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 In general, production system often gets disrupted due to uncertainty and un-planned events, 
which also affect demands resulting in less abet-margin of a company. With disrupted production 
system, management would need to study the variation of demand pattern and disruption of 
system; we have attempted an effort to establish an exponential demand with the disrupted 
production system and solved analytically the problem to determine production time before and 
after disruptions. Exponentially demand pattern studied, and also we simulate the results for 
sensitivity analysis in order to find which parameter is getting significant change for the proposed 
model.      
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1. Introduction 

Control and maintenance of the production system have attracted much attention of inventory 
managers. There are many reasons for disruptions of the production system like machine breakdown, 
unexpected events or some crises. An oil drilling company may be disrupted due to electricity supply, 
failure of drilling machines whereas oil refining company faces some problem of crude oil supply and 
availability of other raw materials or due to earthquake and strike. Lin and Kroll (2006) solved the 
production problem under an imperfect production system subject to random breakdowns. 
 
Teng and Chang (2005) presented an economic production quantity model for deteriorating items when 
the demand rate depends on not only on-display stock, but also on the selling price per unit of an item 
which may influence by economic policy, political scenario or agriculture productivity or both get 
affected. A similar approach has been followed by Hou and Lin (2006) on the deterministic economic 
order quantity model by taking into account the inflation and the time value of money for the 
deteriorating items with price and stock-dependent selling rate. Liao (2007) established an EPQ model 
by giving permission to delay in payment for the buyer to manufacturers.  A single vendor and multi-
buyer inventory policy for a deteriorating item was made by Yang and Wee (2002).  By dividing the 
demand rate into multiple segments, Shukla and Khedlekar (2010) introduced three-component demand 
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rate for the newly launched deteriorating item. Joglekar (2003) used a linear demand function with 
price sensitiveness and allowed retailers to use a continuous increasing price strategy in an inventory 
cycle. He derived the retailer’s optimal profit by ignoring all the inventory costs. His findings are 
restricted to growing market only, which is neither for stable market nor for a declining market. 
 
Joglekar (2003) used a linear demand function with price sensitiveness and allowed retailers to use a 
continuous increasing price strategy in an inventory cycle. He derived the retailer’s optimal profit by 
ignoring all the inventory costs. His findings are not restricted to growing market only, which is neither 
for stable market nor for a declining market. By dividing the demand rate into multiple segments, 
Shukla and Khedlekar (2010) introduced three-component demand rate for the newly launched 
deteriorating item. Qi, Bard and Yu (2004) analyzed the supply chain-coordination with demand 
disruption in a deterministic scenario. Expenditure sources like ordering cost, safety features, lead time 
and numbers of lots are the integral parts of decision making. An integrated inventory model focusing 
on these issues and aspects has been discussed by Lo (2007).  
 
Giri et al. (1996) who computed the optimal policy of an EOQ model with dynamic costs. The model 
they proposed is very basic though, since they have considered the very special case where the holding 
and ordering costs are linear functions of time. The other shortcoming of that paper is that the 
deterioration rate is also a linear function of time, and the algorithm they proposed in order to solve the 
problem is only valid as long as the demand rate is a linear function of time. 
 
Samanta and Roy (2004) studied a number of structural properties of the inventory system analytically 
by determination of production cycle time and backlog for deteriorating item, which follows an 
exponential distribution. They (2010) obtained optimal production time to facilitate the manufacturer 
sell the item in multiple markets by considering constant demand rate, but they do not readjust the 
production system. Due to above contribution time dependent demand is influenced to consider for 
deteriorating item and adjust the disrupted production system with shortages and when it occurs an 
optimal time of placing an order is obtained along with order quantity from the spot market. A central 
policy presented by Benjaafar EIHafsi (2006) specify a single product assemble-to-order system for my 
components, an end–product to serve and customer classes and problem solved as a Markov decision 
process and characterize the structure of an optimal policy. We refer some useful contribution to reader 
Balkhi and Bakry (2009), AI –Majed (2002), Khedlekar and Agarwal (2009), Mishra and Mishra 
(2010) and Shukla et al. (2012). 
  
2. Assumptions and notations 

Suppose that a deteriorating item manufactured by a single manufacturer and then sold to customers, 
the demand arising from the market is exponentially at a rate µect, the production rate is constant at a 
rate p > µ in each cycle; due to this inventory accumulate at a rate p -µect. If the production stopped at 
the time (Tp) and thus there after inventory depicted due to the demand and deterioration. During 
production disruption, if shortages occur, then it ordered from the spot market once in a cycle. 

 H   Time horizon, 

 P    Production rate, 

 θ    Rate of deterioration, 

 µ    Initial demand of item, 

 µect   demand function of item, 

 Tp    Production time without disruption, 
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 Td    Production disruption time when system get disruptions, 

 Tp
d       New production time after system get disruptions, 

 Tr    Time of placing the order when shortages occur, 

            Qr    Order quantity (shortages) for placing the order when shortage occurs. 

3.  The production model without disruption 

To compare the model output first, management optimizes the production system run without 
disruption with production rate p (per unit time) stopped at production time Tp and there after till time 
H, inventory depicted due to demand rate µect and deterioration rate θ of items (see fig. 1). The 
presentations in differential equations for two periods [0, Tp] and [Tp, H] satisfy throughout its domain. 

 

 

 

 

 

 

Fig. 1. (Normal Production System without disruption) 

( ) ( )1
1θ - μ ctdI t

I t p e
dt

+ = , 0 pt T≤ ≤ boundary condition ( )1 0 0I =  
(1)

( ) ( )2
2θ -μ ctdI t

I t e
dt

+ = , HtT p ≤≤ boundary condition ( )2 0I H =  
(2)

On solving equation (1) and (2) with boundary conditions we get 

( ) ( ) ( )- -
1 1 - - -θ t ct θ tp μI t e e e

θ c + θ
=  

(3)

( ) ( )( )2
c + θ H - θ t ctμI t = e -e

c + θ  
(4)

As per fig. 1 inventory level I1(t) and I2(t) are equal at time Tp  

i.e.          I1(Tp) = I2(Tp) yields 

1 log
cH H

p

Pc θP - θμ θμe
T

θ Pc Pθ

θ++ +
=

+  

(5)

If θ <<1, then 
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( )1cH

p cH

μe θH - μ
T

Pc Pθ - μθ μe
+

=
+ +  

(6)

4.  The production model with disruption 
 
In section 3 production rate unchanged but in practice production system is always disruption due to 
unplanned and thus we consider the production system little changed by ΔP and disruption time is Td . 
If 0<ΔP , then production rate decreases and, if 0>ΔP then production rate increases. 
 

 

Lemma 1. If  ( ) ( ) ( )( ) ( )( )θH-dθTθ-HcH-θH -eθc/-eeμθθc-PeθcPΔP 1++++≥ then 
manufacturing system still satisfies the exponential demand even production system has been disrupted, 
otherwise If ( ) ( ) ( )( ) ( )( )θH-dθTθ-HcH-θH -eθc/-eeμθθc-PeθcPΔP-P 1++++≥≤ then 
production system unable to satisfy exponential demand that is there will be shortages due to 
production disruption. 
 
Proof: Suppose the production system disrupted at time Td as (see Fig. 2) and there after the 
production rate will be  P ΔP+  thus presentations of two differential equations for intervals [0, Td] and 
[Td, H] are  

( ) ( )1
1θ - μ ctdI t

I t p e
dt

+ = , dTt ≤≤0 boundary condition ( )1 0 0I =  , 0<θ <1 
(7)

( ) ( )2
2θ - μ ctdI t

I t P P e
dt

+ = + Δ , HtT d ≤≤ , 
(8)

with boundary condition ( ) ( ) ( ) ( )- -
1 2 1 - - -d d dθ T cT θT

d d
p μI T I T e e e
θ c + θ

= =       

 
On solving Eq. (8) with boundary condition we get  
 

( ) ( ) ( ) ( )-
2 1 - 1 - dθT - θ tθ t - θ t ctP P μI t e e + e -e

θ θ c+θ
Δ

= +  
(9)  

If ( ) 0≥2 HI this means production system satisfy the exponential demand of items 

That is    
( ) ( ) ( )

( )( )θH-dTθ

θ-HcH-θH

-eθc
-eeμθθc-PeθcP

ΔP
1+

+++
≥   then still satisfy the demand 

If ( ) 0<2 HI  this means production system does not satisfy the exponential demand of items 

   Fig. 2. Disrupted Production System 



U. K. Khedlekar / International Journal of Industrial Engineering Computations 3 (2012) 
 

 

611

That is 
( ) ( ) ( )

( )( )θH-dTθ

Hθ-cHθH-

-eθc
-eeμθθc-PeθcP

ΔP-P
1+

+++
<≤ then there will be shortages in the system. 

This proved the lemma* 
Again, if ( )2 0I H ≥ then we find optimal production time (with disruption) d

pT  such that at time H entire 
stock will be sold-out and inventory level will be zero. 
 
If ( )2 0I H <  there will be shortages in the system and in this situation we will find the optimum time Tr 
of placing the order and respective order quantity Qr.  

Lemma 2. If ( )2 0I H ≥ then production time with disruption d
pT is obtained by 

( )
( )( )

dθT cθ H θPc+Pθ-μθ ΔP c+θ e +μθe
P+ΔP c+θ

d
pθTe

++
=  

(10)

Proof: If ( )2 0I H ≥   

or      
( ) ( ) ( )

( )( )θH-dTθ

Hθ-cH-θH

-eθc
-eeμθθc-PeθcP

ΔP
1+

+++
≥ that is on hand inventory is ( )2I H  

Therefore we will find out the optimal time d
pT (see fig. 3) when we stopped the production after 

disruption in such a manner that stock remains zero at time H. the presentations of two differential 
equations for intervals [Td ,Tp

d] and [Tp
d, H] are 

 

 

 

 

 

 
                             
 

Fig. 3. Production System after Disruption, 0≤Td ≤Tp ≤Tpd≤H 
 

( ) ( )2
2θ - μ ctdI t

I t p P e
dt

+ = + Δ , d
pd TtT ≤≤  

(11)

Boundary condition ( ) ( ) ( ) ( )- -
1 2 1 - - -d d dθ T cT θT

d d
p μI T I T e e e
θ c + θ

= =    

( ) ( )3
3θ -μ ctdI t

I t e
dt

+ = , HtTd ≤≤  boundary condition   ( ) 0=3 HI  
(12)

On solving (12) with boundary condition we get 

( ) ( ) ( ) ( ) ( )( )--- - -
2 -1 -1 1- - - dd d d d c+θ T θ tθT cT θT θT θ tθ t θ t c tp μ P P μI t e e e e e e e

θ c +θ θ c +θ
+ + Δ

= − + +  
(13)

     Td                               Tp  Tp
d                                                              H 

Time 
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0 



  

 

612

( ) ( )-
3 -cH θH θ t c tμI t e e

c + θ
+=

 

 

Using condition 2 3( ) ( )d d
p pI T I T=  

                         
( )

( )( )
dθT cθ H θPc+Pθ-μθ ΔP c+θ e +μθe

P+ΔP c+θ
d
pθTe

++
=   ■ 

Therefore increases in Td leads the production time with disruption d
pT increases that is reduced incurred 

cost. 

Lemma 3. If ( )2 0I H < then replenishment time Tr and order quantity Qr are  

                     ( )( ) ( )( )- - 0dr rθTθ T cTe Pc Pθ μθ P c θ e μθe P ΔP c θ+ + Δ + + + + + =                                                   

 ( ) ( ) ( )r r- T cH H- T
3 1-e - -erθH θ c T θ θ

r r
P P μQ I T e
θ c +θ

++ Δ
= =                                                              (14) 

 
Proof:  If ( )2 0I H <  then production system does not fulfill the exponential demand 

Or 
( ) ( ) ( )

( )( )1 d

-θH cH -θH

θT - H θ

P c θ e - P c θ μθ e - e
-P ΔP

c θ - e

+ + +
≤ <

+
that is there will be shortages in the system.  

Suppose Tr and Qr (see Fig. 4) are time of placing an order and order quantity respectively. 
 
 
 
 

 

 

 

 

Fig. 4. (Production System after Disruption, Tpd = H) 

Then I2(Tr)=0 (by Eq. (14) 

rcTΔP-P μ+ e - -
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θT dr r θTθT μ P ΔPe e
c +θ θ θ
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⎛ ⎞
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(15)

or ( )( ) ( )( )- - 0dr rθTθ T cTe Pc Pθ μθ P c θ e μθe P ΔP c θ+ + Δ + + + + + =                                                                         

Then presentation of differential equation in this situation is 

( ) ( )3
3θ - μ ctdI t

I t P P e
dt

+ = + Δ , HtT r ≤≤  boundary condition   ( )3 0I H =  
(16)

Above equation gives 
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parameter c but adverse to replenishment time, d
pT  and I2(H) both are highly sensitive to negative trend 

of demand. This means if demand rate is in increasing management need to order more from the spot 
market beside this if demand rate is decreases it need to stop the production earlier. 

6. Conclusion and recommendations 

The effect of exponential demand is quite different in terms of disruption time, reproduction time and 
deteriorations with the disrupted production system. It is found that demand parameter highly affects 
the optimal policy when system gets disrupted. The combination of two strategies one is increasing and 
other decreasing is shown to be effective using the different examples. If a demand rate is in increasing 
trend management needs to order more from the spot market beside this if the demand rate decreases it 
need to stop the production before the planned time. One can further extend the model by considering 
the more realistic assumption like time dependent production along with time dependent demand even 
production system get disrupted. One can also extend the model by computing rates of change of 
production time before and after disruptions with respect to deterioration and other parameters. 
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