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Abstract. Pitch-angle diffusion coefficients have been cal-
culated for resonant interaction with electrostatic electron
cyclotron harmonic (ECH) waves in the magnetospheres of
Earth, Jupiter, Saturn, Uranus and Neptune. Calculations
have been performed at two radial distances of each planet.
It is found that observed wave electric field amplitudes in
the magnetospheres of Earth and Jupiter are sufficient to put
electrons on strong diffusion in the energy range of less than
100 eV. However, for Saturn, Uranus and Neptune, the ob-
served ECH wave amplitude are insufficient to put electrons
on strong diffusion at any radial distance.

Keywords. Magnetospheric physics (Energetic particles,
precipitating)

1 Introduction

Several spacecraft plasma wave instruments observed many
familiar plasma waves during the encounter with the mag-
netospheres of Earth, Jupiter, Saturn, Uranus and Neptune
(Gurnett et al., 1979a, b, 1996, 2005, 1989; Gurnett and
Inan, 1988; Scarf et al., 1979; Kurth et al., 1980, 1983, 1987;
Kurth and Gurnett, 1991; Zarka, 2004). Kurth and Gurnett,
(1991) provided a comparative study of plasma waves of the
planetary magnetospheres , for the first time. Recently, the
comparative study of plasma waves at each outer planet has
been reviewed by Zarka (2004). Electrostatic electron cy-
clotron harmonic (ECH) waves are virtually ubiquitous in
planetary magnetospheres. Resonant wave-particle interac-
tion is the major source of both pitch-angle and energy dif-
fusion of trapped electrons in the radiation belt (Kennel and
Petschek, 1966; Summers et al., 2007, 2009). Summers et
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al. (2007) present formulae for the bounce-averaged quasi-
linear diffusion coefficient for cyclotron resonance with field
aligned electromagnetic waves in multi-ion plasma. Sum-
mers et al. (2009) reexamine the Kennel and Petschek (1966)
concept of self limitation of stably trapped particle fluxes in
a planetary magnetosphere. Pitch-angle diffusion and the re-
sulting electron precipitation may produce the diffuse auroral
emissions observed by different spacecraft in planetary mag-
netosphere (Kurth and Gurnett, 1991; Zarka, 2004). Several
authors have modeled quasi-linear pitch-angle scattering due
to ECH wave-particle interactions for these planets: Earth
(Kennel et al., 1970; Lyons, 1974), Jupiter (Thorne, 1983),
Saturn (Kurth et al., 1983), Uranus (Kurth et al., 1987) and
Neptune (Gurnett et al., 1989). Strong pitch-angle diffusion
is the process for scattering plasma sheet electrons into the
polar atmosphere of the planets to produce the diffuse au-
rora. Electrostatic waves rather than electromagnetic waves
are believed to be the scattering mechanism of the plasma
sheet electrons because in the presence of cold plasma, elec-
trostatic waves propagate at arbitrarily small phase velocities,
making it possible to interact resonantly with much slower
electrons. However, the dominant scattering process for dif-
fuse auroral precipitation has not yet been definitively iden-
tified though several physical mechanisms have been sug-
gested.

Horne and Thorne (2000) have calculated the bounce-
averaged pitch-angle diffusion rates for electrostatic ECH
waves driven by a loss-cone distribution. They have con-
cluded that ECH waves can scatter keV electrons into the
loss-cone efficiently and hence can contribute directly to the
loss to the atmosphere. Detailed quasi-linear scattering rates,
based on observed wave spectral properties, demonstrated
that ECH waves are capable of causing strong diffusion scat-
tering of electrons (∼1 keV) near the loss-cone (Horne et
al., 2003). Recently, Ni et al. (2008) analysed the resonat-
ing scattering of plasma sheet electrons (∼100 eV–20 keV) at
L= 6 due to resonant interactions with whistler-mode chorus
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waves. The authors have found that scattering by chorus
waves is more dominant than scattering by ECH waves.
Thus, chorus scattering is a major contributor to the origin
of the diffuse aurora. In this paper, we extend the calcu-
lations of pitch-angle diffusion coefficients for resonant in-
teraction with ECH waves in the magnetospheres of Earth,
Jupiter, Saturn, Uranus and Neptune. This will provide a
comparative study of pitch-angle diffusion in producing dif-
fuse aurora in planetary atmospheres for the first time.

The paper is organized in the following manner: Sect. 2
describes the detailed observations of ECH emissions in
planetary magnetospheres. In Sect. 3, we present the disper-
sion relation for ECH waves propagating perpendicular to the
ambient magnetic field considering linear wave theory anal-
ysis. Expressions for pitch-angle diffusion and strong diffu-
sion coefficients are also presented in this section. In Sect. 4,
observations of plasma parameters appropriate for particu-
lar radial distance in magnetospheres and used in present
study are discussed. This section also describes the numer-
ical procedure for calculating the temporal growth rates of
ECH waves. The comparison of pitch-angle diffusion with
strong diffusion and precipitation of energetic electrons into
the atmosphere of each planet and results and discussion of
this study, are presented in Sect. 5. Finally, in Sect. 6, we
present the conclusions.

2 Observations of ECH waves

2.1 Earth

The ECH waves of natural origin were first observed by
the OGO-5 satellite (Kennel et al., 1970; Fredricks and
Scarf, 1973) as narrow band (1f/fc ≈ 1.0), large ampli-
tude (1–10 mV m−1) waves that appear within a frequency
range of 1.25fc< f < 1.75fc. Similar 3/2 emissions have
also been observed by IMP-6 (Shaw and Gurnett, 1975)
satellites. At larger radial distances, from about 17:30 to
19:15 UT, the (n+1/2) fc electrostatic emissions at (3/2)fc
and (5/2)fc become much more intense ranging from sev-
eral hundred µV m−1 to about one mV m−1 (Gurnett et al.,
1979a). In recent years, Meredith et al. (2000) reported
ECH intensities 10−(6.7±1.2) V2 m−2 outsideL = 6.0 and
10−(6.9±0.9) V2 m−2 insideL= 6.0 observed by instruments
onboard the CRRES spacecraft. Décŕeau et al. (2001) de-
scribed the observations of ECH wave intensities observed
by WHISPER instrument onboard the CLUSTER space-
craft. Intense 3/2fce (≥1.5 mV m−1) emissions are observed
with higher proportion during CLUSTER spacecraft perigee
(4RE) passes in the nightside sector compared to geostation-
ary spacecraft (GEOS) studies. Intensity of equatorial ECH
emissions increases with geocentric distance. The emissions
are observed most often in the radial distance from 4 to 8RE
and magnetic latitude in the range±10◦.

2.2 Jupiter

The Voyagers 1 and 2 encounters with Jupiter have pro-
vided us with the first comprehensive investigation of plasma
waves in the Jovian magnetosphere. The Voyager 1 plasma
wave instrument detected for the first time electrostatic
emissions related to the electron gyrofrequency beyond the
boundary of the torus and near the magnetic equator cross-
ings (Scarf et al., 1979). The secondary plasma wave ob-
servations were provided by the Voyager 2 spacecraft (Gur-
nett et al., 1979b). The intense electrostatic emissions near
half-integral harmonics of the electron gyrofrquency, 3fc/2,
5fc/2, and intense narrowband emissions atfUHR were ob-
served when Voyager 2 crossed magnetic equator regions be-
tween 6<L< 15 at the geomagnetic latitude of 13◦. The
intensity of ECH bands at Jupiter is typically 100 µV m−1

with occasional bursts to a few millivolts per meter. The in-
tensities of the emissions are greatest at smaller radial dis-
tances and decrease with increasing distance from the centre
of planet (Kurth et al., 1980; Kurth and Gurnett, 1991). Dur-
ing the Ulysses and Galileo encounters with Jupiter, intense
emissions were recorded near (3/2)fce, and (5/2)fcewhen the
spacecraft crossed the magnetic equator in the Io torus (Stone
et al., 1992; Gurnett et al., 1996).

2.3 Saturn

The first evidence for electrostatic waves in the Saturnian
magnetosphere was given by Gurnett et al., (1981). They
reported a series of ECH banded emissions or (n+1/2)fce
emissions on the Voyager 1 inbound leg. The 3/2fce bands
were observed on the Voyager 1 outbound leg inside∼7RS
(whereRS is radius of the Saturn). The Voyager 2 en-
counter offered a second look at electrostatic waves in Sat-
urn’s magnetosphere. Scarf et al. (1982) again reported
(n+1/2)fce emissions throughout the inner magnetosphere
lying in the range of 4<R < 8RS. The intensities are typ-
ically 30 µV m−1, less intense than those at Earth and three
times smaller than Jupiter. Recently, Gurnett et al. (2005)
presented the first results of observed plasma waves from
Cassini radio and plasma wave science (RPWS) instrument
during the approach and first orbit around Saturn. They re-
ported that the strongest ECH emissions were observed in the
inner region of the magnetosphere, inside of∼10RS .

2.4 Uranus

ECH emissions from Uranus were detected by the the Voy-
ager 2 plasma wave instruments in the radial distance range
∼12RU (whereRU is radius of Uranus). The intensities
are comparable to those for Earth and Saturn, but somewhat
weaker than the Jovian ECH waves. The ECH waves have
intensities of only about 10 µV m−1. With such low inten-
sities, strong pitch-angle scattering is not likely. However,
experience with other planets suggests the intensities of the
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ECH emissions increase at smaller radial distances, presum-
ably because the flux of resonant electrons would be greater
closer to the planet (Kurth et al., 1987; Kurth and Gurnett,
1991).

2.5 Neptune

The first unambiguously-identified plasma waves observed
by Voyager 2 for Neptune were ECH emissions (Gurnett et
al., 1989; Kurth and Gurnett, 1991). The ECH bands are
not very intense and only reach about 30 µV m−1 (Kurth and
Gurnett, 1991). The low intensity of the observed ECH emis-
sions implies that they are unlikely candidates for strong
pitch-angle scattering. It is possible that waves of signif-
icantly greater intensities occur at intermediate radial dis-
tances 10>R> 2RN.

3 Dispersion relation, pitch-angle diffusion and strong
diffusion

The expression of dispersion relation for electrostatic waves
propagating perpendicular to the ambient magnetic field us-
ing linear theory analysis in hot magnetized plasma was
given by Summers and Thorne (1995). We consider the dis-
tribution function as a combination of cold (Maxwellian) and
hot components represented by loss-cone kappa distribution
since the ECH waves are deriven unstable by a loss-cone fea-
ture. We write a Maxwellian for thermal component,fM ,
and kappa distribution with loss-cone,fκ , for hot component
introduced by Summers and Thorne (1995). Using quasi-
linear theory, Lyons (1974) first calculated bounce-averaged
diffusion coefficients of electrostatic 1.5�ce waves for scat-
tering in both pitch-angle and energy. Recently, the bounce-
averaged pitch-angle diffusion coefficients of electrons in de-
tail have been calculated by Tripathi and Singhal (2009). The
expression for the bounce- averaged diffusion rate, is given
as

〈Dαα〉 = TfracDαα (1)

with

Tfrac= 4LRpλ/vcosαeqTb (2)

and

Tb = 0.117(Ro/Rp)c/v[1−0.4635(sinαeq)
3/4

] (3)

whereTfrac is the fraction of time the particle interacts with
the wave during one bounce period andDαα is evaluated at
the magnetic equator.αeq is the equatorial pitch-angle andTb
is the particle bounce time for one complete cycle between
the particle mirror points.Ro is the distance from the centre
of planet to the equatorial crossings points of a magnetic field
line, Rp is the planet radius,v is the particle velocity, andc
is the speed of light. The limit of strong diffusion is reached
when the diffusion coefficient at the edge of the loss-cone

is large to scatter particles across the loss-cone in less than a
quarter of the bounce period〈Dαα(αLC)〉 ≥ 4α2

LC/Tb (Lyons,
1974; Horne and Thorne, 2000).

4 Plasma parameters

The present section describes the observations of basic
plasma parameters measured in the magnetospheres of Earth,
Jupiter, Saturn, Uranus, and Neptune and used in the present
studies.

4.1 Earth

The observational data for electrons have been obtained by
several spacecraft during encounters with Earth’s magneto-
sphere (Olsen et al., 1987; Laakso et al., 2002). Recently,
Laakso et al. (2002) reported the electron density values 100–
0.1 cm−3 measured by polar satellite atL= 3∼12 and some-
what lower values atL> 12. At the plasma pause, the den-
sity rapidly declines by a few orders of magnitude over a rel-
atively short distance. During the dayside, the density is usu-
ally a few electrons per cm−3. The ratio ofnh/nc increases
as the radial distance increases.

4.2 Jupiter

The Voyager’s encounter with Jupiter provided detailed
knowledge of the plasma properties of the magnetosphere
(Belcher, 1983; Bagenal, 1994). The cold electron density
(nc) changes from about 2500 to 3.0 cm−3 as radial distance
increases from 6RJ to 17RJ. In the same range of radial
distance, cold electron temperature (TC) changes from 5 to
20 eV, hot temperature (Th) from 150 to 1000 eV and ratio of
nh/nc from 0.0001% to 0.3%. Galileo spacecraft received the
observational data during its passing through the torus (Bage-
nal et al., 1997). At 6RJ, the measured electron density was
maximum, i.e., 3775 cm−3 (Bagenal et al., 1997).

4.3 Saturn

The first in situ measurements of the plasma parameters in
Saturn’s inner magnetosphere were made by Voyager 1 and
2 during flybys of the planet (Sittler et al., 1983; Richardson
and Sittler, 1990). The most recent plasma measurements
in Saturn’s magnetosphere have been made by the Cassini
spacecraft, which was placed in orbit around Saturn (Gurnett
et al., 2005). The value of electronnc varies in the range of
200 to 0.50 cm−3 as the radial distance increases from 3.5RS
to 10RS. In the same range of distance,Tc changes in be-
tween 2 eV to 10 eV,Th ranges from 40 eV to 360 eV and
nh/nc from 0.03% to 0.5% (Gurnett et al., 2005).

4.4 Uranus

Sittler et al. (1987) have presented results of an analysis of
the Voyager 2 PLS electron measurements made during the
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Table 1. Plasma parameters at different distances.

Planet Distance nc nh Tc Th Bo

(cm−3) (cm−3) (eV) (eV) (nT)

Earth R= 4RE 35.0 1.75 10 400 386
R= 8RE 1.0 0.1 15 1000 58

Jupiter R= 6RJ 3775 188.75 8 175 2007
R= 17RJ 3.0 0.3 20 1000 51

Saturn R= 5RS 24.0 1.2 5 200 160
R= 8RS 0.75 0.075 8 300 36

Uranus R= 5RU 0.95 0.048 25 300 88
R= 11RU 0.05 0.005 65 1500 11

Neptune R= 5RN 0.60 0.03 10 160 72
R= 10RN 0.03 0.003 20 300 14

Uranus encounter. Within the inner magnetosphere (L> 5)
the electron density ranged between 0.02 and 1.0 cm−3, and
temperatures ranged fromTe ∼ 10 eV near the inbound pass
to Te ∼ 100 eV within the nightside hemisphere (outbound
pass). The electronTc was∼8–25 eV near inbound pass and
Tc ∼ 10–70 eV within the outbound pass. The rationh/nc of
the electrons ranged between 0.03% to 0.5% with temper-
atureTh ranging from 20 eV to 200 eV near the terminator
(inbound pass) and 500 eV to 2 keV in the nightside region
(outbound pass).

4.5 Neptune

The plasma science experiment on Voyager 2 made observa-
tions of the plasma parameters in Neptune’s magnetosphere
(Belcher et al., 1989; Zhang et al., 1991). The maximum
electron density and temperature are 2 cm−3 and 300 eV, re-
spectively. When cold electrons are present, hot electrons are
a small fraction of the total population; the rationh/nc is usu-
ally a few percent (Zhang et al., 1991). For radial distances
from 5 to 10RN, the value ofnc varies between∼0.60 to
0.03 cm−3, Tc ranges from 9 to 20 eV andTh from 150 eV to
400 eV.

5 Calculation details

Temporal growth rates have been calculated at two radial dis-
tances with spectral index,κ = 2 and loss-cone index,̀= 1
for each planet using the plasma parameters given in Table 1.
A numerical procedure for solving the ECH dispersion rela-
tion is used. Electron pitch-angle diffusion coefficients have
been calculated using the representative growth rate profiles
at particular radial distance of each planet (Tripathi and Sing-
hal, 2009). Subscript “c” and “h” are used for representing
cold and hot electrons. The present calculations have con-
sidered the harmonics of first band, i.e., 1.5�ce at both dis-
tances of each planet. We assume wave growth is centered
at a propagation angle ofψ = 89◦ and at Earth, wave electric
field EW = 1 mV m−1 for L= 4, andEW = 0.1 mV m−1 for
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Fig. 1. Normalized temporal growth rates̄γ (= γ /�ce) versus
frequency of ECH waves. The frequency within each band is
ω̄(=ωr/�ce)= n+η, wheren= 1, 2, 3 andη lies between 0 and
1. Other plasma parameters are given in Table 1.
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Fig. 2. Same as in Fig. 1 but for Jupiter.

L= 8 is taken. In JupiterEW = 1 mV m−1 for L= 6, and
EW = 0.1 mV m−1 for L= 17 is considered. In case of Sat-
urn, Uranus and Neptune we chose the value ofEW = 0.030
at lower L-shell andEW = 0.010 mV m−1 at higher L-shell.

6 Results and discussion

In Figs. 1–6 we show the temporal growth rate as a func-
tion of frequency for the first harmonic band at two radial
distances for Earth, Jupiter, Saturn, Uranus and Neptune, re-
spectively. These profiles of growth rates have been used to
represent the wave intensity as a function of wave frequency.
Figures 6–15 represent the variation of bounce-averaged
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Table 2. Diffusion rates for several electron energies at different distances.

Planet Distance ωp/�e αLC
(degree)

E
(eV)

<Dαα >

(s−1)

DSD
(s−1)

EW obs
mV m−1

EW req

(mV m−1)

Earth L= 4 (8) 4.9(5.7) 5(2) 25 5.0×10−3 (3.0×10−5) 7.1×10−4 (4.3×10−5) 1.0(0.1) 0.40(0.12)
50 7.0×10−4 (7.5×10−5) 1.0×10−3 (6.1×10−5) 1.20(0.09)
100 2.5×10−4 (7.0×10−6) 1.4×10−3 (8.5×10−5) 2.40(0.35)
200 8.6×10−5 (1.1×10−6) 2.1×10−3 (1.2×10−4) 4.90(1.0)

Jupiter L= 6 (17) 9.9(11) 3(1) 25 10×10−4 (2.7×10−5) 1.4×10−4 (2.0×10−6) 1.0(0.1) 0.40(0.03)
50 2.1×10−4 (3.7×10−6) 1.9×10−4 (2.9×10−6) 1.0(0.09)
100 5.2×10−5 (9.7×10−6) 2.5×10−4 (4.2×10−6) 2.20(0.07)
200 −− −− −− −− −− −−

Saturn L= 5(8) 9.8(7.6) 4(2) 25 4.4×10−5 (6.0×10−6) 2.9×10−4 (4.3×10−5) 0.03(0.01) 0.08(0.027)
50 5.0×10−6 (2.6×10−6) 4.1×10−4 (6.1×10−5) 0.27(0.048)
100 2.9×10−6 (1.4×10−6) 5.9×10−4 (8.7×10−5) 0.42(0.079)
200 −− −− −− −− −− −−

Uranus L= 5(11) 3.7(6.4) 4(1) 25 6.4×10−7 (4.2×10−7) 3.0×10−4 (1.5×10−5) 0.03(0.01) 0.65(0.06)
50 4.5×10−7 (2.3×10−7) 4.1×10−4 (1.7×10−5) 0.9(0.086)
100 1.9×10−7 (1.5×10−7) 5.9×10−4 (2.4×10−5) 1.70(0.13)
200 −− −− −− −− −− −−

Neptune L= 5(10) 3.4(4.0) 4(1) 25 6.1×10−7 (4.2×10−6) 2.8×10−4 (1.7×10−5) 0.03(0.01) 0.64(0.02)
50 3.2×10−7 (6.1×10−7) 4.0×10−4 (2.5×10−5) 1.10(0.064)
100 3.0×10−7 (9.5×10−8) 5.7×10−4 (6.9×10−5) 1.30(0.27)
200 −− −− −− −− −− −−

αLC is loss-cone angle at particular height
EW obs is magnitude of observed electric field at particular radial distance
EW req is magnitude of required electric field for strong diffusion at particular radial distance
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Fig. 3. Same as in Fig. 1 but for Saturn.

pitch angle diffusion rates as a function of equatorial pitch
angle for the above planets at two radial distances for each
planet. In the case of Earth and Jupiter it is noted that the dif-
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fusion rate decreases by several orders of magnitude as the
radial distance increases. Further, the diffusion rates drop
more rapidly with an increasing pitch angle for all energies
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Fig. 5. Same as in Fig. 1 but for Neptune.

20 
 

      

 

 

Fig. 6 

 

     

                                    
  
  
    

 

 

 

 

 

                                                                                                                     

 

                                                                                 

 

 

 

 

                Fig.7 

 

 

 

0 20 40 60 80
1E-7

1E-6

1E-5

1E-4

1E-3

0.01
Earth  R = 4 R

E

 

 

< 
D

α
α>

 (s
-1
)

Pitch Angle (degrees)

 E = 25 eV
       50 eV
       100 eV  
       200 eV

0 20 40 60 80
1E-7

1E-6

1E-5

1E-4

1E-3

0.01
Earth  R = 8 RE

 

 

< 
D

α
α>

 (s
-1
)

Pitch Angle (degrees)

 E = 25 eV
       50 eV
       100 eV  
       200 eV

Fig. 6. Bounce-averaged pitch-angle diffusion coefficient versus
equatorial pitch-angle for several electron energies for Earth at
R = 4RE. Other parameters aren= 1, xω = 0.01, andEWave=

1 mV m−1.

particularly at higher distance. This is in agreement with the
results reported by Horne and Thorne (2000). The diffusion
rates for Uranus and Neptune are on the order of magnitude
lower than that for Earth, Jupiter and Saturn. Table 2 presents
the bounce-averaged diffusion and strong diffusion rates for
several electron energies for two radial distances of each
planet. The magnitude of the electric field of wave required
for strong diffusion is given in the last column of Table 2.
This table also presents the ratio of plasma frequency to cy-
clotron frequency (ωpe/�ce) at two distances corresponding
to each planet.

Comparing the diffusion rates with strong diffusion rates
(given in Table 2) we note that on Earth and Jupiter, ob-
served wave field may be sufficient for strong diffusion at
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Fig. 7. Same as in Fig. 6 but for Earth atR= 8RE andEWave=

0.1 mV m−1.

21 
 

 

 

 

 

Fig. 8 

      

 

 

 

 

    
      

 

 

 

 

 

 

 

                      Fig. 9 

 

 

 

 

 

0 20 40 60 80
1E-7

1E-6

1E-5

1E-4

1E-3

0.01
Jupiter  R = 6 R

J

 

 

< 
D

α
α>

 (s
-1
)

Pitch Angle (degrees)

 E = 25 eV
       50 eV
       100 eV  

0 20 40 60 80
1E-7

1E-6

1E-5

1E-4

1E-3

0.01
Jupiter  R = 17 R

J

 

 

< 
D

α
α>

 (s
-1
)

Pitch Angle (degrees)

 E = 25 eV
       50 eV
       100 eV  

Fig. 8. Same as in Fig. 6 but for Jupiter atR= 6RJ andEWave=

0.1 mV m−1.

two radial distances. However, for Saturn, Uranus and Nep-
tune, observed wave field is not sufficient for strong pitch
angle diffusion. Also at larger distance and for low energy
electrons the observed wave field may be sufficient to put
electrons on strong diffusion. Also at higher distance and
low energy electrons the required wave field may be suffi-
cient to put electrons on strong diffusion. Comparing the
present results for Earth with the recent work reported by
Horne and Thorne (2000) it may be noted that our results
for the required amplitude of wave field for strong diffusion
are in agreement with their results for electron energies of
a few hundred eV. Studies of Meredith et al. (2000) suggest
that ECH waves insideL= 6 play a significant role in the
production of diffuse aurora. Thus it may be concluded that
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Fig. 9. Same as in Fig. 6 but for Jupiter atR= 17RJ andEWave=

10 µV m−1. 22 
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Fig. 10. Same as in Fig. 6 but for Saturn atR= 5RS andEWave=

30 µV m−1.

ECH waves are responsible for diffuse auroral precipitation
of electrons with energies of a few hundred eV. However, in
case of few keV electrons the observed ECH wave intensities
are insufficient to cause electron precipitation into the terres-
trial atmosphere. Resonant scattering of plasma sheet elec-
trons (∼100 eV–20 keV) atL= 6 due to resonant interaction
with whistler-mode chorus has recently been presented by Ni
et al. (2008). It has been concluded by these authors that scat-
tering by chorus is more effective than resonant interaction
with electrostatic electron cyclotron waves in producing dif-
fuse aurora. In the present study we find that ECH waves can
cause pitch-angle diffusion of electrons of energies of less
than 100 eV. Thus a combination of both wave types (ECH
and whistler-mode waves) may be necessary to cause diffuse
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Fig. 11. Same as in Fig. 6 but for Saturn atR= 8RS andEWave=

10 µV m−1. 23 
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Fig. 12.Same as in Fig. 6 but for Uranus atR= 5RU andEWave=

30 µV m−1. Diffusion coefficient have been multiplied by 10 before
plotting.

aurora (Meredith et al., 1999). For Jupiter, Thorne (1983) has
indicated that observed wave intensity could derive a strong
diffusion of low energy electrons. This is in agreement with
the present results. However, Sittler and Strobel (1987) state
that the electron data are not consistent with strong diffusion
(Kurth and Gurnett, 1991). In the case of Saturn, it appears
that the intensity of ECH waves is insufficient for strong pitch
angle diffusion. Similarly for Uranus and Neptune, the ob-
served low intensity of ECH waves is insufficient for strong
pitch angle diffusion. It is however, possible that for Uranus
at a lower radial distance, significant wave intensity could ex-
ist which has not been detected by Voyager. The same may be
true for Neptune. It is possible that ECH waves of sufficient
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Fig. 13.Same as in Fig. 6 but for Uranus atR= 11RU andEWave=

10 µV m−1. Diffusion coefficient have been multiplied by 10 before
plotting.
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Fig. 14.Same as in Fig. 6 but for Neptune atR= 5RN andEWave=

30 µV m−1. Diffusion coefficient have been multiplied by 10 before
plotting.

intensity for strong wave-particle interactions exist closer to
Neptune and could comprise a significant loss-mechanism of
energetic electrons in Neptunian magnetosphere. Kurth and
Gurnett (1991) present a comparative study of ECH waves
of the planetary magnetospheres and especially the assess-
ment of their roles in precipitation of charged particles into
planetary atmosphere. The waves seem to have obvious con-
tributions in this way for Earth and Jupiter. Yet, the situations
in the cases of Saturn, Uranus and Neptune are not better un-
derstood due to weaker wave amplitudes observed at these
planets. The present results are in agreement with the study
of Kurth and Gurnett (1991).
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Fig. 15. Same as in Fig. 6 but for Neptune atR = 10RN and
EWave= 10 µV m−1. Diffusion coefficient have been multiplied by
10 before plotting.

7 Conclusions

In the present work for the first time we have calculated pitch
angle diffusion coefficients for resonant interactions of elec-
trons with ECH waves in the five planetary magnetospheres:
Earth, Jupiter, Saturn, Uranus and Neptune. Further, we have
compared the pitch-angle diffusion by ECH waves in these
magnetospheres. The ECH wave intensity is expressed as a
function of wave normal angle and wave frequency. Numer-
ical results of the present calculations have been performed
for the first harmonic band and the observed results are com-
pared to the previous results. The main results obtained from
this study are as follows.

1. In the case of Earth, only low energy electrons
(<100 eV) are sufficient to put electrons on strong diffu-
sion at both lower and higher radial distances to produce
diffuse aurora in the terrestrial atmosphere. For diffu-
sion of higher energy electrons scattering by whistler-
mode the chorus may be more effective as suggested by
Ni et al. (2008).

2. In the case of Jupiter, electrons of about 50 eV may be
sufficient to put electrons on strong diffusion at lower
radial distance. However, at larger radial distance elec-
trons of higher energy (100 eV) may be put on strong
diffusion.

3. The present study shows that for Saturn, Uranus and
Neptune observed wave intensities are insufficient to
put electrons on strong diffusion at both radial distance
in magnetospheres. It may, however, be, noted that Voy-
ager did not sample the ECH waves at smaller radial dis-
tances, where significant intensities could exist without
having been detected.
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4. Thus, it may be concluded that for Earth and Jupiter,
ECH waves can cause scattering of low energy elec-
trons (<100 eV) producing diffuse aurora but on Saturn,
Uranus and Neptune the observed wave intensities are
insufficient to cause diffuse aurora.

5. The present calculations are based on quasi-linear dif-
fusion theory. Perhaps other mechanisms such as inter-
action by whistler-mode chorus are required to produce
the diffuse aurora or the validity of quasi-linear diffu-
sion theory needs to be investigated.
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