

JSCS-4224

J. Serb. Chem. Soc. 76 (11) 1505-1511 (2011)

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS UDC 547.52/.53+66.095.252.5:54.02 Original scientific paper

A simple mathematical model for the effect of benzo-annelation on cyclic conjugation

IVAN GUTMAN^{1*#} and ALEXANDRU T. BALABAN²

¹Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia and ²Texas A & M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA

(Received 28 February 2011)

Abstract: In a series of earlier studies, it was established that benzo-annelation in the angular (resp. linear) position relative to a ring *R* of a polycyclic conjugated π -electron system, increases (resp. decreases) the intensity of the cyclic conjugation in the ring R. Herein, it is shown how this regularity can be explained by means of a simple, Kekulé-structure-based argument, itself based on an idea of Randić from the 1970s.

Keywords: cyclic conjugation; Kekulé structure; benzo-annelation; local aromaticity.

INTRODUCTION

The fact that various parts of a polycyclic conjugated molecules have different π -electron properties (often referred to as differences in their local aromaticity or differences in the magnitude of cyclic conjugation in individual rings) was recognized a long time ago;^{1–5} see also recent works along these lines.^{6–16} In 2004, within a study¹⁷ of the effect of benzo-annelation on cyclic conjugation in perylene, it was found that in the case of its central six-membered ring:

a) benzo-annelation in an angular position increases the intensity of cyclic conjugation in this ring and that

b) benzo-annelation in a linear position decreases the intensity of cyclic conjugation in this ring.

Several years were needed to recognize that the regularities a and b are not restricted to perylene, but are generally valid, both for benzenoid^{18–21} and non-benzenoid^{22–26} polycyclic conjugated systems. Initially,^{17–26} the rules a and b were verified by calculating the energy effects (*ef*) of the respective rings. This quantity is known⁵ to provide a reliable measure of the magnitude of cyclic conjugation in individual rings. Details of the theory on which the *ef*-method is based,

1505

^{*}Corresponding author. E-mail: gutman@kg.ac.rs

[#] Serbian Chemical Society member.

doi: 10.2298/JSC110224131G

GUTMAN and BALABAN

as well as on its numerous applications, are outlined in two reviews.^{27,28} Eventually, in order to eliminate the doubt that the results obtained are artifacts of the *ef*-method, the rules a and b were corroborated by means of several other (more advanced) quantum-theoretical approaches.^{29–31} In addition, a general mathematical theory of this phenomenon was elaborated,^{32,33} and its applicability demonstrated on the case of benzo-annelated perylenes.^{34,35}

In the present paper, it is shown that results equivalent to rules a and b can be deduced by means of a simple approach³ for quantifying the intensity of cyclic conjugation in a particular ring (or, as it was originally stated,³ of local aromaticity).

Let *G* be the molecular graph³⁶ of a polycyclic conjugated π -electron system, R one of the rings of *G*, and *G*–*R* the subgraph obtained from *G* by deleting the vertices of R; for an illustrative example see Fig. 1.

Fig. 1. An example illustrating the notation used in this paper. In naphtho[1,2,3,4-ghi]perylene (B) the ring R has ef = 0.0261 and $\Lambda = 0.5263$. In the angularly benzo-annelated derivative (B_A), ef = 0.0323, $\Lambda = 0.6897$, and $\Delta = +0.1634$, whereas in the linearly benzo-annelated derivative (B_L), ef = 0.0223, $\Lambda = 0.3704$, and $\Delta = -0.1559$.

Let K(G) and K(G-R) be the number of Kekulé structures of G and G-R, respectively. In the following, it is assumed that G is Kekuléan, *i.e.*, that K(G) > 0.

Available online at www.shd.org.rs/JSCS/

1506

According to Randić,³ the local aromaticity (Λ) pertaining to the ring R in a conjugated system G can be measured by means of the expression:

$$\Lambda = \Lambda(G, R) = \frac{2K(G - R)}{K(G)} \tag{1}$$

1507

A ring is fully aromatic if $\Lambda = 1$, and devoid of any cyclic conjugation if $\Lambda = 0$. The difference between the local aromaticity (of the ring R) after and before benzo-annelation is denoted by $\Delta = \Delta(R)$.

APPLICATION OF EQUATION (1)

The notation used in this section is explained in Fig. 2 (and illustrated by a particular example in Fig. 1).

Fig. 2. The notation used. The encircled vertices are those that have been deleted.

Thus, let *G* be the molecular graph of a polycyclic conjugated system, R the ring whose cyclic conjugation is to be examined, and S the ring adjacent to R. It should be noted that the ring S must be six-membered, but the ring R need not be. In *G*' the ring S is missing, whereas in *G*'' both rings R and S are missing. The subgraph G-R is obtained by deleting from *G* all vertices belonging to the ring R. The angularly and linearly benzo-annelated derivatives of *G* are denoted by G_A and G_L , respectively, and their subgraphs G_A -R and G_A -R are constructed in full analogy with G-R.

In order to apply Eq. (1), the Kekulé structure counts of G, G_A , and G_L must be computed. This can be realized using standard recursive methods,^{37,38} namely:

$$K(G) = K(G - e) + K(G - u - v)$$
(2)

where e is an edge of G, connecting the vertices u and v, and

$$K(G) = K(G - u - v) \tag{3}$$

GUTMAN and BALABAN

if either the vertex u or the vertex v are pendent (have a single neighbor). The manner in which the formula:

$$K(G) = K(G') + K(G'')$$
 (4)

is obtained by using Eqs. (2) and (3) is shown in Fig. 3.

$$\mathcal{K}\left(\overset{\bullet}{\overset{\bullet}}_{v}\right) = \mathcal{K}\left(\overset{\bullet}{\overset{\bullet}}_{v}\right) + \mathcal{K}\left(\overset{\bullet}{\overset{\bullet}}_{v}\right)$$

$$\mathcal{K}\left(\overset{\bullet}{\overset{\bullet}}_{v}\right) = \mathcal{K}\left(\overset{\bullet}{\overset{\bullet}}_{v}\right) = \mathcal{K}(G')$$

$$\mathcal{K}\left(\overset{\bullet}{\overset{\bullet}}_{v}\right) = \mathcal{K}\left(\overset{\bullet}{\overset{\bullet}}_{v}\right) = \mathcal{K}(G'')$$

Fig. 3. Deducing Eq. (4).

In an analogous manner, one obtains:

$$K(G_{A}) = K(G) + K(G')$$
 and $K(G_{L}) = K(G) + K(G'')$

which combined with Eq. (4) yield:

 $K(G_A) = 2K(G') + K(G'')$ and $K(G_L) = K(G') + 2K(G'')$

It should be noted that since K(G) > 0, then K(G') and K(G'') must also be > 0.

From Figs. 1 and 2, it can be seen that the subgraph G_A-R differs from G-R by having a styrene fragment instead of a butadiene fragment. Since styrene has two Kekulé structures, whereas butadiene only one, one has $K(G_A-R) = 2K(G-R)$. On the other hand, the subgraph G_L-R possesses an *o*-xylylene fragment, the Kekulé structure count of which is unity. Therefore, $K(G_L - R) = K(G - R)$. Bearing these relations in mind one readily arrives at:

$$\Lambda(G,R) = \frac{2K(G-R)}{K(G)} = \frac{2K(G-R)}{K(G') + K(G'')}$$
(5)

$$\Lambda(G_{\rm A}, R) = \frac{2K(G_{\rm A} - R)}{K(G)} = \frac{4K(G - R)}{2K(G') + K(G'')}$$
(6)

and

$$A(G_{\rm L},R) = \frac{2K(G_{\rm L}-R)}{K(G)} = \frac{K(G-R)}{2K(G') + K(G'')}$$
(7)

Available online at www.shd.org.rs/JSCS/

1508

It is now a matter of elementary calculation to verify that if K(G-R) is non--zero, then Eqs. (5)–(7) imply:

$$\Lambda(G_{\rm L},R) < \Lambda(G,R) < \Lambda(G_{\rm A},R)$$

i.e.,

 $\Delta_{\rm L}(R) = \Lambda(G_{\rm L}, R) - \Lambda(G, R) < 0$ and $\Delta_{\rm A}(R) = \Lambda(G_{\rm A}, R) - \Lambda(G, R) > 0$, which is in full agreement with rules a and b. In other words, our finding with regard to the effect of benzo-annelation on cyclic conjugation can be rationalized by means of the simple Kekulé-structure-based formula, Eq. (1). However, this is the case only if the subgraph *G*-*R* is also Kekuléan, *i.e.*, if *K*(*G*-*R*) > 0.

THE CASE K(G-R) = 0

The case K(G-R) = 0 needs to be analyzed separately. This case is important, because it is encountered if the ring R is odd-membered, as in the much studied acenaphthylene and fluoranthene congeners.^{22–26} Also, perylene belongs to this case.¹⁷

If the subgraph G-R is non-Kekuléan, then from Eqs. (5)–(7), it follows:

$$\Lambda(G,R) = \Lambda(G_A,R) = \Lambda(G_L,R) = 0$$

i.e.,

$$\Delta_{\mathbf{I}}(R) = \Delta_{\mathbf{A}}(R) = 0$$

a result that would be expected from a model based solely on Kekulé structures.

The way to circumvent this difficulty is evident: Eq. (1) has to be modified to:

$$\Lambda^{*} = \Lambda^{*}(G, R) = \frac{2K^{*}(G - R)}{K(G)}$$

where K^* is the count of some pertinently chosen resonance structures (with one or more unpaired π -electrons).^{39,40} For the present analysis, the actual choice of K^* is immaterial, it is only necessary that $K^*(G-R) > 0$. If so, then from the modifications of Eqs. (5)–(7), namely:

$$A^{*}(G,R) = \frac{2K^{*}(G-R)}{K(G)} = \frac{2K^{*}(G-R)}{K(G') + K(G'')}$$
$$A^{*}(G_{A},R) = \frac{2K^{*}(G_{A}-R)}{K(G)} = \frac{4K^{*}(G-R)}{2K(G') + K(G'')}$$
$$A^{*}(G_{L},R) = \frac{2K^{*}(G_{L}-R)}{K(G)} = \frac{K^{*}(G-R)}{2K(G') + K(G'')}$$

one immediately obtains:

$$\Lambda^{*}(G_{\mathrm{L}}, R) < \Lambda^{*}(G, R) < \Lambda^{*}(G_{\mathrm{A}}, R)$$

GUTMAN and BALABAN

i.e.,

1510

$$\Delta_{\rm L}^{*}(R) = \Lambda^{*}(G_{\rm L}, R) - \Lambda^{*}(G, R) < 0 \text{ and } \Delta_{\rm A}^{*}(R) = \Lambda^{*}(G_{\rm A}, R) - \Lambda^{*}(G, R) > 0,$$

that is in harmony with the rules a and b.

Acknowledgement. I. G. thanks for the support of the Ministry of Education and Science of the Republic of Serbia (Grant No. 174033).

ИЗВОД

JEDNOSTAVNI

МАТЕМАТИЧКИ МОДЕЛ ЗА УТИЦАЈ БЕНЗО-АНЕЛАЦИЈЕ НА ЦИКЛИЧНУ КОНЈУГАЦИЈУ

ИВАН ГУТМАН 1 и ALEXANDRU T. BALABAN 2

¹Природно–машемашички факулшет Универзишета у Крагујевцу и ²Texas A & M University at Galveston, Galveston, USA

У низу ранијих истраживања установљено је да бензо-анелација у линеарном (одн. ангуларном) положају у односу на прстен P у полицикличном конјугованом π -електронском систему, смањује (одн. увећава) интензитет цикличне конјугације у прстену R. У раду показујемо да се ова правилност може објаснити помоћу једног једноставног, на Кекулеовим структурама заснованог, модела.

(Примљено 28. фебруара 2011)

REFERENCES

- 1. M. J. S. Dewar, *The Molecular Orbital Theory of Organic Chemistry*, McGraw-Hill, New York, 1969
- 2. E. Clar, The Aromatic Sextet, Wiley, London, 1972
- 3. M. Randić, Tetrahedron 30 (1974) 2067
- 4. M. Randić, Tetrahedron 31 (1975) 1477
- 5. I. Gutman, S. Bosanac, Tetrahedron 33 (1977) 1809
- 6. M. Randić, Chem. Rev. 103 (2003) 3449
- 7. A. T. Balaban, Polyc. Arom. Comp. 24 (2004) 83
- 8. A. T. Balaban, M. Randić, J. Math. Chem. 37 (2005) 443
- 9. G. Portella, J. Poater, M. Sola, J. Phys. Org. Chem. 18 (2005) 785
- 10. P. Bultinck, S. Fias, R. Ponec, Chem. Eur. J. 12 (2006) 8813
- 11. J. Aihara, T. Ishida, H. Kanno, Bull. Chem. Soc. Jpn. 80 (2007) 1518
- 12. J. Ou, MATCH Commun. Math. Comput. Chem. 64 (2010) 157
- 13. M. Randić, MATCH Commun. Math. Comput. Chem. 64 (2010) 303
- 14. M. V. Putz, MATCH Commun. Math. Comput. Chem. 64 (2010) 391
- A. Ciesielski, T. M. Krygowski, M. K. Cyranski, A. T. Balaban, *Phys. Chem. Chem. Phys.* 13 (2011) 3737
- 16. A. T. Balaban, M. Randić, in: Advances in Physics and Chemistry of Carbon Bonding and Structures, M. V. Putz, Ed., Springer-Verlag, Berlin, 2011, in press
- 17. I. Gutman, N. Turković, J. Jovičić, Monatsh. Chem. 135 (2004) 1389

- 18. S. Jeremić, S. Radenković, I. Gutman, Maced. J. Chem. Chem. Eng. 29 (2010) 63
- A. T. Balaban, J. Đurđević, I. Gutman, S. Jeremić, S. Radenković, J. Phys. Chem., A 114 (2010) 587
- 20. S. Jeremić, S. Radenković, I. Gutman, J. Serb. Chem. Soc. 75 (2010) 943
- 21. A. T. Balaban, I. Gutman, S. Jeremić, J. Đurđević, Monatsh. Chem. 142 (2011) 53
- 22. I. Gutman, J. Đurđević, A. T. Balaban, Polyc. Arom. Comp. 29 (2009) 3
- 23. J. Đurđević, I. Gutman, J. Terzić, A. T. Balaban, Polyc. Arom. Comp. 29 (2009) 90
- 24. I. Gutman, J. Đurđević, J. Serb. Chem. Soc. 74 (2009) 765
- 25. I. Gutman, S. Jeremić, V. Petrović, Indian J. Chem., A 48 (2009) 658
- 26. B. Furtula, I. Gutman, S. Jeremić, S. Radenković, J. Serb. Chem. Soc. 75 (2010) 83
- 27. I. Gutman, Monatsh. Chem. 136 (2005) 1055
- 28. I. Gutman, in: *Mathematical Methods and Modelling for Students of Chemistry and Biology*, A. Graovac, I. Gutman, D. Vukičević, Eds., Hum, Zagreb, 2009, pp. 13–27
- 29. J. Đurđević, S. Radenković, I. Gutman, S. Marković, Monatsh. Chem. 140 (2009) 1305
- 30. J. Đurđević, I. Gutman, R. Ponec, J. Serb. Chem. Soc. 74 (2009) 549
- 31. A. T. Balaban, T. K. Dickens, I. Gutman, R. B. Mallion, Croat. Chem. Acta 83 (2010) 209
- 32. S. Radenković, J. Đurđević, I. Gutman, Chem. Phys. Lett. 475 (2009) 289
- 33. I. Gutman, J. Math. Chem. 47 (2010) 1309
- 34. S. Radenković, W. Linert, I. Gutman, S. Jeremić, Indian J. Chem., A 48 (2009) 1657
- 35. I. Gutman, S. Radenković, W. Linert, Monatsh. Chem. 141 (2010) 401
- 36. I. Gutman, O. E. Polansky, *Mathematical Concepts in Organic Chemistry*, Springer-Verlag, Berlin, 1986
- 37. W. C. Herndon, J. Chem. Educ. 51 (1974) 10
- 38. S. J Cyvin, I. Gutman, *Kekulé Structures in Benzenoid Hydrocarbons*, Springer-Verlag, Berlin, 1988
- 39. J. R. Dias, J. Chem. Inf. Comput. Sci. 41 (2001) 129
- 40. J. R. Dias, J. Chem. Inf. Comput. Sci. 41 (2001) 686.