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 In the present paper, the antifungal activity of a series of benzoxazole and oxazo-
lo[4,5-b]pyridine derivatives was evaluated against Candida albicans by using quantita-
tive structure–activity relationships chemometric methodology with artificial neural net-
work (ANN) regression approach. In vitro antifungal activity of the tested compounds 
was presented by minimum inhibitory concentration expressed as log(1/cMIC). In silico 
pharmacokinetic parameters related to absorption, distribution, metabolism and excre-
tion (ADME) were calculated for all studied compounds by using PreADMET software. A 
feedforward back-propagation ANN with gradient descent learning algorithm was appli-
ed for modelling of the relationship between ADME descriptors (blood-brain barrier 
penetration, plasma protein binding, Madin-Darby cell permeability and Caco-2 cell 
permeability) and experimental log(1/cMIC) values. A 4-6-1 ANN was developed with the 
optimum momentum and learning rates of 0.3 and 0.05, respectively. An excellent cor-
relation between experimental antifungal activity and values predicted by the ANN was 
obtained with a correlation coefficient of 0.9536.  
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INTRODUCTION 
 
 Mycoses are a consequence of infection of organism by fungi of pathogenic potential. 
Most fungi have developed complete resistance towards antimicrobial therapeutics, there-
fore the medical treatment of these infections can be long-lasting, and in some cases un-
successful. Most of compounds, that exert an inhibitory effect on the fungi pathogenic to 
man, are relatively toxic, so their usage as therapeutic agents is limited (1-3). The need 
for new and more efficient antifungal drugs is becoming critical because of the increasing 
number of detected cases of systemic mycoses in patients suffering from immunocom-
promising diseases (AIDS, diabetes, leukemia, etc). Candidiasis is one of the common 
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fungal diseases caused by Candida species. Candida albicans is commonly responsible 
for infection in humans (2,3). This opportunistic pathogen is resident of normal flora of 
the gastrointestinal and respiratory mucosis, and can be also identified on vaginal muco-
sis. The infection develops when the balance between normal bacterial and fungi flora is 
disrupted. The medical treatment of Candidiasis often includes amphotericin B, nystatin, 
ketoconazole and fluconazole (2). Since the number of aforementioned therapeutics is 
limited, synthesis and analysis of new drugs with fungistatic activity are very desirable. 
 Prediction of the antifungal activity of chemical compounds based on experimental 
data and in silico molecular descriptors can provide basic guidelines in the synthesis of 
new efficient antifungal drugs. Molecular structure and biological reaction can be correla-
ted by using chemometric quantitative structure-activity relationship (QSAR) approach, 
which enables assessment of the newly-synthesized and unsynthesized compounds (4,5). 
The QSAR methodology provides the possibility to analyze a large number of molecules 
for a short time and with minimal costs (6-8). It includes a number of statistical methods, 
such as multiple linear regression (MLR), principal component regression (PCR), partial 
least squares regression (PLS), artificial neural networks (ANN), etc. 
 Benzoxazoles and oxazolo[4,5-b]pyridines belong to the group of well-known anti-
fungal agents with antioxidant, antiallergic, antitumoral and antiparasitic activity (1,9). 
The previous success in the examination of these molecules has stimulated new research 
based on the synthesis of some new oxazole derivatives.  
 ANNs are a versatile and flexibile tool for modelling complex relationships between 
variables. The application of ANN method in QSAR analysis has been presented in ear-
lier studies (10-12). In the present study, the main aim was to develop an ANN model for 
prediction of antifungal activity of studied benzoxazoles and oxazolo[4,5-b]pyridines 
against Candida albicans. In our previous work (9), we have already studied the influen-
ce of some molecular descriptors of benzoxazoles on their in vitro antifungal activity 
against Candida albicans using MLR. Therefore, the novelties in this study are the series 
of compounds extended to oxazolo[4,5-b]pyridines, the application of ANN on this class 
of compounds, and prediction based on in silico descriptors related to absorption, dis-
tribution, metabolism and excretion (ADME).  

 
EXPERIMENTAL 

 
Benzoxazoles and oxazolo[4,5-b]pyridines 

 
 Molecular structures and IUPAC names of 24 studied compounds are presented in 
Table 1. The results of their in vitro antifungal activity against Candida albicans (MTCC 
183) were taken from the literature (3). Minimum inhibitory concentration (MIC) of 
tested molecules is defined as the lowest concentration of the compound at which there is 
no growth of the strain (9). The logarithm of molar MICs, log(1/cMIC), was calculated and 
used for further calculations. 
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Table 1. Chemical structures and IUPAC names of studied compounds 
 

 
 

Calculation of ADME descriptors 
 
 On the basis of the two-dimensional structures, the ADME properties of studied mole-
cules were calculated by the PreADMET online program for drug discovery (13). The 
calculated ADME properties of examined oxazoles included the parameters of oral ab-
sorption (Madin-Darby cells permeability (MDCK) and Caco-2 cells permeability (Caco-
2)), parameter of plasma protein binding (PPB) and parameter of blood-brain barrier 
(BBB) penetration. These descriptors are very important factors prior to the synthesis of 
new drug molecules because they give an insight into the metabolism of the substance 
and its pharmacological potential before its application (14-17). The calculated values of 
ADME properties are presented in Table 2. 
 
 
 

No. IUPAC name X R1 R2 
1 2-phenyl-1,3-benzoxazole CH H H 
2 2-(4-tert-butylphenyl)-1,3-benzoxazole CH C(CH3)3 H 
3 4-(1,3-benzoxazol-2-yl)aniline CH NH2 H 
4 4-(1,3-benzoxazol-2-yl)-N-methylaniline CH NHCH3 H 
5 5-chloro-2-(4-ethylphenyl)-1,3-benzoxazole CH C2H5 Cl 
6 N-[4-(5-chloro-1,3-benzoxazol-2-yl)phenyl]acetamide CH NHCOCH3 Cl 
7 4-(5-chloro-1,3-benzoxazol-2-yl)-N-methylaniline CH NHCH3 Cl 
8 5-chloro-2-(4-chlorophenyl)-1,3-benzoxazole CH Cl Cl 
9 5-chloro-2-(4-nitrophenyl)-1,3-benzoxazole CH NO2 Cl 
10 2-(4-ethylphenyl)-1,3-benzoxazol-5-amine CH C2H5 NH2 
11 2-(4-fluorophenyl)-1,3-benzoxazol-5-amine CH F NH2 
12 N,N-dimethyl-4-(5-methyl-1,3-benzoxazol-2-yl)aniline CH N(CH3)2 CH3 
13 5-methyl-2-(4-methylphenyl)-1,3-benzoxazole CH CH3 CH3 
14 2-(4-ethylphenyl)-5-methyl-1,3-benzoxazole CH C2H5 CH3 
15 2-(4-methoxyphenyl)-5-methyl-1,3-benzoxazole CH OCH3 CH3 
16 2-(4-fluorophenyl)-5-methyl-1,3-benzoxazole CH F CH3 
17 N-[4-(5-methyl-1,3-benzoxazol-2-yl)phenyl]acetamide CH NHCOCH3 CH3 
18 N-methyl-4-(5-methyl-1,3-benzoxazol-2-yl)aniline CH NHCH3 CH3 
19 2-(4-methylphenyl)-[1,3]oxazolo[4,5-b]pyridine N CH3 H 
20 2-(4-ethylphenyl)-[1,3]oxazolo[4,5-b]pyridine N C2H5 H 
21 2-(4-methoxyphenyl)-[1,3]oxazolo[4,5-b]pyridine N OCH3 H 
22 2-(4-ethoxyphenyl)-[1,3]oxazolo[4,5-b]pyridine N OC2H5 H 
23 4-{[1,3]oxazolo[4,5-b]pyridin-2-yl}aniline N NH2 H 
24 2-(4-nitrophenyl)-[1,3]oxazolo[4,5-b]pyridine N NO2 H 
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Table 2. In silico ADME properties of studied molecules 
 

Compound 
Caco-2 

(nm/sec) 
MDCK 
(nm/sec) 

PPB 
(%) 

BBB 
(cbrain/cblood) 

1T 54.058 20.169 100.000 3.475 
2T 56.264 0.687 100.000 0.737 
3T 9.308 49.510 100.000 1.523 
4E 42.785 21.218 98.507 0.408 
5T 55.729 2.041 94.060 0.573 
6T 26.914 9.185 90.834 0.047 
7T 46.766 3.733 90.388 0.695 
8E 46.255 3.730 93.143 1.814 
9E 6.039 0.520 86.501 0.013 

10V 37.232 6.076 100.000 0.080 
11T 4.900 40.535 97.348 0.204 
12V 53.316 0.292 94.927 0.172 
13T 55.456 10.481 100.000 2.197 
14T 54.530 3.251 100.000 0.464 
15T 53.570 3.966 96.979 0.079 
16E 54.272 9.007 100.000 0.247 
17V 46.889 12.191 85.064 0.046 
18E 48.769 5.011 97.501 1.032 
19V 53.144 197.978 91.416 3.417 
20V 54.091 183.702 96.707 1.366 
21E 57.363 55.938 86.787 0.131 
22V 46.553 60.464 90.444 0.019 
23T 24.535 44.142 80.879 0.754 
24T 0.727 40.413 71.096 0.339 

 V – validation set, E – external test set, T – training set 

 
Application of artificial neural network 

 
 For the ANN modelling, Statistica software version 10.0 (18) was applied. The whole 
set of molecules was divided in three subsets: training, validation, and external test set. 
The training set contains 50% of studied molecules (12 molecules), while the external test 
set and validation set contain 25% each (6 + 6 molecules). Before any calculations were 
made, the data set was normalized by min-max normalization method by applying the 
following equation: 
 

ynorm = (1 – ∆U – ∆L) · ((y – ymin)/(ymax – ymin)) + ∆L           [1] 
 
where ynorm, ymax and ymin are the normalized, maximum and minimum value of dependent 
variable y, and ∆U, ∆L are the values of margins which limit extrapolation ability of the 
network (∆U = ∆L = 0.01) (19). The normalization process makes the data suitable for the 



APTEFF, 44, 1-321 (2013)  UDC: 547.78:615.282.84:004.41 
DOI: 10.2298/APT1344249K BIBLID: 1450-7188 (2013) 44, 249-258 

Original scientific paper 

 253

training. Namely, without normalization, training process would have been very slow. It 
is especially useful for modelling where the inputs are generally on widely different sca-
les. Normalized values of input data were within the range from 0.01 to 0.99. Afterwards, 
the optimal structure of ANN was searched. In order to determine the optimal number of 
nodes in the hidden layer, the root mean square error (RMSE) was plotted as a function of 
the number of neurons in the hidden layer. The normalized data were processed by 
feedforward back-propagation neural network with gradient descent learning algorithm. 
The vaules of weights of neurons were predetermined by the applied software (18). 
 The output data obtained by ANN were correlated with the experimental values. The 
correlation between them is characterized by Pearson’s correlation coefficient (r) and 
predictive ability by the following parameters: RMSE, predicted residual sum of squares 
(PRESS) and relative error of prediction (RE).  

 
 

RESULTS AND DISCUSSION 
 

Optimal neural network architecture 
 

 In the first stage of evaluation of neural network, the number of neurons in the hidden 
layer was determined by trial and error method based on minimum RMSE value. From 
Figure 1, it is evident that 6 neurons in the hidden layer are sufficient to obtain a low 
RMSE value and that a further increase in the number of neurons does not bring any 
improvement. Figure 2 presents the optimal architecture, which implies 4 input variables, 
6 hidden neurons and 1 output variable (4-6-1) of ANN applied in this study. 
 

 

 
 

Figure 1. RMSE as a function of the number of neurons in the hidden layer 
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Figure 2. Optimal architecture of the established neural network 
  

 It was important to define the training conditions, which take into account the lear-
ning rate and the momentum value (20). These parameters were estimated on the basis of 
the minimum RMSE value. The dependences between the learning rate and the RMSE, 
and between the momentum and the RMSE are shown in Figure 3. 
 
A)            B) 

    
Figure 3. RMSE as a function of the learning rate (A) and momentum coefficient (B) 

 
 As it can be seen from Figure 3, judging from the minimum values of RMSE, the opti-
mal values for learning rate and momentum are 0.05 and 0.3, respectively. In order to 
avoid over-training, the performance of the ANN was tested every 100 epochs during the 
training and the weightings for the minimum RMSE for the learning and test set were re-
corded (RMSEtraining = 0.0002, RMSEtest = 0.0019) (Figure 4). 
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Figure 4. RMSE versus training epochs 

 
Prediction of the minimum inhibitory concentration by optimized neural network 
 
 After optimization, the actual predictive performance of the trained network was eva-
luated using the external data set. A comparison between experimental and predicted 
log(1/cMIC) values for the whole data set is presented in Figure 5. 
 

 
Figure 5. Experimental versus predicted log(1/cMIC) values 

 
 The low scattering of points around the linear relationship, significant slope (>0.90) 
and intercept close to zero (<0.03), indicate a very good concurrence between the experi-
mental and predicted data. Statistical measures of the obtained results indicate very good 
predictivity and accuracy of the ANN model: r = 0.9536, RMSE = 0.0369, PRESS = 
0.0227 and RE = 0.6815%. The absolute maximum value of the residuals was 0.095, 
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therefore the maximum individual percentage deviation (IPD%) was 2.13%. On the basis 
of the magnitude of the residues and IPD%, there is a close agreement between the 
experimental and estimated antifungal activities. From the presented results it can be 
concluded that the established neural network has an excellent predictive power and very 
high accuracy in the observed range of the log(1/cMIC) values. 
 The influence of every ADME parameter in the input layer on the variations is esti-
mated by global sensitivity analysis. Sensitivity analysis is used to determine how much 
'sensitive' a network is to the changes in the value of the parameters of the model and to 
the changes in the structure of the network model. The sensitivity coefficients describe 
the change in the network’s outputs due to variations in the parameters that affect the 
network. A large sensitivity of input parameter suggests that the network’s performance 
can significantly change with small variation in the parameter (21). Conversely, a small 
value of the sensitivity index suggests a small change in the parameter. The values of the 
sensitivity index for the input variables are as follows: MDCK (6.5795), PPB (5.6532), 
Caco-2 (1.4998) and BBB (1.3310). In this case, the largest influence on variability of the 
log(1/cMIC) values have the MDCK and PPB pharmacokinetic parameters.  
 

CONCLUSION 
 
 The presented results indicate that the ANN regression method can be a very useful 
tool for prediction of antifungal activity of studied benzoxazoles and oxazolo[4,5-b]pyri-
dines against Candida albicans. They demonstrate a very good concurrence between the 
experimental and predicted values of the minimum inhibitory concentration of the analy-
zed compounds. With the selection of suitable learning parameters and optimal neural 
network topology (4-6-1), we achieved an excellent approximation of experimental re-
sults with the estimated ones. This was confirmed by the values of the basic statistical pa-
rameters: high correlation coefficient and low values of RMSE, RE and PRESS. Besides, 
the importance of this paper also lies in successful correlation between the in silico 
ADME properties and antifungal activity of studied compounds. This study could give 
necessary guidelines for the analyses of new antifungal therapeutics and facilitate new 
research in drug discovery processes.  
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МОДЕЛОВАЊЕ АНТИФУНГАЛНЕ АКТИВНОСТИ ДЕРИВАТА 
ОКСАЗОЛА НА ОСНОВУ СОФТВЕРСКИ ИЗРАЧУНАТИХ 

ФАРМАКОКИНЕТИЧКИХ ПАРАМЕТАРА ПОМОЋУ РЕГРЕСИОНЕ 
МЕТОДЕ ВЕШТАЧКИХ НЕУРОНСКИХ МРЕЖА 
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 Применом методе вештачких неуронских мрежа испитана је могућност предви-
ђања минималне инхибиторне концентрације, log(1/cMIC), једињења бензоксазола и 
оксазоло[4,5-b]пиридина према Candida albicans на основу софтверски израчунатих 
дескриптора везаних за апсорпцију, дистрибуцију, метаболизам и екскрецију (АД-
МЕ). Оптимализована нерекурентна неуронска мрежа са једним скривеним слојем 
састављеним од 6 неурона, улазним слојем од 4 и излазним слојем од 1 неурона, 
предвидела је вредности за log(1/cMIC) које су у веома јакој корелацији са вредно-
стима добијеним експериментално. Статистичка спецификација примењене мреже 
указује на успешно предвиђање антифунгалне активности на основу софтверски 
моделованих АДМЕ параметара испитиваних једињења употребом вештачких неу-
ронских мрежа, што може да представља добру смерницу код дизајнирања нових 
антифунгалних супстанци. 
 
Кључне речи: бензоксазоли, оксазоло[4,5-b]пиридини, Candida albicans, вештачке 

неуронске мреже, АДМЕ карактеристике 
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