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Abstract. The sensitivity of El Nĩno-Southern Oscilla-
tion (ENSO) to changes in mean climate is investigated
for simulations of pre-industrial and mid-Holocene (6000
years before present) climate using the Hadley Centre cou-
pled atmosphere-ocean model, HadCM3. Orbitally-forced
changes in insolation in the mid-Holocene produce changes
in seasonality which may alter ENSO amplitude and fre-
quency. The model simulations are compared with mid-
Holocene fossil coral oxygen isotope records from the west-
ern Pacific Warm Pool. The coral records imply a reduction
of around 60% in the amplitude of interannual variability as-
sociated with ENSO in the mid-Holocene, while the model
simulates a smaller reduction in ENSO amplitude of around
10%. The model also simulates a slight shift to longer period
variability and a weakening of ENSO phase-locking to the
seasonal cycle in the mid-Holocene. There is little change in
the pattern of ENSO tropical precipitation teleconnections in
the simulated mid-Holocene climate.

1 Introduction

Palaeoclimate records indicate that El Niño-Southern Oscil-
lation (ENSO) may have been weaker than present or absent
in the early and mid-Holocene (∼10 000 to∼5000 years ago)
(Sandweiss et al., 1996; Rodbell et al., 1999; Tudhope et al.,
2001). Changes in the timing of perihelion resulted in altered
solar forcing at this time, with increased Northern Hemi-
sphere and tropical seasonality, although annual average in-
solation was virtually unchanged from the present. Previous
modelling studies have found changes in ENSO amplitude
and frequency in response to Holocene orbital forcing (e.g.
Clement et al., 2000, 2001; Otto-Bliesner et al., 2003). We
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use the HadCM3 coupled atmosphere-ocean model to simu-
late mid-Holocene and pre-industrial climate. We consider
the change in mean climate in the mid-Holocene, and the
change in interannual sea surface temperature (SST) variabil-
ity, ENSO amplitude and frequency. We compare the model
results with modern and fossil coral oxygen isotope records
from coastal Papua New Guinea in the western Pacific Warm
Pool. The ultimate aim of this study is to evaluate the model’s
ability to simulate past climates in order to build confidence
in its ability to simulate future anthropogenic climate change.

2 Mid-Holocene coral records

Coral oxygen isotope records have been obtained from liv-
ing and fossil corals from the Huon Peninsula, Madang
and Laing Island on the north coast of Papua New Guinea
(Fig. 1). The oxygen isotope ratio (δ18O) from living coral
at the three sites is found to be strongly correlated with
ENSO activity due to cooler (warmer) SSTs and decreased
(increased) precipitation during El Niño (La Niña) events
(Tudhope et al., 1995, 2001). Selected modern and fos-
sil coral oxygen isotope records from the mid- and late
Holocene are shown in Fig.2. The oxygen isotope ratios in
mid-Holocene fossil coral from 6500 years ago (6.5 ka) show
weaker variability at ENSO periods, a reduction of 60% rel-
ative to 20th century amplitudes, while the amplitude in the
late Holocene (2.7 ka) coral record is similar to the modern
amplitude (Tudhope et al., 2001).

The coral oxygen isotope ratio reflects changes in both
SST and local ocean isotopic ratio, which is influenced by
the balance between precipitation and evaporation. While
SST and precipitation vary together for modern ENSO events
at the coral site (e.g.Tudhope et al., 1995), this relation-
ship may differ for past climates. For example,Gagan et
al. (2004) examine coral oxygen isotope ratios and Sr/Ca
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Fig. 1. Location of Laing Island, Madang and Huon Peninsula coral
sites (adapted fromTudhope et al.(2001)).

ratios at 6.2 ka from Great Barrier Reef fossil corals and find
that SST variability associated with ENSO was reduced by
20% while precipitation variability was reduced by around
70% compared with late 20th century values. It is possi-
ble that changes in ENSO precipitation teleconnections may
contribute to the large reduction in amplitude in the Huon
Peninsula records, as the signal at the Papua New Guinea site
is predominantly influenced by precipitation rather than SST
for modern coral records (Tudhope et al., 1995). We there-
fore investigate the changes in modelled ENSO precipitation
and SST variability in comparison with the proxy record.

3 Modelled mid-Holocene climate

HadCM3 is a fully coupled atmosphere-ocean model with
3.75◦ longitude and 2.5◦ latitude horizontal resolution and 19
levels in the atmospheric component, as described byPope
et al. (2000). The ocean component has a uniform resolu-
tion of 1.25◦ with 20 vertical levels (Gordon et al., 2000).
The model exhibits no significant climate drift, and so can
perform multi-century integrations without flux correction.
HadCM3 has been shown to simulate ENSO as well as other
state-of-the-art coupled models, with an amplitude and fre-
quency which is broadly similar to observations. Known bi-
ases in the model climate which may influence the evolution
of ENSO temperature and precipitation anomalies include a
cold bias in the central equatorial Pacific Ocean and a warm
bias over the Maritime continent (e.g.Inness et al., 2003;
Turner et al., 2005). The equatorial Pacific trade winds are
stronger than observed, and convection tends to be confined
to the western Pacific Warm Pool and stronger than observed.

The pre-industrial climate simulation is carried out using
modern orbital parameters, vegetation coverage and conti-
nental ice sheets, and an atmospheric CO2 concentration of

280 ppmv. The orbital parameters are altered for the mid-
Holocene simulation, with all other boundary conditions the
same as for the pre-industrial simulation. The model is run
for 100 years in each case and flux corrections are not ap-
plied. Figure3 shows the seasonal (DJF and JJA) surface
temperature anomalies in the mid-Holocene climate in re-
sponse to the change in insolation. In the mid-Holocene,
Northern Hemisphere mid-latitude continental surface tem-
peratures are increased in summer and decreased in winter.
Due to the increased Northern Hemisphere summer land-sea
temperature gradient, the Asian summer monsoon precipita-
tion is increased, although interannual variability of monsoon
strength is reduced according to both dynamical and precip-
itation indices (not shown). The Sahel region in Africa also
experiences increased precipitation during the summer mon-
soon, with a slight northward shift in the region of maximum
precipitation.

The mean state of the tropical Pacific in the mid-Holocene
remains the subject of some debate. Lake sediment records
from Ecuador indicate fewer strong El Niño events in the
mid-Holocene, whichRodbell et al.(1999) interpret as evi-
dence for warmer eastern Pacific SSTs. More recent studies
(e.g.Clement et al., 2000; Liu et al., 2003) have argued that
these lake sediment records are consistent with a cooler east-
ern Pacific. Mg/Ca records from near the Galapagos sug-
gest mid-Holocene cooling in the eastern Pacific, with an
enhanced zonal SST gradient and strengthened trade winds
(Koutavas et al., 2002). Coral evidence of warming in the
western Pacific (Gagan et al., 1998) may have resulted in
an increased zonal SST gradient across the Pacific. Mol-
lusk distributions on the coast of Peru imply locally warmer
waters, which may be due to changes in coastal SSTs and
upwelling or large-scale El Niño-like conditions (Sandweiss
et al., 1996). Several previous modelling studies have sug-
gested that the mean tropical ocean state was La Niña-like in
the mid-Holocene with a relative cooling in the eastern Pa-
cific, in some cases accompanied by a strengthening of the
trade winds and changes in the distribution of precipitation
(e.g.Otto-Bliesner, 1999; Bush, 1999; Liu et al., 2003).

The modelled change in tropical SSTs from mid-Holocene
to pre-industrial climate is shown in Fig.3. There is a cool-
ing of up to 1◦C in the central and eastern tropical Pacific in
DJF, while in JJA SSTs warm slightly on the equator in the
eastern Pacific with cooling off the equator and in the cen-
tral and western equatorial Pacific. The annual average zonal
SST gradient in the equatorial Pacific is unchanged in the
mid-Holocene simulation, although the zonal SST gradient
is seasonally strengthened following boreal winter and weak-
ened following boreal summer. The easterly trade winds also
undergo seasonal changes in the mid-Holocene simulation,
with a strengthening from boreal summer onwards in the cen-
tral and western Pacific (not shown), consistent with previous
modelling studies.
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Fig. 2. Oxygen isotope ratios from Papua New Guinea coral. Left: Seasonal resolution (thin lines) and 2.25-year binomial-filtered skeletal
δ18O records from fossil corals of 2.7 ka and 6.5 ka age, with the record from a modern coral shown for comparison. Right: 2.5–7 year
(ENSO) bandpass-filtered coralδ18O anomalies (adapted fromTudhope et al.(2001)). Coralδ18O values are given in permil (PDB).

Fig. 3. Difference between model-simulated mid-Holocene and
pre-industrial surface temperature for DJF (above) and JJA (below).
Contour interval is 0.5◦C.

4 Modelled mid-Holocene ENSO

The timeseries of the SST anomaly in the Ninõ-3 region
(5◦ N–5◦ S, 150–90◦ W) is calculated for the 100-year pre-
industrial and mid-Holocene simulations (Fig.4). The stan-
dard deviation of the Niño-3 index is 0.81◦C for the pre-
industrial run and 0.71◦C for the mid-Holocene run, repre-

Fig. 4. Niño-3 SST anomalies (◦C) for 100-year pre-industrial
(above) and mid-Holocene (below) climate simulations. Dashed
line indicates±2 standard deviations of the Niño-3 anomalies.
Monthly mean values are shown with the seasonal cycle removed.

senting a reduction in ENSO amplitude of 12%. The dif-
ference between the amplitude of ENSO in the two runs is
within the range of internal model interdecadal variability in
a 1000-year HadCM3 control run (Collins, 2000a), therefore
it is difficult to make statistically robust conclusions.

The power spectrum of Niño-3 SST anomalies for
HadISST observed SSTs from 1949–2002 (Rayner et al.,
2003) is compared with the pre-industrial and mid-Holocene
Niño-3 spectra in Fig.5. The modelled pre-industrial ENSO
has maximum power at periods of 2–3 and 5 years, while the
mid-Holocene ENSO has maximum power at slightly longer
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Fig. 5. Spectra of HadISST observed (solid line), pre-industrial
(dashed line) and mid-Holocene (dot-dashed line) Niño-3 SST
anomalies (above); seasonal cycle of HadISST observed (solid
line), pre-industrial (dashed line) and mid-Holocene (dot-dashed
line) standard deviation of Niño-3 SST anomalies (below).

periods of 4.5 and 5.5 years. The mean annual cycle of Niño-
3 SST anomalies is also shown in Fig.5 in comparison with
HadISST observations. The modelled pre-industrial ENSO
shows phase-locking to the annual cycle in broad agreement
with observations, with maximum amplitude in December
although the minimum is later than the observed April min-
imum. The simulated mid-Holocene ENSO has a weaker
phase-locking to the seasonal cycle, with a strong reduction
in amplitude in the period September–April.

The precipitation response to ENSO is investigated using
the correlation between monthly anomalies of Niño-3 SST
and precipitation, as shown in Fig.6. In the pre-industrial
case, the model simulates a positive Niño3 SST-precipitation
correlation over the western Pacific Warm Pool region corre-
sponding to the coral sites, whereas in observations this rela-
tionship is reversed with reduced precipitation during warm
El Niño events (e.g.Dai and Wigley, 2000). This is a known
bias in HadCM3, with the overly strong trades confining the

Fig. 6. Correlation between monthly Niño-3 SST anomalies and
precipitation anomalies in pre-industrial (above) and mid-Holocene
(below) climate simulations, highlighting ENSO teleconnection
patterns. Contour interval is 0.2.

eastward expansion of the Warm Pool and associated convec-
tion during El Nĩno events (e.g.Inness et al., 2003; Turner
et al., 2005). In the mid-Holocene, the model simulates a
largely unchanged spatial pattern of correlations, with posi-
tive correlations located over the north coast of Papua New
Guinea. Thus while the model broadly simulates the SST
and precipitation anomalies associated with ENSO, regional
biases over the coral site prevent direct comparison of precip-
itation variability at this location. Nevertheless, the lack of
major changes in the simulated large-scale precipitation tele-
connection patterns from the mid-Holocene to pre-industrial
supports the interpretation of the coral records as showing a
reduction in ENSO amplitude rather than a change in ENSO
precipitation teleconnections.

5 Conclusions

The coral oxygen isotope records imply up to 60% reduc-
tion in ENSO amplitude in the mid-Holocene, while the
model simulates a reduction of around 10%. Although the
model and coral records are in qualitative agreement, the
coral records provide evidence for a substantially larger re-
duction in ENSO amplitude than is simulated by the model.
The difference between the model and proxy records could
be due to changes in the local ENSO precipitation response
at the coral site, as discussed above. The western Pacific
ENSO precipitation teleconnection is unchanged in the sim-
ulated mid-Holocene climate, although this result may not be
robust as the model is unable to reproduce the observed mod-
ern teleconnection at this location. Nonetheless, the majority
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of palaeoclimate records of mid-Holocene ENSO, including
the coral oxygen isotope records ofTudhope et al.(2001), in-
dicate a more significant reduction in ENSO amplitude than
is simulated by the model.

Alternatively, the model may not correctly capture the
physical response of ENSO to the increased seasonality in
the mid-Holocene. For example, the biases in the mean state
of the model may reduce the convective response in the west-
ern Pacific to increased summer insolation and the resulting
strengthening of trade winds in the late summer and autumn
period which has been identified as a possible mechanism for
damping El Nĩno events in mid-Holocene climate. Previous
studies have also identified uncertainties in the model ENSO
response to climate forcing which may depend on details of
the model physics and resolution (Collins, 2000b). The un-
certainties in model simulations of ENSO in past, present and
future climate will be examined in a future study using ver-
sions of HadCM3 with perturbed physical parameters in the
atmospheric model following the approach of the Quantify-
ing Uncertainty in Model Predictions (QUMP) project (Mur-
phy et al., 2004).
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