin et al., 1979).  A 

schematic diagram of the overall reaction is shown in Figure 3.  This enzymatic reaction 

has a relatively slow turnover rate.   

The luciferase subunits have been shown to fold independently and interact 

during the folding process.  They then form an active heterodimeric complex following 

isomerization (Ziegler et al., 1991).  However, because of the relatedness of the two 

subunits, if they are present individually (in the absence of the other subunit) they tend 

to form inactive homodimers that cannot refold into the active heterodimeric form         

(Waddle et al, 1987 and Ziegler et al., 1991).  Because of this complex stoichiometric 

requirement for folding, there is a lag time of at least three to four minutes to complete 

an active enzyme after translation of the subunit polypeptides (Ziegler et al., 1993).  A 

schematic diagram of the folding pattern of the luciferase subunits is shown in Figure 4.   

 

Thermostability of Bacterial Luciferase 

  Bacterial luciferase (lux) genes cloned from various species of luminescent 

bacteria have been used to create a myriad of reporter constructs.  Given that the lux 

operons from V. fischeri and V. harveyi were the first to be cloned (Engebrecht et al., 

1983 and Cohn et al., 1983), the vast majority of these clones are derived from these 

sequences.  However, just as selection of the appropriate reporter for individual 
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Figure 3.  Biochemistry of the bacterial bioluminescence reaction. (Figure Courtesy of A. Heitzer.) 
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Figure 4.  Schematic representation of the folding of an active luciferase (αβ).  luxA 

and luxB represent the individual genes, u denotes the unfolded form of 
the polypeptides, i denotes the inactive form before dimerization, and x 
denotes the homodimeric form that can no longer form an active 
luciferase. Figure adapted from Zeigler et al., 1993. 
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applications is important, the selection of the appropriate luciferase is equally critical.  

A key difference between luciferase enzymes from different species is their overall 

thermostability in vivo.  The luciferase from V. fischeri has been shown to be heat 

labile at temperatures above 30°C losing almost all catalytic properties at 37°C 

(Meighen, 1991).  The V. harveyi luciferase remains relatively stable at 37°C and 

luciferase enzymes from P. luminescens are quite stable at 42°C (Szittner and 

Meighen, 1990).  Furthermore, the luciferase enzyme from P. luminescens is 

optimally bioluminescent at 37°C.  For selection of the application appropriate 

enzyme, the optimal growth temperature for the host should be considered.  For the 

ultimate expression of the bacterial luciferase in mammalian cells, P. luminescens 

would appear to be the appropriate choice and therefore, is the enzyme that was 

chosen in this research.   

 

Use of the Bacterial Luciferase (luxCDABE) Reporter System 

 Various lux-based reporter systems have been constructed mostly by the 

insertion of a specific promoter in front of the lux cassette on either a plasmid or 

transposon and then mobilizing the plasmid into the appropriate strain of bacteria.  

The various constructs that have been designed are too numerous to completely 

review in this document.  Briefly, whole cell bioreporters have been generated to 

monitor the catabolic genes involved in degradation pathways including but not 

limited to; naphthalene (Burlage et al., 1990), toluene (Applegate et al., 1997), and m-

toluate (deLorenzo et al., 1993).  Van Dyk et al. (1995) used lux fusions to monitor 
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heat shock gene expression and then later expanded this technology to monitor 

genome wide expression patterns in E. coli (Van Dyk et al., 2001).  Lux-based 

reporters have also been used to monitor DNA damage (Vollmer et al., 1997), 

oxidative stressors (Wallace et al., 1994) and in the creation of countless whole-cell 

biosensors for monitoring compounds like nitrate (Prest et al., 1997), arsenic (Cai et 

al., 1997), nickel (Tibazarwa et al., 2000), lead (Corbiser et al., 1996), 2,4-D (Hay et 

al, 2000) and iron (Khang et al., 1997). Lux fusions have been further used for the in 

vivo monitoring of pathogenic infection in whole mouse models (Contag et al., 1995; 

Francis et al., 2000 and Francis et al., 2001). 

 

Advantages and Disadvantages of Using Bacterial Luciferase as a Reporter  

 Use of the bacterial luciferase gene system has several advantages over other 

bioreporter systems available.  First, the absence of background luminescence in a 

nonluminescent host makes this a very attractive system because the lower end of the 

signal detection is only limited by the noise within the detector itself.  With the 

development of new, more sensitive detectors and noise reduction schemes, very low 

concentrations of luciferase activity can be detected and quantified.  Secondly, the 

light intensity has been shown to be a direct measurement of the amount of luciferase 

present (Meighen, 1991).  This linear detection range is very wide relative to other 

reporter proteins available (Meighen, 1991).    Furthermore, the luminescent signal 

can be detected within a matter of seconds making the assay relatively quick and easy 

for the user.  
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 The ability to directly measure in vivo gene function without the disruption of 

the cell or loss of cell viability is perhaps the most obvious advantage of the bacterial 

luciferase enzyme system.  This property has made the lux system sought out by 

many for various research applications.   As a result, numerous prokaryotic 

biosensors have been developed.  These sensors have been employed in a variety of 

applications ranging from environmental pollutant monitoring (Sayler et al., 2001; 

Ripp et al., 2000; Corbiser et al., 1999; Kohler et al., 2000; King et al., 1990) to 

visualizing infections in vivo (Francis et al., 2001).  The biggest limitation to date is 

the inability to efficiently express the lux system in eukaryotic organisms.  Recently, 

it was shown that the complete lux operon from P. luminescens can be expressed in 

the yeast S. cerevisiae as proof in principle for the further application into mammalian 

cells (Gupta et al., 2003). 

 However, the exact interpretation of light levels from intact cells is 

complicated because the intensity depends not only on luciferase concentrations 

within the cell, but also the availability of the aldehyde and FMNH2 substrates.  As 

this system is moved into higher eukaryotes this measurement may become more 

complicated (Meighen, 1991). 

 

Expression of Bacterial Luciferase in Mammalian Cells 

 Unlike polycistronic expression of multiple genes often found in bacterial 

systems, eukaryotic gene expression requires that each individual gene be preceded 

by its own promoter.  This has limited the expression of the lux genes in eukaryotes to 

this point.  To overcome this, several researchers have generated a monocistronic 
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version of the V. harveyi luciferase protein by creating a translational fusion of the 

individual subunits.  This fusion protein allows for the expression of both genes from 

a single promoter element.   Unfortunately, these fusion proteins have not produced 

adequate bioluminescence in vivo to generate a reliable mammalian sensor for gene 

expression analysis.  This loss of activity has been attributed to improper folding and 

low thermostability of the fusion (Kirchner et al., 1989; Olsson et al., 1989; 

Almashanu et al., 1990; Escher et al., 1989; Costa, 1991; Pazzagli et al., 1992; 

Gelmini et al., 1993).   Bioluminescence levels were significantly increased if the host 

cells were grown at lower temperatures (Escher et al., 1989; Costa et al., 1991 and 

Almashanu et al., 1990).  Based on these data, it was determined that the fusion was 

unable to properly fold into its active heterodimeric form at 37°C.  This was thought 

to be caused, in part, by the short polylinker region that separates the two subunits.  It 

was hypothesized that a short linker between the two genes may impose an unnatural 

strain on the dimerization process and limit the amount of active heterodimer able to 

form.  To overcome this limitation, several attempts have been made to alter this 

polylinker region and allow for a more natural folding of the two subunits. The 

number of linker codons tested has ranged from one to twenty-two.  The relative 

activities (expressed in E. coli) of the enzyme are lowest with a short (one amino 

acid) linker ranging from 0.04% (Boylan et al., 1989) to 19% (Almashanu et al., 

1990).  The highest activities were obtained with a ten amino acid polylinker, which 

produced 90% activity when grown at 23°C but only 8% at 37°C.  None of the Vibrio 

harveyi fusion proteins reported to date have shown the ability to remain stable at the 

optimal mammalian growth temperature, 37°C. 
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Interestingly, if cells, prokaryotic or eukaryotic, harboring the lux fusion 

genes were grown at 37°C and then cooled to 23°C, a significant increase in 

bioluminescence levels were shown to occur (Costa, 1991 and Escher et al., 1989).  

On the other hand if chloramphenicol was added to the cells prior to the cooling step, 

the bioluminescence remained low (Esther et al., 1989).  These data indicated that the 

light levels produced in the absence of the antibiotic were a result of de novo 

synthesis and suggest a problem in folding of the protein at higher temperatures that 

can not be recovered after folding is complete (Esther et al., 1989).  These data 

further support the model of luxA and luxB folding proposed earlier by Ziegler et al. 

(1991).     

Koncz et al. (1987) reported the expression of the heterodimeric bacterial 

luciferase protein from V. harveyi as individual proteins expressed in a dual promoter 

vector format.  The expression levels, although difficult to compare were said to be 

adequate for monitoring chimeric genes in plant extracts (Koncz et al., 1987).  These 

data also showed for the first time that individual subunits of the protein could be 

transcribed and translated separately and subsequently assemble to form a functional 

luciferase enzyme in a eukaryotic cell. 

 

Internal Ribosomal Entry Sites (IRES) 

 In prokaryotes, translation of multiple adjacent genes within a single operon is 

common.  In these cases, the entire operon is transcribed as a single mRNA regulated 

by the upstream promoter region.  The translation of the mRNA is then initiated by 

direct complementary base pairing between the 16S rRNA and mRNA Shine-
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Dalgarno sequence.  Upon binding, the 30S subunit is brought into an internal 

position around the start codon (AUG) where translation of the protein begins.  

Translation of several proteins from one mRNA is possible (Jackson, 2000).  This 

type of translation scheme is referred to as polycistronic translation.   

 Until recently, it was believed that eukaryotic translation was limited to cap 

dependent initiation.  This mechanism involves a methyl-7-G(5′)pppN structure (cap) 

at the 5′ end of the mRNA that is recognized by a protein complex initiation factor to 

begin translation (Hershey and Merrick, 2000).  This initiation complex scans the 

mRNA for the first AUG triplet downstream of the terminal 5′ cap usually within 50 

to 100 bases where translation begins (Hennecke, 2001).  In this type of initiation, the 

simultaneous translation of multiple proteins from one mRNA is not possible and 

monocistronic translation is the only option.  Typically, each open reading frame is 

transcribed and translated independently from its own promoter. 

 More recently, alternative translation mechanisms have been identified that 

have been shown to initiate translation in a cap-independent manor in eukaryotic 

organisms and their viral pathogens.  These alternative initiation schemes were first 

identified within the genomes of poliovirus and encephalomyocarditis virus (EMCV) 

(Jackson, 1988 and Jang et al., 1988).  These viral sequences are naturally uncapped 

at their 5′ ends.  They possess several complex features that would be predicted to 

impair efficient ribosome binding (Vagner, 2001).  Nevertheless, protein translation 

was shown to be initiated at these sites, both in vitro and in vivo after viral infection 
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(Martinez-Salas et al., 2001).  Furthermore, these sequences, termed internal 

ribosomal entry sites (IRES) were found in all genera of picnovirus (Vagner, 2001). 

 IRES elements can be defined as specific nucleotide sequences that allow for 

ribosomal entry and translation initiation directly at the start codon (AUG) rather than 

requiring scanning from the 5′ end, cap structure, of the mRNA (Pestova et al., 2001 

and Kozac, 2001). IRES activity is based on the secondary structure of the mRNA 

and has been shown to be extremely sensitive to even point mutations that may alter 

the integrity of this structure (Haller and Semler, 1992).  IRES elements from various 

sources, however, have been shown to lack conservation of primary sequences 

(Pestova et al., 1991).  Known IRES elements also vary greatly in their overall length, 

ranging from 200nt in insect RNA viruses (Wilson et al., 2000) to as large as 600nt in 

picnovirus IRES elements (Nicholson et al., 1991).  Along with these variations in 

nucleotide sequence and size, IRES elements have been shown to have varying 

mechanisms from translation initiation (Martinez-Salas, 1999).  However, certain 

secondary structures remain constant and have been shown to be important for the 

initial physical contact with the 40S ribosomal subunit for translation initiation.  

Examples of these specific regions include, double stranded mRNA segments and 

hairpin loop structures (Honda et al., 1996 and Honda et al., 1999).   

 The IRES element isolated from EMCV has been shown to initiate translation 

by ribosomal binding at codons close to the 3′ border of the IRES sequence (Kalinski 

et al., 1990).  Unlike binding to the ribosomes to a Shine-Dalgarno (linear) sequence, 

IRES binding to the 40S subunit is determined by several noncontiguous sequences 

(Pestova et al., 2001).   Whether the IRES and 18S rRNA physically bind is still yet 
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to be determined.  Once the ribosome binds an elF (elongation) initiation factor 

stimulates the formation of the 48S complex and forms internal loops on the IRES 

sequence (Jubin, 2000 and Pestova et al., 1996).  Then, in an ATP dependent manor, 

translation begins directly at the AUG start codon. 

 Most IRES elements identified to date, represent an evolutionary survival 

scheme for viruses upon infection.  Once the virus infects the host cell, the cap 

dependent translation machinery is shut down and only the viral proteins are made 

(Vagner, 2001).  Interestingly, several eukaryotic cellular IRES elements have also 

been identified.  The first cellular IRES was a 220nt 5′ untranslated region (UTR) of 

the immunoglobulin heavy chain binding protein (BiP).  This protein was shown to be 

highly translated after viral infection and thus in a cap-independent manor (Macejak 

and Scarnow, 1991).  Other cellular IRES elements have since been identified and 

shown to be related to various stress responses.  For example, anti-apoptotic genes 

have been shown to use IRES elements for translation initiation of proteins, like 

Apaf-1 (Coldwell et al., 2000).  Furthermore, translation initiation factors have been 

shown to become translated in this fashion, as well including DAP5 (Henis-Korenblit 

et al., 2000) and ELF4G (Johannes and Sarnow, 1998).  It has been hypothesized that 

translation from IRES elements may have been selected for as a last stitch effort to 

survive harsh conditions by providing a failsafe method to ensure synthesis of certain 

proteins under specific physiological conditions (Pestova et al., 2001).  A list of viral 

and cellular IRES elements that have been identified to date are listed in Table 2. 

Several IRES elements have been used to create bicistronic expression vectors 

for the co-expression of multiple genes from the same promoter (Wong et al., 2002  
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Virus/gene Type Virus/gene Reference 
Viral RNAs   
Picnoviruses Poliovirus (PV) Pelletier and Sonenberg, 

1988 
 Encephalomyocarditis 

virus (EMCV) 
Jang et al., 1988 

 Foot and mouth disease 
virus (FMDV) 

Kuhn et al., 1990 

Flavivirus Hepatitis C virus (HCV) Reynolds et al., 1995 
Pestivirus Classical Swine fever virus Pestova et al., 1998 
Retrovirus Murine leukemia virus Berlioz and Darlix, 1995 
Lentivirus Simian immunodeficiency 

virus 
Ohlmann et al., 2000 

Insect RNA virus Cricket paralysis virus Wilson et al, 2000 
   
Cellular mRNAs   
Translation initiation 
factors 

ElF4G Johannes and Sarnow, 
1998 

 DAP5 Henis-Korenblit et al., 
2000 

 Initiation factor G4 Wong et al., 2002 
Transcription factors c-Myc Stoneley et al., 2000 
 NF-kB-repressing factor  Oumard et al., 2000 
Growth Factors Vascular endothelial 

growth factor 
Huez et al., 1998 

 Fibroblast growth factor Creancier et al., 2000 
 Platelet-derived growth 

factor B 
Bernstein et al., 1997 

Homeotic genes Antennapedia Oh et al., 1992 
Survival Proteins X-linked inhibitor of 

apoptosis 
Holick and Korneluk, 
2000 

 Apaf-1 Coldwell et al., 2000 
Miscellaneous BiP Macejak and Sarnow, 

1991 
Yeast p150 Zhou et al., 2001 

Table 2.  Examples of viral and cellular IRES elements identified to date. 
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and deFelipe, 2002).  These new expression vectors have gained much attention due 

to their potential impact as valuable tools for drug and gene delivery vectors for 

multi-drug combined therapies for treating diseases such as cancer and AIDS 

(deFelipe, 2002).  Consequently, for the expression of multigene enzyme systems like 

bacterial luciferase in eukaryotes, IRES based bicistronic vectors may prove to be an 

invaluable tool.   

Several IRES elements have been tested for implementation into this format 

and improved vector development.  Some IRES elements, like the IRES isolated from 

poliovirus, are vulnerable to adjacent gene placement (Mosser et al., 2000).  The 

EMCV IRES element has been shown to be immune to these types of effects and 

upstream genes have little effect on the downstream gene expression (Gorski and 

Jones, 1999).  This property has made the EMCV IRES the most frequent choice for 

creating reliable, high expression bicistronic vectors (Meilke et al., 2000 and Harries 

et al., 2000).  However, by expressing two genes in a promoter-gene1-IRES-gene2 

format, the expression of the second gene has been shown to possess lower overall 

expression levels ranging from 6-100% activity when compared to the first gene 

(Mizuguchi et al., 2000).  This has been regarded as typical expression levels from 

these vectors and therefore, to determine optimal expression, several clones must be 

tested (Clontech Corporation, personal communication).       

New IRES elements are being frequently discovered and better options for optimal 

expression of multiple genes will become available.  Wong et al., 2002 report that a 

newly isolated IRES element from eukaryotic initiation factor G4 produces more than 

100 fold higher overall expression of the genes that follow it compared to 
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 other IRES elements.  This element possesses enhancer abilities as well as acting as a 

ribosomal entry site.  By using this IRES element or others identified in the future, it 

will be possible to create bicistronic and possibly polycistronic eukaryotic expression 

vectors with enhanced expression of each gene from a single promoter. 

 
 
Codon Usage 

The standard term “universal genetic code” comes from the fact that there are 

64 possible codons coding for only 20 amino acids. Although the genetic code is 

degenerate, the alternate synonymous codons are not used with equal frequency 

(Sharp et al., 1988).  In fact, it has been shown that in multivariate analysis, that each 

species has a major trend in codon usage among genes (Schultz and Yarus, 1996).  

This trend has also been shown to differ from highly expressed versus lower 

expressed genes within the same species (Aota and Ikemura, 1986 and Sharp et al., 

1986).  Several more distinct patterns in codon usage become apparent when genes 

are sorted into the top and bottom 10% of protein activity within the cell (Sharp et al., 

1988).  Within these general trends, it has been shown that there is not only a 

selective difference but also a preference for certain codons in highly expressed 

proteins (Sharp et al., 1993).   The genes that encode for these proteins have a highly 

biased codon usage pattern with a higher frequency of optimal codons used and a 

lower frequency or absence all together of the other possible codons (Grantham et al., 

1981; Ikemura, 1985 and Sharp et al., 1993).  Lowly expressed genes have been 

shown to possess a more random pattern of codon usage (Hoekema et al., 1987).  In 

fact, Gouy and Gauter (1982) showed that the frequency of optimal codons in a 
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particular gene was highly correlated with its expression in E. coli.  The same 

scenario was seen with genes expressed from S. cerevisiae  (Sharp and Cowe, 1991).  

 However, it should be noted that a gene is not necessarily expressed at a low 

level simply because it is made up of low frequency codons (Kurland, 1991).  Codon 

usage is not the only factor involved in gene expression.  Several other factors have 

profound impacts on the expression levels of genes in all organisms.  Non-inhibitory 

flanking sequences that surround the gene and optimal ribosomal binding sites are 

critical (Nassal et al., 1987).  Nevertheless, codon bias does play a key role in the 

expression efficiency in all species tested to date (Amicis and Marchetti, 2000).   

 The question has arisen, to whether or not this increase in gene expression is 

due to a more efficient translation of the protein or some other factor.  The answer to 

this questions still remains unclear, however, evidence is building that it may be a 

combination of factors.  It has been shown, that optimal codons are codons to which 

the species in question possesses an overabundance of that particular tRNA molecule.  

Furthermore, these optimal codons are translated faster than their lower frequency 

counterparts (Sorensen et al., 1989), which is thought to lead to a more efficient 

translation (Anderson and Kurland, 1990). However, the speed of overall protein 

translation has not been shown to be significantly affected (Kurland, 1991).   

Other hypotheses for codon optimization having a direct impact on protein 

expression have been set forth including a reduction of cis acting inhibitory elements 

(AU rich regions) (Kofman et al., 2003a) and an overall increase in mRNA stability 

(Kofman et al., 2003b).   Kofman et al. (2003b) also proposes that there may be an 

inefficient processing and transport from the nucleus of mRNAs possessing lower 
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frequency codons in eukaryotes.  This idea was supported by the fact that if the genes 

were expressed on a plasmid (in the cytoplasm) the activity of the protein was 

somewhat recovered. 

  It is unclear to this point if codon usage has a specific regulatory function in 

cells.  Rare codons are present more frequently in the 5′ end of lowly expressed genes 

in E. coli (Goldman et al., 1995).   It is not known, however, if the optimization of 

only 5′ sequences would be enough to significantly enhance expression to reach 

maximal protein activity (Vervoort et al., 2000).   

Codon optimization is the term given to a synthetic creation of a gene 

sequence to possess the optimal codon usage patterns for the host organism.  Several 

examples of codon optimization have been recently published.  These optimized 

proteins have been primarily designed for expression in mammalian hosts, as 

mammalian expression of foreign genes is often times limited (Narum et al., 2001).  

Some codon optimization schemes have also been designed to optimize human genes 

for expression in yeast or bacteria to provide for a simpler protocol for investigation 

or to generate large quantities of individual proteins (Baev et al., 2001). 

Disbrow et al. (2003) and Arregui et al. (2003) have used codon optimization  to 

optimize the expression of the poorly expressed E5 and E7 proteins from human 

papillomaviruses (HPV) that have been shown to have early transformation activity 

on infected cells.  They have shown that codon optimization was able to increase 

expression as much as 100 fold versus the wild type.  This overexpression of the 

protein resulted in cell death to much of the population expressing the codon 

optimized protein.  Based on this increase in cell mortality, they further hypothesized 
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that the virus may have selectively evolved to use a different coding pattern from the 

host as a way to survive in vivo for longer periods of time (Arregui et al., 2003).  

Other groups have used codon optimization to increase expression of viral or bacterial 

proteins for the efficient generation of antibodies.  The amount of DNA required to 

produce a high titer of antibody is significantly reduced if the codon usage patterns of 

the genes are optimized (Narum et al., 2001 and Deml et al., 2001). 

Codon optimization has also been used to increase the efficiency of reporter proteins 

for expression in mammalian cells.  Zhang et al., 2002 optimized the green 

fluorescent protein (GFP) from Aequrea victoria for enhanced expression in 

mammalian cells.  This enhanced GFP gene, EGFP, was shown to make the protein 

35 times brighter than the wild type version (Zhang et al., 2002).  This same idea has 

been used to optimize the expression of Renilla luciferase proteins in mammalian 

cells (Gruber and Wood, 2000).  In both of these instances, the reporter protein 

became a stronger reporter for gene expression and reliable monitoring formats. 
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CHAPTER 2 
 

DETERMINING AN OPTIMAL EXPRESSION FORMAT FOR EXPRESSION OF 
THE BACTERIAL LUCIFERASE GENES (luxA AND luxB) 

 
 

Introduction 

Mammalian cell lines expressing reporter proteins are commonly used in both 

basic and applied research.   Current methodologies that depend on firefly luciferase 

(Luc) and green fluorescent protein (GFP) reporter constructs in mammalian cells are 

limited due to the required cell lysis, substrate addition and/or exogenous excitation to 

evoke a measurable response.  Consequently, these reporter constructs cannot be 

implemented into continuous, real-time, on-line monitoring devices or strategies.  

Bacterial luciferase is unique in that it is the only bioreporter system available that 

generates its own substrate, thus allowing for autonomous signal generation. 

Unfortunately, the bacterial luciferase system’s potential has not been realized in 

mammalian cells because of difficulties encountered with efficient expression of this 

multi-enzyme system. 

Unlike polycistronic expression of multiple genes often found in bacterial 

systems, eukaryotic gene expression generally requires that each individual gene be 

preceded by its own promoter.  This has limited the expression of the lux genes in 

eukaryotes to this point.  In an attempt to overcome this, several researchers have 

generated a monocistronic version of the V. harveyi luciferase protein by creating a 

translational fusion of the individual subunits.  Unfortunately, these efforts have been 

met with only modest successes.  The loss of bioluminescence activity has been 

attributed to improper folding and low thermostability of the fusion protein (Kirchner et 
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al., 1989; Olsson et al., 1989; Almashanu et al., 1990; Esther et al., 1989; Costa, 1991; 

Pazzagli et al., 1992; Gelmini et al., 1993).   None of the fusion proteins reported to date 

have shown the ability to remain stable at the optimal mammalian growth temperature, 

37°C. 

Koncz et al. (1987) reported the successful expression of the heterodimeric 

bacterial luciferase protein from V. harveyi as individual proteins expressed in a dual 

promoter vector format.  The expression levels, although difficult to compare were said 

to be adequate for monitoring chimeric genes in plant extracts (Koncz et al., 1987).  

These data also showed for the first time that individual subunits of the protein could be 

transcribed and translated separately and subsequently assemble to form a functional 

luciferase enzyme in a eukaryotic cell.  Gupta et al. (2003) showed that by linking the 

lux genes transcriptionally with IRES elements, the complete lux operon could be 

efficiently expressed in the yeast, S. cerevisiae.   However, no one expression format 

has been shown to be the optimal choice for expression of the bacterial luciferase genes 

in mammalian cells and therefore no mammalian reporter systems are currently 

available that utilize this uniquely powerful reporter system.  Therefore, further research 

is needed to identify the optimal expression format for the heterodimeric luciferase 

protein in mammalian cells.  In this research effort the specific objectives are: 

• To construct and evaluate the overall bioluminescence potential from a 

constitutively expressed luxAB fusion protein, a dual promoter vector 

harboring both the luxA and luxB genes, expression from co-transfected 

plasmids harboring the luxA and luxB genes independently and 
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expression from a transcriptionally fused luxA and luxB that are 

independently translated via an IRES element.  

• To establish if episomal expression of the lux genes provides a higher 

bioluminescent signal than constructs integrated into the host’s 

chromosome. 

• To determine the stability of an episomal plasmid in mammalian cell 

lines without selective pressure. 

• To evaluate if FMNH2 is a limiting substrate for efficient 

bioluminescence in mammalian cells. 

 
 

Materials and Methods 

Cell Culture and Plasmid Maintenance  

All relevant constructs and strains, bacterial and mammalian, used in this study 

are outlined in Table 3.  E. coli cells were routinely grown in Luria Bertani (LB) (Fisher 

Scientific, Pittsburgh, PA) broth containing the appropriate antibiotic selection with 

continuous shaking (200rpm) at 37°C.  Kanamycin and Ampicillin were used at a final 

concentration of 50µg/ml and 100 µg/ml, respectively. 

 All cell culture reagents and media were obtained from Sigma Aldrich, (St. 

Louis, MO) unless otherwise stated.  Mammalian cells were grown in the appropriate 

complete growth media containing 10% heat-inactivated horse or fetal bovine serum, 

0.01mM non-essential amino acids and 0.1mM sodium pyruvate in a Dubelco’s 
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Table 3.  Strains and plasmids used in the determination of the optimal expression 
format for bacterial luciferase in mammalian cells.  
 

Plasmid/Strain 
Designation 

 
Relevant Genotype/ Characteristics 

 
Source 

Strains   
E. coli   
 
DH5α 

Φ80dlacZ∆M15, recA1, endA1, gyrA96, thi-1, 
hsdR17 (rK-, mK+), supE44, relA1, deoR, 
∆(lacZYA-argF)U169 

 
Gibco, BRL 

 
 
TOP 10 

 
F-, mcrA ∆(mrr-hsdRMS-mcrBC) Φ80/lacZ 
∆lacX74 deoR recA1 araD139 ∆(ara-leu) 7697 
ga/K rpsL endA1 nupG 

 
 

Invitrogen 

 
Mammalian Cell Lines 

  

 
HEK293 

Permanent line of primary human embryonal 
kidney transformed by sheared human 
adenovirus type 5 (Ad 5) DNA. ATCC# CRL-
1573 

 
ATCC 

 
 
COS-7 

 
Monkey Kidney cells transformed with an origin 
defective mutant of SV40 which codes for wild-
type T antigen. ATCC# CRL-1651 

 
 

ATCC 

 
HeLa 

 
Human cervical cancer cell line ATCC# CCL-2  

 
ATCC 

 
Plasmids 

  

 
 
pCR2.1-TOPO 

 
TOPO TA cloning vector for easy cloning of 
PCR products generated with 3′ A overhangs 
Kmr, Ampr 

 
 

Invitrogen 

 
 
pCR4-TOPO 

 
TOPO TA cloning vector for easy cloning of 
PCR products generated with 3′ A overhangs 
designed for sequencing Kmr, Ampr 

 
 

Invitrogen 

 
 
pcDNA3.1 

 
Mammalian expression vector, constitutive 
CMV promoter, contains a Neomycin G418 
antibiotic selection  and a ColEI and Ampr for 
replication in E. coli 

 
 

Invitrogen 

 
 
pCEP4 

 
Mammalian episomally maintained expression 
vector, constitutive CMV promoter, Hygromycin 
antibiotic selection marker and a ColEI and 
Ampr for replication in E. coli 

 
 

Invitrogen 

 
 
pREP9 

 
Mammalian episomally maintained expression 
vector, constitutive RSV promoter, Neomycin 
G418 antibiotic selection marker and a ColEI 
and Ampr for replication in E. coli 

 
 

Invitrogen 
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Plasmid/Strain 
Designation 

 
 
 

 
Relevant Genotype/ Characteristics 

 
 
 
 
Source 

 
 
 
 
pIRES2-DsRed2 

 
 
Mammalian expression vector containing the 
internal ribosomal entry site (IRES) of the 
encephalomyocarditis virus between the multi-
cloning site and a DsRed reporter protein, a 
constitutive CMV promoter, Neomycin G418 
antibiotic selection marker and a pUC ori and 
Kmr for replication in E.coli 

 
 
 
 

Clontech 

 
 
 
pIRES 

 
Mammalian expression vector containing the 
internal ribosomal entry site (IRES) of the 
encephalomyocarditis virus between two multi-
cloning sites which allows for the expression of 
two genes under the control of a single 
constitutive CMV promoter, Neomycin G418 
antibiotic selection marker and a pUC ori and 
Kmr for replication in E.coli 

 
 
 

Clontech 

 
pCR4PLluxCDABE 

 
pCR4 harboring a 6.1 kb luxCDABE cassette 
from Photorhabdus luminescens 

 
This Study 

 
pCR4luxA 

 
pCR4 TA cloning vector harboring the luxA 
from Photorhabdus luminescens 

 
This Study 

 
pCR4luxB 

 
pCR4 TA cloning vector harboring the luxB 
from Photorhabdus luminescens 

 
This Study 

 
pCR2luxA 

 
pCR2.1 TA cloning vector harboring the luxA 
from Photorhabdus luminescens 

 
This Study 

 
pCR2luxB 

 
pCR2.1 TA cloning vector harboring the luxB 
from Photorhabdus luminescens 

 
This Study 

 
 
pCRluxAf 

 
pCR2.1 TA cloning vector harboring the luxA 
from Photorhabdus luminescens amplified with 
the reverse fusion primer 

 
 

This Study 

 
 
pCRluxBf 

 
pCR2.1 TA cloning vector harboring the luxB 
from Photorhabdus luminescens amplified with 
the luxB forward fusion primer 

 
 

This Study 

 
pCRluxABf 

 
pCR2.1 TA cloning vector harboring the luxAB 
generated by ligating the luxAf and luxBf 
together 

 
This Study 

 
pcDNABf 

 
pcDNA3.1 harboring the luxABf  

 
This Study 

   

Table 3. Continued 
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Plasmid/Strain 
Designation 

 
 
 

 
 
Relevant Genotype/ Characteristics 

 
 
 
 
 
Source 

 
 
 
pcDNABfKoz 

 
 
 
pcDNA3.1 harboring the luxABf with the Kozac 
sequence modification 

 
 
 

This Study 

 
pcDNluxA 

 
pcDNA3.1 harboring the luxA  from                   
P. luminescens 

 
This Study 

 
pCEPluxA 

 
pCEP4 harboring luxA from P.luminescens 

 
This Study 

 
pREPluxB 

 
pREP9 harboring luxB from P.luminescens 

 
This Study 

 
 
pCRSVluxBpA 

 
pCR4 harboring the RSV promoter, luxB and the 
SV40 pA with introduced ClaI and BglII sites on 
both the 5′ and 3′ ends of the gene 

 
 

This Study 

 
pREPABf 

 
pREP9 harboring luxAB fusion from 
P.luminescens 

 
This Study 

 
 
pCEPluxARluxB 

 
pCEP4 harboring the luxA cloned into the MCS 
and the RSV-luxB-SV40pA into a unique ClaI 
restriction site within the vector 

 
 

This Study 

 
pcDNARB 

 
pcDNA3.1 harboring luxA cloned into the MCS 
and the RSV-luxB-SV40pA into a unique BglII 
restriction site within the vector 

 
 

This Study 

 
pluxAIEGFP 

 
pIRES-EGFP harboring the luxA from P. 
luminescens  

 
This Study 

 
pluxBIDsRed 

 
pIRES-DsRed harboring the luxB from P. 
luminescens 

 
This Study 

 
pCR4NotIluxA 

 
pCR4 harboring the luxA from P. luminescens 
with introduced NotI sites on both the 5′ and 3′ 
ends of the gene 

 
This Study 

 
pluxAIRES3 

 
pIRES harboring the luxA from P. luminescens 
cloned into the MCS(A) 

 
This Study 

 
pluxAIRESluxB 

 
pIRES harboring the luxA cloned into the 
MCS(A) and luxB cloned into MCS(B) from P. 
luminescens 

 
This Study 

Table 3. Continued 
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minimal essential media base (DMEM) (M4655).  Cells were routinely grown at 37°C 

in a 5% CO2 atmosphere to confluency and split every three to four days by 

trypsinization at a 1:4 ratio into fresh complete growth media.  Appropriate 

concentrations of antibiotic were used to maintain constructs after transfection  

according to susceptibility kill curve analysis. Kill curves were completed for each cell 

line and lot of antibiotic.  A range of typical concentrations used for each antibiotic is 

found in Table 4.   

 

Antibiotic Kill Curves 

 Kill curve experiments were performed to determine the antibiotic susceptibility 

for each cell line to each lot of antibiotic.  Cells were plated into six well tissue culture 

plates and grown to 50-60% confluency.  Varying concentrations of antibiotic were 

mixed into each well along with one control well (no antibiotic).  The plates were 

incubated at 37°C in a 5% CO2 atmosphere for seven to ten days with the media being 

refreshed every three days.  Cells were checked daily by microscopic analysis and 

changes in cell morphology and viability were recorded.  The minimum concentration 

of antibiotic that was toxic to the cells within eight days was used for selection of stable 

cell lines (Table 4). 

 

Construction of a luxA- luxB Fusion Protein 

 To create a monocistronic version of the heterodimeric luciferase protein 

encoded by the luxA and luxB genes, a translational fusion of the two polypeptides was 
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Table 4.  Concentrations of antibiotics used for each cell line based on results of kill 

curves.  

 
Antibiotic HEK293 COS-7 HeLa 
Neomycin G418 450-650µg/ml 400-700µg/ml 500-750µg/ml 
Zeocin 250-400µg/ml Not Tested Not Tested 
Hygromycin 400-600µg/ml Not Tested Not Tested 
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constructed.  Synthetic oligonucleotides were designed to fuse the 3′ end of the luxA to 

the 5′ end of the luxB.  Both oligonucleotide sequences were complementary to 

sequences at the 3′ end of the luxA, the intergenic region between the luxA and luxB, 

and the start codon of luxB.  These oligos were synthesized with the following 

modifications:  luxA Reverse Primer:  the luxA stop codon (TAG) was removed by  

substituting a Cytosine nucleotide for the Guanine resulting in a tyrosine codon, a single 

base addition of Guanine was also added to place the luxB in the same reading frame to 

create a fusion protein, further, a Guanine was substituted to generate an AvrII 

restriction site at the 3′ end of the luxA.  luxB Forward Primer: the primer was the 

exact complement of the luxA reverse primer.   The luxA and luxB genes were 

individually amplified using Taq polymerase (to generate 3′ A overhangs) and TA 

cloned into the pCR2.1 TOPO cloning vector (Invitrogen Corporation, Carlsbad, CA) to 

construct pCRluxAf and pCRluxBf.   These plasmids were then digested with EcoRI 

and AvrII and the products were gel purified by electroelution (Sambrook et al., 1999).  

The fragments were then ligated in equal molar concentrations for 2 h. The ligation 

product (1 µl) was then used as template for a PCR reaction using the outermost luxA 

forward and luxB reverse primer pair to generate a luxAB fusion.  The resultant PCR 

products of the correct size were TA TOPO cloned into the pCR2.1 TOPO cloning 

vector to generate pCRluxABf.  The construct was then digested with AvrII and EcoRI 

restriction enzymes and sequenced to ensure its integrity.  The sequence of the wild 

type and modified intergenic region of the fusion are shown in Figure 5.    
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luxA stop                            luxB start

tat tag cta agg aga aag a*a atg aaa ttt luxAB unfused
Tyr Stop                                                        Met Lys    Phe

AvrII
Base substitution          base addition           luxB start     

tat tac cta ggg aga aag aga atg aaa ttt luxAB fused
Tyr     Tyr    Leu     Gly      Arg     Lys      Arg Met Lys     Phe

Figure 5.  Sequence of the wild type luxAB and luxABf.  Introduced AvrII site is in 
the shaded area.  Base substitutions and base additions are noted and * 
represents the absence of the base in the wild type luxAB. 
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Episomal Expression 
For the expression fusion protein as an episome, the luxABf was cloned into the 

pREP9 mammalian expression vector (Clontech Corporation, Palo Alto, CA).  To create 

this clone, the luxABf insert was cleaved from pCRABf with KpnI and XhoI restriction 

sites located within the vector and then ligated into the pREP9 vector that had been 

digested with the same enzymes.  The ligation of these two fragments generated 

pREPABf (Figure 6A).   

Chromosomal Expression 
The luxAB fusion was cleaved from pCRABf via 3′ and 5′ EcoRI sites and non-

directionally cloned into pcDNA3.1 to generate pcDNABf (Figure 6B) for 

chromosomal insertion and expression in mammalian cells.   

To facilitate high levels of expression in eukaryotes, Kozac sequences are often 

inserted at the 5′ ends of genes.  To accomplish this addition to the luxAB fusion a luxA 

forward primer was modified to insert a Kozac sequence by substituting an Adenine at 

the –3 position and a Guanine at the +4 position around the start site of the luxA.  The 

luxAB fusion was then amplified from the pCRABf plasmid construct and the resultant 

PCR product was subsequently TA cloned into pCR2.1 to generate pCRABfKoz.  This 

insert was then cleaved by EcoRI and cloned into the pcDNA3.1 mammalian expression 

vector to create pcDNABfKoz. 
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CMV

luxABf

SV40 pA

Neo G418

pcDNABf

A 

Figure 6. Diagram of vector plasmids for the expression of the luxAB fusion in 
mammalian cells. pcDNABf construct provides chromosomal expression and 
neomycin G418 selection.  B. pREPABf construct allows for episomal 
expression and neomycin G418 selection.  

B PCMV

luxABf

SV40pA

Neo G418

EBNA-1

OriP

pREPABf
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Construction of a Dual Promoter Vector for Expression of luxA and luxB 

Episomal Expression 
 
Pasting pieces from pCEP4 and pREP9 episomal mammalian expression vectors 

together generated a dual promoter vector that allowed for the expression of both genes 

(luxA and luxB) from their own promoters.  First, luxA was cleaved from pCRluxA with 

introduced 5′ NheI and a 3′ XhoI sites and cloned into pCEP4 to generate pCEPluxA.  

The luxB gene was then cloned into pREP9 to generate pREPluxB using the same clone 

strategy described above for cloning luxA into pCEP4.  Oligonucleotide primers were 

designed and synthesized to amplify the RSV promoter region of pREP9, luxB gene, 

and the SV40 ployA region from pREPluxB with the introduction of 5′ and 3′ ClaI-

BglII restriction sites.  The resultant PCR product was then TA TOPO cloned into pCR4 

TOPO (Invitrogen Corporation, Carlsbad, CA) to generate pCRSVluxBpA.  This 

construct was then cleaved via ClaI and the insert cloned into a complementary site on 

pCEPluxA to generate pCEPluxARluxB (Figure 7A). 

Chromosomal Expression 
 
To chromosomally express both the luxA and luxB from individual promoters 

with only one selection marker required, a dual promoter vector was constructed. This 

expression vector was generated on the plasmid backbone of the pcDNA3.1 mammalian 

expression vector (Invitrogen Corporation, Carlsbad, CA).  First, the luxA gene was 

cleaved from pCRluxA with EcoRI and nondirectionally ligated into pcDNA3.1.  The 

clones were then checked for insert presence and orientation by restriction digestion and 

sequencing to generate pcDNluxA. Once verified the RSV, luxB and SV40 polyA  
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CMV

luxA

SV40 pA

Neo G418

PRSV

luxB SV40 pA

pcDNARB

PCMV

luxA
SV40 pA

EBNA-1

OriP

Hygromycin

SV40 pA

luxB
PRSV

pCEPluxARluxB

A 

B 

Figure 7. Diagram of vector plasmids for the expression of luxA and luxB from 
individual promoters within the same vector in mammalian cells.  A.  
pcDNARB construct allows for chromosomal expression and hygromycin 
selection.  B. pCEPluxARluxB construct provides  episomal expression 
and neomycin G418 selection.  
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region were cleaved from pCRSVluxBpA via a unique 5′ and 3′ BglII sites and cloned 

into pcDNluxA to generate pcDNARB (Figure 7B). 

 

Construction of GFP vectors for co-transfection Experiments 

Episomal Expression 
  

Co-transfection of each gene (luxA and luxB) on separate plasmids would allow 

the proteins to be expressed independently.  For episomal expression, the pREP9 and 

pCEP4 (both from Clontech Corporation, Palo Alto, CA) expression vectors were used.  

The luxA and luxB genes were cloned into these vectors as previously described to 

generate pCEPluxA (Figure 8A) and pREPluxB (Figure 8B). 

Chromosomal Expression  
 
Separate EGFP and DsRed reporter vectors were constructed to allow for co-

transfection of luxA and luxB genes on separate plasmids and integration within the 

host’s chromosome.  luxA was cloned into pIRES-EGFP and luxB was cloned into 

pIRES2-DsRed2 (both from Clontech Corporation, Palo Alto, CA).  These reporter 

vectors were chosen to allow for the monitoring of co-transfection efficiency and 

plasmid maintenance.  Each plasmid contains a GFP variant reporter gene under the 

translational control of an encephalomyocarditis virus (EMCV) internal ribosomal entry 

site (IRES) that immediately follows the multi-cloning site within the vector.  To 

generate these constructs, each vector was digested with EcoRI and the luxA or luxB 

was cleaved from pCRluxA or pCRluxB using the same enzyme.  The vector and 

inserts were then ligated via the complementary ends to generate pluxAIEGFP (Figure 

9A) and pluxBIDsRed (Figure 9B).    



 45

 

 

PCMV

Kan/Neo

luxB

IRES

DsRed

pluxB-DsRed

PCMV

Kan/Neo

luxA

IRES

EGFP

pluxA-EGFP

A 

B 

Figure 8. Diagram of vector plasmids for the expression of luxA and luxB from 
individual plasmids along with a GFP reporter protein in mammalian 
cells.  A.  pluxA-EGFP expresses the luxA gene and an EGFP reporter 
protein from a single bi-cistronic transcript.  B. pluxB-DsRed construct 
expresses the luxB gene and a DsRed reporter protein from a single bi-
cistronic transcript. 
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PRSV

Neo G418

luxB

SV40 pAEBNA-1

OriP

pREPluxB

PCMV

luxA
SV40 pA

EBNA-1

OriP
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pCEPluxA
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B 

  Figure 9. Diagram of vector plasmids for the expression of luxA and 
luxB from individual plasmids in mammalian cells.  A. 
pCEPluxA allows for expression of the luxA gene as an 
episome with hygromycin selection.  B. pREPluxB construct 
allows fro the expression of the luxB gene as an episome with 
neomycin G418 selection.
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Construction of a Bi-cistronic Vector to Express luxA and luxB 

 To co-express both luxA and luxB genes from a single promoter, the pIRES 

mammalian expression vector was chosen (Clontech Corporation, Palo Alto, CA).  This 

expression vector contains two multi-cloning sites separated by an internal ribosomal 

entry site (IRES) from encephalomyocarditis virus (EMCV).  The IRES element allows 

for the expression of two genes (one cloned into each multi-cloning site) from a single 

constitutive CMV promoter.  To create this construct, the luxA gene from P. 

luminescens was amplified from pCR4PLluxCDABE plasmid that harbors the complete 

luxCDABE cassette (Table 3) with the introduction of unique NotI restriction sites on 

both the 5′ and 3′ ends of the luxA gene.  The resultant PCR product was TA TOPO 

cloned into pCR4 TOPO to generate pCR4NotIluxA.  The luxA gene was then cloned 

into the MCS(A) of pIRES via the unique NotI restriction sites to generate pluxAIRES3.  

Once this construct was confirmed by sequencing, the plasmid was purified using the 

Wizard midi-prep plasmid purification kit according to the manufacturer’s instructions 

(Promega Corporation, Madison, WI).  The luxB gene was cleaved via a 5′ XbaI and 3′ 

SpeI site from pCRluxB and cloned into the XbaI site within the MCS(B) of 

pluxAIRES3 to generate pluxAIRESB (Figure 10). 

 

Ligation Reactions 

Plasmid vectors and inserts were digested (2-6 h) with the appropriate enzymes 

(Promega Corporation, Madison, WI).  Linearized vectors were dephosphorylated using 

a calf intestine alkaline phosphatase enzyme according to the manufacturer’s 
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Figure 10. Diagram of vector construct for the expression of luxA and luxB 
as a single bi-cistronic transcript, pAIRESB.  
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instructions (Promega Corporation, Madison, WI).  Both vector and insert DNA were 

gel purified from 1% agarose gels using the Geneclean gel extraction kit (Bio101, 

Carlsbad, CA).  The recovered DNA was then quantified using a Dyna Quant 200 

fluorometer (Hoefer Pharmacia Biotech Incorporated, San Francisco, CA) and ligations 

were set up as 20µl reactions using a 3:1 molar ratio of insert to vector DNA.  The 

ligation reactions were then incubated at 17°C overnight. 

 

Electroporation 

Electrocompetent cells were prepared as outlined by the manufacturer (BTX, 

San Diego, CA).  Electroporations were performed using the BTX Electroporator 600 

with the following conditions: 40µl cells, 1-2µl ligation mixture (above), a 2.5kV pulse 

for 4.7ms using a 2mm gap cuvette.  After the pulse, cells were immediately 

resuspended in 1ml of sterile LB and allowed to recover for 1 h at 37°C (200 rpm).  

Cells were then plated on selective media containing the appropriate antibiotic. 

 

Selection of Bacterial Clones 

Resistant colonies were picked after 24 h and expanded to patches on grid 

plates.  To test for proper insert presence and orientation, rapid boil plasmid mini-preps 

(Promega Corporation, Madison, WI) were done followed by the digestion of the 

plasmid with the appropriate restriction enzyme mixture according to the 

manufacturer’s instructions (Promega Corporation, Madison, WI).  Products were run 

on 1% agarose gels to determine if the banding pattern indicated the insert presence and 
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proper orientation.  Upon identifying correct clones, the plasmids were further purified 

using the Wizard midiprep plasmid purification system according to the manufacture’s 

protocol (Promega Corporation, Madison, WI) and sequenced. 

 

Sequencing 

All constructs were sequenced to ensure their integrity.  Sequencing was done in 

the University of Tennessee Molecular Biology Service Facility using an Applied 

Biosystems 3100 Genetic Analyzer sequencer (Foster City, CA).   

 
 
Determination of Thermostability of the luxAB Fusion Protein  

 To determine the thermostability of the luxAB fusion protein, E. coli cells 

harboring the pCRABf construct were grown at 23°C, 30°C and 37°C overnight with    

50 µg Kanomycin/ml in LB.  The bioluminescence levels for each temperature 

condition were taken in triplicate.  Bioluminescence measurements were done using the 

FB14 luminometer (Zylux Corporation, Pforzheim, Germany) at a 1 s integration and 

reported as relative light units (RLU).  To normalize the data each bioluminescence 

reading was divided by absorbance O.D.600 for the culture and reported as relative 

bioluminescence.     

 

Transfection of Mammalian Cells  

Transfection of all cell lines was done in six well poly-D-lysine coated tissue 

culture plates (Fisher Scientific, Pittsburgh, PA).  Cells were split from stock cultures 

and inoculated into each well at approximately 1X105 cells per well in complete growth 
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media.  The plate was then placed at 37°C in a 5% CO2 atmosphere for 1-2 days until 

the cells became 80-90% confluent.  The day of transfection, the medium was refreshed.  

DNA for transfections was purified from 100ml overnight E. coli cultures using the 

Wizard Purefection plasmid purification kit to remove endotoxins according to the 

manufacturer’s instructions (Promega Corporation, Madison, WI).  For chromosomal 

integration, the plasmid DNA was linearized before transfection to increase proper 

integration.  For episomal expression, plasmids were transfected as circular DNA. 

HEK293 Cells 
  

Purified plasmid DNA (3.2 µg) was mixed into 200 µl of serum free DMEM in 

a 1.5 ml tube.  In a second tube, 8 µl of Lipofectamine 2000 reagent (Invitrogen 

Corporation, Carlsbad, CA) was added to 200 µl of serum free DMEM.  The 

lipofectamine mixture was added to the DNA mixture within 5 min and incubated at 

room temperature for 20 min.  The entire mixture (400 µl total) was added directly to 

the appropriate well on the plate and rocked back and forth to ensure adequate mixing.  

Twenty-four hours post transfection, the complexes were removed and the media was 

replaced with fresh complete growth media supplemented with the appropriate 

antibiotic for selection.   

COS-7 Cells 
  

Purified plasmid (1.5 µg) was mixed with 100 µl of serum free DMEM in a 1.5 

ml tube.  In a second tube, 5 µl of lipofectin (Invitrogen Corporation, Carlsbad, CA) 

was mixed with 100 µl of serum free DMEM.  The two mixtures were then mixed 

together and incubated at room temperature for 45 min.  After incubation, 0.8 ml of 
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serum free DMEM was added to the mixture and then directly placed on the cells in the 

plate that had been previously rinsed two times with serum free DMEM to remove any 

residual serum.  The complexes were incubated on the cells for 5 h at 37°C in a 5% CO2 

atmosphere.  After incubation DMEM supplemented with 20% fetal calf serum was 

added.  Forty-eight hours after transfection, complete DMEM plus antibiotic was 

applied to the cells for selection. 

HeLa Cells 
  

Purified plasmid DNA (1.6 µg) was added to 200 µl of serum free DMEM along 

with 10 µl of the PLUS Reagent (Invitrogen Corporation, Carlsbad, CA) and incubated 

at room temperature for 15 min.  In a second tube 1 µl of Lipofectin (Invitrogen 

Corporation, Carlsbad, CA) reagent was added to 50 µl of serum free DMEM and 

incubated at room temperature for 30 min.  The two tubes were then mixed gently and 

incubated further for 15 min.  The growth media was removed from the cells and 

replaced with serum free DMEM and the DNA-Lipofectin complexes were added 

directly to the wells and gently mixed.  The plates were then incubated at 37°C in a 5% 

CO2 atmosphere for 3 to 5 h.  After incubation, 15% fetal bovine serum was added to 

each well. Twenty-four hours post transfection, growth media supplemented with the 

appropriate antibiotic was applied to the cells for selection. 

 
 
Selection of Mammalian Cell Clones 

Twenty-four to forty-eight hours post transfection, selective medium was added 

to all wells and refreshed every three to four days.  Within two weeks all control cells 
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were dead and the transected cells were forming small colonies on the plate surface.  

Colonies were separated from the rest of the well by placing a sterile chamber around 

the cell mass and sealing it with silicon (Fisher Scientific, Pittsburgh, PA).  The media 

could then be removed and each colony could be trypsinized and transferred to 

individual tissue culture flasks.  To accomplish this, after washing with a PBS solution, 

200 µl of a 1X Trypsin-EDTA solution (Sigma Aldrich, St. Louis, MO) was added 

directly to the chamber and incubated at 37°C for 3 to 5 min.  The trypsin-EDTA 

solution was then replaced with complete growth media and the cells were transferred 

to a 25cm2 tissue culture flask for propagation.  Each clone was given a number and 

expanded to individual cell lines.  Each line was split and maintained as described 

earlier with the addition of selective media.  At between nine and twenty cell lines were 

propagated in this manner for each plasmid tested.     

  
 
Bioluminescence Assays from Mammalian Cells 

To determine bioluminescence potential from each cell line clone, total proteins 

were extracted and in vitro enzyme (bioluminescence) assays performed.  To extract the 

proteins, the cells were trypsinized from the plate or flask surface using standard 

protocols and resuspended into 2.0 ml Sarstedt tubes (Fisher Scientific, Pittsburgh, PA).  

The cells were then spun down and washed two times in sterile phosphate buffered 

saline (PBS) to remove any residual medium (Sigma Aldrich, St. Louis, MO).  Cell 

pellets were then resuspended into 1 ml 0.1M potassium phosphate buffer pH 7.8 and 

disrupted by three consecutive cycles of freeze (30 s liquid N2) thaw (5 min at 37°C) 

extraction.  After disruption, the cell debris was pelleted by spinning the samples at 
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14,000Xg for 5 min and the supernatant was used in the bioluminescence assay.  To 

determine light intensity, the protein extract was mixed with 0.1 mM NAD(P)H, 4 µM 

FMN, 0.2% (w/v) BSA, 0.002% (w/v) n-decanal.  Bioluminescence was measured 

using the FB14 luminometer (Zylux Corporation, Pforzheim, Germany) at a 1 s 

integration and reported as relative light units (RLU).  To determine if FMNH2 was a 

limiting factor for the bioluminescence reaction, a flavin oxidoreductase enzyme (1U) 

isolated from V. harveyi (Roche Scientific, Indianapolis, IN) was added to the 

bioluminescence assay and the light levels were measured again for comparison (Table 

5).     

 Bioluminescence signals were normalized between samples and cell lines by 

dividing the RLU measurement by the total protein and reporting the bioluminescence 

as RLU/µg total protein.  Protein concentrations were determined using the Coomassie 

Plus protein assay according to the manufacture’s instructions (Biorad, Hercules, CA).   

 

In Vitro Transcription/Translation 

 To determine if the lux genes could be generated in vitro in rabbit reticulocyte 

lysate (mammalian translation machinery), pCR2.1 TOPO vectors harboring luxA, luxB 

and luxABf were transcribed and translated.  First, the plasmid DNA containing the 

genes was digested at a unique SpeI restriction site at the 3′ end of the gene within the 

vector.  This digestion linearized the plasmid and allowed for the generation of run-off 

transcript from the vector derived T7 promoter.  Each gene was transcribed via T7 

polymerase using the RiboMax large-scale transcription system (Promega Corporation, 

Madison, WI).  Three individual transcription reactions were set up along with 
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Plasmid Expression Cell Line Tested Selection 
Marker 

pcDNABf Chromosomal HEK293, HeLa, COS-7 G418 
pcDNABfKoz Chromosomal HEK293, HeLa, COS-7 G418 
pREPABf Episomal HEK293 G418 
pCEPluxA Episomal HEK293 Hygromycin 
pREPluxB Episomal HEK293 G418 
pluxA-EGFP Chromosomal HEK293 G418, EGFP 
pluxB-DsRed Chromosomal HEK293 G418, DsRed 
pCEPluxARluxB Episomal HEK293 Hygromycin 
pcDNARB Chromosomal HEK293 G418 
pluxAIRESluxB Chromosomal HEK293 G418 
 

Table 5.  Final constructs transfected into mammalian cell lines. 
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a positive T7 control and a negative control containing no template DNA.  Each 

reaction was set up according to the manufacturer’s protocol and then incubated at 37°C 

for 1 h.  Transcripts were quantified by absorbance (260/280) measurements (Beckman 

Coulter, Fullerton, CA).  Ten micrograms per ml of total RNA transcript was then 

added to 50 µl (total volume) rabbit reticulocyte lysate translation reactions.  Each 

reaction was gently mixed on ice according to the manufacturer’s protocol for 35S 

labeled protein generation and then incubated at 30°C for 90 min (Promega 

Corporation, Madison, WI).  Once translation was complete, 15 µl of each reaction was 

loaded onto a 12% SDS-PAGE mini-gel and run at 30mA for 1 h.  The gel was removed 

and dried at 60°C with vacuum pressure using a model 443 Slab Dryer (BioRad, 

Hercules, CA) onto 3MM filter paper (Fisher Scientific, Pittsburgh, PA).  To visualize 

the generated proteins, the gel was placed onto x-ray film overnight and specific activity 

was measured upon film development.    

 

Genomic DNA Isolation 

Genomic DNA from each cell line clone was accomplished using the Wizard 

genomic DNA extraction kit according to the manufacture’s protocols (Promega 

Corporation, Madison, WI).   

 
 
RNA Isolation and Blotting 

At passage six post transfection, selected cell line clones were expanded to 

75cm2 tissue culture flasks.  When the cells became 80-95% confluent, the cells were 
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trypsinized to remove the cells from the surface and transferred to 2.0 ml Sarstedt tubes 

(Fisher Scientific, Pittsburgh, PA).  Cells were spun down and washed two times in 

PBS (Sigma Aldrich, St. Louis, MO).  Total RNA was then isolated from the cells using 

the RNeasy kit (Quiagen, Valencia, CA) according to the manufacturer’s instructions 

for isolation of total RNA from mammalian cells.  To remove any contaminating DNA, 

the RNA was digested for 30 min with DNaseI (Promega Corporation, Madison, WI).  

To remove the DNaseI enzyme, the clean-up procedure from the RNeasy kit was used 

(Quiagen, Valencia, CA).  Total RNA was then quantified using the Beckman DU-640 

spectrophotometer absorbance at 260/280 (Beckman Coulter, Fullerton, CA).   

RNA Slot Blotting 
 
Ten micrograms of total RNA were loaded onto a BiotransTM nylon membrane 

(ICN, Irvine, CA) using a Bioslot blot apparatus (Biorad, Hercules, CA) according to 

the manufacturer’s protocol.  A  32P labeled probe was generated complementary to the 

300 bp of the luxA or luxB gene from P. luminescens using standard PCR protocols with 

the incorporation of a [32P] labeled dCTP nucleotide.  The free nucleotides were 

removed and the probe purified by column purification according to the manufacture’s 

instructions (Stratagene, La Jolla, CA). The specific activity of each probe was 

measured by scintillation counting (Beckman Coulter, Fullerton, CA).  Before use, the 

dsDNA probe was boiled for 10 minutes to denature the DNA and directly added to the 

pre-hybridization solution (SLIME).  The blot was incubated with the probe at 48°C 

overnight.  After probe hybridization, the blot was washed 4 times in 20X SSC to 

remove any unbound activity.  The wash temperatures were determined experimentally 

to achieve optimal probe binding without excess background activity.  The blot was air 
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dried and then placed on a phosphorescence intensifier screen (Molecular Dynamics, 

Piscataway, NJ).  Specific activity was measured using the STORM 840 

phosphoanalyzer and the data analyzed using the ImageQuant data analysis software 

(Molecular Dynamics, Piscataway, NJ).     

 

Protein Isolation and Western Blotting 

 To extract the proteins, cells were trypsinized from a plate or flask surface and 

resuspended into 2.0 ml Sarstedt tubes (Fisher Scientific, Pittsburgh, PA).  The cells 

were then spun down and washed two times in sterile phosphate buffered saline (PBS) 

to remove any residual media (Sigma Aldrich, St. Louis, MO).  Cell pellets were 

resuspended into 1 ml 0.1M potassium phosphate buffer pH 7.8 and disrupted by three 

consecutive cycles of freeze (30 s liquid N2) thaw (5 min at 37°C) extraction.  After 

disruption, the cell debris was pelleted by spinning the samples at 14,000Xg for 5 min 

and the supernatant was used as total soluble protein for Western blot analysis. 

 Protein concentrations were determined using the Coomassie Plus protein assay 

according to the manufacturer’s instructions (Pierce, Rockford, IL).  Equal amounts 

(100 – 250 µg) of protein were loaded onto a 12% SDS-PAGE gel.  Minigels were run 

at 30 mA for approximately 2 h and larger slab gels were run at 30 mA overnight.  The 

proteins were then electroblot transferred to a PDVF membrane (Biorad, Hercules, CA) 

using a semi-dry electroblotter according to the manufacture’s instructions (CBS 

Scientific Company, Incorporated, Del Mar, CA).  Blots were then blocked overnight in 

5% nonfat dry milk and hybridized with a polyclonal antibody raised against a 16 amino 

acid luxA polypeptide (′N′ - FDDSDQTRGYDFNKGC - ′C′) or a 16 amino acid luxB 
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polypeptide (′N′ - CMILVNYNEDSNKAKQ - ′C′) (Genemed Synthesis, Incorporated, 

San Francisco, CA).  Antibodies were diluted in T-TBS (Tris Buffered Saline + 3% 

Tween 20) at a 1:500 dilution and applied to the membrane at room temperature for 5 h 

to overnight.  The blot was then washed several times in T-TBS and incubated with a 

Goat Anti-Rabbit second antibody that has been conjugated to alkaline phosphatase.  

The blot was then developed according to the manufacture’s protocol (Biorad, Hercules, 

CA).     

 

Statistics  

 Statistical analysis of the data presented here was conducted using either the 

JMP (SAS Institute, Incorporated, Pacific Grove, CA) or Microsoft Excel (Microsoft, 

Seattle, WA ) statistical software packages.  Graphs were made using Sigma Plot 

software (SPSS, SAS Institute, Incorporated, Pacific Grove, CA) or Microsoft Excel 

(Microsoft, Seattle, WA).  All error bars on graphs indicate one standard deviation of 

the mean from triplicate samples.  Significant differences were determined using either 

t-test or 1 way ANOVA analysis at a level of α=0.05.  

 
 

Results 

LuxAB Fusion Protein 

Creation of the LuxAB Fusion 
 
A LuxAB fusion protein from P. luminescens was generated by the elimination 

of the stop codon at the 3′ end of the luxA gene and the addition of one base within the 

intergenic region to place the two genes into the same reading frame.  Although the 



 60

fusion protein was functional, light levels were significantly lower (p = 0.05) when 

expressed constitutively in E. coli.  As shown in Figure 10, the LuxAB fusion protein 

had bioluminescence activity levels only approximately 30% of the wild type unfused 

LuxA and LuxB.  The addition of a Kozak sequence further reduced the 

bioluminescence level to approximately 5% of the wild type protein (Figure 11).   

 

Thermostability of the LuxAB Fusion 

To determine if temperature had an effect on the folding and activity of the 

fusion protein, the fused and wild type versions of the luxAB constitutively expressed in 

E. coli were grown as 100ml liquid cultures overnight at 23˚C, 30˚C and 37˚C.  

Bioluminescence measurements were taken in triplicate and reported as specific 

bioluminescence (RLU/O.D. 600).  Results are shown in Table 6A.  In E. coli, there was 

no statistical difference (p = 0.05) between bioluminescence activities of cells grown at 

varied temperatures.  To further evaluate this in a eukaryote, the luxAB fusion construct 

was cloned into a yeast expression vector (pYES-TOPO) and transformed into S. 

cerevisiae.  Surprisingly, contradictory to the data from E. coli, light levels significantly 

decreased when the cells were grown at 37˚C (Table 6B). 

 

In Vitro Expression    

To mimic mammalian cell translation machinery, the luxA, luxB and luxAB 

fusion genes were transcribed and translated in vitro.  Although equal molar amounts of 

RNA transcript were added to each translation reaction and equal volumes of the 
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Table 6.  Effect of temperature on the LuxAB fusion protein’s activity.  A.  Light 
emission from E. coli clones harboring the luxAB fusion genes when grown at 
23°C, 30°C and 37°C. B.  Specific bioluminescence of  pYES2.1-TOPO with 
luxAB fusion in S. cerevisiae grown on galactose inducing media at 30˚C and  
37˚C.   

 
 

Temperature 23°C 30°C 37°C 

Specific 
bioluminescence ± SD 

1.56*107 

±0.12*107 
1.47*107 

± 0.12*107 
1.52*107 

±0 .11*107 
 
 
 B 

 
 

 
Temperature °C 

 
(+) Aldehyde - Specific 

bioluminescence  
(light/O.D.) ± SD 

 
30°C 

 
64,534 (±1,545) 

 
37°C 

 
16,223 (±1,018) 

 

 A 
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 translation reaction were loaded onto the gel, the individual LuxA and LuxB proteins 

were not detected while the LuxAB fusion protein was easily detectable (approximately 

78 kDa) (Figure 12).   

 

Expression in Mammalian Cell Lines 

 Three mammalian cell lines were chosen to evaluate the expression of the 

LuxAB fusion protein.  These cell lines included; HeLa, COS-7 and HEK293. To 

determine if the plasmid was present within each cell type after antibiotic selection of 

clones, PCR was performed on the genomic DNA from each clone with a luxA specific 

primer set.  All cell line clones that resulted in a positive PCR product were further 

investigated for luxA message (mRNA), protein and bioluminescence activity.  All 

clones tested had luxA mRNA levels higher than background vector controls, but the 

levels varied greatly between cell lines and individual clones (data not shown).  The 

bioluminescence values obtained from cell extracts also varied between cell types and 

clones. The exogenous addition of an oxidoreductase enzyme to produce FMNH2 

increased the bioluminescence levels more than ten fold.  These data suggest that 

FMNH2 is a limiting substrate for the bioluminescence in mammalian cells.  Figure 13 

shows the average bioluminescence (RLU/mg total protein) from the brightest three 

clones from each cell type harboring pcDNABf within its chromosome.  HEK293 cells 

consistently produced the highest bioluminescence levels, however these differences 

were not statistically significant (p = 0.05).  Polyclonal antibodies to peptide epitopes 

within the LuxA and LuxB proteins were obtained (Genemed Synthesis, San Francisco, 

CA).  Unfortunately, even though the bioluminescence levels were quantifiable the lux



 64

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

66K
42K

30K

21.5K

14.3K

97.4K
LuxABf

lux
A

lux
B

lux
ABf

66K
42K

30K

21.5K

14.3K

97.4K
LuxABf

lux
A

lux
B

lux
ABf
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reticulocyte lysate with the incorporation of  35S methionine.  The 
molecular weight marker is labeled with [14C] methylated protein.  
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protein levels were not adequate for detection by immunoblot analysis.   

 

LuxAB Fusion with Kozac Modifications 

Although the Kozac sequence modifications on the 5′ end of the luxA gene was 

shown to drastically diminish bioluminescence levels in E. coli (Figure 11), the Kozac 

sequence is a mammalian ribosomal binding site and therefore to evaluate its true 

effectiveness the construct was tested in HEK293 cells.  Stable cell lines harboring 

pcDNABfKoz were obtained and tested for bioluminescence activity.  The light levels 

were significantly reduced (>90%) compared to HEK293 cells expressing the fusion 

protein without the Kozac modifications (Figure 14).   

 

Alternative Expression Formats 

Although detectable bioluminescence levels were obtained from mammalian cell 

lines harboring the LuxAB fusion protein, these levels were not sufficient for the 

creation of a reliable biosensor.  Therefore, other expression formats were evaluated.   

The bioluminescence activity from the LuxAB fusion protein in HEK293 cells was 

compared to the expression of the individual luxA and luxB genes on either a single 

plasmid in a dual promoter format or by co-transfecting cells with separate plasmids 

carrying the genes.  Stable cell lines expressing the lux genes in a dual promoter or co-

transfected format were obtained.   Furthermore, each vector format (fusion, dual 

promoter and co-transfection) was evaluated when the constructs were maintained as 

episomal plasmids or were integrated into the host’s chromosome.  The average 

bioluminescence levels (RLU/mg total protein) of the three brightest clones for each 
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construct tested are shown in Figure 15.  When the constructs were expressed as 

episomes within the nucleus of the cells, the bioluminescence was on average higher for 

the LuxAB fusion protein and for co-transfected plasmids.  However, these differences 

were not statistically significant (p<0.05).  The episomally expressed dual promoter 

plasmid carrying luxA and luxB genes (pCEPARB, Figure 6B) resulted in a significantly  

lower bioluminescence level than its integrated counterpart (pcDNARB, Figure 6A).  

This reduced amount of bioluminescence from cells episomally expressing 

pCEPluxARluxB was surprising.  Further experiments were conducted in an attempt to 

identify the expression problems with this construct. 

 Since the Lux proteins were not detectable by immunoblot, mRNA levels were 

evaluated.  RNA slot blot analysis revealed that clone DE4 had significantly higher 

amounts of luxA message compared to the luxB message.  The other two clones tested 

harboring the construct (DE8 and DE9) had the exact opposite trend for message 

quantities (Figure 16).  The backbone vector for this construct had only minimal 

hybridization with either the luxA or luxB probes. 

 

Stability of Constructs in Mammalian Cells 

To evaluate the stability of each construct in the absence of antibiotic selection, each 

HEK293 cell line clone was grown in complete growth media without antibiotic for 

twenty passages.  The bioluminescence levels were obtained every fifth passage for 

comparison.  In general, all clones were stable for at least five passages after the 

antibiotic removal.  However, the constructs that were maintained as episomes began to 

decline in bioluminescence activity by passage ten.  The co-transfected cell line 
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harboring two plasmids both maintained episomally had the fastest bioluminescence 

decline rate.  The bioluminescence levels from this cell line declined approximately 

10% per generation.  The constructs that were integrated into the host’s chromosome 

remained relatively stable throughout the twenty passage (approximately 2.5 months) 

evaluation (Figure 17). 

 
 
Bicistronic Expression 

 To evaluate the expression of the luxA and luxB genes as a single bicistronic 

transcript, an IRES element from EMCV virus was used to transcriptionally fuse the 

two genes together (Figure 9).  From each of the nine stable cell line clones obtained 

harboring this construct, the bioluminescence (RLU/mg total protein) was at least an 

order of magnitude greater than the average levels obtained from the brightest clones 

with any of the other expression formats tested (Figure 18).  On average, there was no 

significant difference between bioluminescence levels obtained from HEK293 cells 

expressing the luxAB fusion, the luxA and luxB in a dual promoter format or as co-

transfected separate plasmids.  However, the bioluminescence levels from HEK293 

cells harboring the luxA and luxB as a single bicistronic transcript consistently produced 

significantly higher light levels (Figure 19). 

 Because the Lux proteins were not detectable from stable cell lines, mRNA from 

the three brightest clones from each construct was isolated and probed with a [32P] 

labeled probe complementary to the luxA sequence.  luxA  mRNA was detectable from 

every cell line tested above background vector control levels (Figure 20).  However, the 

amount of transcript (determined as intensity values from autoradiougraphy) varied 
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grown in the absence of antibiotic.  Solid lines indicate bioluminescence from cell lines that 
the constructs integrated into the host chromosome. Dashed lines indicate clones expressing 
the genes episomally.  
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Figure 20.   RNA slot blot analysis of HEK293 clones expressing the luxA and luxB genes either as a fusion 
protein, on separate plasmids (co-transfected), within the same plasmid but with separate promoters 
(dual promoter) or a transcriptional fusion linked with an IRES element.  Negative vector controls 
(NC) were added to determine background hybridization levels. Plasmid (pcDNABf) DNA was 
added as a positive control (PC). 
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greatly between cell lines and clones and did not correlate with the bioluminescence 

levels obtained (R2=0.15) (Figure 21). 

 

Discussion 

Previous work by Escher et al. (1989) showed that the luxAB fusion, using genes 

from Vibrio harveyi, was stable at elevated temperatures if initially expressed in E. coli 

at 23°C.  However, when the fused protein was grown and expressed at 37°C there was 

a greater than 99% reduction in light.  These data suggest that the fused luxAB does not 

fold properly at elevated temperatures.  The luciferase from P. luminescens has a higher 

thermal stability (t1/2 >3 h at 45°C) than V. harveyi (t1/2 5 min. at 45°C)  (Meighen, 

1991).  Therefore, a translational fusion generated from the P. luminescens luxA and 

luxB genes was generated and evaluated.  Although the luxAB fusion was functional in 

E. coli, bioluminescence activity was significantly reduced (70%) compared to the wild 

type unfused genes (Figure 11).   In the unfused luxAB the α and β subunits are 

individually translated and are free to fold into their specific conformation (Tu and 

Mager, 1995).  Therefore, the reduction in bioluminescence may be due to steric 

hindrance involved in the way the subunits form the heterodimer when expressed as a 

protein monomer.  The addition of a Kozak sequence further reduced the 

bioluminescence level to approximately 5% of the wild type protein.  Nevertheless, the 

Kozac sequence is a mammalian ribosomal binding site and therefore to evaluate its 

true effectiveness the construct was tested in HEK293 cells.  The light levels were 

significantly reduced (>90%) compared to HEK293 cells expressing the fusion protein 

without the Kozac modifications (Figure 13). The addition of a Kozak sequence (G at 
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Figure 21.  Relative bioluminescence (RLU/mg total protein) versus average  
intensity values from RNA slot blot analysis of each clone. 
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 the +4 position) specifically changes the second amino acid of luxA from Lysine to 

Glutamic acid.  These two amino acids have opposite net charges, which could result in 

a modification of the protein's secondary structure ultimately altering the protein's 

function resulting in decreased bioluminescence.   

To determine temperature effect on the folding of the fusion protein, the fused 

and unfused versions of the luxAB were grown at 23˚C, 30˚C and 37˚C.  In E. coli, there 

was not a statistical difference (p < 0.05) associated with temperature on 

bioluminescence as seen by Escher et al. This suggested that the folding problems in the 

V. harveyi LuxAB fusion protein were not present in the P. luminescens LuxAB fusion 

protein.  However, when the fusion construct was expressed in the yeast, S. cerevisiae 

the bioluminescence levels significantly decreased as temperature increased to 37˚C 

(Table 6B).  The differences seen in these two systems may be a result of the bacterial 

system’s ability to transcribe the luxB independently due to the ribosomal binding site 

and luxB start codon still present in the fusion.  When the fusion is expressed in the 

yeast system, the luxB is no longer independently expressed resulting in a true fusion 

protein that is unable to properly fold at 37˚C.  The independent expression of the luxB 

in bacteria may have resulted in the unfused LuxB subunit forming the heterodimeric 

conformation with the LuxA within the LuxAB fusion resulting in the unaffected 

bioluminescence observed when the construct was expressed in E. coli. 

  In an attempt to mimic mammalian translation machinery, in vitro transcription 

and translation of the luxA, luxB and luxAB fusion were performed in a rabbit 

reticulocyte lysate system.  Although the 77kDa fusion protein was easily detected, the 

individual proteins, LuxA and LuxB, were not.  This result was unexpected because 
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equal amounts of RNA transcript were added to each translation reaction.  These data 

suggest that the formation of the heterodimeric (α and β subunit) complex may be 

required for not only efficient bioluminescence activity, but also for the overall stability 

of the protein.   

 Although detectable amounts of bioluminescence were obtained from 

mammalian cell lines harboring the LuxAB fusion protein, these levels were not 

sufficient for the creation of a reliable biosensor.  Therefore, other expression formats 

were evaluated in an attempt to optimize bioluminescence activity.  It was thought that 

by expressing the lux genes separately, the subunits would be able to form a more 

natural heterodimeric conformation.  Human embryonic kidney cells (HEK293) were 

used for these evaluations.  Cells were transfected with a dual promoter vector construct 

that that was developed to constitutively express each gene from a separate promoter or 

co-transfected with two plasmids each harboring either the luxA or luxB gene.  

Furthermore, to evaluate the differences in protein expression from genes integrated in 

the host’s chromosome versus those constructs maintained as episomal plasmids, each 

expression format (fusion, dual promoter and co-transfection) was constructed on a 

plasmid backbone able to replicate episomally in HEK cells.  The bioluminescence 

levels from stable cell lines harboring each expression variation were determined.  

Although there were slight variations in  activity the differences were not statistically 

significant (p=0.05).  The only exception was the reduced bioluminescence activity 

obtained from cells harboring a dual promoter vector episomally (Figure 15).  The low 

light levels from these clones were somewhat surprising considering that the average 

bioluminescence from the fusion protein and from cells co-transfected with two 
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plasmids were slightly higher when the constructs were maintained as episomes.  Upon 

further analysis, it was determined that the mRNA levels from the individual lux genes 

were not equal and therefore in this expression format, one promoter is inducing 

transcription at a higher rate than the other.  This type of promoter occlusion where the 

transcription of one of the two promoters was significantly dampened has been seen 

previously (Horlick et al., 2000).  The unequal availability of one of the lux subunits at 

a level over the other may prevent the proper formation of the heterodimeric active 

luciferase protein and may result in inactive homodimer formation.  

 In order for a bacterial lux-based mammalian bioreporter to be useful, the 

constructs need to remain stable in the absence of antibiotic selection for long periods of 

time.  Efficient maintenance and stability of foreign genes requires that the DNA 

replicate once per cell cycle and be retained (integrated or episomally) in the nucleus.  

Expression plasmids harboring the luxA and luxB genes in three individual expression 

formats were created on both the traditional integration vectors and on Epstein-Barr 

virus (ori-P) based episomal plasmid vectors.  To determine the stability of these 

constructs in HEK293 cells, the cell line clones were grown for twenty passages in 

complete growth media without antibiotic.    In general, all clones (chromosomal and 

episomal) were stable for at least five passages after the antibiotic removal.  However, 

the constructs that were maintained as episomes began to lose bioluminescence activity 

by passage ten with episomal co-transfected cells resulting in the fastest 

bioluminescence decline rate (Figure 17). Although there was a significant decline in 

bioluminescence activity from episomally based constructs over time, the light was not 

completely lost from any of the cells lines.  Therefore, this reduction in 
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bioluminescence may be the result of natural plasmid loss and generation of a plasmid 

equilibrium within the cells.  Immediately following transfection the DNA molecules 

within each cell can be very high and a natural decline in this concentration occurs to a 

steady state for plasmid maintenance (Middleton and Sugen, 1994 and Horlick et 

al.,1997).  This number can vary, but the average is between 50 and 100 copies per cell 

with the further loss of approximately 5% per generation in the absence of selection 

(Yates and Guan, 1991).  The constructs that were integrated into the host’s 

chromosome remained relatively stable throughout the twenty passage (approximately 

2.5 months) evaluation.  These data indicate that integration of the lux genes within the 

host’s chromosome may be the most suitable way to express the genes in mammalian 

cells for long-term gene maintenance and stable bioluminescence activity.  

 In order to optimize the bioluminescence potential from mammalian cells the lux 

genes need to be processed and expressed much in the way they are in bacteria.  To 

establish a more natural expression format for the heterodimeric luciferase protein, the 

luxA and luxB genes were cloned into a bicistronic mammalian expression vector.  This 

vector was developed to allow for the expression of two genes of interest under the 

control of a single constitutive promoter with the use of an internal ribosomal entry site 

(IRES).  IRES elements can be defined as specific nucleotide sequences that allow for 

ribosomal entry and translation initiation directly at the start codon (AUG) rather than 

requiring scanning from the 5′ end, cap structure, of the mRNA (Pestova et al., 2001 

and Kozac, 2001).  Since the lux genes are naturally found in a polycistronic operon, it 

was thought that by expressing the genes in this format a more natural production and 

formation of the heterodimer could be obtained.    From each of the stable cell line 
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clones obtained harboring lux genes expressed as a bicistronic transcript, the 

bioluminescence (RLU/mg total protein) was at least an order of magnitude greater than 

levels obtained with any of the other expression formats tested (Figure 18).  On average, 

there was no significant difference between bioluminescence levels obtained from 

HEK293 cells expressing the luxAB fusion, the luxA and luxB in a dual promoter format 

or as co-transfected separate plasmids.  However, the bioluminescence levels from 

HEK293 cells harboring the luxA and luxB as a single bicistronic transcript 

constitutively produced significantly higher light levels (Figure 19). 

 Based on these data it was determined that of the four expression formats 

evaluated that the bicistronic expression of the luxA and luxB genes was by far the best 

choice.  Furthermore, although in general, the bioluminescence levels were slightly less, 

the stability of the construct when integrated into the host’s chromosome makes this a 

more suitable choice for the development of bacterial lux-based mammalian biosensors. 
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CHAPTER 3 
 

CODON OPTIMIZATION OF THE BACTERIAL LUCIFERASE FOR EXPRESSION 
IN MAMMALIAN CELLS 

 
Introduction 

 The standard term “universal genetic code” comes from the fact that there are 

sixty-four possible codons for only twenty amino acids.  Although the genetic code is 

degenerate, the alternate synonymous codons are not used with equal frequency (Sharp 

et al., 1988).  In fact, it has been shown that there is not only a selective difference, but 

also a preference for certain codons in highly expressed genes (Sharp et al., 1993).  This 

obvious codon bias has been shown to play a key role in the gene expression efficiency 

in all species tested to date (Amicis and Marchetti, 2000).  Furthermore, codon usage 

patterns are not conserved between organisms of different species.  This is especially 

true between genes from prokaryotes and eukaryotes.   

An obvious first step in developing a mammalian cell line that utilizes the 

potential benefits of the bacterial luciferase enzyme system is to optimize the expression 

of the heterodimeric luciferase protein.  The bioluminescence levels obtained through 

the expression of the wild type genes in various expression formats, although promising 

are not adequate for the development of reliable mammalian biosensors.  Based on these 

data, the lux genes need further optimization in order to realize their full potential as 

mammalian reporter proteins.   

Codon optimization is the term given to the synthetic creation of a gene 

sequence to possess the optimal codon usage patterns for the host organism.  Several 

examples of successful codon optimization have been recently published.  These 
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optimized proteins have been primarily designed for increased expression in 

mammalian hosts, as mammalian expression of foreign genes is often times limited 

(Narum et al., 2001). Several reporter proteins have been codon optimized in an attempt 

to increase expression in mammalian cells including the optimization of green 

fluorescent protein (GFP) (Zhang et al., 2002) and Renilla luciferase (Gruber and 

Wood, 2000) reporter genes.  In both of these instances, codon optimization resulted in 

these reporter proteins becoming stronger reporters for gene expression and reliable 

monitoring tools in mammalian cells. 

Based on this knowledge and the fact that further optimization is needed for the 

efficient expression of the bacterial luciferase in mammalian cells, it is hypothesized 

that by codon optimizing the luxA and luxB genes from P. luminescens that the 

bioluminescence activity from mammalian cell lines harboring these genes would be 

enhanced.  The specific objectives of the this research are: 

 

• To evaluate the luxA and luxB gene sequences from P. luminescens for 

codon usage pattern differences compared with optimal mammalian 

codon usage. 

• To design a codon optimized sequence for the luxA and luxB genes to 

potentially allow for enhanced expression in mammalian cells. 

• Compare the codon optimized sequences to the wild type genes using 

prediction analysis programs for mammalian expression. 

• Synthesize complete codon optimized genes from oligonucleotides. 
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• To determine if codon optimization significantly improves the 

expression of bacterial luciferase in mammalian cells. 

• To evaluate on what level of expression (transcription or translation) an 

increase in activity is derived. 

 
Materials and Methods 

 
Cell Culture and Plasmid Maintenance  

All relevant constructs and strains, bacterial and mammalian, used in this study 

are outlined in Table 7.  E. coli cells were routinely grown in Luria Bertani (LB) (Fisher 

Scientific, Pittsburgh, PA) broth containing the appropriate antibiotic selection with 

continuous shaking (200rpm) at 37°C.  Kanamycin and Ampicillin were used at a final 

concentration of 50µg/ml and 100 µg/ml, respectively. 

 All cell culture reagents and media were obtained from Sigma Aldrich, (St. 

Louis, MO) unless otherwise stated.  Mammalian cells were grown in the appropriate 

complete growth media containing 10% heat-inactivated horse serum, 0.01mM non-

essential amino acids and 0.1mM sodium pyruvate in a Dubelco’s minimal essential 

media base (DMEM) (M4655).  Cells were routinely grown at 37°C in a 5% CO2 

atmosphere to confluency and split every three to four days by trypsinization at a 1:4 

ratio and transfer into fresh complete growth media.  Appropriate concentrations of 

antibiotic were used to maintain constructs after transfection according to susceptibility 

kill curve analysis. Kill curves were completed for each lot of antibiotic.  The range of 

typical concentrations used for the selection of HEK293 cell line clones was between 
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Table 7.  Strains and plasmids used in the determination of the optimal expression 
format for bacterial luciferase in mammalian cells.  
 

Plasmid/Strain 
Designation 

 
Relevant Genotype/ Characteristics 

 
Source 

Strains   
E. coli   
 
DH5α 

Φ80dlacZ∆M15, recA1, endA1, gyrA96, thi-1, 
hsdR17 (rK-, mK+), supE44, relA1, deoR, 
∆(lacZYA-argF)U169 

 
Gibco, BRL 

 
 
TOP 10 

 
F-, mcrA ∆(mrr-hsdRMS-mcrBC) Φ80/lacZ 
∆lacX74 deoR recA1 araD139 ∆(ara-leu) 7697 
ga/K rpsL endA1 nupG 

 
 

Invitrogen 

 
Mammalian Cells  

  

 
HEK293 

Permanent line of primary human embryonal 
kidney transformed by sheared human adenovirus 
type 5 (Ad 5) DNA. ATCC# CRL-1573 

 
ATCC 

   
 
Plasmids 

  

 
 
pCR2.1-TOPO 

 
TOPO TA cloning vector for easy cloning of PCR 
products generated with 3′ A overhangs Kmr, 
Ampr 

 
 

Invitrogen 

 
 
pCR4-TOPO 

 
TOPO TA cloning vector for easy cloning of PCR 
products generated with 3′ A overhangs designed 
for sequencing Kmr, Ampr 

 
 

Invitrogen 

 
 
 
pIRES 

 
Mammalian expression vector containing the 
internal ribosomal entry site (IRES) of the 
encephalomyocarditis virus between two multi-
cloning sites which allows for the expression of 
two genes under the control of a single constitutive 
CMV promoter, Neomycin G418 antibiotic 
selection marker and a pUC ori and Kmr for 
replication in E.coli 

 
 
 

Clontech 

   
 
pCR4luxB 

 
pCR4 TA cloning vector harboring the luxB from 
Photorhabdus luminescens 

 
This Study 

 
pNotIluxA 

 
pCR4 harboring the luxA from P. luminescens with 
introduced NotI sites on both the 5′ and 3′ ends of 
the gene 

 
This Study 

 
pWTAI3 

 
pIRES harboring the luxA from P. luminescens 
cloned into the MCS(A) 

 
This Study 
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Plasmid/Strain 

Designation 

 
 
Relevant Genotype/ Characteristics 

 
 

Source 
pCOA#1 pCR4 vector harboring the codon optimized luxA 

gene with errors at base 365 and 1003. 
This Study 

pCOA#11 pCR4 vector harboring the codon optimized luxA 
gene with errors at bases 11, 28 and 365 

This Study 

pCOB#6 pCR4 vector harboring the codon optimized luxB 
gene with errors at base 321 and 829. 

This Study 

pCOB#7 pCR4 vector harboring the codon optimized luxB 
gene with errors at base 287 and 569. 

This Study 

 
pWTA-I-WTB 

 
pIRES harboring the luxA (WTA) cloned into the 
MCS(A) and luxB (WTB) cloned into MCS(B) 
from P. luminescens 

 
This Study 

 
pCOA-I-WTB  

 
pIRES harboring the codon optimized luxA (COA) 
into the MCS (A) and wild type luxB (WTB) into 
the MCS (B) from P. luminescens 

 
This Study 

 
pCOA-I-COB 

 
pIRES harboring the codon optimized luxA (COA) 
into the MCS (A) and codon optimized luxB 
(COB) into the MCS (B) from P. luminescencs 

 
This Study 

 
WTA-I-WTB(1-20)  

 
HEK293 cell lines stably transfected with the 
pWTA-I-WTB plasmid and selected by G418. 

 
This Study 

 
COA-I-WTB(1-20)  

 
HEK293 cell lines stably transfected with the 
pCOA-I-WTB plasmid and selected by G418. 

 
This Study 

 
COA-I-COB(1-20)  

 
HEK293 cell lines stably transfected with the 
pCOA-I-COB plasmid and selected by G418. 

 
This Study 

 

   

Table 7. Continued 
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 450µg and 650µg/ml.   

 

Determining Codon Optimized Sequence of Photorhabdus luminescens luxA and 

luxB Genes 

 To determine a codon optimized sequence for P. luminescens luxA and luxB 

genes, the codon ratios within the wild type genes were analyzed and compared to 

optimal codon usage patterns from highly expressed (top 10%) mammalian genes.  The 

optimal codon ratios were determined by information tabulated in Genbank.  The 

overall ratio for usage of each codon within the wild type genes was altered to more 

closely match mammalian codon usage (Table 8A and 8B).  In general, low frequency 

codons were used rarely or not at all and higher frequency codons were used more 

often.  The codons were replaced within the wild type sequences in a random fashion.  

The sequence was further analyzed for any potential splice sites or other regulatory 

regions using the NetGene2 algorithm for prediction of potential acceptor and donor 

splice sites (www.cbs.dtu.dk/cgi-bin/nph-webface?jobid=netgene2).  Any potential 

splice sites were removed.  Transcription factor binding sites were also identified, 

however, these sequences were too numerous to successfully eliminate.  After the final 

codon optimized sequence was determined, it was compared to the wild type sequence 

using the Genescan prediction algorithm (http://genes.mit.edu) to evaluate the potential 

expression of the new sequence versus the wild type. 
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Table 8.  Codon usage of wild type versus codon optimized genes.  (A) luxA (B) luxB 
     WTA= wild type luxA, WTB= wild type luxB, COA= codon optimized luxA  
     COB= codon optimized luxB. 
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Amino Acid 

 
 

Codon 

 
 

WTA 

 
 

COA 

 
 

Amino Acid 

 
 

Codon 

 
 

WTA 

 
 

COA 
 

Phe 
 

TTT 
 

14 
 

6 
 

Tyr 
 

TAT 
 

12 
 

5 
 TTC 5 13  TAC 5 12 

Leu TTA 9 - Ter TAA 0 - 
 TTG 5 2  TAG 1 1 
 CTT 9 4 His CAT 10 3 
 CTC 1 10  CAC 1 8 
 CTA 2 - Gln CAA 11 6 
 CTG 3 13  CAG 3 8 

Ile ATT 14 4 Asn AAT 14 5 
 ATC 4 20  AAC 6 15 
 ATA 6 - Lys AAA 17 4 

Met ATG 9 9  AAG 6 19 
Val GTT 3 3 Asp GAT 15 6 

 GTC 2 6  GAC 8 17 
 GTA 10 - Glu GAA 13 2 
 GTG 6 12  GAG 9 20 

Ser TCT 5 - Cys TGT 4 3 
 TCC 1 11  TGC 4 5 
 TCA 6 1 ter TGA 0 - 
 TCG 2 - Trp TGG 6 6 

Pro CCT 2 5 Arg CGT 4 - 
 CCC 4 4  CGC 5 9 
 CCA 2 2  CGA 2 - 
 CCG 3 -  CGG 2 3 

Thr ACT 6 5 Ser AGT 3 1 
 ACC 1 14  AGC 1 5 
 ACA 9 1 Arg AGA 2 3 
 ACG 4 -  AGG 0 - 

Ala GCT 13 15 Gly GGT 7 4 
 GCC 3 9  GGC 5 11 
 GCA 3 -  GGA 9 5 
 GCG 5 -  GGG 5 6 

A 
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Table 8. Continued
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Amino Acid 

 
 

Codon 

 
 

WTB 

 
 

COB 

 
 

Amino Acid 

 
 

Codon 

 
 

WTB 

 
 

COB 
 

Phe 
 

TTT 
 

13 
 

5 
 

Tyr 
 

TAT 
 

16 
 

4 
 TTC 5 13  TAC 1 13 

Leu TTA 9 - Ter TAA 1 1 
 TTG 6 -  TAG 0 - 
 CTT 3 3 His CAT 8 2 
 CTC 2 2  CAC 3 9 
 CTA 2 - Gln CAA 6 3 
 CTG 3 18  CAG 5 8 

Ile ATT 13 5 Asn AAT 18 4 
 ATC 5 21  AAC 6 20 
 ATA 8 - Lys AAA 16 4 

Met ATG 8 8  AAG 6 20 
Val GTT 13 3 Asp GAT 17 3 

 GTC 3 7  GAC 3 17 
 GTA 4 - Glu GAA 23 6 
 GTG 1 11  GAG 8 25 

Ser TCT 3 - Cys TGT 4 1 
 TCC 1 8  TGC 2 5 
 TCA 4 - ter TGA 0 - 
 TCG 0 - Trp TGG 2 2 

Pro CCT 6 7 Arg CGT 1 - 
 CCC 1 2  CGC 2 3 
 CCA 3 2  CGA 0 - 
 CCG 1 -  CGG 1 1 

Thr ACT 4 4 Ser AGT 7 2 
 ACC 2 12  AGC 2 7 
 ACA 6 - Arg AGA 3 3 
 ACG 4 -  AGG 0 - 

Ala GCT 8 14 Gly GGT 6 1 
 GCC 3 6  GGC 3 9 
 GCA 4 -  GGA 3 2 
 GCG 5 -  GGG 2 2 

B 
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Synthesizing the Codon Optimized luxA and luxB Genes  

 Once the codon optimized sequence had been determined, oligonucleotides for 

each gene were designed that covered the complete sequence (Table 9& 10).  Each 

oligo was designed with an 18 – 23 base pair overlap on the 5′ and 3′ ends with its 

adjacent oligos.  These overlapping regions were designed with Tm values of 53°C - 

56°C.  Once the oligos were designed they were synthesized by Sigma Genosys (Sigma, 

St. Louis, MO) and polyacrylamide gel (PAGE) purified to ensure full-length products.  

Each oligonucleotide was placed into a PCR reaction with the following conditions; 

internal oligos (0.25 pmol), the two outermost oligos (25 pmols), dNTP mixture (200 

nm), 1X Pfu buffer, 1X Pfu Enhancer solution, MgCl2 (concentration determined 

experimentally) and 1U of Pfu DNA polymerase (Stratagene, La Jolla, CA).   

 All PCR reactions were performed in 0.2 ml thin walled PCR tubes using a 

PTC-225 DNA Engine (MJ Research, Waltham, MA).  For gene synthesis the following 

program was used; (1) initial denaturation 95°C for 5 min, (2) 30 cycles of 94°C for 1 

min, 50°C for 1 min and 68°C for 2 min followed by (3) final extension 68°C for 10 

min.  Resultant PCR products were run on 1% agarose gels in 1X TBE.  Unfortunately, 

there were no detectable products of the correct size.  As an alternative strategy, four 

separate reactions were set up with four adjacent oligos in each reaction (Figure 22).  

The two innermost primers were added at a final concentration of 0.25 pmols and the 

two outermost oligos were used as both template and primers at a concentration of 25 

pmols.  Each piece was then amplified using the parameters outlined above with the 

exception of the extension step was reduced from 2 min to 45 sec.  The resultant PCR 
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Figure 22.  Schematic diagram of the recursive PCR method used to construct the 

synthetic luxA and luxB genes.  Outside oligonucleotides were added at 25 
pmol final concentration while the inside oligonucleotides were added at 0.25 
pmol final concentration. 
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Table 9.  Oligonucleotide primer sequences used to synthesize the codon optimized 
luxA gene. 
 

 
Primer Name 

 
Sequence 5′ to 3′ 

COA1  
(Sense) 

5′CGAAACCATGAAGTTCGGCAACTTCCTGCTCACATATCAGCC 
TCCCCAGTTTTCCCAAACCGAGGTCATGAAGCGGCTGGTTA 
AGCTCGGCCGCATCTC C 3′ 

COA2 
(Antisense) 

 

5′ AAGCAGCAGCGACATAAGGGTTACCAAGCAGGCCGAA         
CTCGGTGAAGTGGTGCTCCAGCAGCCACACGGTGTCGAAAC 
CGCACTCCTCGGAGATGCGGCCGAGCTTA 3′ 
 

COA3  
(Sense) 

 

5′ CCCTTATGTCGCTGCTGCTTATCTGCTCGGCGCCAC                  
CAAGAAACTGAACGTCGGCACTGCCGCTATCGTTCTC                          
CCCACCGCCCATCCAGTCCGCCAGCTT 3′ 
 

COA4 
(Antisense) 

 

5′ GAAGTCCTTGTTGTAAAGCCCGCGGCAGATGCCGAA       
CCGAAAGCGCCCCT TGGACATTTGATCCAGCAAGTTC                    
ACGTCCTCAAGCTGGCGGACTGGATGG 3′ 
 

COA5  
(Sense) 

 

5′ CGGGCTTTACAACAAGGACTTCCGCGTGTTCGGCA                   
CCGACATGAACAACAGCCGCGCCCTGGCCGAGTGTT          
GGTACGGGCTGATCAAGAATGGCATGA 3′ 
 

COA6 
(Antisense) 

 

5′ GAGCGCCACCTCTGCTGTAAGCGGCGGGGTTCACTT                         
TGACTTTGTGGAACTTGATGTGCTCATTGTCGGCTTCC           
ATGTATCCCTCGGTCATGCCATTCTTGATCAGCC 3′ 

 
COA7  
(Sense) 

 
5′ ACAGCAGAGGTGGCGCTCCTGTTTATGTGGTGGCTG               
AGTCAGCTAGTACCACTGAGTGGGCTGCTCAATTTGG                    
CCTCCCTATGATCCTGTCCTGGATCATCAACAC 3′ 
 

COA8 
(Antisense) 

 

5′ CAGGCAGTGGTCGATGTTATGAATGTCGTGCCCG           
TACTCTTGAGCCACTTCGTTGTAAAGCTCGAGCTGG  
GCCTTCTTCTCATTAGTG TTGATG ATCCAGGACAGG 3′ 
 

COA9  
(Sense) 

 

5′ CATAACATCGACCACTGCCTGTCCTACATCACCTC                     
CGTGGACCACGACTCCATCAAGGCCAAGGAGATTTG    
CCGGAAGTTTCTCGGGCATTGGTATGATAG 3′ 
 

COA10 
(Antisense) 

 

5′ AACACGAAATCGCGCCACTGCCCCTTGTTGAAGTC              
GTAACCTCTGGTCTGGTCGGAGTCGTCAAAGATAGTG 
GTAGCATTCACG  TAGCTAT CATACCAATGCCCGAG 3′ 
 

  



 96

 
Primer Name 

 
 

COA11 
(Sense) 

 

 
Sequence 

 
 
 
5′ AGTGGCGCGATTTCGTGTTGAAAGGACACAAGG       
ATACTAACAGACGCATCGACTACAGCTACGAGATCAA 
TCCCGTGGGCACCCCTCAG  GAGTGCATTGACATCATCC 3′ 
 

COA12 
(Antisense) 

5′ ATGGAAGCGATGATCTCGTCCACGGTTCCGTTAGCCTCA        
AATCCACAACAGATGTTGGAGATTCCGGTAGCATCAA            
TGTCCTTTTGGATGATG TCAATGCACTCCTG 3′ 
 

COA13 
(Sense) 

 

5′ GACGAGATCATCGCTTCCATGAAGCTCTTCCAGTCCG         
ATGTCA TGCCATTCCTCAAGGAGAAGCAACGCA  
GCCTCCTGTACTAGGGATCC 3′ 

COA14 
(Antisense) 

 

 
5′ GGATCCCTAGTACAGGAGGCTGC 3′ 
 

 

Table 9. Continued 
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Table 10.  Oligonucleotide primer sequences used to synthesize the codon optimized 
luxB gene. 
 

 
Primer Name 

 
Sequence 5′ to 3′ 

 
COB1  
(Sense) 

 
5 ′CGAAACCATGAAGTTCGGACTGTTCTTCCTTAACTTCATCA  
ACTCCACCACTGTGCAGGAGCAAAGCATCGTGCGCATGCAG    
GAGATCACCGAGTATGTGGAC 3′ 
 

COB2 
(Antisense) 

 

5 ′CACAGTCAGAGGAGCGCCGACAACGCCATTGTCGGAAAA    
GTGGTTCTCGTACACCAGGATCTGCTCGAAGTTCAGCTTG 
TCCACATAC TCGGTGATCTCC 3′ 
 

COB3  
(Sense) 

 

5 ′ GGCGCTCCTCTGACTGTGTCCGGCTTCCTGCTCGGCCT         
GACCGAGAAGATCAAAATTGGCTCCCTGAACCACATCAT        
CACCACTCATCATCCTGTCGCCATCGCT 3′ 
 

COB4 
(Antisense) 

 

5 ′ GTGCATCTCGTCCTTCTTCTCGCAATCGCTGAACCCC 
AGGATGAATCTCCCCTCGCTCAGCTGATCCAGCAGGCA 
AGCCTCCTCAGCGATGGCGACAGGATG 3′ 
 

COB5  
(Sense) 

 

5 ′GAGAAGAAGGACGAGATGCACTTTTTCAACCGCCCTGT 
GGAATATCAGCAG CAACTGTTTGAAGAGTGCTACGAGAT        
CATTAACGACGCTCTGACCACCGGCTACTGC 3′ 
 

COB6 
(Antisense) 

 

5 ′AGCGGTGACATACTTCCGAGGGCCGCCTGGGGTGTAA 
GCGTGGGGGTTGACGGAGATTTTAGGGAAGCTGTAG 
AAGTCATTGTCGGGGTTGCAGTAGCCGGTGGTCAG 3′ 
 

COB7 
(Sense) 

5 ′TCGGAAGTATGTCACCGCTACCAGTCATCACATCGTGG 
AGTGGGCTGCCAAG AAAGGCATCCCTCTCATCTTTAAGT         
GGGATGACTCCAACGACGTGAGATACGAGTA 3′ 
 

COB8 
(Antisense) 

 

5′ TAACCAGGATCATCAGCTGGTGGTCGATTTCGGACAG 
GTCAACGTCATATTTGTCAGCCACGGCCTTGTATCTC 
TCAGCGTACTCGTATCTCACGTCGTTGG 3′ 
 

COB9  
(Sense) 

 

5′ CCAGCTGATGATCCTGGTTAACTACAACGAAGACAGC      
AACAAGGCTAAG CAGGAGACCCGCGCCTTCATTAGCGA                 
CTACGTGCTTGAAATGCACCCTAAC 3′ 
 

COB10 
(Antisense) 

 

5′ CCAGCTTAGCAGCAGTGATACACTCGGTGTAGTTTCCG 
ACAGCGTTCTCGGCGATGATTTCCTCAAGCTTGTTCTCGA 
AGTTCTCGTTAGGGTGCATTTCAAGCAC 3′ 
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Primer Name 
 
 

COB11 
(Sense) 

 

 
Sequence 

 
 
5′ TGTATCACTGCTGCTAAGCTGGCCATCGAGAAGTGCGGT      
GCTAAGAGTGTCCTGCTGTCCTTTGAGCCAATGAATGAC          
CTGATGAGCCAAAAGAACGTCAT 3′ 
 

COB12 
(Antisense) 

5′ GGATCCTTAGGTGTACTCCATGTGGTACTTCTTAATATTG 
TCGTCCACAATGTTGATGACGTTCTTTTGGCTCATCAG 3′ 
 

  
  
 

Table 10. Continued 
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 products were then gel purified using the Geneclean gel extraction kit according to the 

manufacturer’s instructions (Bio101, Carlsbad, CA).  The extracted products were  

quantified using a Dyna Quant 200 fluorometer (Hoefer Pharmacia Biotech 

Incorporated, San Francisco, CA) and placed into a second PCR reaction at equal molar 

concentrations (0.25 pmols).  The two outermost (5′ and 3′) oligos were used as primers 

at a final concentration of 25 pmols.  After the second PCR reaction, the products of the 

correct size were again gel purified as previously described.  Because Pfu polymerase 

produces blunt end products, 3′ A overhangs were added to allow for TA TOPO cloning 

of the products.  To accomplish this, the gel-extracted product was mixed with dATP 

(200nM) 1X amplitaq buffer and 1U of Taq polymerase (Amersham Pharmacia, San 

Francisco, CA) and placed at 72°C for 20 – 30 min.  Immediately following the addition 

of the A’s, the product was TA TOPO cloned into the pCR4 TOPO cloning vector 

(Invitrogen Corporation, Carlsbad, CA).  Resultant colonies were then checked for 

insert by an EcoRI restriction digest and sequenced to ensure their integrity.   

 

Site Directed Mutagenesis 

Although the oligos were successfully joined into a double stranded synthetic 

gene, several point mutations were determined by sequencing.  A number of clones for 

each gene were completely sequenced in an attempt to identify a flawless clone without 

success.  To correct these errors, site directed mutagenesis was done.  First, for the 

codon optimized luxA gene, two separate clones pCOA#1 and pCOA#11 were used as 

template.  Site directed mutagenesis primers were designed to introduce the necessary 

changes.  The complete luxA sequence was amplified in two separate sections (365 bp 
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from pCOA#1 and 719bp from pCOA#11) that overlapped between the bases where the 

necessary changes were required.  Each segment was gel purified and then linked back 

together by a second round of PCR as described for the original gene synthesis. 

Subsequently, 3′ A overhangs were added and the product TA TOPO cloned into pCR4.  

Upon sequencing, a construct with the correct sequence was identified and termed 

pPA2.  Site directed mutagenesis was also performed on the codon optimized luxB 

sequence using overlapping primers designed to introduce the proper changes.  The 

complete luxB sequence was amplified in three segments (324 bp from pCOB#7, 340 bp 

from pCOB#6 and 319 bp pCOB#7) from two separate clones (pCOB#7 and pCOB#6) 

and subsequently linked by PCR as previously described.  A construct of the correct 

sequence was produced and termed pPB2.   

 

Construction of a Bicistronic Expression Vector 

To compare the expression of the codon optimized luxA and luxB genes to the 

wild type, the pIRES vector was used (Clontech Corporation, Palo Alto, CA). This 

expression vector contains two multi-cloning sites separated by an internal ribosomal 

entry site (IRES) from encephalomyocarditis virus (EMCV).  The IRES element allows 

for the expression of two genes (one cloned into each multi-cloning site) from a single 

constitutive CMV promoter.  For comparison purposes, a wild type luxA and luxB 

(pWTA-I-WTB) construct, a codon optimized luxA and wild type luxB (pCOA-I-WTB) 

construct and a codon optimized luxA and codon optimized luxB (pCOA-I-COB) 

construct were generated.     
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 pWTA-I-WTB 
  To create this construct, the luxA gene from P. luminescens was amplified from 

pPLluxCDABE plasmid that harbors the complete luxCDABE cassette (Table 7) and 

unique NotI restriction sites were introduced on both the 5′ and 3′ ends of the luxA gene.  

The resultant PCR product was TA TOPO cloned into pCR4 TOPO to generate 

pNotIluxA.  The luxA gene was then cloned into the MCS(A) of pIRES via the unique 

NotI restriction sites to generate pWTAI.  Once this construct was confirmed by 

sequencing, the plasmid was purified using the Wizard midi-prep plasmid purification 

kit according to the manufacturer’s instructions (Promega Corporation, Madison, WI).  

The luxB gene was cleaved via a 5′ XbaI and 3′ SpeI site from pCRluxB and cloned into 

the XbaI site within the MCS(B) of pWTAI to generate pWTA-I-WTB (Figure 23A). 

pCOA-I-WTB 
 To generate this construct, the codon optimized luxA gene (COA) was cleaved 

from pPA2 via unique NotI restriction sites and cloned into the MCS(A) of the pIRES 

vector (Clontech Corporation, Palo Alto, CA) to generate pCOAI.  Once this construct 

was confirmed by sequencing, the plasmid was purified using the Wizard midi-prep 

plasmid purification kit according to the manufacturer’s instructions (Promega 

Corporation, Madison, WI).  The wild type luxB gene was cleaved via a 5′ XbaI and 3′ 

SpeI site from pCRluxB and cloned into the XbaI site within the MCS(B) of pCOAI to 

generate pCOA-I-WTB (Figure 23B). 

pCOA-I-COB 
To generate this construct, the codon optimized luxB (COB) gene was cleaved 

from pPB2 via introduced 5′ and 3′ XbaI sites and cloned into the MCS(B) from pCOAI 

to create pCOA-I-COB (Figure 23C). 
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Figure 23.  Schematic diagram of the final constructs used to compare the wild type 

luxA and luxB to the codon optimized genes.  A. Wild type luxA and wild 
type luxB B.  Codon optimized luxA and wild type luxB C. Codon optimized 
luxA and codon optimized luxB.  



 103

 

 

CMV Promoter

WTA

IRES

WTB

Neo G418

pWTA-I-WTB

CMV Promoter

COA

IRES

WTB

Neo G418

pCOA-I-WTB

CMV Promoter

COA

IRES

COB

Neo G418

pCOA-I-COB

A 

B 

C 



 104

Ligation Reactions 

Plasmid vectors and inserts were digested (2-6 h) with the appropriate enzymes 

(Promega Corporation, Madison, WI).  Linearized vectors were dephosphorylated using 

a calf intestine alkaline phosphatase enzyme according for the manufacturer’s 

instructions (Promega Corporation, Madison, WI).  Both vector and insert DNA were 

gel purified from 1% agarose gels using the Geneclean gel extraction kit (Bio101, 

Carlsbad, CA).  The recovered DNA was then quantified using a Dyna Quant 200 

fluorometer (Hoefer Pharmacia Biotech Incorporated, San Francisco, CA) and ligations 

were set up as 20µl reactions using a 3:1 molar ratio of insert to vector DNA.  The 

ligation reactions were then incubated at 17°C overnight.   

 
 
Electroporation 

Electrocompetent cells were prepared as outlined by the manufacturer (BTX, 

San Diego, CA).  Electroporations were performed using the BTX Electroporator 600 

with the following conditions: 40µl cells, 1-2µl ligation mixture, a 2.5kV pulse for 

4.7ms using a 2mm gap cuvette.  After the pulse, cells were immediately resuspended in 

1ml of sterile LB and allowed to recover for 1 h at 37°C (200 rpm).  Cells were then 

plated on selective media containing the appropriate antibiotic. 

 

Selection of Bacterial Clones 

Resistant colonies were picked after 24 h and expanded to patches on grid 

plates.  To test for proper insert presence and orientation, rapid boil plasmid mini-preps 

(Promega Corporation, Madison, WI) were done followed by the digestion of the 
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plasmid with the appropriate restriction enzyme mixture according to the 

manufacturer’s instructions (Promega Corporation, Madison, WI).  Products were run 

on 1% agarose gels to determine if the banding pattern indicated the insert presence and 

proper orientation.  Upon identifying correct clones, the plasmids were further purified 

using the Wizard midiprep plasmid purification system according to the manufacturer’s 

protocol (Promega Corporation, Madison, WI) and sequenced. 

 

Sequencing 

All constructs were sequenced to ensure their integrity.  Sequencing was done in 

the University of Tennessee Molecular Biology Service Facility using an Applied 

Biosystems 3100 Genetic Analyzer sequencer (Foster City, CA).   

 

Transfection of Mammalian Cells  

Transfection of mammalian cell lines was done in six well poly-D-lysine coated 

tissue culture plates (Fisher Scientific, Pittsburgh, PA).  Cells were split from stock 

cultures and inoculated into each well at approximately 1X105 cells per well in 

complete growth media.  The plate was then placed at 37°C in a 5% CO2 atmosphere 

for 1-2 days until the cells became 80-90% confluent.  The day of transfection, the 

media was refreshed.  DNA for transfections was purified from 100ml overnight E. coli 

cultures using the Wizard Purefection plasmid purification kit to remove endotoxins 

according to the manufacturer’s instructions (Promega Corporation, Madison, WI).  For 

chromosomal integration, the plasmid DNA was linearized before transfection to 

increase proper integration.  
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HEK293 Cells 
 Purified plasmid DNA (3.2 µg) was mixed into 200 µl of serum free DMEM in 

a 1.5 ml tube.  In a second tube, 8 µl of Lipofectamine 2000 reagent (Invitrogen 

Corporation, Carlsbad, CA) was added to 200 µl of serum free DMEM.  The 

lipofectamine mixture was added to the DNA mixture within 5 min and incubated at 

room temperature for 20 min.  The entire mixture (400 µl total) was added directly to 

the appropriate well on the plate and rocked back and forth to ensure adequate mixing.  

Twenty-four hours post transfection, the complexes were removed and the media was 

replaced with fresh complete growth media supplemented with the appropriate 

antibiotic for selection.   

 
Selection of Mammalian Cell Clones 

Twenty-four hours post transfection, selective media was added to all wells and 

refreshed every three to four days.  Within two weeks all control wells were dead and 

the transfected cells were forming small colonies on the plate surface.  Colonies were 

separated from the rest of the well by placing a sterile chamber around the cell mass and 

sealing it with silicon (Fisher Scientific, Pittsburgh, PA).  The media could then be 

removed and each colony could be trypsinized and transferred to individual tissue 

culture flasks.  To accomplish this, after washing with a PBS solution, 200 µl of a 1X 

Trypsin-EDTA solution (Sigma Aldrich, St. Louis, MO) was added directly to the 

chamber and incubated at 37°C for 3 to 5 min.  The trypsin-EDTA solution was then 

replaced with complete growth media and the cells were transferred to a 25cm2 tissue 

culture flask for propagation.  Each clone was given a number and expanded to 
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individual cell lines.  Each line was split and maintained as described earlier with the 

addition of selective media.  Twenty cell lines were propagated in this manner for each 

plasmid tested.     

  
 
Bioluminescence Assays from Mammalian Cells 

 To determine bioluminescence potential from each cell line clone, total proteins 

were extracted and in vitro enzyme (bioluminescence) assays performed.  To extract the 

proteins, the cells were trypsinized from the plate or flask surface using standard 

protocols and resuspended into 2.0 ml Sarstedt tubes (Fisher Scientific, Pittsburgh, PA).  

The cells were then spun down and washed two times in sterile phosphate buffered 

saline (PBS) to remove any residual media (Sigma Aldrich, St. Louis, MO).  Cell pellets 

were then resuspended into 1 ml 0.1M potassium phosphate buffer pH 7.8 and disrupted 

by three consecutive cycles of freeze (30 s liquid N2) thaw (5 min at 37°C) extraction.  

After disruption, the cell debris was pelleted by spinning the samples at 14,000Xg for 5 

min and the supernatant was used in the bioluminescence assay.  To determine light 

intensity, the protein extract was mixed with 0.1 mM NAD(P)H, 4 µM FMN, 0.2% 

(w/v) BSA, 0.002% (w/v) n-decanal.  Bioluminescence was measured using the FB14 

luminometer (Zylux Corporation, Pforzheim, Germany) at a 1 s integration and reported 

as relative light units (RLU).  To determine if FMNH2 was a limiting factor for the 

bioluminescence reaction, a flavin oxidoreductase enzyme (1U) isolated from V. 

harveyi (Roche Scientific, Indianapolis, IN) was added to the bioluminescence assay 

and the light levels were measured again for comparison.     
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 Bioluminescence signals were normalized between samples and cell lines by 

dividing the RLU measurement by the total protein and reporting the bioluminescence 

as RLU/µg total protein.  Protein concentrations were determined using the Coomassie 

Plus protein assay according to the manufacture’s instructions (Biorad, Hercules, CA).   

 

In Vitro Transcription/Translation 

 To determine if the lux genes could be translated in vitro in rabbit reticulocyte 

lysate (mammalian translation machinery), pIRES vector harboring the wild type luxA 

(WTA), and codon optimized luxA (COA) were transcribed and translated.  First, the 

plasmid DNA containing the genes was digested at a unique XbaI restriction site at the 

3′ end of the gene within the vector.  This digestion linearized the plasmid and allowed 

for the generation of run-off transcript from the vector derived T7 promoter.  Each gene 

was transcribed via T7 polymerase using the RiboMax large-scale transcription system 

(Promega Corporation, Madison, WI).  Three individual transcription reactions were set 

up along with a positive T7 control and a negative control containing no template DNA.  

Each reaction was set up according to the manufacturer’s protocol and then incubated at 

37°C for 1 h.  Transcripts were quantified by absorbance (260/280) measurements 

(Beckman Coulter, Fullerton, CA).  Ten micrograms per ml of total RNA transcript was 

then added to 50 µl (total volume) rabbit reticulocyte lysate translation reactions.  Each 

reaction was gently mixed on ice according to the manufacturer’s protocol for S35 

labeled protein generation and then incubated at 30°C for 90 min (Promega 

Corporation, Madison, WI).  Once translation was complete, 15 µl of each reaction was 
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loaded onto a 12% SDS-PAGE mini-gel and run at 30 mA for 1 h.  The gel was 

removed and dried at 60°C with vacuum pressure using a model 443 Slab Dryer 

(BioRad, Hercules, CA) onto 3MM filter paper (Fisher Scientific, Pittsburgh, PA).  To 

visualize the generated proteins, the gel was placed onto an intensifier screen overnight 

and specific activity was measured using the STORM 840 phosphoanalyzer (Molecular 

Dynamics, Piscataway, NJ).   

 

Genomic DNA Isolation and Southern Blotting 

Genomic DNA from each clone was accomplished using the Wizard genomic 

DNA extraction kit according to the manufacturer’s protocols (Promega Corporation, 

Madison, WI).  After isolation each preparation was quantified using a Dyna Quant 200 

fluorometer (Hoefer Pharmacia Biotech Incorporated, San Francisco, CA).  In two 

separate reaction tubes restriction digestions were set up with 2.5µg of DNA each using 

a BamHI restriction enzyme according to the manufacturer’s instructions (Promega 

Corporation, Madison, WI).  Digestions were carried out in a 37°C water bath for four 

hours.  After digestion the products were loaded and run on a 1% agarose gel at 30V for 

6 hours.  The gel was then stained with ethidium bromide and photographed before the 

transfer.  The gel was then soaked for 15 min in a depurination solution (250mM HCl) 

and 30 min in a denaturation solution (0.5M NaOH and 1M NaCL), rinsed with dH2O 

and then neutralized two times for 15 min in (0.5M Tris/ 1.5M NaCl) before a final 

equalization in 20X SSC.  The DNA was then transferred to   BiotransTM nylon 

membrane (ICN, Irvine, CA) using the Turbo blotter apparatus according to the 

manufacturer’s instructions (Schleicher and Schuell, Keene, NH).   
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Double stranded DNA probes were generated complementary to a 300 bp 

portion of the codon optimized and wild type luxA genes using standard PCR protocols 

with the incorporation of a [32P] labeled dCTP nucleotide.  The probe was purified by 

column purification according to the manufacturer’s instructions (Stratagene, La Jolla, 

CA).  The specific activity of the each probe was measured by scintillation counting 

(Beckman Coulter, Fullerton, CA). Double stranded probes were boiled for 10 min to 

denature the DNA and directly added in equal amounts of specific activity to each blot. 

The blot was incubated with the probe at 65°C overnight.  After probe hybridization, the 

blot was washed 4 times in 20X SSC to remove any unbound activity.  The wash 

temperatures were determined experimentally to achieve optimal probe binding without 

excess background activity.  The blot was air dried and then placed on a 

phosphorescence intensifier screen (Molecular Dynamics, Piscataway, NJ).  Specific 

activity was measured using the STORM 840 phosphoanalyzer and the data analyzed 

using the ImageQuant data analysis software package (Molecular Dynamics, 

Piscataway, NJ).    

 

RNA Isolation and Blotting 

At passage six, post transfection, selected cell line clones were expanded to 

75cm2 tissue culture flasks.  When the cells became 80-95% confluent, they were 

trypsinized to remove the cells from the surface and transferred to 2.0 ml Sarstedt tubes 

(Fisher Scientific, Pittsburgh, PA).  Cells were spun down and washed two times in 

sterile PBS (Sigma Aldrich, St. Louis, MO).  Total RNA was then isolated from the 

cells using the RNeasy kit (Quiagen, Valencia, CA) according to the manufacturer’s 



 111

instructions for isolation of total RNA from mammalian cells.  To remove any 

contaminating DNA, the RNA was digested for 30 min with DNaseI (Promega 

Corporation, Madison, WI).  To remove the DNaseI enzyme, the clean-up procedure 

from the RNeasy kit was used (Quiagen, Valencia, CA).  Total RNA was then 

quantified using the Beckman DU-640 spectrophotometer absorbance at 260/280 

(Beckman Coulter, Fullerton, CA).   

Northern Blotting 
 Ten micrograms of total RNA were loaded onto a 0.8% agarose formaldehyde 

gel and run at 100V for 2 hrs.  The gel was then stained in an ethidium bromide solution 

and visualized.  The RNA was then transferred to a BiotransTM nylon membrane (ICN, 

Irvine, CA) using a semi-dry electroblot transfer apparatus according to the 

manufacturer’s instructions (CBS Scientific, San Francisco, CA).   

A 26 base pair oligonucleotide was designed to specifically hybridize to the 

codon optimized and wild type luxA sequences.  This oligonucleotide was then 3′ end 

labeled with a γ [32P] dATP by T4 polynucleotide kinase according to the 

manufacturer’s protocol (Promega Corporation, Madison, WI).  The oligonucleotide 

probe was then purified by column purification as outlined by the manufacturer 

(Stratagene, La Jolla, CA).  The specific activity of the probe was measured by 

scintillation counting (Beckman Coulter, Fullerton, CA) and added directly to the blot.   

 Double stranded DNA probes were generated complementary to a 300 bp 

portion of the codon optimized and wild type luxA genes using standard PCR protocols 

with the incorporation of a [32P] labeled dCTP nucleotide.  The probe was purified by 

column purification according to the manufacturer’s instructions (Stratagene, La Jolla, 
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CA).  The specific activity of the each probe was measured by scintillation counting 

(Beckman Coulter, Fullerton, CA). Double stranded probes were boiled for 10 min to 

denature the DNA and directly added in equal amounts of specific activity to each blot. 

The blot was incubated with the probe at 50°C overnight.  After probe 

hybridization, the blot was washed 4 times in 20X SSC to remove any unbound activity.  

The wash temperatures were determined experimentally to achieve optimal probe 

binding without excess background activity.  The blot was air dried and then placed on 

a phosphorescence intensifier screen (Molecular Dynamics, Piscataway, NJ).  Specific 

activity was measured using the STORM 840 phosphoanalyzer and the data analyzed 

using the ImageQuant data analysis software (Molecular Dynamics, Piscataway, NJ).     

 

Protein Isolation and Western Blotting 

 To extract the proteins, cells were trypsinized from a plate or flask surface and 

resuspended into 2.0 ml Sarstedt tubes (Fisher Scientific, Pittsburgh, PA).  The cells 

were then spun down and washed two times in sterile phosphate buffered saline (PBS) 

to remove any residual media (Sigma Aldrich, St. Louis, MO).  Cell pellets were 

resuspended into 1 ml 0.1M potassium phosphate buffer pH 7.8 and disrupted by three 

consecutive cycles of freeze (30 s liquid N2) thaw (5 min at 37°C) extraction.  After 

disruption, the cell debris was pelleted by spinning the samples at 14,000Xg for 5 min 

and the supernatant was used as total soluble protein for Western blot analysis. 

 Protein concentrations were determined using the Coomassie Plus protein assay 

according to the manufacturer’s instructions (Pierce, Rockford, IL).  Equal amounts 

(100 – 250 µg) of protein were loaded onto a 12% SDS-PAGE gel.  Minigels were run 
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at 30 mA for approximately 2 h and larger slab gels were run at 30 mA overnight.  The 

proteins were then electroblot transferred to PDVF membrane (Biorad, Hercules, CA) 

using a semi-dry electroblotter according to the manufacturer’s instructions (CBS 

Scientific Company, Incorporated, Del Mar, CA).  Blots were then blocked overnight in 

5% nonfat dry milk and hybridized with a polyclonal antibody raised against a 16 amino 

acid luxA polypeptide (′N′ - FDDSDQTRGYDFNKGC - ′C′) or a 16 amino acid luxB 

polypeptide (′N′ - CMILVNYNEDSNKAKQ - ′C′) (Genemed Synthesis, Incorporated, 

San Francisco, CA).  Antibodies were diluted in T-TBS (Tris Buffered Saline + 3% 

Tween 20) at a 1:500 dilution and applied to the membrane at room temperature for 5 h 

to overnight.  The blot was then washed several times in T-TBS and incubated with a 

Goat Anti-Rabbit second antibody that has been conjugated to alkaline phosphatase.  

The blot was then developed according to the manufacturer’s protocol (Biorad, 

Hercules, CA).     

 

Statistics  

 Statistical analysis of the data presented here was conducted using either the 

JMP (SAS Institute, Incorporated, Pacific Grove, CA) or Microsoft Excel (Microsoft, 

Seattle, WA) statistical software packages.  Graphs were made using Sigma Plot 

software (SPSS, SAS Institute, Incorporated, Pacific Grove, CA) or Microsoft Excel 

(Microsoft, Seattle, WA).  All error bars on graphs indicate one standard deviation of 

the mean.  Significant differences were determined using either t-test or 1 way ANOVA 

analysis at a level of α=0.05.  
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Results 

 

Determining a Codon Optimized Sequence of P. luminescens luxA and luxB for 

Expression in Mammalian Cells  

 The ratio of codons in the wild type luxA and luxB nucleotide sequences was 

compared to codon usage patterns of highly expressed (top 10%) mammalian genes 

according to the Genbank sequence database.   It was determined that the codon usage 

patterns between P. luminescens and human genes were extremely different.  Therefore, 

to create an optimized version of the lux genes, the codon ratios were altered to more 

closely follow codon usage patterns within the human genome. Higher frequency 

codons were used more often while rare codons were eliminated from the sequence 

entirely.  Changes were made within the nucleotide sequence in a random fashion. This 

codon optimized sequence was further analyzed for potential regions that may act as 

target splice sites or other regulatory signals.  The sequence was then modified until all 

potential splice sites and the more obvious regulatory sequences were removed.  A 

comparison of the final codon optimized and wild type lux sequences was made.  Once 

the codon optimized sequence was finalized it was tested using the GENSCAN online 

algorithm that predicts protein expression levels of gene sequences in human cells by 

comparing the sequence to known highly expressed genes within the matrix specified 

(http://genes.mit.edu).  The results of this analysis were encouraging and a predicted a 

significant increase in expression on both transcriptional and translational levels.  

Further, although verification was not possible, GENSCAN predicted a cleavage of the 

first twenty amino acids of the wild type LuxA protein when expressed in mammalian 
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cells (Table 11).   This cleavage was eliminated in the codon optimized sequence and a 

full length product was predicted to form.  A seqence alignment of the wild type and 

codon optimized genes is shown in Figures 24 and 25.  The wild type and codon 

optimized luxA and luxB ratios for codon usage is shown in Table 8A and 8B. 

 

Construction of the Codon Optimized luxA and luxB Genes 

 To evaluate the potential impact of codon optimization on the expression of the 

bacterial luciferase genes in mammalian cells, codon optimized versions of each gene 

were synthesized in vitro.  To generate functional genes, single stranded 

oligonucleotides (80-106 bp) were designed that spanned the entire gene sequence with 

overlapping (18-23 bp) regions. Four oligonucleotides were placed into a single PCR 

reaction to amplify segments of the genes individually (Figure 22).  The two outside 

oligonucleotides were used as both template and primers for the amplification reaction 

and the internal oligos as template.  Resultant PCR products of the appropriate size 

were placed into a second PCR reaction and the fragments were then amplified to link 

the pieces together using the two outermost oligonucleotides as primers (Figure 22).  

Products of the correct size were again purified and TA TOPO cloned to generate pPA2 

and pPB2.  Complete sequence analysis was performed and revealed several introduced 

errors that were subsequently corrected by site directed mutagenesis.   
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Table 11.  GENSCAN transcription and translation prediction scores for expression   
       of the luxA and luxB in a human host.  (http://genes.mit.edu) 
   
 

 
I = initiation signal T = termination signal   CodRg = Coding Region score 
P = probability of an exon    Trans. = exon score 
*Score interpretation: 0-50 = weak       50-100 = moderate       >100 = strong 
 

Gene  Type  Begin  End    Length    I     T     CodRg       P           Trans.

luxA(wt)   1       61   1083        1023     45   42      791         0.7          67.01
luxA(op)   1         1       1083        1083     66   42     1910       0.88       181.78

luxB(wt)   1         1    984          984      51   38      585      0.97          46.37
luxB(op)   1         1        984          984      66   41     1952     0.99        185.60
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  WTA  1 atgaaatttggaaactttttgcttacataccaacctccccaattttctcaaacagaggta               

||||| || || |||||  |||| ||||| || |||||||| ||||| ||||| |||||  
  COA  1 atgaagttcggcaacttcctgctcacatatcagcctccccagttttcccaaaccgaggtc  
 
  WTA 61 atgaaacgtttggttaaattaggtcgcatctctgaggagtgtggttttgataccgtatgg  
         ||||| ||  |||||||  | || |||||||| |||||||| ||||| || ||||| ||| 
  COA 61 atgaagcggctggttaagctcggccgcatctccgaggagtgcggtttcgacaccgtgtgg  
 
  WTA121 ttactggagcatcatttcacggagtttggtttgcttggtaacccttatgtcgctgctgca  
          | |||||||| || ||||| ||||| ||  ||||||||||||||||||||||||||||  
  COA121 ctgctggagcaccacttcaccgagttcggcctgcttggtaacccttatgtcgctgctgct  
 
  WTA181 tatttacttggcgcgactaaaaaattgaatgtaggaactgccgctattgttcttcccaca  
         ||| | || ||||| || || ||| |||| || || ||||||||||| ||||| |||||  
  COA181 tatctgctcggcgccaccaagaaactgaacgtcggcactgccgctatcgttctccccacc  
 
  WTA241 ggcccatccagtacgccaacttgaagatgtgaatttattggatcaaatgtcaaaaggacga  
         ||||||||||| ||||| |||||| || ||||| ||  ||||||||||||| || || ||  
  COA241 ggcccatccagtccgccagcttgaggacgtgaacttgctggatcaaatgtccaaggggcgc 
 
  WTA301 tttcggtttggtatttgccgagggctttacaacaaggactttcgcgtattcggcacagat  
         |||||||| || || ||||| |||||||||||||||||||| ||||| |||||||| ||  
  COA301 tttcggttcggcatctgccgcgggctttacaacaaggacttccgcgtgttcggcaccgac 
 
  WTA361 atgaataacagtcgcgccttagcggaatgctggtacgggctgataaagaatggcatgaca  
         ||||| ||||| |||||| | || || || |||||||||||||| ||||||||||||||  
  COA361 atgaacaacagccgcgccctggccgagtgttggtacgggctgatcaagaatggcatgacc 
 
  WTA421 gagggatatatggaagctgataatgaacatatcaagttccataaggtaaaagtaaacccc  
         |||||||| |||||||| || ||||| || ||||||||||| || || ||||| |||||| 
  COA421 gagggatacatggaagccgacaatgagcacatcaagttccacaaagtcaaagtgaacccc 
 
  WTA481 gcggcgtatagcagaggtggcgcaccggtttatgtggtggctgaatcagcttcgacgact  
         || || || |||||||||||||| || ||||||||||||||||| ||||||   || ||| 
  COA481 gccgcttacagcagaggtggcgctcctgtttatgtggtggctgagtcagctagtaccact 
 
  WTA541 gagtgggctgctcaatttggcctaccgatgatattaagttggattataaatactaacgaa  
         ||||||||||||||||||||||| || |||||  |    ||||| || || ||||| ||  
  COA541 gagtgggctgctcaatttggcctccctatgatcctgtcctggatcatcaacactaatgag 
 
  WTA601 aagaaagcacaacttgagctttataatgaagtggctcaagaatatgggcacgatattcat  
         ||||| || || || |||||||| || |||||||||||||| || |||||||| |||||| 
  COA601 aagaaggcccagctcgagctttacaacgaagtggctcaagagtacgggcacgacattcat  
 
  WTA661 aatatcgaccattgcttatcatatataacatctgtagatcatgactcaattaaagcgaaa  
         || |||||||| ||| | || || || || || || || || ||||| || || || ||  
  COA661 aacatcgaccactgcctgtcctacatcacctccgtggaccacgactccatcaaggccaag 
 
 
  Figure 24.  Wild type and codon optimized luxA sequence alignment. 
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  WTA721 gagatttgccggaaatttctggggcattggtatgattcttatgtgaatgctacgactatt  
         |||||||||||||| ||||| |||||||||||||||   || ||||||||||| |||||  
  COA721 gagatttgccggaagtttctcgggcattggtatgatagctacgtgaatgctaccactatc 
 
  WTA781 tttgatgattcagaccaaacaagaggttatgatttcaataaagggcagtggcgtgacttt  
         ||||| || || ||||| || |||||||| || ||||| || ||||||||||| || ||  
  COA781 tttgacgactccgaccagaccagaggttacgacttcaacaaggggcagtggcgcgatttc 
 
  WTA841 gtattaaaaggacataaagatactaatcgccgtattgattacagttacgaaatcaatccc  
         || || |||||||| || ||||||||  | || || || ||||| ||||| ||||||||| 
  COA841 gtgttgaaaggacacaaggatactaacagacgcatcgactacagctacgagatcaatccc 
 
  WTA901 gtgggaacgccgcaggaatgtattgacataattcaaaaagacattgatgctacaggaata  
         ||||| || || ||||| || |||||||| || ||||| |||||||||||||| |||||  
  COA901 gtgggcacccctcaggagtgcattgacatcatccaaaaggacattgatgctaccggaatc 
 
  WTA961 tcaaatatttgttgtggatttgaagctaatggaacagtagacgaaattattgcttccatg  
         || || || |||||||||||||| ||||| ||||| || ||||| || || ||||||||| 
  COA961 tccaacatctgttgtggatttgaggctaacggaaccgtggacgagatcatcgcttccatg 
 
 WTA1021 aagctcttccagtctgatgtcatgccatttcttaaagaaaaacaacgttcgctattatat  
         |||||||||||||| |||||||||||||| || || || || |||||    ||  | || 
 COA1021 aagctcttccagtccgatgtcatgccattcctcaaggagaagcaacgcagcctcctgtac  
 
 WTA1081 tag 
         ||| 
 COA1081 tag 
 

Figure 24. Continued
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WTB  1 atgaaatttggattgttcttccttaacttcatcaattcaacaactgttcaagaacaaagt  
       ||||| || ||| |||||||||||||||||||||| || || ||||| || || |||||  
COB  1 atgaagttcggactgttcttccttaacttcatcaactccaccactgtgcaggagcaaagc 
 
WTB 61 atagttcgcatgcaggaaataacggagtatgttgataagttgaattttgaacagatttta  
       || || ||||||||||| || || |||||||| || ||| |||| || || |||||  |  
COB 61 atcgtgcgcatgcaggagatcaccgagtatgtggacaagctgaacttcgagcagatcctg 
 
WTB121 gtgtatgaaaatcatttttcagataatggtgttgtcggcgctcctctgactgtttctggt  
       ||||| || || || ||||| || ||||| ||||||||||||||||||||||| || ||  
COB121 gtgtacgagaaccacttttccgacaatggcgttgtcggcgctcctctgactgtgtccggc 
 
WTB181 tttctgctcggtttaacagagaaaattaaaattggttcattaaatcacatcattacaact  
       || ||||||||  | || ||||| || |||||||| ||  | || |||||||| || ||| 
COB181 ttcctgctcggcctgaccgagaagatcaaaattggctccctgaaccacatcatcaccact 
 
WTB241 catcatcctgtcgccatagcggaggaagcttgcttattggatcagttaagtgaagggaga  
       ||||||||||||||||| || ||||| |||||| |  |||||||| | || || |||||| 
COB241 catcatcctgtcgccatcgctgaggaggcttgcctgctggatcagctgagcgaggggaga 
 
WTB301 tttattttagggtttagtgattgcgaaaaaaaagatgaaatgcatttttttaatcgcccg  
       || ||  | ||||| || |||||||| || || || || ||||| ||||| || |||||  
COB301 ttcatcctggggttcagcgattgcgagaagaaggacgagatgcactttttcaaccgccct 
 
WTB361 gttgaatatcaacagcaactatttgaagagtgttatgaaatcattaacgatgctttaaca  
       || |||||||| |||||||| ||||||||||| || || ||||||||||| ||| | ||  
COB361 gtggaatatcagcagcaactgtttgaagagtgctacgagatcattaacgacgctctgacc 
 
WTB421 acaggctattgtaatccagataacgatttttatagcttccctaaaatatctgtaaatccc  
       || ||||| || || || || || || || || |||||||||||||| || || || ||| 
COB421 accggctactgcaaccccgacaatgacttctacagcttccctaaaatctccgtcaacccc 
 
WTB481 catgcttatacgccaggcggacctcggaaatatgtaacagcaaccagtcatcatattgtt  
       || ||||| || |||||||| |||||||| ||||| || || ||||||||||| || ||  
COB481 cacgcttacaccccaggcggccctcggaagtatgtcaccgctaccagtcatcacatcgtg 
 
WTB541 gagtgggcggccaaaaaaggtattcctctcatctttaagtgggatgattctaatgatgtt  
       |||||||| ||||| ||||| || ||||||||||||||||||||||| || || || ||  
COB541 gagtgggctgccaagaaaggcatccctctcatctttaagtgggatgactccaacgacgtg 
 
WTB601 agatatgaatatgctgaaagatataaagccgttgcggataaatatgacgttgacctatca  
       ||||| || || ||||| ||||| || ||||| || || ||||||||||||||||| ||  
COB601 agatacgagtacgctgagagatacaaggccgtggctgacaaatatgacgttgacctgtcc 
 
WTB661 gagatagaccatcagttaatgatattagttaactataacgaagatagtaataaagctaaa  
       || || ||||| ||| | |||||  | |||||||| |||||||| || || || |||||  
COB661 gaaatcgaccaccagctgatgatcctggttaactacaacgaagacagcaacaaggctaag 
 
 
Figure 25.  Wild type and codon optimized luxB sequence alignment. 
 
 



 120

 
WTB721 caagagacgcgtgcatttattagtgattatgttcttgaaatgcaccctaatgaaaatttc  
       || ||||| || || || ||||| || || || ||||||||||||||||| || || ||| 
COB721 caggagacccgcgccttcattagcgactacgtgcttgaaatgcaccctaacgagaacttc 
 
WTB781 gaaaataaacttgaagaaataattgcagaaaacgctgtcggaaattatacggagtgtata  
       || || || ||||| ||||| || || || |||||||||||||| || || ||||||||  
COB781 gagaacaagcttgaggaaatcatcgccgagaacgctgtcggaaactacaccgagtgtatc 
 
WTB841 actgcggctaagttggcaattgaaaagtgtggtgcgaaaagtgtattgctgtcctttgaa  
       ||||| |||||| |||| || || ||||| ||||| || |||||  |||||||||||||  
COB841 actgctgctaagctggccatcgagaagtgcggtgctaagagtgtcctgctgtcctttgag 
 
WTB901 ccaatgaatgatttgatgagccaaaaaaatgtaatcaatattgttgatgataatattaag  
       |||||||||||  ||||||||||||| || || ||||| ||||| || || ||||||||| 
COB901 ccaatgaatgacctgatgagccaaaagaacgtcatcaacattgtggacgacaatattaag 
 
WTB961 aagtaccacatggaatatacctaa  
       |||||||||||||| || |||||| 
COB961 aagtaccacatggagtacacctaa 

 

Figure 25.  Continued 
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In Vitro Transcription and Translation of the Wild Type and Codon Optimized 

luxA 

 To quickly evaluate the translation efficiency in a mammalian cell system of the 

codon optimized and wild type luxA genes, in vitro transcription and translation analysis 

was performed.  The pIRES expression vector contains a bacteriophage T7 promoter 

region upstream of the MCS (A). This promoter was used to generate runoff transcripts 

of the wild type and codon optimized luxA sequences.  The transcript was then 

translated in vitro using rabbit a reticulocyte lysate system that incorporates a 35S 

methoinine into the polypeptide sequence and allows for easy detection. The codon 

optimized LuxA protein (COA) was determined to be produced by this system 

approximately twenty fold over the wild type LuxA protein (Figure 26). 

 

In Vivo Expression of the Wild Type Versus Codon Optimized luxA and luxB 

Genes  

 To evaluate the optimized genes in vivo, wild type and codon optimized versions 

of the luxA and luxB were cloned into the pIRES mammalian expression vector to allow 

for bicistronic expression of both genes with only one selection marker.  Twenty 

 stable clones (HEK293 cells) were selected for each construct along with one negative 

vector control.  At passage three post transfection, each clone was tested in vitro for 

bioluminescence upon the addition of n-decanal and FMNH2.  These data revealed that 

each clonal cell line varied in its bioluminescence levels (Figure 27).  The average 

bioluminescence from each gene combination is shown in Figure 28.  Based on these 
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Figure 26.  In vitro translation products of the wild type luxA and codon optimized luxA 

genes.  Products were labeled by the incorporation of [35S] methionine.   
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Figure 27.  Bioluminescence measurements taken at passage three post transfection for 

the twenty clones for each construct.  A.  WTA/WTB clones                       
B.  COA/WTB clones  C. COA/COB Clones. 
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Figure 27. Continued 
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Figure 27. Continued 
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Figure 28.  Average bioluminescence from stably transfected HEK293 cell 
lines. (20 clones tested for each clone type in triplicate). 
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data, the two or three clones producing the highest bioluminescence levels were chosen 

for further study.   At passage six, each clone selected was expanded into triplicate 

75cm2 tissue culture flasks.  From these cells, total genomic DNA, total RNA and 

soluble proteins were extracted for further analysis.   

 

Determining Insertion Number in HEK293 Clones 

  To determine gene insertion number in each clone, a southern blot was 

performed using luxA probes generated to both the wild type and codon optimized luxA 

sequences.  As shown in Figure 29, all of the cell lines tested had either one or two 

copies of the gene inserted with the exception of the COA/COB3 clone.  To simplify 

further measurements, this clone was then disregarded for further bioluminescence 

comparisons. 

 

Determination of luxA Message Levels in HEK293 Clones 

 To determine transcript levels, total RNA was extracted and northern blot analysis 

was performed.  The same probes that were used for Southern blot analysis were used in 

these experiments as well.   Transcript levels were determined to be approximately 

equal with the exception of the WTA/WTB1 clone that had a lower amount of luxA 

transcript (Figure 30).  The vector (NC) control had little to no background 

hybridization (Figure 30).  The ethidium bromide stained 28S was included as an RNA 

loading reference.   
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Figure 29.  Southern blot analysis on the stable HEK293 clones harboring either wild 

type luxA and luxB, codon optimized luxA and wild type luxB or codon 
optimized luxA and luxB.  The blot was probed with a 300 bp [32P] labeled 
probe of both the wild type and codon optimized luxA sequence.   
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Figure 30.  Northern blot analysis of the stable HEK293 clones harboring either wild 

type luxA and luxB, codon optimized luxA and wild type luxB or codon 
optimized luxA and luxB.  Ethidium bromide stained 28S rRNA was used to 
ensure RNA quality and loading controls.  
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Determination of LuxA Protein Levels in HEK293 Clones 
 

Total soluble proteins from each clone were isolated by a series of freeze (liquid 

N2) thaw (37°C) cycles. Two hundred fifty micrograms of total protein were run on an  

SDS-PAGE gel and Western blot analysis was performed using a polyclonal luxA 

antibody (Figure 31).  LuxA protein was not detected in any of the wild type luxA and 

luxB clones, only detected at very low levels in codon optimized luxA with wild type 

luxB clones, but readily detectable when both genes were codon optimized (Figure 31).  

This increase in LuxA protein concentration was observed despite the fact that the 

levels of luxA mRNA transcript were relatively equivalent for all of the clones tested 

(Figure 32).   

 

Bioluminescence Levels from Wild Type Versus Codon Optimized Luciferase 

Genes 

Bioluminescence levels were evaluated on whole cell extracts upon the addition 

of n-decanal and FMNH2.  Each clone was tested in triplicate from individual 35cm2   

wells.  Bioluminescence values were found to be greater than two orders of magnitude 

higher in cell lines harboring both a codon optimized luxA and luxB (COA/ COB) over 

that of the cell lines harboring the wild type genes (WTA/WTB) (Figure 33).  The 

bioluminescence levels obtained increased in the order WTA/WTB < COA/WTB < 

COA/COB.   Based on these data it was determined that codon optimization had a 

significant effect (p<0.05) on the bioluminescence potential from HEK293 cells.
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Figure 31.  Western blot analysis of HEK293 clones harboring either wild type luxA 

and luxB, codon optimized luxA and wild type luxB or codon optimized luxA 
and luxB.  The β-actin protein was used as a loading control. 
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Figure 32.  Comparison of mRNA levels and protein levels in each of the stable 
HEK293 cell line clones.  A.  Northern blot of total RNA (20µg) from stably 
transfected HEK293 cells probed with 32P labeled complimentary luxA 
probes.  B.  Western blot of total soluble protein (250 µg) from stably 
transfected HEK293 cells immunoblotted with a polyclonal luxA antibody.   
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Figure 33.  Average bioluminescence from individual HEK293 clones stably 

transfected with WTA/IRES/WTB, COA/IRES/WTB or COA/IRES/COB.   
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Discussion  

 Codon usage regulates gene expression at the level of translation and the usage 

patterns between species are not conserved (Kurland, 1991).  This is especially true 

between genes derived from eukaryotes versus those from prokaryotes.  Therefore, to 

efficiently express the bacterial lux genes in mammalian cells, the nucleotide sequence 

was altered in such a way as to create a “humanized” form of the gene without altering 

the amino  acid sequence.  This approach has been used previously to optimize the 

expression of both GFP and Renilla luciferase proteins for expression in mammalian 

cells (Zhang et al., 2002 and Gruber and Wood, 2000).  The design of this new 

sequence was carefully determined, removing all potential splice sites and most 

regulatory regions. After the final codon optimized sequence was determined, it was 

evaluated using the GENSCAN prediction algorithm to determine the potential 

 expression efficiency in a human cell.  According to the output from this program the 

overall expression of the codon optimized lux genes would be significantly improved 

versus the wild type.  The increase in expression was predicted to be caused by an 

increase in both transcription and translation efficiency.  Furthermore, it was predicted 

that the first sixty bases (20 amino acids) of the wild type luxA gene would be 

completely eliminated when expressed in mammalian cells.  Considering that this 

region of the LuxA protein holds most of the catalytic properties (active site) for the 

bacterial luciferase enzyme, this would be devastating for its expression.  If this were 

the case, the low expression levels observed for the LuxAB fusion protein, shown 

earlier, may be better explained in part by a nonfunctional protein being formed rather 

than inefficient folding or heat liability.    
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 To test the expression of the codon optimized genes, modified versions were 

required.  However, because the necessary changes were to numerous to achieve by site 

directed mutagenesis, a complete in vitro gene synthesis protocol was pursued. Large 

oligonucleotides (80-106 bp) were designed with overlapping (18-22 bp) regions.  The 

original plan was to amplify all of the oligonucleotides together in one PCR reaction 

according to methods set by Prodromou and Pearl (1992).  However, because of the 

larger size of the lux genes (approximately 1000 bp each), this was not possible.  As an 

alternative, the gene was synthesized in parts and the subsequently linked by a second 

round of PCR.  The two outside oligonucleotides were used as both template and 

primers for each reaction.  After some experimental effort, it was determined that for 

optimal amplification the internal oligonucleotides (template) should be added at a 

concentration that equaled 100 fold less than the outside oligos. Amplification products 

of the correct size were cloned and sequenced.  Unfortunately, sequence analysis 

revealed several base substitution mutations within all clones tested.  These mutations 

were present despite the fact that care was taken by using a Pfu polymerase that has 

proof reading abilities. This finding was disappointing while not surprising given that 

two consecutive PCR reactions were required to obtain the final gene product resulting 

in > 60 cycles of amplification.  To eliminate these errors and produce the proper 

sequence, site directed mutagenesis was performed. 

   It was determined  previously through work accomplished in S. cerevisiae and 

mammalian cells for the expression of the bacterial luciferase genes that IRES elements 

may be an efficient way to express independent proteins as single bicistronic transcripts. 

This expression format provides the most natural expression of the genes, most closely 
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mimicking the polycistronic form found in the bacterial operon.  Therefore, experiments 

were set up to compare the codon optimized and wild type luxA and luxB genes in 

mammalian cells using an IRES based expression vector.  The expression vector used 

was designed to highly express two independent genes under the control of a single 

constitutive encephalomyocarditis virus (ECMV) promoter region by linking two 

multicloning sites fused to either side of an internal ribosomal entry site (IRES).  The 

IRES element allows for the translation of two consecutive open reading frames from 

one messenger RNA (Jang et al., 1990; Jackson et al., 1990; Rees et al., 1996).  By 

constructing plasmids with different combinations of the codon optimized luxA and 

luxB with their wild type counterparts, a direct comparison of the genes was made.   

To quickly determine if a difference in translation efficiency could be detected 

between the optimized and wild type luxA genes, in vitro transcription and translation 

analysis was performed.  The codon optimized luxA gene (COA) was detected 

approximately twenty fold over wild type (Figure 26).  This finding supported the 

results that shown earlier with the in vitro generation of the wild type LuxA protein.  

Since the rabbit reticulocyte lysate translation system is used to mimic mammalian 

translation machinery in vitro, these results indicated that the codon optimization would 

indeed make a significant impact on the translation efficiency of the lux proteins in 

mammalian systems.   

 HEK293 cells were transfected with the WTA/ WTB, WTA/ COB or COA/COB 

constructs and stable cell line clones were selected by antibiotic resistance. Twenty 

stable clones for each luxA and luxB combination were selected and bioluminescence 

levels were determined upon the exogenous addition of n-decanal and FMNH2.  The 
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bioluminescence significantly increased in the order WTA/WTB < COA/WTB < 

COA/COB.  These data indicated that codon optimization had made a significant 

impact on the potential bioluminescence levels obtained from mammalian cells.  To 

analyze this data further, the two or three brightest clones were chosen for further study.  

From these cells, total genomic DNA, total RNA and total soluble proteins were 

extracted.      

 Foreign gene integration in mammalian cells is a random event, therefore it is 

possible to have more than one insertion of the construct occur during each transfection.  

Since integration is fairly inefficient, the copy number per cell is generally very low.  

However, because of this possibility, it was important to determine the copy number of 

the inserted genes for at true comparison.  To accomplish this, Southern blot analysis 

was performed on each of the seven clones that produced the highest bioluminescence 

levels.  All of the cell lines tested had either one or two copies of the gene inserted with 

the exception of the COA/COB3 clone which had three.  To simplify further 

measurements, this clone was then disregarded for further bioluminescence 

comparisons.  Nevertheless, it should be noted that increased copy number does not 

correlate with increased expression levels.  Numerous other factors have been shown to 

impact from gene expression at a greater level. 

 The overall amount of luxA mRNA transcript was determined by Northern blot 

analysis.  Transcript levels were relatively equal with the exception of the WTA/WTB1 

clone that produced significantly lower amounts of luxA mRNA.  Since each construct 

contained the same promoter (ECMV) element and initiation signals, it would be 

expected that each clone would have approximately equal amounts of transcript for the 
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introduced genes.  However, cis acting regulatory elements could potentially interfere 

with transcription initiation and overall transcript levels in vivo.  These types of 

interferences would vary based on where within the chromosome the genes were 

integrated.  Therefore, the position effect of various clones could explain the lower 

amount of transcript detected with the WTA/WTB1 clone.  Other factors that can 

potentially impact the amount of RNA transcript would be a direct result of increased 

RNA degradation of certain mRNA sequences that can occur.  This type of RNA 

instability would be less likely after codon optimization because of the removal of 

several AU rich target degradation regions.  However, because the lower amount of 

transcript was not seen in both the WTA/WTB clones, this scenario is unlikely. 

To evaluate the overall protein concentrations and determine translation 

efficiency of each construct, Western blot analysis was performed.  Total soluble 

proteins from each clone were isolated and quantified.  Western blot analysis was 

performed using a polyclonal luxA antibody (Figure 31). The LuxA protein was not 

detectable from WTA/WTB clones and faintly visible in the COA/WTB clones.  

However, large amounts of LuxA protein were detected from the COA/COB clones 

which harbored a construct carrying codon optimized versions of both genes.  This 

finding was intriguing and unexpected.  Since the only available antibody was raised 

against a polypeptide of LuxA, it was expected that the constructs harboring the 

COA/WTB and COA/COB would produce equal amounts of LuxA protein.  Since this 

was not the case, these data indicated that the codon optimization of both genes might 

infer stability on the heterodimeric complex that makes up the luciferase enzyme.  This 
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increased stability of the complex may have allowed the proteins to be detected in the 

Western blot while the other construct was not detected.   

Perhaps the most valuable measurement to determine if codon optimization was 

a success is the amount of enzyme activity that could be obtained from each construct.  

Bioluminescence levels were evaluated on whole cell extracts upon the addition of n-

decanal and FMNH2.  Average bioluminescence values were found to be greater than 

two orders of magnitude higher in cell lines harboring both a codon optimized luxA and 

luxB (COA/COB) over that of the cell lines harboring the wild type genes (WTA/WTB) 

(Figure 33).  While bioluminescence levels were significantly higher in clones 

expressing COA and WTB versus WTA and WTB, the optimal bioluminescence was 

obtained from clones harboring optimized versions of both genes (Figure 33).  These 

data further support the stabilization conclusion of the heterodimeric protein. Based on 

these data it was determined that codon optimization had a significant effect on the 

protein expression in HEK293 cells. 

  In conclusion, the codon optimization of the luxA and luxB genes was 

successful in increasing the overall expression levels of the individual proteins.  This 

increase in protein quantities resulted in a significant increase in bioluminescence from 

cell lines harboring these constructs.  Furthermore, the bioluminescence levels from 

codon optimized luxA and luxB provide adequate bioluminescence for the proof in 

principle data needed for the future development of reliable reporter constructs for 

analyte sensing in mammalian cells. 
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CHAPTER 4 
 

EVALUATION OF MAMMALIAN CELLS FOR FMNH2 AVAILABILITY AND 
STABILITY OF BACTERIAL LUCIFERASE IN STABLE MAMMALIAN CELL 

LINES 
 
 

Introduction 

 The bacterial luciferase enzyme system has several advantages over other 

bioreporter systems available.  Of these advantages, the ability to directly measure in 

vivo gene expression without the disruption of the reporter cell or loss of cell viability is 

perhaps the most obvious benefit.  This property has made the lux system sought out by 

many for various research applications using prokaryotic cells.  As a result, numerous 

biosensor systems utilizing the bacterial luciferase system have been developed and are 

currently in use. However, as discussed earlier, the bacterial luciferase system has not 

yet been efficiently expressed in mammalian cell lines and therefore the full potential of 

this technology is not yet realized.  The obstacles encountered by researchers trying to 

employ the bacterial lux system in eukaryotes have included low expression levels of 

the Lux proteins and limited amounts of substrates and cofactors required for the 

reaction within the cells.   

 The bacterial luciferase enzyme system consists of a multi-enzyme complex 

encoded by five genes that provide the luciferase enzyme as well as the luciferin 

(aldehyde) substrate for the reaction.  However, this reaction additionally requires the 

host cell metabolism to provide adequate amounts of molecular O2, the reducing power 

of FMNH2 and the energy of ATP as co-factors and substrates.  To produce 

bioluminescence, the reaction goes through several intermediate steps.  With a 
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stoichiometry of 1:1:1, the α and β subunits bind with a reduced flavin molecule 

(FMNH2) to form a C4a hydroxyflavin.  As this hydroxyflavin becomes dehydrated to 

FMN, a blue-green light is emitted (Baldwin et al., 1979).  Because of the stoichiometry 

of the reaction and its absolute requirement, the FMNH2 molecule is considered to be an 

additional substrate for the bioluminescence reaction rather than a co-factor.  On the 

other hand, the luciferase reaction itself can proceed in the absence of the decal-

aldehyde substrate, but its presence significantly increases the light output kinetics and 

therefore is required for bioreporter applications (Volkova et al., 1999).   

 In bacteria, the availability of FMNH2 is not a limiting factor for the 

bioluminescence reaction.  Nevertheless, in several bioluminescent strains of bacteria, a 

flavin oxidoreductase gene (frp) has been identified in close proximity to the lux 

operon.  This enzyme has the ability to reduce pools of FMN within the cell to FMNH2 

and then recycle itself to catalyze further reductions.  Although the availability of 

FMNH2 in yeast was shown to be a limiting substrate for the bioluminescence reaction 

in these cells, it was subsequently shown that yeast could be further engineered to 

express the flavin oxidoreductase gene (frp) from Vibrio harveyi to overcome this 

limitation (Gupta et al., 2003).  This was the first illustration of the use of a flavin 

reductase enzyme to improve the bioluminescence output from an engineered lux 

bioreporter cell. Although the availability of the FMNH2 substrate has not been 

completely evaluated in mammalian cells, it has been hypothesized to be one of the 

major problems leading to inefficient expression of the bacterial luciferase system in 

eukaryotes.  Furthermore, to this point, all mammalian cell line experiments have been 

conducted with the exogenous addition of FMNH2 or the enzymes required to produce 
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this substrate.  In order to efficiently express the bacterial luciferase system in 

mammalian cells, the availability of FMNH2 needs to be fully evaluated and the 

possibilities available to overcome this limitation need to be explored.   

 For the future generation of a useful mammalian bioreporter cell line for gene 

expression analysis or target analyte monitoring, the engineered cell line not only needs 

to  be able to efficiently express the lux genes but, it must also remain stable for long 

periods of time in the absence of antibiotic selection.  Some of the proposed 

applications for this technology may require that the cells remain stable for extended 

periods with very little to no intervention.  Therefore, the overall stability of engineered 

mammalian cell lines harboring the lux genes needs to be evaluated to completely 

understand the limitations of this technology.  Therefore, in this research effort, the 

following objectives will be met: 

 

• Determine to what extent FMNH2 limits the bioluminescence reaction in 

mammalian cell lines expressing the bacterial luciferase enzyme. 

• Obtain a bioluminescent cell line that can overexpress the flavin oxidoreductase 

enzyme from Vibrio harveyi. 

• Evaluate the ability of this engineered cell line to produce adequate levels of 

FMNH2 for the bioluminescence reaction. 

• Evaluate the overall stability of the constructs within stably integrated 

mammalian cell lines engineered with the bacterial luciferase genes for long 

term maintenance without antibiotic pressure. 
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Materials and Methods 

Cell Culture and Plasmid Maintenance 

 All relevant constructs and strains, bacterial and mammalian, used in this study 

are outlined in Table 12.  E. coli cells were routinely grown in Luria Bertani (LB) 

(Fisher Scientific, Pittsburgh, PA) broth containing the appropriate antibiotic selection 

with continuous shaking (200 rpm) at 37°C.  Kanamycin and Ampicillin were used at a 

final concentration of 50µg/ml and 100µg/ml, respectively.   

 All cell culture reagents and media were obtained from Sigma Aldrich (St. 

Louis, MO) unless otherwise stated.  Mammalian cells were grown in the appropriate 

complete growth media containing 10% heat-inactivated horse serum, 0.01mM non-

essential amino acids and a Dubelco’s minimal media base (DMEM) (M4655).  Cells 

were routinely grown at 37° C in a 5% CO2 atmosphere to confluency and split every 

three to four days by trypsinization at 1:4 ratio and transferred into fresh complete 

growth media.  Appropriate concentrations of antibiotic were used to maintain 

constructs after transfection according to susceptibility kill curve analysis.  Kill curves 

were completed for each lot of antibiotic.  The range of typical concentrations used for 

the selection of HEK293 cell line clones was between 450µg/ml and 650µg/ml of 

Neomycin G418 and 250µg/ml and 400µg /ml of Zeocin (Invitrogen Corporation, 

Carlsbad, CA). 
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Table 12.  Constructs and Strains used in this study. 
Plasmid/Strain 

Designation 
 

Relevant Genotype/ Characteristics 
 

Source 
Strains   
E. coli   
 
DH5α 

Φ80dlacZ∆M15, recA1, endA1, gyrA96, thi-1, 
hsdR17 (rK-, mK+), supE44, relA1, deoR, 
∆(lacZYA-argF)U169 

 
Gibco, BRL 

 
 
TOP 10 

 
F-, mcrA ∆(mrr-hsdRMS-mcrBC) Φ80/lacZ 
∆lacX74 deoR recA1 araD139 ∆(ara-leu) 7697 
ga/K rpsL endA1 nupG 

 
 

Invitrogen 

 
Mammalian Cells  

  

 
HEK293 

Permanent line of primary human embryonal 
kidney transformed by sheared human adenovirus 
type 5 (Ad 5) DNA. ATCC# CRL-1573 

 
ATCC 

   
 
Plasmids 

  

   
 
 
pCR4-TOPO 

 
TOPO TA cloning vector for easy cloning of 
PCR products generated with 3′ A overhangs 
designed for sequencing Kmr, Ampr 

 
 

Invitrogen 

 
 
 
pIRES 

 
Mammalian expression vector containing the 
internal ribosomal entry site (IRES) of the 
encephalomyocarditis virus between two multi-
cloning sites which allows for the expression of 
two genes under the control of a single 
constitutive CMV promoter, Neomycin G418 
antibiotic selection marker and a pUC ori and 
Kmr for replication in E.coli 

 
 
 

Clontech 

 
 
pcDNAHISMAX 

 
Mammalian expression vector allows for 
constitutive expression under the control of a 
constitutive CMV promoter contains a SPC163 
translational enhancer, Zeocin antibiotic selection 
marker and pUC ori and Ampr for replication in 
E. coli. 

 
 
 

Invitrogen 

 
 
pcDNA3.1Zeo 

 
Mammalian expression vector allows for 
constitutive expression under the control of a 
constitutive CMV promoter, Zeocin antibiotic 
selection marker and pUC ori and Ampr for 
replication in E. coli. 

 
 

Invitrogen 

 
pCR4frp 

 
pCR4 TA cloning vector harboring the frp from 
Vibrio harveyi. 

 
This Study 
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Plasmid/Strain 
Designation 

 
 
Relevant Genotype/ Characteristics 

 
 
Source 

 
 
pMaxfrp 

 
 
pcDNAHISMAX vector harboring the frp gene 
from V. harveyi.  

 
 

This Study 

 
 
pcfrpZeo 

 
 
pcDNA vector harboring the frp gene from V. 
harveyi. 

 
 

This Study 

 
Mammalian Cell Line 
Constructs 
 
 
COA/COB(2)  

 
 
 
 
 
HEK293 cell lines stably transfected with the 
pCOA-I-COB plasmid and selected by G418. 

 
 
 
 
 

Chapter 3 

 
frp (1-9)       

 
COA/COB2 cell line stably transfected with the 
pcDNAfrp plasmid and selected by G418 and 
Zeocin. 

 
 

This Study 

 

Table 12. Continued 
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Construction of a Mammalian Expression System for frp 

 To generate a strain to overexpress the flavin oxidoreductase enzyme in 

mammalian cells, the frp gene was amplified from V. harveyi strain VHU08996 DNA.  

The gene was then TA TOPO cloned into the pCR4-TOPO cloning vector according to 

the manufacturer’s instructions  to generate pCR4frp (Invitrogen Corporation, Carlsbad, 

CA) and subsequently cut and ligated into the pcDNAHISMAX mammalian expression 

vector using introduced unique 5`BamHI and 3` NotI restriction sites to generate 

pMaxfrp (Figure 34A) (Invitrogen Corporation, Carlsbad, CA).  This expression vector 

possesses an SPC163 untranslated sequence upstream of the gene insert.  This sequence 

has been shown to enhance translation between four and five fold over expression 

without the enhancer. 

 A second plasmid was generated to express the frp gene from V. harveyi by 

cloning the gene via the introduced unique 5`BamHI and 3`NotI restriction sites into the 

pcDNA3.1Zeo mammalian expression vector to generate pcfrpZeo (Figure 34B).    

 

Ligation Reactions 

 Plasmid vectors and inserts were digested (2-6 h) with the appropriate enzymes 

(Promega Corporation, Madison, WI).  Linearized vectors were dephosphorylated using 

a calf alkaline phosphatase enzyme according to the manufacturer’s instructions 

(Promega Corporation, Madison, WI).  Both vector and insert DNA were gel purified 

from 1% agarose gels using the Geneclean gel extraction kit (Bio101, Carlsbad, CA).  

The recovered DNA was then quantified using the Dyna Quant 200 fluorometer (Hoefer 

Pharmacia Biotech Incorporated, San Francisco, CA) and ligations were set  
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Figure 34.  Schematic diagram of the expression vectors used to express the flavin 

oxidoreductase enzyme (frp) from V. harveyi in mammalian cells.  A.  
Expression in the pcDNAHISMAX that provides an SPC163 translational 
enhancer region for enhanced translation and protein expression driven from 
a constitutive CMV promoter region.  B.  Expression in the pcDNA3.1Zeo 
provides high constitutive expression from a CMV promoter.   
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up as 20µl reactions using a 3:1 molar ratio of insert to vector DNA.  The ligation 

reactions were then incubated at 17ºC overnight.   

 

Electroporation 

 Electrocompetent cells were prepared as outlined by the manufacturer (BTX, 

San Diego, CA).  Electroporations were performed using the BTX Electroporator 600 

with the following conditions: 40µl cells, 1-2µl ligation mixture, a 2.5kV pulse for  4.7 

ms using a 2 mm gap cuvette.  After the pulse, cells were immediately resuspended in 1 

ml of sterile LB and allowed to recover for 1 h at 37ºC (200 rpm).  Cells were then 

plated on selective media containing the appropriate antibiotic. 

 

Selection of Bacterial Clones 

 Resistant colonies were picked after 24 h and expanded to patches on grid 

plates.  To test for proper insert presence and orientation, rapid boil mini-preps were 

done followed by the digestion of the plasmid with the appropriate restriction enzymes 

according to the manufacturer’s instructions (Promega Corporation, Madison, WI).  

Digestions products were run on 1% agarose gels to determine if the banding pattern 

indicated the insert presence and proper orientation.  Upon identification of correct 

clones, the plasmids were further purified using the Wizard midiprep plasmid 

purification system according to the manufacturer’s protocol (Promega Corporation, 

Madison, WI) and sequenced. 
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Sequencing 

 All constructs were sequenced to ensure their integrity.  Sequencing was done in 

the University of Tennessee Molecular Biology Service Facility using an Applied 

Biosystems 3100 Genetic Analyzer sequencer (Foster City, CA). 

 

Transfection of Mammalian Cells 

 Transfection of mammalian cell lines was done in six well poly-D-lysine coated 

tissue culture plates (Fisher Scientific, Pittsburgh, PA).  Cells were split from stock 

cultures and inoculated into each well at approximately 1 X 105 cells per well in 

complete growth media.  The plate was then placed at 37ºC in a 5% CO2 atmosphere for 

1-2 days until the cells became 80-90% confluent.  The day of transfection, the media 

was refreshed.  DNA for transfections was purified from 100ml overnight E. coli 

cultures using the Wizard Purefection plasmid purification kit to remove endotoxins 

according to the manufacturer’s instructions (Promega Corporation, Madison, WI).  For 

chromosomal integration, the plasmid DNA was linearized before transfection to 

increase proper integration. 

HEK293 Cells 
 Purified plasmid DNA (3.2µg) was mixed into 200µl of serum free DMEM in a 

1.5 ml tube.  In a second tube, 8µl of Lipofectamine 2000 reagent (Invitrogen 

Corporation, Carlsbad, CA) was added to a 200µl of serum free DMEM.  The 

lipofectamine mixture was added to the DNA mixture within 5 min and incubated at 

room temperature for 20 min.  The entire mixture (400µl total) was added directly to the 

appropriate well on the plate and rocked back and forth to ensure adequate mixing.  
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Twenty-four hours post transfection, the complexes were removed and the media was 

replaced with fresh complete growth media supplemented with the appropriate 

antibiotic for selection of the two co-transfected plasmids. 

 

Selection of Mammalian Cell Clones 

 Twenty-four hours post transfection, selective media was added to all wells and 

refreshed every three to four days.  Because these transfections were conducted on a 

cell line that already harbored a Neomycin G418 resistance plasmid, the G418 was 

added at a concentration to maintain the plasmid and Zeocin was added to select for the 

second plasmid.  When the COA/COB2 clone was co-transfected with the pMaxfrp, 

resistant clones never appeared within the transfected wells.  Therefore, the pcfrp clone 

was generated to determine if the overexpression of the gene was causing a lethal 

product for the cells.  Within two weeks after co-transfection with this plasmid 

construct, all control wells were dead and the transfected cells were forming small 

colonies on the plate surface.  Colonies were separated from the rest of the well by 

placing a sterile chamber around the cell mass and sealing it with silicon (Fisher 

Scientific, Pittsburgh, PA).  The media could then be removed and each colony could be 

trypsinized and transferred to individual tissue culture flasks.  To accomplish this, after 

washing with a PBS solution, 200µl of a 1X Trypsin-EDTA solution (Sigma Aldrich, 

St. Louis, MO) was added directly to the chamber and incubated at 37°C for 3 to 5 min.  

The trypsin-EDTA solution was then replaced with complete growth media and the 

cells were transferred to a 25cm2 tissue culture flask for propagation.  Each clone was 

given a number and expanded to individual cell lines.  Each line was split and 
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maintained as described earlier with the addition of selective media.  Nine cell lines 

were propagated in this manner. 

 

In Vitro Bioluminescence Assays 

 To evaluate the bioluminescence potential from each cell line clone, total 

proteins were extracted and in vitro enzyme (bioluminescence) assays were performed.  

To extract the proteins, the cells were first trypsinized from the plate or flask surface 

and resuspended into 2.0 ml Sarstedt tubes (Fisher Scientific, Pittsburgh, PA).  The cells 

were then spun down and washed two times in sterile phosphate buffered saline (PBS) 

to remove any residual media (Sigma Aldrich, St. Louis, MO).  Cell pellets were then 

resuspended into 1 ml 0.1M potassium phosphate buffered pH 7.8 and disrupted by 

three consecutive cycles of freeze (30 s liquid N2) thaw (5 min at 37ºC) extraction.  

After disruption, the cell debris was pelleted by spinning the samples at 14,000 X g for 

5 min and the supernatant was used in the bioluminescence assay.  To determine light 

intensity, the protein extract was mixed with 0.1mM NAD(P)H, 4µM FMN, 0.2% (w/v) 

BSA, 0.002% (w/v) n-decanal.  Bioluminescence was measured using the FB14 

luminometer (Zylux Corporation, Pforzheim, Germany) at a 1 s integration and reported 

as relative light units (RLU).  To evaluate the limitation of FMNH2 for the 

bioluminescence reaction, a flavin oxidoreductase enzyme (1U) isolated and purified 

from V. harveyi (Roche Scientific, Indianapolis, IN) was added to the mixture and light 

levels were measured again for comparison. 
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 Bioluminescence levels were determined by taking measurements from triplicate 

35 cm2 wells and recording the values as relative light units (RLU) using a 1 s 

integration time. 

 

Whole Cell Bioluminescence Assays 

 To evaluate the bioluminescence levels from intact cells, the adherent cell lines 

were first trypsinized from the flask or plate surface and resuspended in 2.0 ml 

Sardstedt tubes (Fisher Scientific, Pittsburgh, PA).  The cells were then spun down and 

washed two times in sterile phosphate buffered saline (PBS) to remove any residual 

media (Sigma Aldrich, St. Louis, MO).  Cell pellets were resuspended into 1 ml 0.1M 

potassium phosphate (pH 7.8).  The cells were then mixed 1:1 volume of the enzyme 

mix that consisted of:  0.2% BSA and 0.002% (w/v) n-decanal.  Bioluminescence was 

measured immediately using the FB14 luminometer (Zylux Corporation, Pforzheim, 

Germany) at a 1 s integration and reported as relative light units (RLU).   

 Bioluminescence levels were normalized between samples and cell lines by 

dividing the RLU measurement by the number of cells in the assay and reporting the 

bioluminescence as relative light units (RLU) per 1 X 105 cells.  The total cell count 

was determined by direct counting the samples by standard methods.  The cells were 

first mixed with a Trypan Blue stain (Sigma Aldrich, St. Louis, MO) and individual 

cells were counted under light microscopy with a hemocytometer. 
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Stability of the Bacterial Luciferase Constructs 

 In order to determine the overall stability of the HEK293 cell line clones 

expressing the bacterial luciferase genes, each line was grown in culture for > 40 

passages in the presence and absence of antibiotic selection.  Cell extract 

bioluminescence measurements were taken every fifth passage to compare light levels 

over time.   

 

Statistics  

 Statistical analysis of the data presented here was conducted using either the 

JMP (SAS Institute, Incorporated, Pacific Grove, CA) or Microsoft Excel (Microsoft, 

Seattle, WA) statistical software packages.  Graphs were made using Sigma Plot 

software (SPSS, SAS Institute, Incorporated, Pacific Grove, CA) or Microsoft Excel 

(Microsoft, Seattle, WA).  All error bars on graphs indicate one standard deviation of 

the mean.  Significant differences were determined using either t-test or 1 way ANOVA 

analysis at a level of α=0.05. Statistically different groups were indicated on graphs by 

letter. 

 

Results 

Evaluation of FMNH2 Bioavailability in Mammalian Cells 

 To determine the overall bioavailability of the FMNH2 substrate in mammalian 

cells, bioluminescence assays were performed and light measurements were taken 

before and after the addition of a purified flavin oxidoreductase enzyme.  This enzyme 

in the presence of FMN and NAD(P)H reduces the FMN to the required FMNH2 for the 



 156

reaction.  Bioluminescence levels from each of the cell line clones increased at least an 

order of magnitude after the addition of FMNH2 (Figure 35, maroon bars).  These data 

illustrated that FMNH2 was extremely limiting for the bioluminescence reaction from 

these engineered human cell lines.  However, in every case, the clones harboring the 

luxA and luxB genes alone were able to produce bioluminescence levels above 

background without the addition of the flavin oxidoreductase enzyme indicating that 

some FMNH2 was available within the cells for the reaction (Figure 35, blue bars).  

Nevertheless, to achieve optimal bioluminescence values and generate a useful 

bioreporter, the lack of available FMNH2 within mammalian cells needs to be 

addressed. 

 

Expression of the Flavin Oxidoreductase Enzyme 

 In an attempt to overcome this limitation, the COA/COB2 clone (brightest 

clone) was co-transfected with an frp gene that was isolated from V. harveyi and cloned 

into a mammalian expression vector containing a translational enhancer region 

upstream of the multi-cloning site.  Unfortunately, when COA/COB2 clones were co-

transfected with this plasmid, the HEK293 cells were not able to survive and as a result 

no clones were obtained from this construct.  As an alternative approach, the frp gene 

was cloned into and expressed constitutively from the pcDNA3.1Zeo vector that allows 

for high constitutive expression but does not contain the SPC163 enhancer region.  Nine 

stable cell line clones were obtained by resistance to toxic concentrations of both 

Neomycin G418 and Zeocin antibiotics simultaneously.  Resultant clones were 

expanded to individual cell lines and tested for bioluminescence potential.  
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Figure 35. Bioluminescence levels (RLU) from stable HEK293 clones before (blue bars)  and after 
(maroon bars) the addition of FMNH2. 
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 Bioluminescence levels were evaluated from total cell protein extracts and in whole 

cell bioluminescence assays.   

 

In Vitro Bioluminescence Assays 

From in vitro bioluminescence assays (total protein extracts), the overall light 

levels increased with the expression of the frp gene at least an order of magnitude in 

both the absence and after the addition of exogenous flavin oxidoreductase versus the 

COA/COB2 clone without the frp gene tested under the same conditions (Figure 36).  

These data indicated that the expression of the frp gene was successful in producing an 

excess of available FMNH2 within HEK293 cells.  The further increase in 

bioluminescence after the exogenous addition of the purified oxidoreductase enzyme 

however, indicates that the system has yet to reach saturation.     

The bioluminescence levels obtained from the cell extract, in vitro, assays 

remained stable for several minutes before gradually declining to background levels.  

The light intensity could be increased back to peak levels upon exogenous addition of 

additional NAD(P)H to provide the reducing power for the flavin oxidoreductase 

enzyme and generate more FMNH2.  Thus the luciferase complex itself remained stable 

throughout the assay and bioluminescence levels were correlated to availability or 

decay of reduced FMN. 

 

Whole Cell Bioluminescence Assays 

Whole cell bioluminescence assays were performed to determine if these cell 

lines could produce adequate bioluminescence levels for use in gene expression
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Figure 36.  Bioluminescence levels from clone COA/COB2 versus the COA/COB2 clone co-expressed 
with a V. harveyi flavin oxidoreductase enzyme.  Bioluminescence measurements were taken 
before the addition of FMNH2 (blue bars) and after (maroon bars). 
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analysis, much in the same way that firefly luciferase (Luc) is currently used today in 

several reporter applications.  Average bioluminescence levels from the COA/COB2 

clone were obtained that were at least two orders of magnitude greater than background 

levels (4 X 104 RLU/s versus 380 RLU/s).  The bioluminescence was further increased 

at least another order of magnitude when the frp gene was co-expressed along with the 

luciferase genes. All clones co-transfected to express the frp gene produced 

significantly more light than without the enzyme being expressed (p<0.05).  

Furthermore, there were significant differences between the nine frp clones as well 

(Figure 37).   However, unlike the relatively stable nature of the bioluminescence signal 

from in vitro bioluminescence assays, the light levels from these whole cell clones 

resulted in a flash bioluminescent response.  The maximum light output was obtained 

within 1 s of n-decanal addition and returned to background levels within five seconds.  

These levels could not be induced with the further addition of n-decanal or FMNH2 to 

achieve a second peak in bioluminescent activity. 

 

In Vitro versus In Vivo Light Measurements 

 To better determine cytoplasmic concentrations of FMNH2, whole cell 

bioluminescence measurements were compared to levels obtained from in vitro assays.  

In the whole cell assays, the light levels were obtained immediately upon the addition of 

n-decanal and recorded as relative light units (RLU) for 1 X 106 cells.  The cells were 

then lysed and bioluminescence was remeasured upon the addition of n-decanal and 

FMNH2.  The cell number was determined by direct counting. Overall, the light levels  
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from whole cells were much lower (as much as 20 fold) than those obtained from 

protein extracts (Table 13).    

 
 
Stability of Bacterial Luciferase in Mammalian Cells Over Long Periods of Time 

The stability of mammalian cell lines engineered to stably express the bacterial 

luciferase genes was monitored by performing bioluminescence assays over time.  The 

bioluminescence levels remained relatively constant for forty passages, for every clone 

except WTA/WTB2 where the level radically deteriorated after passage thirty (Figure 

38).  Although the light levels for the other clones remained relatively stable during this 

time, other phenotypic changes occurred within the cells, including a lower binding 

affinity to the flask surface.   

 

Discussion 

The expression of the bacterial luciferase enzyme system in eukaryotic cells has 

long been desired.  Unfortunately, several obstacles have been encountered that resulted 

in only modest success when trying to employ this technology in eukaryotes.  Among 

the problems associated with the ultimate development of this technology, the lack of 

available FMNH2, the reduced flavin molecule that is required for the bioluminescence 

reaction is perhaps one of the most obvious.   The FMNH2 limitation in mammalian 

cells engineered with the luxA and luxB genes was shown to hamper potential light 

outputs significantly (Figure 35).  These data clearly showed that light levels were 

significantly enhanced upon the exogenous addition of a flavin reductase enzyme.  
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Table 13.  Bioluminescence levels from HEK293 cells engineered to express luxA and 
luxB genes with and without the co-expression of the flavin oxidoreductase 
(frp) enzyme.  Each bioluminescence measurement was made in triplicate 
from approximately 1 X 106 cells and reported as relative light units (RLU). 

 

 
Clone 

Whole Cell 
Assay 

In Vitro 
(without FMNH2) 

In Vitro        
(with FMNH2) 

 
 

COA/COB2 

 
4.3 X 104 
(±7,913) 

 
2.5 X 105  
(±31,201) 

 
6.77 X 106 
(±170,098) 

 
 

frp1 

 
2.75 X 105 
(±68,373) 

 
2.42 X 106  
(±161,278) 

 
22.8 X 106 

(±4,078,998) 
 
 

frp2 

 
3.06 X 105 
(±16,526) 

 
2.50 X 106  
(±98,006) 

 
31.0 X 106 

(±3,909,260) 
 
 

frp3 

 
3.27 X 105 

(±36,193) 

 
2.46 X 106  
(±101,456) 

 
28.0 X 106 

(±4,433,714) 
 
 

frp4 

 
2.5 X 105 
(±23,355) 

 
4.46 X 106  
(±457,293) 

 
33.4 X 106 

(±5,975,079) 
 
 

frp5 

 
1.22 X 105  
(±21,595) 

 
7.86 X 105  
(±36,862) 

 
12.74 X 106 
(±1,518,130) 

 
 

frp6 

 
1.37 X 105 

(±9,004) 

 
1.74 X 106  
(±112,367) 

 
12.96 X 106 
(±912,574) 

 
 

frp7 

 
2.66 X 105  
(±21,971) 

 
3.65 X 106  
(±346,997) 

 
28.4 X 106 

(±2,864,018) 
 
 

frp8 

 
3.62 X 105  
(±16,907) 

 
3.47 X 106  
(±440,620) 

 
18.02 X 106 
(±2,286,558) 

 
 

frp9 

 
1.54 X 105 

(±10,151) 

 
5.64 X 106  
(±381,295) 

 
28.56 X 106 
(±197,408) 
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Figure 38.  Average bioluminescence levels of HEK293 clones harboring luxA and luxB cultured without antibiotic 
versus passage number.  Bioluminescence values are the average of triplicate measurements. 
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Therefore, efforts were explored to overcome the FMNH2 limitation by 

attempting to express the reductase enzyme in vivo to provide adequate levels of this 

substrate. 

Recently, this approach was taken in yeast cells by the overexpression of an 

NAD(P)H –dependent FMN reductase enzyme from V. harveyi (Gupta et al., 2003 and 

Szittner et al., 2003).  In these studies, the bioluminescence levels from whole yeast 

cells were significantly increased by the expression of the frp gene.  These data 

illustrated that the limiting substrate in yeast was indeed a lack of the reduced FMNH2 

and that the FMN and NAD(P)H precursors were available within cytoplasm of yeast 

cells. Based on these results, it was hypothesized that the overexpression of the frp gene 

in mammalian cells may also provide adequate pools of FMNH2 to catalyze 

bioluminescence.  Therefore, HEK293 cells harboring a codon optimized luxA and luxB 

gene pair were co-transfected with the frp gene and stable cell lines obtained. 

From in vitro bioluminescence assays of clones expressing frp, the overall light 

levels increased at least an order of magnitude in both the absence and after the addition 

of exogenous flavin oxidoreductase versus the COA/COB2 clone without the frp gene, 

tested under the same conditions (Figure 36).  These data indicated that the expression 

of the frp gene was successful in producing higher concentrations of FMNH2 within 

HEK293 cells.  However, because the light levels increased further upon the addition of 

exogenous flavin oxidoreductase, it was determined that FMNH2 remains the limiting 

factor for the bioluminescence potential from these mammalian cells and has yet to 

reach saturation.    
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Furthermore, it is believed that much of the available FMNH2 within 

mammalian cells would be found at much higher concentrations within the 

mitochondria of the cell. As a result, the FMNH2 would remain sequestered from the 

bioluminescence (Lux) proteins within the cytoplasm and not available for the reaction.  

By monitoring light levels as total protein extracts, the location of available FMNH2 

within the cytoplasm is unknown.  To better determine cytoplasmic concentrations of 

FMNH2, whole cell bioluminescence assays were performed.  Overall, the light levels 

from whole cells were much lower (as much as 20 fold) than those obtained from 

protein extracts (Table 13).   These data indicate that the cytoplasmic concentrations of 

FMNH2 are limiting and that much of the cellular pool of the reduced flavin molecule is 

compartmentalized within organelles, like the mitochondria.  Therefore, future 

experiments should be conducted to allow for the expression of the Lux proteins in the 

mitochondria of the cell to allow for their interaction with other necessary substrates for 

the reaction.  Targeting of the Lux proteins can be easily accomplished with the 

addition of a signaling peptide on the N- terminus of the proteins that will shuttle the 

enzymes into the mitochondria of the cell.   

The bioluminescence levels obtained from the cell extract, in vitro, assays 

remained stable for several minutes before gradually declining to background levels.  

The light intensity could be increased back to peak levels upon exogenous addition of 

additional NAD(P)H to provide the reducing power for the flavin oxidoreductase 

enzyme and generate more FMNH2.  Thus, the luciferase complex itself remained stable 

throughout the assay and the light output was directly correlated to the available 

FMNH2.  On the other hand, the whole cell in vivo assays provided a flash 
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luminescence response that could not be induced further to give a second peak upon the 

addition of n-decanal or FMNH2.  These data indicate that the n-decanal substrate was 

toxic to the cells.  Once the cells were lysed and proteins extracted, high 

bioluminescence levels could be obtained upon the addition of n-decanal and FMNH2.  

These data further support the idea that the addition of n-decanal to whole cells resulted 

in cell mortality and not the loss of stable Lux proteins. 

The stability of mammalian cell lines engineered to express the bacterial 

luciferase genes was monitored to determine if the constructs could maintain their 

bioluminescence levels over time in the absence of antibiotics.  Although the 

bioluminescence outputs remained relatively constant for > 40 passages, one of the 

clones (WTA/WTB2) bioluminescence levels radically deteriorated after passage thirty 

(Figure 38).  Furthermore, during this culture period, other phenotypic changes occurred 

within the cells, including a lower binding affinity to the flask surface.  It was further 

determined that the loss of light from the WTA/WTB2 clone was not a result of the loss 

of the genes within the cells and perhaps a change in the cell’s physiology or some 

unknown regulatory mechanism that caused the loss of light.  Even though the 

WTA/WTB2 clone resulted in a complete loss of bioluminescence activity, PCR 

analysis revealed that the luxA and luxB genes were still present.  Nevertheless, the 

bioluminescence levels did remain stable for more than five months in culture without 

the need for antibiotic selection, indicating that these cell lines would be stable enough 

for relatively long term monitoring projects and applications as long as the proper 

control experiments were also included.  
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CHAPTER 5 
 

SUMMARY AND CONCLUSIONS 
  

          This investigation achieved optimized expression of the bacterial 

luciferase enzyme in mammalian cells.  Previous attempts to express this 

heterodimeric enzyme complex in mammalian cells have been met with only 

modest success.  In this research effort, several vector formats were evaluated and a 

novel approach to codon optimize the genes was performed.  Additionally, the 

limited availability of the FMNH2 substrate was evaluated and steps were taken to 

overcome this limitation.  The overall stability of the engineered cells was also 

assessed to determine the persistence of the reporter for long-term monitoring 

applications.  Based on the findings of this study, the following conclusions were 

drawn: 

 

• A translational fusion of the two luciferase subunits is not an efficient way to 

express this enzyme in eukaryotes likely due to thermal instability and the 

inability of the subunits to properly fold forming an active heterodimer. 

 

• Integrated expression of the luciferase provides a more stable expression 

format for long-term persistence of the luciferase genes.  
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• The bacterial luciferase enzyme produced optimal bioluminescence in 

mammalian cells when the individual genes were expressed as a bicistronic 

transcript fused with an internal ribosomal entry site (IRES). 

 

• Codon optimization of the luxA and luxB genes significantly increased the 

translation efficiency of the proteins in vitro and in vivo when expressed in 

HEK293 cells.  This increase in translation in turn resulted in significant 

increases in bioluminescence output from the cells. 

 

• FMNH2 is a limiting substrate for the bioluminescence reaction in 

mammalian cells. 

 

• The expression of a flavin oxidoreductase gene in HEK293 provides 

additional FMNH2 for the bioluminescence reaction.  However, this 

substrate remains limiting for the reaction. 

 

• The available FMNH2 within mammalian cells may be compartmentalized in 

organelles and not readily available to interact with the luciferase enzyme. 

 

• The expression of the bacterial luciferase genes in HEK293 cells remains 

relatively stable for more than 40 passages (5 months) in culture without the 

selective pressure of an antibiotic.   
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Determining an Optimal Expression Format for Expression of the Bacterial 

Luciferase Genes (luxA and luxB) 

As a first attempt to express the bacterial luciferase enzyme in mammalian cells, 

a LuxAB fusion protein was designed.  Previous work by Escher et al. (1989) showed 

that the luxAB fusion, using genes from Vibrio harveyi, was stable at elevated 

temperatures if initially expressed in E. coli at 23°C.  However, when the fused protein 

was grown and expressed at 37°C there was a greater than 99% reduction in light.  

These data suggest that the fused luxAB does not fold properly at elevated temperatures.  

The luciferase from P. luminescens has a higher thermal stability (t1/2 >3 h at 45°C) than 

V. harveyi (t1/2 5 min. at 45°C)  (Meighen, 1991).  Therefore, a translational fusion of 

the P. luminescens luxA and luxB genes was generated in this work and evaluated.  

Although the luxAB fusion was functional in E. coli, bioluminescence activity was 

significantly reduced (70%) compared to the wild type unfused genes.   In the unfused 

luxAB the α and β subunits are individually translated and are free to fold into their 

specific conformation (Tu and Mager, 1995).  Therefore, the reduction in 

bioluminescence may be due to steric hindrance involved in the way the subunits form 

the heterodimer when expressed as a protein monomer.   

The addition of a Kozak sequence further reduced the bioluminescence level to 

approximately 5% of the wild type protein.  Nevertheless, the Kazak sequence is a 

mammalian ribosomal binding site and therefore to evaluate its true effectiveness the 

construct was tested in HEK293 cells.  The light levels were significantly reduced 

(>90%) compared to HEK293 cells expressing the fusion protein without the Kazak 

modifications. The addition of a Kozak sequence (G at the +4 position) specifically 
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changes the second amino acid of luxA from Lysine to Glutamic acid.  These two amino 

acids have opposite net charges, which could result in a modification of the protein's 

secondary structure ultimately altering the protein's function resulting in decreased 

bioluminescence. Therefore, future studies were conducted in the absence of the Kazak 

sequence or with the addition of an external Kazak for ribosomal binding.    

To determine temperature effect on the folding of the fusion protein, the fused 

and unfused versions of the luxAB were grown at 23˚C, 30˚C and 37˚C.  In E. coli, there 

was not a statistical difference (p = 0.05) associated with temperature on 

bioluminescence as seen by Escher et al. (1989).  This suggested and led us to believe 

that the folding problems in the V. harveyi LuxAB fusion protein were not present in the 

P. luminescens LuxAB fusion protein.  However, when the fusion construct was 

expressed in the yeast, S. cerevisiae the bioluminescence levels significantly decreased 

as temperature increased to 37˚C.  The differences seen in these two systems may be a 

result of the bacterial system’s ability to transcribe the luxB independently due to the 

ribosomal binding site and luxB start codon still present in the fusion.  When the fusion 

is expressed in the yeast system, the luxB is no longer independently expressed resulting 

in a true fusion protein that is unable to properly fold at 37˚C.  The independent 

expression of the luxB in bacteria may have resulted in the unfused LuxB subunit 

forming the heterodimeric conformation with the LuxA within the LuxAB fusion 

resulting in the unaffected bioluminescence observed when the construct was expressed 

in E. coli. 

  In an attempt to mimic mammalian translation machinery, in vitro transcription 

and translation of the luxA, luxB and luxAB fusion were performed in a rabbit 
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reticulocyte lysate system.  Although the 77kDa fusion protein was easily detected, the 

individual proteins, LuxA and LuxB, were not.  This result was unexpected because 

equal amounts of RNA transcript were added to each translation reaction.  These data 

suggest that the formation of the heterodimeric (α and β subunit) complex may be 

required for not only efficient bioluminescence activity, but also for the overall stability 

of the protein.   

 Although detectable amounts of bioluminescence were obtained from 

mammalian cell lines harboring the LuxAB fusion protein, these levels were not 

sufficient for the creation of a reliable biosensor.  Therefore, other expression formats 

were evaluated in an attempt to optimize bioluminescence activity.  It was thought that 

by expressing the lux genes separately, the subunits would be able to form a more 

natural heterodimeric conformation.  Human embryonic kidney cells (HEK293) were 

used for these evaluations.  Cells were transfected with a dual promoter vector construct 

that that was developed to constitutively express each gene from a separate promoter or 

co-transfected with two plasmids each harboring either the luxA or luxB gene.  

Furthermore, to evaluate the differences in protein expression from genes integrated in 

the host’s chromosome versus those constructs maintained as episomal plasmids, each 

expression format (fusion, dual promoter and co-transfection) was constructed on a 

plasmid backbone able to replicate episomally in HEK cells.  The bioluminescence 

levels from stable cell lines harboring each expression variation were determined.  

Although there were slight variations in activity, the differences were not statistically 

significant (p=0.05).  The only exception was the reduced bioluminescence activity 

obtained from cells harboring a dual promoter vector episomally.  The low light levels 
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from these clones were somewhat surprising considering that the average 

bioluminescence from the fusion protein and from cells co-transfected with two 

plasmids were slightly higher when the constructs were maintained as episomes.  Upon 

further analysis, it was determined that the mRNA levels from the individual lux genes 

were not equal and therefore in this expression format, one promoter is inducing 

transcription at a higher rate than the other.  This type of promoter occlusion where the 

transcription of one of the two promoters was significantly dampened has been seen 

previously (Horlick et al., 2000).  The unequal availability of one of the lux subunits at 

a level higher than the other, may prevent the proper formation of the heterodimeric 

active luciferase protein and may result in inactive homodimer formation.  

 In order for bacterial lux-based mammalian bioreporter to be useful, the 

constructs need to remain stable in the absence of antibiotic selection for long periods of 

time.  Efficient maintenance and stability of foreign genes requires that the DNA 

replicate once per cell cycle and be retained (integrated or episomally) in the nucleus.  

Constructs harboring the luxA and luxB genes in three individual expression formats 

were created on both the traditional integration vectors and on Epstein-Barr virus (ori-P) 

based episomal plasmid vectors.  To determine the stability of these constructs in 

HEK293 cells, the cell line clones were grown for twenty passages in complete growth 

media without antibiotic.    In general, all clones (chromosomal and episomal) were 

stable for at least five passages after the antibiotic removal.  However, the constructs 

that were maintained as episomes began to lose bioluminescence activity by passage ten 

with episomal co-transfected cells resulting in the fastest bioluminescence decline rate. 

Although there was a significant decline in bioluminescence activity from episomally 
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based constructs over time, the light was not completely lost from any of the cells lines.  

Therefore, this reduction in bioluminescence may be the result of natural plasmid loss 

and generation of a plasmid equilibrium within the cells.  Immediately following 

transfection the DNA molecules within each cell can be very high and a natural decline 

in this concentration occurs to a steady state for plasmid maintenance (Middleton and 

Sugen, 1994 and Horlick et al.,1997).  This number can vary, but the average is between 

50 and 100 copies per cell with the further loss of approximately 5% per generation in 

the absence of selection (Yates and Guan, 1991).  The constructs that were integrated 

into the host’s chromosome remained relatively stable throughout the twenty passages 

(approximately 2.5 months) evaluation.  These data indicate that integration of the lux 

genes within the host’s chromosome may be the most suitable way to express the genes 

in mammalian cells for long-term gene maintenance and stable bioluminescence 

activity.  

 In order to optimize the bioluminescence potential from mammalian cells the lux 

genes need to be processed and expressed much in the way they are in bacteria.  To 

establish a more natural expression format for the heterodimeric luciferase protein, the 

luxA and luxB genes were cloned into a bicistronic mammalian expression vector.  This 

vector was developed to allow for the expression of two genes of interest under the 

control of a single constitutive promoter with the use of an internal ribosomal entry site 

(IRES).  IRES elements can be defined as specific nucleotide sequences that allow for 

ribosomal entry and translation initiation directly at the start codon (AUG) rather than 

requiring scanning from the 5′ end, cap structure, of the mRNA (Pestova et al., 2001 

and Kozak, 2001).  Since the lux genes are naturally found in a polycisitronic operon, it 
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was thought that by expressing the genes in this format a more natural production and 

formation of the heterodimer could be obtained.    From each of the stable cell line 

clones obtained harboring lux genes expressed as a bicistronic transcript, the 

bioluminescence (RLU/mg total protein) was at least an order of magnitude greater than 

levels obtained with any of the other expression formats tested.  On average, there was 

no significant difference between bioluminescence levels obtained from HEK293 cells 

expressing the luxAB fusion, the luxA and luxB in a dual promoter format or as co-

transfected separate plasmids.  However, the bioluminescence levels from HEK293 

cells harboring the luxA and luxB as a single bicistronic transcript constitutively 

produced significantly higher light levels. 

 Based on these data it was determined that of the four expression formats 

evaluated that the bicistronic expression of the luxA and luxB genes was by far the best 

choice.  Furthermore, although in general, the bioluminescence levels were slightly less, 

the stability of the construct when integrated into the host’s chromosome makes this a 

more suitable choice for the development of bacterial lux-based mammalian biosensors. 

Therefore, the first hypothesis set forth in this research can be accepted which stated 

that the expression of the bacterial luciferase (lux) subunits as individual proteins rather 

than as a monomeric translational fusion will result in more efficient folding and 

thermostability resulting in a higher bioluminescent signal in mammalian cells.  
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Codon Optimization of the Bacterial Luciferase for Expression in Mammalian 

Cells 

     Codon usage regulates gene expression at the level of translation and the usage 

patterns between species are not conserved (Kurland, 1991).  This is especially true 

between genes derived from eukaryotes versus those from prokaryotes.  Therefore, to 

efficiently express the bacterial lux genes in mammalian cells, the nucleotide sequence 

was altered in such a way as to create a “humanized” form of the gene without altering 

the amino  acid sequence.  This approach has been used previously to optimize the 

expression of both GFP and Renilla luciferase proteins for expression in mammalian 

cells (Zhang et al., 2002 and Gruber and Wood, 2000).  The design of this new 

sequence was carefully determined, removing all potential splice sites and most 

regulatory regions. After the final codon optimized sequence was determined, it was 

evaluated using the GENSCAN prediction algorithm to determine the potential 

expression efficiency in a human cell.  According to the output from this program the 

overall expression of the codon optimized lux genes would be significantly improved 

versus the wild type.  The increase in expression was predicted to be caused by an 

increase in both transcription and translation efficiency.  Furthermore, it was predicted 

that the first sixty bases (20 amino acids) of the wild type luxA gene would be 

completely eliminated when expressed in mammalian cells.  Considering that this 

region of the LuxA protein holds most of the catalytic properties (active site) for the 

bacterial luciferase enzyme, this would be devastating for its expression.  If this were 

the case, the low expression levels observed for the LuxAB fusion protein, shown 



 177

earlier, may be better explained in part by a nonfunctional protein being formed rather 

than inefficient folding or heat liability.    

 To test the expression of the codon optimized genes, modified versions were 

required.  However, because the necessary changes were to numerous to achieve by site 

directed mutagenesis, a complete in vitro gene synthesis protocol was pursued. Large 

oligonucleotides (80-106 bp) were designed with overlapping (18-22 bp) regions.  The 

original plan was to amplify all of the oligonucleotides together in one PCR reaction 

according to methods set by Prodromou and Pearl (1992).  However, because of the 

larger size of the lux genes (approximately 1000 bp each), this was not possible.  As an 

alternative, the gene was synthesized in parts and the subsequently linked by a second 

round of PCR.  The two outside oligonucleotides were used as both template and 

primers for each reaction.  After some experimental effort, it was determined that for 

optimal amplification the internal oligonucleotides (template) should be added at a 

concentration that equaled 100 fold less than the outside oligos. Amplification products 

of the correct size were cloned and sequenced.  Unfortunately, sequence analysis 

revealed several base substitution mutations within all clones tested.  These mutations 

were present despite the fact that care was taken by using a Pfu polymerase that has 

proof reading abilities. This finding was disappointing while not surprising given that 

two consecutive PCR reactions were required to obtain the final gene product resulting 

in > 60 cycles of amplification.  To eliminate these errors and produce the proper 

sequence, site directed mutagenesis was performed. 

   It was determined previously through work accomplished in S. cerevisiae and 

mammalian cells for the expression of the bacterial luciferase genes that IRES elements 
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may be an efficient way to express independent proteins as single bicistronic transcripts. 

This expression format provides the most natural expression of the genes, most closely 

mimicking the polycistronic form found in the bacterial operon.  Therefore, experiments 

were set up to compare the codon optimized and wild type luxA and luxB genes in 

mammalian cells using an IRES based expression vector.  The expression vector used 

was designed to highly express two independent genes under the control of a single 

constitutive encephalomyocarditis virus (ECMV) promoter region by linking two 

multicloning sites fused to either side of an internal ribosomal entry site (IRES).  The 

IRES element allows for the translation of two consecutive open reading frames from 

one messenger RNA (Jang et al., 1990; Jackson et al., 1990; Rees et al., 1996).  By 

constructing plasmids with different combinations of the codon optimized luxA and 

luxB with their wild type counterparts, a direct comparison of the genes was made.   

To quickly determine if a difference in translation efficiency could be detected 

between the optimized and wild type luxA genes, in vitro transcription and translation 

analysis was performed.  The codon optimized luxA gene (COA) was detected 

approximately twenty fold over wild type.  This finding supported the results that 

shown earlier with the in vitro generation of the wild type LuxA protein.  Since the 

rabbit reticulocyte lysate translation system is used to mimic mammalian translation 

machinery in vitro, these results indicated that the codon optimization would indeed 

make a significant impact on the translation efficiency of the lux proteins in mammalian 

systems.   

 HEK293 cells were transfected with the WTA/ WTB, WTA/ COB or COA/COB 

constructs and stable cell line clones were selected by antibiotic resistance. Twenty 
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stable clones for each luxA and luxB combination were selected and bioluminescence 

levels were determined upon the exogenous addition of n-decanal and FMNH2.  The 

bioluminescence significantly increased in the order WTA/WTB < COA/WTB < 

COA/COB.  These data indicated that codon optimization had made a significant 

impact on the potential bioluminescence levels obtained from mammalian cells.  To 

analyze this data further, the two or three brightest clones were chosen for further study.  

From these cells, total genomic DNA, total RNA and total soluble proteins were 

extracted.      

 Foreign gene integration in mammalian cells is a random event, therefore it is 

possible to have more than one insertion of the construct occur during each transfection.  

Since integration is fairly inefficient, the copy number per cell is generally very low.  

However, because of this possibility, it was important to determine the copy number of 

the inserted genes for at true comparison.  To accomplish this, Southern blot analysis 

was performed on each of the seven clones that produced the highest bioluminescence 

levels.  All of the cell lines tested had either one or two copies of the gene inserted with 

the exception of the COA/COB3 clone which had three.  To simplify further 

measurements, this clone was then disregarded for further bioluminescence 

comparisons.  Nevertheless, it should be noted that increased copy number does not 

correlate with increased expression levels.  Numerous other factors have been shown to 

impact from gene expression at a greater level. 

 The overall amount of luxA mRNA transcript was determined by Northern blot 

analysis.  Transcript levels were relatively equal with the exception of the WTA/WTB1 

clone that produced significantly lower amounts of luxA mRNA.  Since each construct 
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contained the same promoter (ECMV) element and initiation signals, it would be 

expected that each clone would have approximately equal amounts of transcript for the 

introduced genes.  However, cis acting regulatory elements could potentially interfere 

with transcription initiation and overall transcript levels in vivo.  These types of 

interferences would vary based on where within the chromosome the genes were 

integrated.  Therefore, the position effect of various clones could explain the lower 

amount of transcript detected with the WTA/WTB1 clone.  Other factors that can 

potentially impact the amount of RNA transcript would be a direct result of increased 

RNA degradation of certain mRNA sequences that can occur.  This type of RNA 

instability would be less likely after codon optimization because of the removal of 

several AU rich target degradation regions.  However, because the lower amount of 

transcript was not seen in both the WTA/WTB clones, this scenario is unlikely. 

To evaluate the overall protein concentrations and determine translation 

efficiency of each construct, Western blot analysis was performed.  Total soluble 

proteins from each clone were isolated and quantified.  Western blot analysis was 

performed using a polyclonal luxA antibody. The LuxA protein was not detectable from 

WTA/WTB clones and faintly visible in the COA/WTB clones.  However, large 

amounts of LuxA protein were detected from the COA/COB clones which harbored a 

construct carrying codon optimized versions of both genes.  This finding was intriguing 

and unexpected.  Since the only available antibody was raised against a polypeptide of 

LuxA, it was expected that the constructs harboring the COA/WTB and COA/COB 

would produce equal amounts of LuxA protein.  Since this was not the case, these data 

indicated that the codon optimization of both genes might infer stability on the 
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heterodimeric complex that makes up the luciferase enzyme.  This increased stability of 

the complex may have allowed the proteins to be detected in the Western blot while the 

other construct was not detected.   

Perhaps the most valuable measurement to determine if codon optimization was 

a success is the amount of enzyme activity that could be obtained from each construct.  

Bioluminescence levels were evaluated on whole cell extracts upon the addition of n-

decanal and FMNH2.  Average bioluminescence values were found to be greater than 

two orders of magnitude higher in cell lines harboring both a codon optimized luxA and 

luxB (COA/COB) over that of the cell lines harboring the wild type genes 

(WTA/WTB).  While bioluminescence levels were significantly higher in clones 

expressing COA and WTB versus WTA and WTB, the optimal bioluminescence was 

obtained from clones harboring optimized versions of both genes.  These data further 

support the stabilization conclusion of the heterodimeric protein. Based on these data it 

was determined that codon optimization had a significant effect on the protein 

expression in HEK293 cells. 

  In conclusion, the codon optimization of the luxA and luxB genes was 

successful in increasing the overall expression levels of the individual proteins.  This 

increase in protein quantity resulted in a significant increase in bioluminescence from 

cell lines harboring these constructs.  Furthermore, the bioluminescence levels from 

codon optimized luxA and luxB provide adequate bioluminescence for the proof in 

principle data needed for the future development of reliable reporter constructs for 

analyte sensing in mammalian cells.  Based on these data, the second hypothesis 

statement proposed in this research that stated that codon optimization of the bacterial 
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luciferase (lux) genes will significantly enhance translation of the proteins and 

ultimately result in greater bioluminescence levels from mammalian cells harboring 

these optimized genes is accepted. 

 

FMNH2 Availability 

Among the problems associated with the ultimate development of a mammalian 

lux bioreporter cell line, the lack of available FMNH2, the reduced flavin molecule that 

is required for the bioluminescence reaction is perhaps one of the most obvious.   The 

FMNH2 limitation in mammalian cells engineered with the luxA and luxB genes was 

shown to hamper potential light outputs significantly.  These data clearly showed that 

light levels were significantly enhanced upon the exogenous addition of a flavin 

reductase enzyme. Therefore, efforts were explored to overcome the FMNH2 limitation 

by attempting to express the reductase enzyme in vivo to provide adequate levels of this 

substrate. 

Recently, this approach was taken in yeast cells by the overexpression of an 

NAD(P)H –dependent FMN reductase enzyme from V. harveyi (Gupta et al., 2003 an 

Szittner et al., 2003).  In these studies, the bioluminescence levels from whole yeast 

cells were significantly increased by the expression of the frp gene.  These data 

illustrated that the limiting substrate in yeast was indeed a lack of the reduced FMNH2 

and that the FMN and NAD(P)H precursors were available within cytoplasm of yeast 

cells. Based on these results, it was hypothesized that the overexpression of the frp gene 

in mammalian cells may also provide adequate pools of FMNH2 to catalyze 
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bioluminescence.  Therefore, HEK293 cells harboring a codon optimized luxA and luxB 

gene pair were co-transfected with the frp gene and stable cell lines obtained. 

From in vitro bioluminescence assays of clones expressing frp, the overall light 

levels increased at least an order of magnitude in both the absence and after the addition 

of exogenous flavin oxidoreductase versus the COA/COB2 clone without the frp gene, 

tested under the same conditions.  These data indicated that the expression of the frp 

gene was successful in producing higher concentrations of FMNH2 within HEK293 

cells.  However, because the light levels increased further upon the addition of 

exogenous flavin oxidoreductase, it was determined that FMNH2 remains the limiting 

factor for the bioluminescence potential from these mammalian cells and has yet to 

reach saturation.   Based on these data, further experiments will be necessary to accept 

or reject the third hypothesis set forth in this work, but at this point FMNH2  remains the 

limiting substrate for bioluminescence. 

Nevertheless, it is believed that much of the available FMNH2 within 

mammalian cells would be found at much higher concentrations within the 

mitochondria of the cell. As a result, the FMNH2 would remain sequestered from the 

bioluminescence (Lux) proteins within the cytoplasm and not available for the reaction.  

By monitoring light levels as total protein extracts, the location of available FMNH2 

within the cytoplasm is unknown.  To better determine cytoplasmic concentrations of 

FMNH2, whole cell bioluminescence assays were performed.  Overall, the light levels 

from whole cells were much lower (as much as 20 fold) than those obtained from 

protein extracts.   These data indicate that the cytoplasmic concentrations of FMNH2 are 

limiting and that much of the cellular pool of the reduced flavin molecule is 
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compartmentalized within organelles, like the mitochondria.  Therefore, future 

experiments should be conducted to allow for the expression of the Lux proteins in the 

mitochondria of the cell to allow for their interaction with other necessary substrates for 

the reaction.  Targeting of the Lux proteins can be easily accomplished with the 

addition of a signaling peptide on the N- terminus of the proteins that will shuttle the 

enzymes into the mitochondria of the cell.   

The bioluminescence levels obtained from the cell extract, in vitro, assays remained 

stable for several minutes before gradually declining to background levels.  The light 

intensity could be increased back to peak levels upon exogenous addition of additional 

NAD(P)H to provide the reducing power for the flavin oxidoreductase enzyme and 

generate more FMNH2.  Thus, the luciferase complex itself remained stable throughout 

the assay and the light output was directly correlated to the available FMNH2.  On the 

other hand, the whole cell in vivo assays provided a flash luminescence response that 

could not be induced further to give a second peak upon the addition of n-decanal or 

FMNH2.  These data indicate that the n-decanal substrate was toxic to the cells.  Once 

the cells were lysed and proteins extracted, high bioluminescence levels could be 

obtained upon the addition of n-decanal and FMNH2.  These data further support the 

idea that the addition of n-decanal to whole cells resulted in cell mortality and not the 

loss of stable Lux proteins.   

 
Stability of the Luciferase Constructs in Mammalian Cells 

The stability of mammalian cell lines engineered to express the bacterial 

luciferase genes was monitored to determine if the constructs could maintain their 
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bioluminescence levels over time in the absence of antibiotics.  Although the 

bioluminescence outputs remained relatively constant for > 40 passages, one of the 

clones (WTA/WTB2) bioluminescence levels radically deteriorated after passage thirty.  

Furthermore, during this culture period, other phenotypic changes occurred within the 

cells, including a lower binding affinity to the flask surface.  It was further determined 

that the loss of light from the WTA/WTB2 clone was not a result of the loss of the 

genes within the cells and perhaps a change in the cell’s physiology or some unknown 

regulatory mechanism that caused the loss of light.  Even though the WTA/WTB2 clone 

resulted in a complete loss of bioluminescence activity, PCR analysis revealed that the 

luxA and luxB genes were still present.  Nevertheless, the bioluminescence levels did 

remain stable for the other five clones tested for more than five months in culture 

without the need for antibiotic selection, indicating that these cell lines would be stable 

enough for relatively long term monitoring projects and applications given that the 

proper control experiments were also included to ensure the integrity of the reporter 

strain.     
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