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Abstract. We report on the retrieval of PAN
(CH3C(O)OONO2) in the upper tropical troposphere
from limb measurements by the remote-sensor MIPAS-
STR on board the Russian high altitude research aircraft
M55-Geophysica. The measurements were performed close
to Araçatuba, Brazil, on 17 February 2005. The retrieval
was made in the spectral range 775–820 cm−1 where PAN
exhibits its strongest feature but also more than 10 species
interfere. Especially trace gases such as CH3CCl3, CFC-
113, CFC-11, and CFC-22, emitting also in spectrally broad
not-resolved branches, make the processing of PAN prone
to errors. Therefore, the selection of appropriate spectral
windows, the separate retrieval of several interfering species
and the careful handling of the water vapour profile are part
of the study presented.

The retrieved profile of PAN has a maximum of about
0.14 ppbv at 10 km altitude, slightly larger than the lowest
reported values (<0.1 ppbv) and much lower than the high-
est reported in the literature (0.65 ppbv). Besides the NOy
constituents measured by MIPAS-STR (HNO3, ClONO2,
HO2NO2, PAN), the in situ instruments aboard the Geophys-
ica provide simultaneous measurements of NO, NO2, and the
sum NOy. Comparing the sum of in-situ and remotely de-
rived NO+NO2+HNO3+ClONO2+HO2NO2+PAN with total
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NOy a deficit of 30–40% (0.2–0.3 ppbv) in the troposphere
remains unexplained whereas the values fit well in the strato-
sphere.

1 Introduction

PAN (CH3C(O)OONO2) is the most common member of
peroxyacyl nitrates playing an important role in tropospheric
chemistry. In high concentrations – higher, than up to now
measured in the atmosphere – it is known to be eye irri-
tant and phytotoxic to plants. PAN was first discovered in
a Los Angeles photochemical smog episode (Stephens et al.,
1956). Biomass burning was also suggested to be a signifi-
cant source of PAN (Holzinger et al., 2005). The formation
of PAN in the atmosphere involves hydrocarbons (paraffins,
olefins, aromatics) and oxides of nitrogen. It is initiated by
the reaction of OH with hydrocarbons. After intermediate re-
actions involving acetaldehyde, the acetyl radical and molec-
ular oxygen, the peroxyacetyl radical(CH3CO3) is formed
which further reacts with NO2 to PAN (Singh, 1987).

The lifetime of PAN in the lower troposphere is in the or-
der of hours and is dominated by thermolysis. In the up-
per troposphere, the lifetime, dominated by photolysis, is
of the order of months, or even longer in dark Arctic re-
gions (Talukdar et al., 1995; Kirchener et al., 1999). Me-
dian PAN/NOy ratios of more than 0.6 at altitudes from 4 km
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to 8 km have been observed in long-range transported Asian
pollution plumes (Roberts et al., 2004). For details on the
formation and distribution of PAN seeWarneck(1999) and
Finlayson-Pitts and Pitts(2000).

Although PAN concentrations as high as 0.65 ppbv (up to
8 km) have been observed (Roberts et al., 2004), its low con-
centrations (<0.1 ppbv) in relatively clean background con-
ditions (see e.g. measurements in the south Atlantic bySingh,
1996) make it difficult to measure. Various in situ techniques
have been used to determine the volume mixing ratios of
PAN in the atmosphere. These are Fourier transform infrared
spectroscopy (FTIR) (Stephens et al., 1956; Hanst et al.,
1982), gas chromatography with electron capture detection
(GC/ECD) (Lovelock, 1961; Müller and Rudolph, 1989),
gas chromatography with luminol-chemiluminescence de-
tection (GC/LCD) (Gaffney et al., 1998), proton transfer re-
action mass spectrometry (PTR-MS) (Hansel et al., 1995)
coupled with a selected ion flow drift tube (SIFDT) method
(Hansel and Wisthaler, 2000), gas chromatography / neg-
ative ion chemical ionization mass spectrometry (GC/NICI
MS) (Tanimoto et al., 2001), thermal dissociation-chemical
ionization mass spectrometry (TD-CIMS) (Slusher et al.,
2004), and thermal dissociation-laser induced fluorescence
(TD-LIF) (Day et al., 2002). The latter only detects sum per-
oxy nitrates, among those PAN is typically 80–90%.

Remote sensing in the infrared provides an alternative
and independent method for the measurement of PAN. From
occultation measurements of ACE-FTS onboard SCISAT-1
it was possible to retrieve PAN in a young biomass burn-
ing plume (Coheur et al., 2007). Recently,Remedios et
al. (2007a) have shown the clear presence of the signatures
of PAN in the emission spectra obtained by the balloon
born MIPAS. Global upper tropospheric PAN distributions
were derived from MIPAS/Envisat spectra byGlatthor et al.
(2007).

In this paper we report the retrieval of PAN from measure-
ments of MIPAS-STR (Michelson Interferometer for Pas-
sive Atmosphere Sounding-STRatospheric aircraft,Piesch et
al., 1996) an instrument operated on board the high-altitude
aircraft Geophysica. The work was initiated by the ob-
servation that large differences exist in the upper tropo-
sphere (above 10 km) between MIPAS-STR measurements
of HNO3 and coincident in situ measurements of NOy–NO
by SIOUX (StratospherIc Observation Unit for nitrogen oX-
ides,Schmitt, 2003) also aboard the Geophysica.

In the following we give a short description of the MIPAS-
STR instrument and its measurement strategy, an overview of
the flight of 17 February 2005 and compare HNO3 data from
MIPAS-STR with coincident in-situ measurements of (NOy–
NO–NO2) to obtain an upper limit PAN profile (Sect. 2). Fur-
ther we give a simulation on the feasibility of detecting PAN
from the MIPAS-STR observations (Sect. 3), relevant gen-
eral details on the data processing (Sect. 4) and finally the
retrieval of PAN from the measured spectra, including the er-

ror estimation (Sect. 5). The last section gives a summary
and a discussion of the results.

2 MIPAS-STR measurements on 17 February 2005

2.1 The MIPAS-STR instrument

MIPAS-STR is a cryogenic Fourier transform emission
sounder operating in the middle infrared (Fischer and Oel-
haf, 1996; Keim et al., 2004). The emission method allows
limb and upward viewing, yielding about 2 km vertical reso-
lution below the flight level (up to 20 km). Reduced vertical
information above the flight level is obtained by upward mea-
surements with several elevation angles. The final results are
2-dimensional distributions of the trace gases along the flight
track in an altitude range covering the lowest stratosphere
and the upper troposphere.

The first deployment of MIPAS-STR was made during
the Antarctic campaign APE-GAIA in 1999 (Höpfner et al.,
2000). The performance of the instrument has been consider-
ably improved in recent years.The pointing of the limb mea-
surements has been operated at fixed tangent heights between
6 km and the flight altitude with a spacing of 1 km. Consid-
ering the instrumental field of view of 0.44 degrees (FWHM)
over-sampling by a factor 2–3 was applied at the lower tan-
gent heights. In addition upward measurements at elevation
angles of 0, 1, 3 and 10 degrees, as well as zenith and cold
blackbody (210 K) measurements were performed. Two-
sided interferograms were obtained with a maximum opti-
cal path difference L of 14.4 cm, resulting in an unapodised
spectral resolution (1/2 L) of 0.035 cm−1. For a flight alti-
tude of 19 km the complete sequence, including calibration,
takes 200 s. This results in a horizontal resolution in flight di-
rection of about 36 km. The data shown in this paper are ob-
tained from channel 1, which covers the wavenumber range
of 770–970 cm−1.

2.2 Flight scenario

The flight track of the Geophysica with the location of the
tangent points of MIPAS-STR limb sequences is given in
Fig. 1. From Araçatuba (21.2◦ S, 50.4◦ W) the flight was
conducted northbound and returned south on a straight track
from 14◦ S to 23◦ S. Optically thick clouds were observed
in the northern part of this leg which prevented trace gas re-
trieval for that region. However, cloudless condition were
found in the southern part, just before the descent. The red
rectangle in Fig.1 indicates the tangent points of six cloud
free limb sequences measured between 13:05 and 13:20 UTC
(about 10 a.m. local time). These six limb sequences cover
the track of the aircraft on the descent, which started at the
southernmost point of the path. The flight thus gives an ex-
cellent opportunity to compare the MIPAS-STR profile with
in situ data measured during descent.
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Fig. 1. Flight track of Geophysica and location of the tangent points
of the MIPAS-STR instrument on 17 February 2005. The black
arrow denotes the flight direction. The colour coding of the tangent
points indicates their altitude, from blue for the lowest altitude at
6 km to orange at the aircraft flight level at 19 km. The red rectangle
surrounds the six cloud-free sequences, used in this work and the
aircrafts descent, where the in-situ profiles are located.

2.3 The SIOUX instrument

Nitric oxide (NO) and total reactive nitrogen (NOy) were
measured with the SIOUX (Stratospheric Observation Unit
for nitrogen oXides) instrument. SIOUX includes a
two-channel high sensitivity NO detector using gas-phase
O3/NO-chemiluminescence technique. For detection of to-
tal reactive nitrogen (defined as NOy = NO + NO2 + NO3 +
HNO3 + HNO2 + HNO4 + PAN + RONO2 + 2 · N2O5 + halo-
gen nitrates + organic nitrates + aerosol nitrates), higher oxi-
dised nitrogen compounds are reduced to NO using a heated
(300◦C) catalytic gold converter operated with addition of
CO (e.g.,Fahey et al., 1985). The conversion efficiency
of the NOy converter to HCN was investigated in labora-
tory tests and amounts to 2–15% of the HCN mixing ratio
increasing with increasing ozone concentration. In the tro-
posphere this may result in an artifact NOy signal of 4 pptv
(<1% of the NOy signal) for a HCN mixing ratio of 200 pptv.
Further details of the measurement technique are given in
Ziereis et al.(2000). The SIOUX instrument has already
been used during several field campaigns on board the Geo-
physica (Grooß et al., 2005; Voigt et al., 2005, 2006). It is
housed in a container under the right wing of the Geophys-
ica. Ambient sample air is passed through a rearward fac-

Fig. 2. Comparison of HNO3 from MIPAS-STR with in situ mea-
sured NOy–NO–NO2 (left) and the difference of NOy –NO–NO2–
HNO3 (right). In the right panel we give also the smoothed differ-
ence used in Sect. 4.6.

ing inlet to avoid sampling of larger aerosol particles. Small
aerosols (<1 µm) may enter the inlet, however, the contribu-
tion of nitrate contained in these particles to the NOy signal
is considered negligible. The overall accuracy of the NO and
NOy measurements is 7% and 12% (1σ ), respectively, with
a time resolution of 1 s.

The concentration of NO2 has been be calculated assum-
ing a photochemical steady state between daytime NO2 and
NO according to Eq. (1) (e.g.,Schlager et al., 1997).

NO2 + hν → NO + O (R1)

O + O2 → O3 (R2)

NO + O3 → NO2 + O2 (R3)

[NO2] = [NO] × [O3] × k(T)/JNO2 (1)

where square brackets indicate concentrations, k(T) denotes
the temperature-dependent rate coefficient of the reaction of
O3 with NO, and JNO2 is the NO2 photolysis frequency.
The JNO2 values are calculated with the radiative transfer
model ofRuggaber et al.(1994). The O3 concentrations are
taken from measurements of FOZAN (Fast OZone ANalyzer,
Ulanovsky et al., 2001), an other in situ instrument aboard
the Geophysica, and the temperatures from a high-precision
TDC (thermodynamic complex) sensor (Rosemount sensor
customized at CAO, Central Aerological Observatory, Dol-
goprudny, Russia) also aboard the same aircraft.

Individual uncertainties for O3, k, and JNO2 are 5%, 35%,
and 25%, respectively. The overall accuracy of the NO2 cal-
culation is 25% (1σ ).

www.atmos-chem-phys.net/8/4891/2008/ Atmos. Chem. Phys., 8, 4891–4902, 2008



4894 C. Keim et al.: Tropical vertical profile of peroxyacetyl nitrate

Fig. 3. Simulated spectra in the broad-band range of PAN (black)
for a tangent height of 8 km. The lower plot is a zoom of the upper
one in y-direction.

2.4 Comparison of MIPAS-STR measured HNO3 with in
situ measured NOy–NO–NO2

In Fig. 2 the mean HNO3 volume mixing ratio (vmr) from
the six southernmost limb sequences (see Fig.1) is compared
to the in situ observation of NOy–NO–NO2 during descent.
HNO3 was retrieved in itsν5 and 2ν9 bands as described in
Wang et al.(2007) using the MIPAS spectroscopic database
version PF3.1 (Flaud et al., 2003). NOy and NO are mea-
sured directly by SIOUX, while NO2 is calculated as de-
scribed above. The vmr profiles of ClONO2 and HO2NO2,
also included in NOy, were retrieved from the MIPAS-STR
measurements (seeHöpfner et al.(2007) and Stiller et al.
(2007) for the method), but due to their very low vmr (see
Figs.5 and13) neglected in the comparison.

The altitude of the cold point tropopause (see Fig.12) is
about 18 km. Below this altitude, NOy–NO–NO2 is always
higher than HNO3 by up to 0.32 ppbv. In the following we
investigate how much of this difference can be attributed to
PAN.

3 Spectral simulations for PAN

A well suited band for mid-IR PAN analysis is located be-
tween 775 and 820 cm−1 (Glatthor et al., 2007; Remedios
et al., 2007a). To indicate the contribution of different at-
mospheric trace species in this spectral region we show sim-
ulations performed with KOPRA (Karlsruhe Optimised and
Precise Radiative transfer Algorithm,Stiller et al., 2000) for
a tangent height of 8 km located at the southern part of the
flight. In total 38 different trace gases are considered, the 14
strongest radiances are shown in Fig.3. The band of PAN is
mainly interfered by CO2, H2O, O3, CCl4, CFC-22, CFC-
113, CH3CCl3, and ClONO2. The infrared cross-section
data for PAN at 295 K (Allen et al., 2005a) and the newer
data at lower temperatures of 273 K, and 250 K (Allen et al.,

Fig. 4. Simulated difference spectra (with- without PAN) in the
broad-band range of PAN for all tangent heights from 8 to 18.6 km.
The noise level of MIPAS-STR is about 15 nW/(cm2 sr cm−1)

2005b) are adopted in this paper. For the simulation, the tem-
perature profile is taken from the ECMWF model (Fig.12
supports this choice as reasonable) and the vmr profiles for
all gases except for H2O and PAN are taken from a tropi-
cal climatology (Remedios et al., 2007b). For PAN a mid-
latitude profile of the MOZART Model (Model for OZone
And Related chemical TracersHorowitz et al., 2003) is used.
The water profile is estimated from in situ measurements of
FLASH (FLuorescence Airborne Stratospheric Hygrometer,
Sitnikov et al., 2007) and FISH (Fast In situ Stratospheric
Hygrometer,Zöger et al., 1999) aboard the Geophysica (see
Fig. 6).

The sensitivity of the MIPAS-STR observation to PAN is
demonstrated by plotting simulated difference spectra (with-
without PAN) for various tangent heights between 8 and
18.6 km (see Fig.4).

In small spectral regions, the information on PAN is re-
duced due to saturation caused by interfering trace gases.
This is the case around the CO2 Q-branch (792 cm−1) and
at the position of strong CO2 and H2O lines. Apart from
these regions the radiance abates rather quickly with increas-
ing tangent height. This quick decrease is not surprising, the
emitted radiance is (mainly) proportional to the concentra-
tion of the trace gas and via Planck’s law also dependent on
its temperature. As the temperature and the pressure (drives
the concentration, if not compensated by a strong vmr in-
crease) decrease with increasing altitude, the radiance de-
creases. At 13, 14, and 15 km, the maximum radiance is only
50, 25, and 12.5 nW/(cm2 sr cm−1), respectively, compara-
ble with the spectral noise

(
15 nW/

(
cm2 sr cm−1

))
in the

single MIPAS-STR spectra.
However, with the high resolution spectra the broadly

emitting PAN can be retrieved by multi-line retrieval from
much lower radiances. In the present work 1171 indepen-
dent spectral points were used to obtain a PAN profile.
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4 Data processing

4.1 Level-1 processing

Level-1 processing of the MIPAS-STR data provides the in-
put data for the subsequent profile retrieval. Basically, it con-
verts raw interferograms of the atmospheric measurements
stored during the flight into radiometrically calibrated atmo-
spheric spectra for each tangent height or elevation angle.
The spectral gain and offset of the instrument were obtained
from the zenith and cold blackbody measurements of each
individual sequence. The zenith spectra were corrected for
the contained atmospheric features. Level-1 processing also
provides the auxiliary data which are derived from the stored
housekeeping information as well as from the line of sight
calibration and the field of view measurements made before
and after the flight. The auxiliary data include information on
the corrected flight altitudes, elevation- and azimuth angles,
and relevant instrument parameters.

4.2 Level-2 processing

Vertical profiles of the atmospheric parameters (vmr of gases,
temperature, pressure and absorption/emission of aerosols)
are retrieved by use of the atmospheric radiative transfer
model KOPRA and its inversion algorithm KOPRAFIT. The
profiles are iteratively changed to minimise the residuum
between measured spectra and forward calculated spec-
tra of a complete sequence. Regularisation of the profile
shape against an a priori profile is necessary for each re-
trieved atmospheric parameter because the chosen retrieval
grid (0.5 km) is finer than the achievable vertical resolution.
In KOPRAFIT the Tikhonov-Philips regularisation method
(Tikhonov, 1963; Phillips, 2003) was adopted:

xi+1 = xi +

(
KT

i S−1
y K i + γ LT L

)−1

[
KT

i S−1
y (y − f (xi)) + γ LT L (xa − xi)

]
(2)

where i denotes the iteration index;x the vector with the
unknowns;xa the a priori values;y the measurement vector;
Sy the measurement covariance matrix ofy; f the forward
model;K the spectral derivatives matrix;γ the regularisation
parameter andL the first derivative regularisation operator.

The regularisation strength is chosen as small as possible,
just large enough to avoid oscillations in the resulting profile.
The achieved vertical resolution of the retrieved profile is the
FWHM (full width at half maximum) of the columns of the
averaging kernel matrix, given by:

A =

(
KT

i S−1
y K i + γ LT L

)−1
KT

i S−1
y K i (3)

Fig. 5. Vertical profiles of five interfering species determined before
the retrieval of PAN.

4.3 PAN retrieval method

Here we describe the strategy used for the retrieval of
PAN. To minimise the error contribution from spectral
noise, we have averaged all spectra of the same tangent
height/elevation angle within the six southernmost limb se-
quences (see Fig.1), which reduces the noise from 15 to
6 nW/(cm2 sr cm−1). The MIPAS-STR spectra are averaged
over the same region where the in situ measurements while
the descent took place. The small variability of the individ-
ual spectra and also of the 6 individual profiles (e.g. of tem-
perature and CFC-11) permits us to do the average and the
comparison with the in situ profiles. Furthermore, we have
used all spectral points between 775 and 820 cm−1, with the
exception of the region 790–794 cm−1. We excluded this in-
terval to avoid any error on the retrieval from line-mixing of
the CO2 Q-branch located there.

A summary of atmospheric parameters (12 species and
temperature) that have been considered in the retrieval
scheme is given in Table1. Among those parameters,
five species(CH3CCl3, CFC-113, CFC-22, CFC-11, and
ClONO2) have been determined in steps previous to the PAN
retrieval and are kept constant. The remaining profiles are fit-
ted simultaneously with PAN.

ClONO2 is fixed to the profile derived from the nearbyν4
Q-branch in the interval 779.5–781 cm−1 (Höpfner et al.,
2007). CFC-11 has been determined on the basis of the ma-
jor band in the interval 838–856 cm−1 (von Clarmann et al.,
2007a) and CFC-22 has been obtained from its signature at
828.7–829.4 cm−1 (Moore and Remedios, 2008). CH3CCl3
and CFC-113 profiles are firstly estimated from the tropic cli-
matology and then scaled to remove their spectral signatures
from the residuum. The scaling factor corrects the profiles
for the annual decrease.

The vmr profiles of all five pre-determined species are
plotted in Fig.5.

www.atmos-chem-phys.net/8/4891/2008/ Atmos. Chem. Phys., 8, 4891–4902, 2008
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Table 1. Adjusted atmospheric parameter during the PAN retrieval.

Parameter Handling Source of a priori profile

Temperature Cofitted ECMWF
PAN Cofitted model (MOZART) (PANa priori)
H2O Cofitted Pre-determined (see Sect. 4.5)
O3 Cofitted Climatology
CCl4 Cofitted Climatology
HCN Cofitted Climatology
C2H6 Cofitted Climatology
NH3 Cofitted Climatology
ClONO2 Pre-determined MIPAS-STR
CFC-11 Pre-determined MIPAS-STR
CFC-22 Pre-determined MIPAS-STR
CH3CCl3 Pre-determined Modified Climatology
CFC-113 Pre-determined Modified Climatology

Fig. 6. The retrieved H2O profile (simultaneously fitted with
PANMIPAS−STR) and the selected a priori profile are shown to-
gether with in situ data from the FLASH and FISH instruments and
two modified a priori profiles (test1, test2), used for error estima-
tion.

As a priori vmr profile for PAN (PANa priori) a mid-latitude
profile of the MOZART model is used (see Fig.7). Beside
trace gases and temperature we determine a continuum ex-
tinction profile for aerosols and a tangent height constant ra-
diation offset for minor calibration errors.

Water continuum emission and possible aerosol broadband
emission increase with decreasing tangent altitude. Both af-
fect the baseline of the spectra. As the retrieval of PAN is
sensitive on the quality of the baseline, we did not use spec-
tra below 8 km altitude. The continuum contribution in these
spectra exceed our threshold of 400 nW/(cm2 sr cm−1) in the
laser band region (960 cm−1).

4.4 Determination of the H2O a priori profile

Although H2O is simultaneously fitted with PAN, an impact
of the applied a priori profile for water vapour on the PAN

Fig. 7. PAN vertical profile retrieved from MIPAS-STR (17 Febru-
ary 2005, 13:15 UTC; location: 22.0◦ S and 47.7◦ W). The error
bars give the noise error (red) and the estimated total error (black).
Also shown are the a priori profile and the upper limit correspond-
ing to the NOy measurements.

result has been observed. The use of a climatological H2O
a priori profile resulted in instabilities in the PAN profile re-
trieval. This was caused by the incorrect vertical position of
the hygropause mapped into the resulting water vapour pro-
file through the Tikhonov-Phillips regularisation constraint.
To solve this problem we adopted a 2-step approach. In the
first step we use a zero a priori H2O profile and a relatively
strong regularisation. This leads to a H2O profile (H2Ofirst)
with reasonable position of the hygropause but relatively low
vertical resolution. Its values are found to be higher than the
in situ data between 10 and 12 km.

In the next step with weakened constraint, H2Ofirst is used
as the a priori to get the next H2O profile. This profile has
been used as the ”selected” H2O a priori in the PAN retrieval.
As shown in Fig.6 the fitted H2O vmr profile is very similar
to the selected a priori profile above 11 km but larger at lower
altitudes. Both the selected a priori and the fitted profile tend
to have some zigzag structure around 12–13 km. Such kind
of feature is also present in the in situ data observed by the
instruments FLASH and FISH (Fig.6) just above the hy-
gropause and, thus, seems to be real.

4.5 PAN cross sections

Cross sections for PAN have been measured at 295 K, 273 K
and 250 K (Allen et al., 2005a,b) whereas the relevant tem-
perature for our measurements is between 197 K and 250 K.
The cross sections increase from 273 K to 250 K by 8%, from
295 K to 273 K by 12%. For the PAN profile we extrapo-
lated linearly, using the cross section measured at 273 K and
250 K, according to the atmospheric temperature profile.

Atmos. Chem. Phys., 8, 4891–4902, 2008 www.atmos-chem-phys.net/8/4891/2008/
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Fig. 8. Averaging kernel for the retrieval of PAN with MIPAS-STR.

Fig. 9. Achieved vertical resolution of the retrieved PAN profile.
The tangent heights are indicated by dotted lines.

4.6 The resulting PAN-profile

Figure 7 shows the retrieved profile of PAN from MIPAS-
STR (in the following referred to as PANMIPAS−STR). Error
bars indicating the total error (see Sect. 4.7 and Fig.11) and
the noise error are added in the profile. The vmr profile peaks
at 10 km altitude with a value of about 0.14 ppbv and an error
of 15%. At 14 km, still 0.04 ppbv of PAN are observed with
an error of proximately 22%.

The averaging kernel matrix for PANMIPAS−STR is used to
determine the sensitivity of the retrieval at different altitudes
(see Fig.8). The columns of the matrix are the answers of the
retrieval to a delta function in the associated altitude. The di-
agonal structures in the altitude range of the limb sequences
between 8 and 18.6 km is clearly visible in Fig.8. Below this

Table 2. Three test cases for examination of the spectral fit quality.

A priori Treatment of PAN
PAN profile in KOPRAFIT

RUNfit Model fitted
RUNlimit NOy-NO-NO2-HNO3 not fitted
RUNzero Zero not fitted

Fig. 10. MIPAS-STR measured spectra in black (top panels) and
the residual spectra (forward calculation – measurement) in blue,
red and black of RUNfit and the tests RUNlimit and RUNzero(lower
panels) at tangent heights of 11 km (left panels) and 13 km (right
panels).

range no measurements are available. The vertical resolu-
tion, determined as FWHM of each column of the averaging
kernel matrix is given in Fig.9. Above the flight level of
19 km the diagonal structure broadens strongly showing that
there the vertical information is strongly reduced compared
to the limb-range where a vertical resolution of 2–2.5 km has
been achieved (see Fig.9).

4.7 Residual spectra

We investigate the quality in the spectral domain of the PAN
retrieval described in Sect. 4.3 (RUNfit) in comparison with
that resulting from two further approaches (see Table 2). For
the test “RUNlimit ” we fixed the PAN profile to PANlimit (see
Fig. 2) and retrieved all other parameters as described in
Sect. 4.3. The test RUNzero has been handled similarly but
all PAN vmrs are fixed to zero.

For all three runs, the residual spectra are shown in
the lower panels of Fig.10 for two selected tangent
heights, 11 km (left part) and 13 km (right part). The
top panels show the corresponding measured spectra. The
rms (root mean square) of the residuum is consider-
ately lower

[
14.8 nW/

(
cm2 sr cm−1

)]
for the run RUNfit ,

than for RUNlimit
[
32.1 nW/

(
cm2 sr cm−1

)]
and RUNzero
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Fig. 11. Estimated total and individual relative errors in
PANMIPAS−STR analysis.

[
27.3 nW/

(
cm2 sr cm−1

)]
. The rms of RUNfit is higher

than the spectral noise
(
6 nW/

(
cm2 sr cm−1

))
, because the

residuum still contains residuals of lines, especially for low
tangent heights. The broadband structure similar to the PAN
contribution (see Figs.3 and 4), present in the residua of
RUNlimit and RUNzero, is, however, removed in RUNfit .

4.8 Error estimation

In this section we analyse the effects of various error
sources on the retrieved PAN vertical profile. We distinguish
instrument-related error sources such as calibration and spec-
tral noise and retrieval-related error sources such as spec-
troscopy and the errors in the used profiles. Here we con-
sider temperature, water vapour, CCl4 and the five inter-
fering species (CH3CCl3, CFC-113, CFC-22, CFC-11, and
ClONO2) whose profiles have been kept constant during the
PAN retrieval. Figure11presents the total error together with
the individual errors described in the following paragraphs.

1. Temperature: A comparison of the retrieved verti-
cal temperature profile from MIPAS-STR with that of
ECMWF and in situ observations by the Rosemount
TDC is shown in Fig.12. In general, good agreement is
found between all profiles, providing us the confidence
in the level-1 processing for the spectral band in which
PAN is also retrieved. Since the MIPAS-STR tempera-
ture is still slightly lower in the comparison, especially
in the lower part, the contribution from a 2 K shift of
the temperature profile is considered in the PAN error
estimation.

2. Water vapour: Two different H2O a priori profiles (test1
and test2 in Fig. 6), are used to estimate the contribu-
tion of the H2O a priori profile on the PAN error bud-
get. In both a priori test profiles the zigzag at 13 km

Fig. 12. Comparison of the temperature profile retrieved simulta-
neously with PAN from MIPAS-STR spectra with that of ECMWF
and in situ instrument TDC aboard the Geophysica.

is removed. Additionally, the a priori values in test2
have been increased for altitudes below 11 km, adapting
the FLASH measurement. Test1 only weakly influences
PANMIPAS−STR, whereas test2 leads to differences in the
order of about 5%.

3. The five pre-determined species: An uncertainty of 5%
in each of the vmr profiles (CH3CCl3, CFC-113, CFC-
22, CFC-11, and ClONO2), which have been deter-
mined in previous steps and kept constant during the
PAN retrieval, is assumed. The real profiles of these
species are not important, but how good the spectral sig-
natures may be removed from the measured spectra. So
the spectroscopic error, normally dominating the error
budged, can be omitted. The remaining error shrinks to
about 5%.

4. PAN cross sections: To consider atmospheric temper-
atures lower than 250 K we linearly extrapolated the
cross sections measured at 273 K and 250 K. For the er-
ror from the PAN cross section, we added the tempera-
ture dependent term(T−250 K)×0.16% to the error of
3% given byAllen et al. (2005b) for 250 K. The first
term, roughly 4% for 25 K difference is the dominant
term at temperatures close to 200 K.

5. Radiometric calibration: An error in the gain calibration
of 2% has been assumed (Friedl-Vallon et al., 2004).

6. Spectral noise: A NESR (noise equivalent signal radi-
ance) of 6 nW/(cm2 sr cm−1) has been assumed.

Figure11 presents each individual error contribution to-
gether with the total error calculated from these by the root
square sum of all individual errors for each altitude. The
high relative errors are at altitudes with low vmr values (see

Atmos. Chem. Phys., 8, 4891–4902, 2008 www.atmos-chem-phys.net/8/4891/2008/



C. Keim et al.: Tropical vertical profile of peroxyacetyl nitrate 4899

Fig. 13. Comparison of measured NOy with the profiles of the in-
dividual constituents and their sum.

Fig. 7). In the altitude range spanned by the tangent points
from 9 km to 18 km, the total relative error is between 15%
and 20%. In the lower part (up to about 14 km), errors in
the temperature and PAN cross section dominate, whereas
above spectral noise and PAN cross section are the major er-
ror sources. Error bars for the total error are given with the
PANMIPAS−STR profile in Fig.7.

5 Discussion

This work was initiated by the comparison of the MIPAS-
STR HNO3 profile with the difference profile NOy-NO, mea-
sured by the in-situ instrument SIOUX. The disagreement
between the two profiles posed the question, which of the
constituents of NOy have to be considered additionally. The
profiles of ClONO2 and HO2NO2 were retrieved from the
MIPAS-STR spectra, and NO2 was calculated from O3 and
NO. However, the consideration of those gases did not
change the situation, as their vmrs are very small. So we
tried successfully to retrieve PAN vmrs from the MIPAS-
STR spectra. But the retrieved PAN profile only accounts
for a sixth to a half (depending on the height) of the deficit
NOy–NO–NO2–HNO3–ClONO2–HO2NO2. In Fig. 13 we
show all derived profiles of the individual constituents of
NOy, their sum and the measured NOy profile. In this fig-
ure, the MIPAS-STR profiles are interpolated to the in situ
measurement altitudes, the data gaps result from calibration
cycles of the SIOUX instrument.

We also degraded all in situ profiles to a resolution, as if
they had been measured by MIPAS-STR. This was done ac-
cording to Eq. (4) (e.g.,von Clarmann et al., 2007b).

x̂ = xa + A (x − xa) (4)

wherex is the in situ profile (replacing the true atmospheric
state in the original Equation),xa is the a priori profile, and

Fig. 14.Comparison of measured NOy with the sum of the individ-
ual constituents. All in situ profiles are degraded to the MIPAS-STR
vertical resolution

A is the averaging kernel as given in Eq. (3). The left side
x̂ is the profile virtually measured by MIPAS-STR. As a pri-
ori profiles for NO and NO2 we used their profiles given in
the climatology (Remedios et al., 2007b). For NOy we used
the sum of HNO3 and ClONO2. As the averaging kernels
result from a real retrieval they are not available. But as al-
ready described near Eq. (3), the averaging kernel reflects the
vertical spacing of the tangent points. This results in a simi-
larity of the averaging kernels of the different trace gases. We
therefore can use the averaging kernel of the PAN retrieval to
simulate the NOy, NO, and NO2 measurements. Figure14
shows the profile of NOy together with the sum of NO, NO2,
HNO3, ClONO2, HO2NO2, and PAN in the left panel. We
give both, the degraded and the not degraded profiles. 1-
Sigma error bares are added to the degraded profiles. The
error of the sum is the root square sum of the errors of the
individual gases. In the left panel we show the (degraded)
residual NOy–NO–NO2–HNO3–ClONO2–HO2NO2 - PAN.
The error bares also give the 1-σ error, calculated as the root
square sum of the errors of the individual gases.

At altitudes above the tropopause, where the tropospheric
constituents of NOy can be neglected, the profile of NOy
agrees well with the calculated sum. This gives us confidence
in the accuracy of the measurements. Below, the discrepancy
reaches 0.29±0.04 ppbv at 11.5 km (see Fig.14). We there-
fore conclude that not all contributing reactive nitrogens have
been accounted for in the sum.

Murphy et al.(2004) report on two compounds (HO2NO2
and CH3O2NO2) which become important at low tempera-
tures in the upper troposphere. They determined their contri-
bution to NOy to be 30% and more at temperatures below
230 K. This could explain the discrepancy, as these com-
pounds are measured in the sum NOy, but only HO2NO2
could be considered in the calculated sum.
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Fig. 15. Comparison of measured NOy with the PAN profile and
the relative contribution of PAN to NOy. The profile of NOy is
degraded to the vertical resolution of the PAN profile.

In Fig. 15 we show the relative contribution of PAN to
NOy. In the left panel we show the (degraded) profiles,
and in the right panel we show there ratio. The ratio peaks
30% at 9.5 km. Roberts et al.(2004) measured ratios of
more than 60% in long-range transported Asian pollution
plumes. Singh (1996) report 23% in the western subtropi-
cal south Atlantic for the altitude range 7–12 km. The later
is in accordance with our measurements in the same region.
Singh(1996) sorted their measurements according to the CO
vmr in “influenced by anthropogenic pollution” and “rela-
tively clean background”. The corresponding median PAN
vmrs show no significant difference above 8 km (65 pptv and
45 pptv), and are somehow in agreement with our measure-
ments. The “polluted” median NOy vmr (340 pptv – 100 pptv
for “clean”) is increased by a factor of three due to the
pollution, but is still lower than our measurement of about
500 pptv (9–12 km). The PAN to NOy ratio of the “polluted”
measurements (20%) is only little smaller than for the whole
data set and thus still in accordance with our value. How-
ever, compared toGlatthor et al.(2007, 0.33 ppbv @ 8 km
and 0.23 ppbv @ 11 km) who use the same method, our PAN
vmrs are smaller.

6 Summary

We investigated the retrieval of the vertical profile (8–19 km)
of PAN using MIPAS-STR emission spectra obtained in the
tropics in February 2005. The largest peak in the retrieved
PAN vmr profile is located at 10 km altitude with an amount
of about 0.14 ppbv. Above 10 km PAN decreases with a sec-
ondary smaller maximum at 16 km (≈0.06 ppbv). The total
relative error is estimated to be about 15–20% between 9 and
18 km.

We used simultaneous in situ measurements to derive the
ratio PAN/NOy which peaks around 30% at 9.5 km. We cal-
culated the sum of all measured (in-situ and remote) NOy
constituents (NO, NO2, HNO3, ClONO2, HO2NO2, and
PAN) and compared it to the measured total NOy. The deficit
peaks at 0.29±0.04 ppbv at 11.5 km.
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U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Milz, M.,
Steck, T., and Stiller, G. P.: Global peroxyacetyl nitrate (PAN)
retrieval in the upper troposphere from limb emission spectra of
the Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS), Atmos. Chem. Phys., 7, 2775–2787, 2007,
http://www.atmos-chem-phys.net/7/2775/2007/.

Grooß, J.-U., G̈unther, G., M̈uller, R., Konopka, P., Bausch, S.,
Schlager, H., Voigt, C., Volk, C. M., Toon, G. C.: Simulation of
Denitrification and Ozone Loss for the Arctic Winter 2002/2003,
Atmos. Chem. Phys. 5, 1437–1448, 2005.

Hansel. A. and Wisthaler, A.: A method for real-time detection of
PAN, PPN, and MPAN in ambient air, Geophys. Res. Lett., 27,
895–898, 2000.

Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., and
Lindinger, W.: Proton transfer reaction mass spectrometry: on-
line trace gas analysis at the ppb level, Int. J. Mass Spectrom. Ion
Processes, 149/150, 609–619, 1995.

Hanst, P. L., Wong, N. W., and Bragin, J.: A long-path infra-
red study of Los Angeles smog, Atmos. Environ., 16, 969–981,
1982.

Holzinger, R., Williams, J., Salisbury, G., Kluepfel, T., de Reus,
M., Traub, M., Crutzen, P. J., and Lelieveld, J.: Oxygenated
compounds in aged biomass burning plumes over the Eastern
Mediterranean: evidence for strong secondary production of
methanol and acetone, Atmos. Chem. Phys., 5, 39–46, 2005,
http://www.atmos-chem-phys.net/5/39/2005/.
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