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Abstract. The Standardized Precipitation–Evaporation In-
dex (SPEI) was applied in order to address the drought con-
ditions under current and future climates in the Jordan River
region located in the southeastern Mediterranean area. In
the first step, the SPEI was derived from spatially interpo-
lated monthly precipitation and temperature data at multi-
ple timescales: accumulated precipitation and monthly mean
temperature were considered over a number of timescales –
for example 1, 3, and 6 months. To investigate the perfor-
mance of the drought index, correlation analyses were con-
ducted with simulated soil moisture and the Normalized Dif-
ference Vegetation Index (NDVI) obtained from remote sens-
ing. A comparison with the Standardized Precipitation Index
(SPI), i.e., a drought index that does not incorporate tem-
perature, was also conducted. The results show that the 6-
month SPEI has the highest correlation with simulated soil
moisture and best explains the interannual variation of the
monthly NDVI. Hence, a timescale of 6 months is the most
appropriate when addressing vegetation growth in the semi-
arid region. In the second step, the 6-month SPEI was de-
rived from three climate projections based on the Intergov-
ernmental Panel on Climate Change emission scenario A1B.
When comparing the period 2031–2060 with 1961–1990,
it is shown that the percentage of time with moderate, se-
vere and extreme drought conditions is projected to increase
strongly. To address the impact of drought on the agricultural
sector, the irrigation water demand during certain drought
years was thereafter simulated with a hydrological model on
a spatial resolution of 1 km. A large increase in the demand
for irrigation water was simulated, showing that the agricul-
tural sector is expected to become even more vulnerable to
drought in the future.

1 Introduction

Drought is an extended period with water deficits. Different
kinds of drought include meteorological, hydrological and
agricultural drought (Wilhite and Glantz, 1985). A meteo-
rological drought is related to abnormally low precipitation,
typically over an extended period of time. Although factors
like temperature, wind speed and soil conditions also are of
importance, a meteorological drought can trigger both hy-
drological droughts (abnormally low lake levels or river dis-
charge) and agricultural droughts (abnormally low soil mois-
ture). In many parts of the world, drought is a recurrent nat-
ural hazard that has environmental, social and economic im-
pacts (Wilhite, 2005). This wide range of impacts can be sim-
plified and quantified with a drought index. Through such an
index, current and past drought events can be compared and
essential communication between scientist, decision makers
and the public facilitated (Wilhite et al., 2000).

Different indices have been used to monitor the spa-
tiotemporal characteristics of soil moisture drought (Sims
et al., 2002; Svoboda et al., 2002; Vergni and Todisco,
2011). Worldwide, several drought indices are used; their
advantages and disadvantages are discussed by Mishra and
Sing (2010) and Quiring (2009), among others. The Palmer
Drought Severity Index (PDSI; Palmer, 1965) derives the soil
moisture (as an indicator of agricultural drought) by setting
up the soil water balance based on data regarding tempera-
ture, precipitation and the available water holding capacity
of the soil. The drought index is widely used and applied
by among others the National Oceanic and Atmospheric Ad-
ministration (NOAA), who produces monthly maps of US
drought conditions. The PDSI addresses mainly long-term
droughts; another index originating from the PDSI is the
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Crop Moisture Index (CMI; Palmer, 1968). The CMI is in
general applied in order to address short-term droughts on
a week-to-week basis. An advantage of the PDSI and CMI
is that they can address the soil moisture status of a region.
However, this also implies high data requirements and a high
number of defined terms (Alley, 1984; Paulo and Pereira,
2006). Hence, there is also a need for simpler drought in-
dices, relying on fewer data and fewer calculations (Hayes
et al., 1999; Smith et al., 1993). The Australian Bureau of
Meteorology favors the drought index deciles where precip-
itation is ranked from lowest to highest and split into 10
groups (Gibbs and Maher, 1967). The index is easy to cal-
culate and provides an estimation of how rare certain precip-
itation amounts are in comparison to the mean. Nonetheless,
a long data record is required (Quiring, 2009). Another well-
known drought index is the Standardized Precipitation Index
(SPI), developed by McKee et al. (1993) and applied world-
wide. The index uses long data records of precipitation as the
only input, and in contrast to other drought indices, the SPI
can be applied on different timescales (e.g., 1, 3, or 6 months)
in order to address the accumulation periods between pre-
cipitation and the water supplies in soil moisture, ground-
water, snowpack, streamflow and reservoir storage (McKee
et al., 1993). The SPI has been recommended by the World
Meteorological Organization (WMO, 2011) for characteriz-
ing meteorological droughts. An advantage of the SPI is the
low amount of required input parameters (only precipitation).
Some critics are concerned that the index does not perform
well at precipitation near zero (Wu et al., 2007) and that
the effect of evapotranspiration is not considered (Vicente-
Serrano et al., 2010). To address the latter, there is also a
further development of SPI, the Standardized Precipitation–
Evaporation Index (SPEI), which incorporates temperature
for the calculation of potential evapotranspiration (Vicente-
Serrano et al., 2010). In a global assessment of different
drought indices, Vicente-Serrano et al. (2012) conclude that
the SPI and SPEI are superior to the PDSI in capturing the
drought impacts on hydrological, agricultural and ecological
variables.

Although the link between precipitation, soil moisture and
vegetation growth is widely recognized (Farrar et al., 1994;
Gu et al., 2008; Wang et al., 2007), the soil moisture data
are often limited to point measurements. Higher data avail-
ability is one of the reasons why other studies have focused
on the indirect relationship between precipitation and re-
motely sensed data on vegetation in arid and semi-arid re-
gions (Anyamba and Tucker, 2005; Fabricante et al., 2009;
Nicholson and Farrar, 1994; Nezlin et al., 2005; Schmidt and
Karnieli, 2000). Such an analysis offers the opportunity to
address the performance of a drought index; a positive cor-
relation between a drought index and a vegetation index in-
forms about the drought index’s capability of addressing the
agricultural response to drought (Ji and Peters, 2003; Quiring
and Ganesh, 2010; Vicente-Serrano et al., 2012). One of the
most used vegetation indices is the Normalized Difference

Vegetation Index (NDVI) derived from spectral reflectance
in the near-infrared (NIR) and visible red regions according
to

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed), (1)

whereρNIR andρRed are the reflectance at the NIR and vis-
ible red bands. The NDVI can be obtained from the Ad-
vanced Very High Resolution Radiometer (AVHRR) and
Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors, among others (Tucker et al., 2005), and be used as
an estimate of biomass and net primary production (Leprieur
et al., 2000).

Many studies have addressed future drought conditions
and water stress (Burke and Brown, 2010; Dai, 2011; Milano
et al., 2012; Li et al., 2008). By applying a well-performing
drought index, not only the characteristics of current and
past drought events can be determined, but in combination
with climate projections, future conditions can also be ad-
dressed. Several authors have made projections of future
changes in the eastern Mediterranean climate by applying
global climate models (GCMs) and regional climate models
(RCMs). Krichak et al. (2011) applied an ECHAM5/MPI-
OM RegCM3 model and noticed a significant trend of de-
creasing winter precipitation in near-coastal areas and an in-
creasing trend in air temperature for all seasons. Samuels
et al. (2011) applied the ECHAM5 and HadCM3 GCMs in
combination with the RegCM3 and MM5 RCMs. Their re-
sults showed that the maximum daily temperature is expected
to increase by 2.5–3◦C and that the lengths of warm and dry
spells are expected to be prolonged by 2021–2050 compared
with the control period of 1961–1990. Smiatek et al. (2011)
applied the ECHAM-MM5 and HADCM3-MM5 projections
and identified a 2.1◦C mean increase of the annual mean
temperature by 2031–2060 compared with 1961–1990. They
also identified a drop in the annual mean precipitation by
11.5 %. Together, the application of regional climate mod-
els has shown that the eastern Mediterranean climate is pro-
jected to become warmer and drier. In order to develop sound
water management strategies and preparedness for drought,
it is meaningful to address the drought characteristics un-
der a changing climate. Further applications of a hydrolog-
ical model can thereafter be used to simulate the impact of
drought on the agricultural sector in a more detailed manner.
Considering that this sector accounts for 58 % of the regional
water use (FAO, 2009), the results would especially be use-
ful for stakeholders and decision makers when developing a
long-term regional drought preparedness plan.

The overall objective of this study is to address both the
characteristics of current and future droughts, as well as the
agricultural response to drought in the wider Jordan River
region. First of all, this requires a drought index that can
explain the spatiotemporal variation of vegetation. Although
several drought indices may be capable of doing that, this
study focuses on the performance of multiple timescales of
the precipitation- and temperature-based drought index SPEI
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as well as the precipitation-based SPI. Also drought char-
acteristics are addressed; the drought indices are applied
both on climate model control data as well as on climate
data received from future projections. Comparisons are also
made with observed reference data. Thereafter, a hydrolog-
ical model is used to simulate the irrigation water demand
(IWD) during extreme droughts. In that way, the simulated
IWD can be used to address the impact of climate change
on the agricultural sector. More in detail, the focus is on the
following: (1) the correlation between multiple timescales of
SPEI and SPI, simulated soil moisture and monthly NDVI
in order to identify the SPEI and SPI timescale that best ex-
plains the vegetation dynamics in the wider Jordan River re-
gion; (2) deriving the percentage of time with moderate, se-
vere and extreme drought conditions under current and future
climates; and (3) simulating the IWD during a current and fu-
ture drought year in order to address the agricultural impacts
of a changing climate.

2 Materials and methods

2.1 Study region

The present study region covers the Jordan River basin and
its surroundings (Fig. 1). The area extends from north of
Lake Kinneret to the Gulf of Aqaba in the south, and from
the Mediterranean coast to the Jordanian Highlands in the
east. Altogether, the study area covers around 96 000 km2

and includes Israel, the State of Palestine, and a major part
of Jordan, as well as parts of Lebanon, Syria, and Egypt.
The region is characterized by a wet season between October
and April, whereas the rest of the year receives no precipi-
tation. On an annual basis, the potential evaporation greatly
exceeds precipitation. The interannual variability of winter
precipitation is strong, and abnormally low rainfall recur-
rently triggers drought events resulting in economic losses,
lowered agriculture productivity, reduced stream flow, and
falling lake levels (Inbar and Bruins, 2004). In addition, the
spatial variability of precipitation is high; convective storms
are common, and two significant precipitation gradients ex-
ist (Ben-Gai et al., 1998). The first gradient is in the west–
east direction with higher precipitation in proximity to the
Mediterranean Sea (Fig. 1). The hilly regions, stretching
from Lebanon in the north to the Gulf of Aqaba in the south,
give rise to an orographic lift of moist westerly winds, which
results in a dry eastern lee side (Dahamsheh and Aksoy,
2007). The second gradient is in the north–south direction.
The Golan Heights, stretching northwards from the eastern
side of Lake Kinneret, have humid conditions with an annual
precipitation of up to 900 mm. Around the Gulf of Aqaba,
the conditions are hyper-arid. The area receives dry winds
from the Sinai desert, and the annual precipitation is less than
50 mm (Dahamsheh and Aksoy, 2007).

Fig. 1.Location of the study region (based on the ESRI World Phys-
ical Map) and land uses with spatial coverage in percentages. Also
shown are the 250 and 450 mm isohyets derived from spatially in-
terpolated precipitation data. These smoothed lines define a sub-
humid, semi-arid and arid sub-region.

The study area can be divided into three sub-regions
having arid (annual precipitation < 250 mm yr−1), semi-arid
(250–450 mm yr−1) and sub-humid (> 450 mm yr−1) condi-
tions (Fig. 1). The conditions are unsuitable for rain-fed agri-
culture in the arid sub-region (Bruins, 1999). In the moister
sub-regions, rain-fed farming is possible only during the win-
ters. This study employs a land use map with a spatial reso-
lution of 1 km, which originates from the Global Land Cover
Characterization (GLCC) (Loveland et al., 2000; Menzel et
al., 2009) and is based on the year 2000. Since this study
addresses the impact of climate change and not those of
land-use change, the land use map was kept static during
the analyses. Dominating land uses are shrubland (covering
41 % of the study area), barren land (32 %), mosaic (10 %),
which is a mixture between natural vegetation and crops,
cropland (9 %), cereals (3 %), grazing land (1 %), grassland
(1 %), and urban areas (1 %). As this study addresses agri-
cultural drought, it focuses on the three major agricultural
classes: cereals, cropland, and mosaic. The natural vegeta-
tion shrubland is also included for a comparison.
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2.2 SPEI and SPI

The drought index SPEI (Vicente-Serrano et al., 2010) is a
further development of the SPI described in detail by McKee
et al. (1993), Guttman (1999) and Bordi et al. (2001). The
focus of this paper is on the SPEI; nonetheless, comparisons
are conducted with the SPI. The original SPI uses long-term
precipitation series, preferably not shorter than 30 yr, as only
input (McKee et al., 1993). The SPEI instead requires a series
of the climate water balance (precipitation – potential evapo-
ration) as input (Beguería and Vicente-Serrano, 2013). Here
we applied the Thornthwaite equation (Thornthwaite, 1948),
which employs the latitude and the monthly average temper-
ature in order to estimate the potential evaporation. To begin
the calculations of the SPEI and SPI, a probability density
function is fitted to the long-term input series for a certain
timescale of interest. The fit is conducted separately for each
month of the year, and the series is a running time series of
for example a 1-, 3- or 6-month cumulative climate water bal-
ance for the SPEI and cumulative series of precipitation for
the SPI. The probability density function is thereafter trans-
formed to a standard normal distribution with the mean value
of 0 and standard deviation of 1. According to the original
definition by McKee et al. (1993), drought conditions occur
when the SPI is continuously negative and falls below a cer-
tain threshold value. The authors suggested a threshold value
of −1 for moderate drought; the SPEI and SPI values are
expected to be below this threshold 15.9 % (1 standard devi-
ation) of the time.

For the purpose of this study, the SPEI and SPI were cal-
culated with the SPEI R package (Beguería and Vicente-
Serrano, 2013). When calculating the SPEI, the log-logistic
probability density function was used. When deriving the
SPI, the gamma probability density function was instead em-
ployed. Both the SPEI and SPI were applied on gridded data
where each 1 km× 1 km pixel acted as a single measurement
point.

2.3 Time series of SPEI, SPI and NDVI

Precipitation and temperature were interpolated to a spa-
tial resolution of 1 km by using data obtained for the pe-
riod 1961–2001 from more than 130 precipitation gauges and
around 50 temperature sensors. The spatial resolution was
chosen to coincide with the land use map. To account for
the strong climatic gradients and an irregular spatial distribu-
tion of the stations, a multiple regression analysis, described
in detail in Menzel et al. (2009) and Wimmer et al. (2009),
was applied. Based on the daily data availability, data char-
acteristics and possible spatial trends, the method automat-
ically identifies a suitable interpolation method (universal
kriging, ordinary kriging, ordinary least squares interpolation
or inverse distance weighting) for each day and parameter.
Thereafter, the interpolated daily precipitation and tempera-
ture grids were aggregated into monthly totals and monthly

mean values, respectively. These grids served as input to the
SPEI and SPI.

In order to identify the most appropriate SPEI and
SPI timescale, the drought indices were applied on short
timescales (1, 2, and 3 months), moderate timescales (6,
9, and 12 months), as well as long timescales (18 and 24
months) for each pixel separately. During the SPEI and SPI
calculations, the input series were then accumulated to this
timescale and compared with the corresponding period in
the long-term climatic series. As an example, to derive the
3-month SPEI value of March 2000 for a pixel, the total cli-
mate water balance of January, February and March 2000
was compared (standardized) with long-term time series of
January–March climate water balance for the same pixel.
Throughout the whole study, the gridded observed data for
1961–1990 were used as reference data. Hence, the observed
data were used for standardization. The final monthly SPEI
and SPI data sets had a spatial resolution of 1 km.

Biweekly NDVI data are available from the Global In-
ventory Modeling and Mapping Studies (GIMMS) NDVI
(Pinzon et al., 2005; Tucker et al., 2005) processed from daily
AVHRR images. The global data set has a spatial resolution
of 8 km and has been corrected for calibration, view geom-
etry, volcanic aerosols, and other factors not associated with
vegetation change. To be compatible with the temporal res-
olution of the SPEI and SPI, monthly NDVI values were re-
trieved from the biweekly GIMMS NDVI by computing the
average of the two images. In order to address the relation-
ship between the drought indices and NDVI, a technique ap-
plied by Ji and Peters (2003) was used. They showed that the
relationship between SPI and NDVI can be explained with
a linear relationship as long as the seasonality is taken into
account, for example, by conducting correlation analyses in-
dividually for each month of the year. Because the relation-
ship between precipitation and vegetation development dif-
fers between plant species (Rosenthal et al., 1987), the anal-
yses were conducted separately for different land uses. First,
the average SPEI, SPI and NDVI values of all pixels in each
land use were determined for each month. Thereafter, the re-
lationship between the aggregated parameters was evaluated
for each month of the year according to the correlation coef-
ficient and thep value. The SPEI and SPI timescale resulting
in the highest correlation with NDVI was seen as the most
appropriate one. The regression analyses were conducted for
the years 1982–2001, because for this period precipitation,
temperature and NDVI data were available. As the summers
are completely dry and vegetation shows clear phenological
phases, the analysis was limited to the main growing season
(January to May). Furthermore, the applied drought indices
have a problem with fitting a probability density function to
periods with almost no precipitation (Wu et al., 2007).
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2.4 Climate projections

Once the SPEI and SPI had been compared and the most
suitable timescale had been identified based on regression
analysis between the drought indices, simulated soil mois-
ture and NDVI, data from three climate projections were
applied in order to address future droughts. The Intergov-
ernmental Panel on Climate Change (IPCC) has prepared
several emission scenarios in order to address uncertain-
ties in global development. In the present study, we apply
the emission scenario A1B, which describes a world with a
very rapid economic growth and where energy is generated
both from fossil fuels and from alternative energy sources
(IPCC, 2007). Three combinations of a GCM and RCM,
prepared within the GLOWA Jordan River Project (http:
//www.glowa-jordan-river.de/), were considered: ECHAM5-
MM5 and HadCM3-MM5 (Samuels et al., 2011; Smiatek et
al., 2011) delivered from the Institute for Meteorology and
Climate Research – Atmospheric Environmental Research
(IMK-IFU) in Karlsruhe, Germany, and ECHAM5-RegCM3
(Krichak et al., 2010, 2011) delivered from the Tel Aviv Uni-
versity (TAU), Israel. Not all RCMs are appropriate for each
region (Krichak et al., 2010). The applied RCMs, however,
have been adapted and optimized for the eastern Mediter-
ranean region (Krichak et al., 2005, 2007).

The climate projections have spatial resolutions of 18–
25 km. From the projections, daily precipitation and tem-
perature data were disaggregated to a spatial resolution of
1 km by applying a linear interpolation between the center
points of each grid cell. Following this, monthly values were
retrieved, and the best performing drought index was ap-
plied to the climate model control run (1961–1990) and fu-
ture projections (2031–2060) by using the gridded observed
data 1961–1990 as a reference. In order to compare the dif-
ferent time periods with regards to drought, the SPEI and
SPI probability density functions were derived by using all
pixels for all months (altogether 96 318 pixels× 360 months
for each time period). By applying this method, it was pos-
sible to derive the percentage of time of moderate drought
(SPEI/SPI <−1.0), severe drought (SPEI/SPI <−1.5) and
extreme drought (SPEI/SPI <−2.0) conditions.

2.5 Hydrological model

TRAIN is a physically based hydrological model that has fo-
cus on the soil–vegetation–atmosphere interface. It is based
on comprehensive field studies regarding the water and en-
ergy balance of different surface types, including natural veg-
etation and agricultural land (Menzel, 1997a, b). Recently,
the model has been calibrated with evapotranspiration mea-
sured in the semi-arid Yatir Forest, Israel (Hausinger, 2009),
a research site operated by the Weizmann Institute of Sci-
ence. Furthermore, the model has been applied in several
studies focusing on the water balance in the wider Jordan
River region (Menzel et al., 2009; Menzel and Törnros, 2012;

Törnros and Menzel, 2014). The model requires input data
on precipitation, temperature, wind speed, radiation, and air
humidity. These data were available both from meteorologi-
cal stations and from climate projections, and were prepared
just as the precipitation and temperature grids. TRAIN also
requires information regarding land use and the water hold-
ing capacities of the soils. These data were available from
the International Geosphere-Biosphere Programme GLCC
(Loveland et al., 2000; Menzel et al., 2009) and Schacht et
al. (2011), respectively.

Based on the necessary input data, TRAIN simulates
soil moisture, evapotranspiration, snow accumulation/melt,
runoff and percolation. For agricultural areas, TRAIN can
also deliver information regarding the irrigation water de-
mand (IWD). The model presumes that optimal crop growth
takes place when the soil is saturated to field capacity. When
the simulated soil moisture drops below a certain threshold
level, the model simulates irrigation until optimal plant con-
ditions (field capacity) are reached. The derived IWD is of
potential value. In reality, and especially during droughts and
water shortages, a sufficient amount of water might not be
allocated to agriculture. In the present study, TRAIN was
applied to simulate soil moisture for the sake of addressing
the SPEI/SPI–soil moisture–NDVI relation. In addition, the
model was also applied in order to simulate the IWD during
average reference conditions and drought years. The latter
was defined as the year having the highest drought magni-
tude (monthly accumulated negative SPEI/SPI over the year)
according to McKee et al. (1993). The result can be used as
an indicator of the drought vulnerability of the region. The
higher the IWD, the more threatened the agricultural sector
becomes because more water is required to sustain (optimal)
vegetation growth.

3 Results

3.1 Spatiotemporal variability of NDVI

To demonstrate the spatial variation of NDVI, the NDVI dur-
ing vegetation peak in April 2000 is shown in Fig. 2a. It can
be seen that vegetation has a spatial pattern that is clearly
constrained by precipitation. In the semi-arid and sub-humid
areas, the values peak above 0.60, whereas in the arid sub-
region the values remain under 0.15. The figure also shows
the vegetation phenology throughout the year for the consid-
ered land uses (Fig. 2b). By examining the years 1982–2001
and comparing the minimum and maximum mean NDVI
(given as a monthly minimum and maximum mean value of
all pixels in each land use, respectively), it can clearly be
seen that the NDVI differs between years and that the values
remain low for shrubland. The difference between the min-
imum and maximum mean NDVI is highest in the middle
of the vegetation period, whereas the interannual variation
is lower during senescence and the dry summer. The figure
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Fig. 2. (a)Spatial distribution of NDVI in April 2000, and(b) the NDVI phenology throughout the year for chosen land uses. Shown are the
maximum mean NDVI, the mean NDVI, and the minimum mean NDVI based on monthly values for the years 1982–2001.

also highlights a clear vegetation peak in March/April. By
conducting regression analyses between NDVI and multiple
timescales of the SPEI and SPI, it was tested whether the
drought indices could explain these interannual variations in
vegetation.

3.2 Correlation of SPEI, SPI and NDVI

For each considered land use (cereals, cropland, mosaic
and shrubland), correlation analyses were conducted be-
tween multiple timescales of the SPEI/SPI, soil moisture and
NDVI. Figure 3 shows some of the derived time series for
cropland. By examining the 1-month SPEI, it becomes clear
that the drought conditions quickly change between months
and that the response in soil moisture is slower. This result
in a moderate correlation between the parameters (r = 0.41).
Between the 3-month SPEI and soil moisture, the correla-
tion is increased (r = 0.67). Nonetheless, the highest correla-
tion is obtained between the 6-month SPEI and soil moisture
(r = 0.77). By examining these time series, it can be seen
that the response times to an event tend to be comparable for
the 6-month SPEI and soil moisture. It can also be seen that
the 6-month SPEI and NDVI have a correlation coefficient
of 0.39. This relation was addressed more in detail by inves-
tigating the variations throughout the main growing season
(January to May).

Figure 4 shows scatterplots of the NDVI and the 1-, 3- and
6-month SPEI (the other considered SPEI timescales are not
plotted). The results demonstrate that little (significant) cor-
relation is detected between NDVI and the 1-month SPEI.
The relationship is furthermore only positive in March and
April; during this month thep value (for the positive rela-
tions) is between 0.38 and 0.95. It is clear that the 3-month
SPEI shows a higher correlation with NDVI. The correla-
tion is strongest, and at times significant (p < 0.05), in Jan-
uary and during the vegetation peak in April/May. It can
also be seen that a negative relation is obtained in Febru-
ary and March. Furthermore, the results demonstrate that the
6-month SPEI performs better in comparison to the shorter
timescales. Every month induces a positive correlation be-
tween the 6-month SPEI and NDVI, and at the most, a corre-
lation coefficient of 0.75 is obtained. In January the correla-
tion is significant for cereals, and in February it is significant

for shrubland. In March it is significant both for cereals and
shrubland, and in April and May it tends to be significant for
all land uses. From all the scatterplots, it can be seen that the
relationship between the NDVI and SPEI changes with the
different states of vegetation growth. In general, it can also
be seen that the correlation between the two parameters is
strongest around the vegetation peak.

To facilitate the evaluation of all considered SPEI
timescales and allow a comparison with SPI, the 20 regres-
sion analyses (which were visualized with scatterplots) con-
ducted for each timescale were evaluated with a box plot
(Fig. 5). As the 1-month SPEI induces a negative correla-
tion (r = −0.09) on average, the result once again indicates
that the shortest timescale is not capable of monitoring veg-
etation growth. The 2-month SPEI and 3-month SPEI have
a higher average correlation (r = 0.06 andr = 0.26, respec-
tively), probably because there is a time lag between precipi-
tation and vegetation growth, and the impact of water deficits
on vegetation is cumulative (Ji and Peters, 2003). The same
figure shows that all moderate timescales perform almost
equally well; the 6-, 9-, and 12-month SPEIs have an aver-
age correlation coefficient of 0.49, 0.46, and 0.41, respec-
tively. The box plot also reveals that the longer timescales
tend to result in a lower correlation coefficient than the mod-
erate timescales; the 18-month SPEI has an average corre-
lation coefficient of 0.28, and the 24-month SPEI has a cor-
responding value of 0.22. In the figure, it can also be seen
that the SPEI tends to perform slightly better than the SPI,
which only uses precipitation as input. For the SPI, the mod-
erately long timescales perform almost equally well, having
an average correlation coefficient between 0.44 and 0.47.

Altogether, the 6-month SPEI best explains the interannual
variability of the monthly NDVI. Therefore, this timescale
was chosen as the most appropriate for assessing agricultural
drought in the Jordan River region.

3.3 Droughts under current and future
climate conditions

To address future droughts, the climate projections for 2031–
2060 were used in comparison to the climate model control
run 1961–1990. Figure 6 shows the projected changes in an-
nual precipitation and temperature. The applied GCM–RCM
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Fig. 3.Time series of simulated soil moisture, NDVI and multiple timescales of the SPEI;r refers to the correlation coefficient.

combinations all simulate a decrease of annual precipitation.
For large areas, a decrease of between 10 to 20 % is pro-
jected. The ECHAM5-RegCM3 simulates mainly a decrease
in the semi-arid and sub-humid regions. There are also some
local areas where increased precipitation is simulated, possi-
ble owing to convective rainfall events (Samuels et al., 2011).
Both the ECHAM5-MM5 and the HadCM3-MM5 simulate
mainly a decrease in the southern arid parts. Although the
spatial distributions of changes in annual precipitation differ
slightly between the models, the results can give a sense of
the range of the changes expected (Samuels et al., 2011). Fur-
thermore, the projections give indications of a seasonal shift
(not shown). Precipitation is projected to increase slightly
during October to November, in the beginning of the wet sea-
son. During the mid-winter months of December to February,
a clear reduction in total precipitation is simulated. For the
ECHAM5-RegCM3, the reduction is large for all the mid-
winter months, whereas the ECHAM5-MM5 model simu-
lates the strongest reduction in February and none in Jan-
uary. In contrast, the HadCM3-MM5 simulates a reduction
in January’s precipitation and only minor changes in Febru-
ary. Furthermore, all climate projections predict a decrease
in precipitation for March through May.

By 2031–2060, an increase of temperature by 1.5–2.0◦C
is simulated; the highest increase is simulated by HadCM3-
MM5 followed by ECHAM5-RegCM3 and ECHAM5-
MM5, respectively. As also noticed by Samuels et al. (2011),
all models show a higher temperature increase inland than at

the coast. The authors suggest that it could be related to cool-
ing effects of sea breezes. When examining the simulated
change of monthly mean temperature throughout the wet sea-
son, the results give an increase by 1.5–3◦C (not shown).
The increase tends to be highest in the beginning of the wet
season. Increased temperature means a higher atmospheric
evaporation demand and may have negative consequences for
the agricultural sector.

In order to address the impact of climate change with re-
gards to droughts, the probability density functions of the 6-
month SPEI and the 6-month SPI were plotted both for the
reference data and the climate projections. Additionally, the
percentage of time (i.e., the percentage of months) with mod-
erate, severe and extreme drought conditions was derived. By
examining the 6-month SPEI and the 6-month SPI (results
given in brackets), Fig. 7 reveals that the reference data have
a normal distribution with a mean value of 0.004 (0.022) and
standard deviation of 0.980 (0.954). The ECHAM5-RegCM3
has a mean value of 0.066 (−0.008), and the ECHAM5-
MM5 has a mean value of−0.095 (−0.347). Although these
values tend to be close to zero, their standard deviations of
1.451 (1.503) and 1.365 (1.396), respectively, show that the
climate models overestimate the amount of months with SPI
less than−1 (i.e., the amount of months with either mod-
erate, severe or extreme drought conditions). It can also be
seen that the HadCM3-MM5 control run has a mean value
of 0.755 (−0.378) and standard deviation of 1.412 (1.449).
As a result, the control data underestimate (overestimate)
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Fig. 4. Scatterplots between NDVI and multiple timescales of SPEI for chosen land uses. Each dot represents one year between 1982 and
2001. Also shown are the correlation coefficientr and thep value.

Fig. 5.Box plot for the correlation of NDVI and multiple timescales
of SPEI and SPI;r is the correlation coefficient. The figure is based
on the months January to May, and the land uses cereals, cropland,
mosaic and shrubland. Hence, altogether there are 20 values for
each timescale.

the drought conditions in comparison to the reference data.
Although the climate model control runs show biases when
compared to the reference data, a comparison between the fu-
ture projections and the control run can nonetheless reveal an
indication of the expected changes with regards to drought.
A first glance shows that the future projections have shifted
towards more negative values in comparison to the control
data. This means that SPEI and SPI are expected to be below
−1 more frequently.

Tables 1–2 show the percentage of time (equal to the
percentage of months) with moderate, severe and extreme
drought conditions. When evaluating the 6-month SPEI and
the 6-month SPI (once again given in brackets), the results
show that moderate drought occurs 9.0 % (8.7 %) of the time
for the reference data. Severe and extreme droughts occur
4.2 % (3.8 %) and 2.0 % (1.7 %) of the time, respectively. Al-
together this sums to 15.2 % (14.2 %), which is slightly lower
than the 15.9% that is expected for a normal distribution with

Fig. 6. Projected relative changes in annual precipitation (upper
row) and annual mean temperature (lower row) simulated by three
climate models. The figure shows projected data for 2031–2060 in
comparison with the climate model control run 1961–1990.

the mean 0 and standard deviation 1. By analyzing the cli-
mate model control data (1961–1990) with regards to mod-
erate droughts, it can be seen that ECHAM5-RegCM3 gives
that moderate drought conditions occur 9.1 % (9.4 %) of the
time. For ECHAM5-MM5 the number is 10.2 % (11.6 %),
and for the HADCM3-MM5 it is 5.2 % (11.5 %) of the time.
Furthermore, the ECHAM5-RegCM3 results in severe and
extreme drought conditions 6.3 % (6.8 %) and 7.7 % (9.2 %)
of the time, respectively. Especially the extreme droughts are
strongly overestimated. The same tendency can be seen for
the ECHAM5-MM5, which gives that severe drought con-
ditions occur 7.0 % (8.6 %) and extreme drought conditions
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Table 1. The percentage of time with moderate, severe and extreme drought conditions as derived with the 6-month SPEI. The values are
standardized according to the reference period 1961–1990 (observed data). “Ctrl.” refers to the climate model control run (1961–1990) and
“Proj.” to the future projection (2031–2060).

Drought Reference ECHAM5-RegCM3 ECHAM5-MM5 HadCM3-MM5
SPEI Values condition 1961–1990 Ctrl. Proj. Ctrl. Proj. Ctrl. Proj.

−1.00 to−1.49 Moderate 9.0 % 9.1 % 13.0 % 10.2 % 13.2 % 5.2 % 12.9 %
−1.50 to 1.99 Severe 4.2 % 6.3 % 12.7 % 7.0 % 12.8 % 3.0 % 11.0 %
≤ −2.0 Extreme 2.0 % 7.7 % 33.9 % 8.1 % 33.7 % 2.5 % 21.3 %

Total: 15.2 % 23.1 % 59.6 % 25.3 % 59.7 % 10.7 % 45.2 %

Table 2. The percentage of time with moderate, severe and extreme drought conditions as derived with the 6-month SPI. The values are
standardized according to the reference period 1961–1990 (observed data).

Drought Reference ECHAM5-RegCM3 ECHAM5-MM5 HadCM3-MM5
SPI Values condition 1961–1990 Ctrl. Proj. Ctrl. Proj. Ctrl. Proj.

−1.00 to−1.49 Moderate 8.7 % 9.4 % 10.2 % 11.6 % 12.0 % 11.5 % 11.7 %
−1.50 to 1.99 Severe 3.8 % 6.8 % 7.8 % 8.6 % 9.9 % 8.8 % 9.6 %
≤ −2.0 Extreme 1.7 % 9.2 % 12.5 % 11.8 % 18.3 % 13.1 % 17.5 %

Total: 14.2 % 25.4 % 30.5 % 32.0 % 40.2 % 33.4 % 38.8 %

occur 8.1 % (11.8 %) of the time. It can also be seen that the
HADCM3-MM5 underestimates (overestimates) the severe
droughts at a number of 3.0 % (8.8 %). Furthermore, the ex-
treme droughts are overestimated, expecting to occur 2.5 %
(13.1 %) of the time.

When comparing the future projections with the climate
model control runs, the results show that a strong increase in
the percentage of time with moderate, severe and extreme
drought conditions is expected. Moderate drought condi-
tions are expected to occur 13.0 % (10.2 %), 13.2 % (12.0 %)
and 12.9 % (11.7 %) of the time for the ECHAM5-RegCM3,
ECHAM5-MM5 and HADCM3-MM5 models, respectively.
A strong increase is given also for the severe drought con-
ditions, which by 2031–2060 is expected to occur 12.7 %
(7.8 %), 12.8 % (9.9 %) and 11.0 % (9.6 %) of the time for
the respective projection. By analyzing the results, it can fur-
thermore be seen that the extreme drought conditions are ex-
pected to occur much more often by 2031–2060. By applying
the ECHAM5-RegCM3, ECHAM5-MM5 and HADCM3-
MM5 models, it is estimated that extreme drought condi-
tions will occur 33.9 % (12.5 %), 33.7 % (18.3 %) and 21.3 %
(17.5 %) of the time, respectively.

3.4 Simulated irrigation water demand

To address the agricultural impacts of a changing climate, the
IWD was simulated with TRAIN for the years 1961–1990
and by considering only agricultural land. The latter covers
around 22 684 km2 and comprises vegetables, fruits, cereals,
and cropland, as well as a mixture of natural vegetation and
crops. The model results show that the annual IWD in most
of the area does not exceed 100 mm (Fig. 8a). A scattered

pattern with values above 200 mm can also be noticed. This
pattern is a result of the underlying land use map and the fact
that each land use has an individual model parameterization
for vegetation (leaf area index, vegetation height, number of
vegetation layers, etc.). With more vegetation, transpiration
occurs at a higher rate; hence, more irrigation is simulated in
order to supply the crops with water. The average agricultural
pixel has an annual IWD of 80 mm, which corresponds to a
total water amount of 1815 Mm3 for all the agricultural land.

Additionally, the annual IWD was simulated for years
having the highest drought magnitude (accumulated nega-
tive average monthly SPEI/SPI for a year). Focus is on the
HadCM3-MM5, for which both the SPEI and SPI agree on
which years are the most severe. The results imply a max-
imum annual drought magnitude of 5.09 (17.32) and 20.23
(19.09) for the control run and future projection, respectively.
During these dry years, the mean annual IWD was simulated
to be 97 mm (2200 Mm3) and 140 mm (3176 Mm3), respec-
tively. This implies an increased irrigation demand of 21 %
and 75 % compared with average reference conditions. As al-
ready mentioned, the IWD is a potential value that in reality
and especially during droughts might not be fulfilled. There-
fore, higher values induce higher vulnerability to drought.
When examining the spatial distribution of the results, an in-
crease of IWD is seen mainly in the semi-arid and central
sub-humid area for the control run (Fig. 8b). For the future
projection, an increase of IWD can instead be observed over
the entire region (Fig. 8c). Altogether, the results demon-
strate how the region is expected to become more vulnerable
to drought.
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Fig. 7. Probability density functions for the 6-month SPEI (upper row) and the 6-month SPI (lower row). Shown are three GCM/RCM
combinations and observed reference data (ref. 1961–1990), the climate model control run (ctrl. 1961–1990) and a future projection (proj.
2031–2060). The negative vertical lines indicate the thresholds for moderate, severe and extreme drought conditions.

Fig. 8. Simulated annual irrigation water demand (IWD) in millimeters. The figure shows(a) the current reference conditions based on the
period 1961–1990,(b) the annual IWD based on the HadCM3-MM5 climate model control run and a drought year in 1961–1990, and(c) the
annual IWD based on the HadCM3-MM5 climate model and a drought year in 2031–2060. The figure shows agricultural land only, and an
assumption of no land use change has been made.

4 Discussion

A time lag between rainfall and vegetation growth is ex-
pected (Ji and Peters, 2003). Therefore a lack of correlation
between the 1-month SPI and NDVI is not surprising. How-
ever, it is interesting to see that the relationship between the
1-month SPEI and NDVI tends to be negative. One explana-
tion for this might be that NDVI is more closely related to
the rainfall of the previous month than to the current rain-
fall. Another explanation could be related to that the SPEI
and SPI has problems in fitting a probability density func-
tion to precipitation at or close to zero precipitation (Wu et

al., 2007). The time lag between precipitation and vegetation
response differs between vegetation types and regions, and
the soil’s ability to store water (Quiring and Ganesh, 2010;
Vicente-Serrano et al., 2012; Wang et al., 2001). In this study,
it was indicated that the simulated soil moisture reacts rela-
tively slowly to drought, and that the soil does not dry out
in between two rainfall events during winter. As a result, the
highest correlation with simulated soil moisture was obtained
for the 6-month SPEI. Another reason why the 6-month SPEI
performs better than the shorter timescales could be related
to the importance of the early season (October) precipitation
(Ben-Gai et al., 1993; Otterman et al., 1990), whose amount

Hydrol. Earth Syst. Sci., 18, 305–318, 2014 www.hydrol-earth-syst-sci.net/18/305/2014/



T. Törnros and L. Menzel: Addressing drought conditions under current and future climates 315

is not incorporated in the 3-month SPEI from January and
onwards. Later in the growing season, another contributing
factor might be related to the importance of precipitation in
the mid-winter months of December to February in which
about 65 % of annual precipitation falls (Goldreich, 1995).
It is also interesting to see that the longer SPEI timescales
perform worse than the moderately long ones. This indicates
that the vegetation growth is not influenced by the previous
wet season’s rainfall amounts. The reason for this might be
linked to the dry summers during which the high cumulative
evaporation rate might dry the soils out, irrespective of the
soil moisture content at the beginning of the season. It is also
interesting to see that SPI performs almost just as well as the
SPEI. The index could therefore be applied in studies where
temperature data are missing.

The study also addresses the current and future climates
by applying three climate projections. The performance of
these climate projections for the current conditions has been
evaluated by Samuels et al. (2011). The authors compared
the output of the climate models with the same gridded data
set on observed precipitation that was applied in the present
study. In comparison to observed data, the RCMs tend to
underestimate the annual mean precipitation by 5–10 % and
slightly overestimate the consecutive dry days and the num-
ber of days with very heavy precipitation (> 20 mm day−1).
In this study, it further becomes clear that the climate mod-
els tend to overestimate the percentage of time with moder-
ate, severe and extreme drought conditions. An exception is
the HadCM3-MM5 model, which for the 6-month SPEI and
extreme droughts delivers comparable values for the control
and reference period (Table 1; Fig. 7). It should be noticed
how this is due a shift of the probability density function to-
wards higher values (Fig. 7). This shift is probably related to
the underestimation of days with high temperature (i.e., the
underestimation of potential evaporation) in the control run
(not shown). Although it is clear that the climate models tend
to overestimate the percentage of time with moderate, severe
and extreme drought conditions, a comparison between the
future projections and the climate model control run is still
valuable.

Even though the SPEI and SPI show a comparable perfor-
mance when applied on observed reference data, their output
largely differs when applied on data delivered from the cli-
mate models. Furthermore, for the future climates it cannot
be determined if the SPEI or the SPI performs the best. On
the one hand, the SPEI addresses the changes in tempera-
ture in addition to the changes in precipitation. On the other
hand, in order to calculate the SPEI with the lowest amount
of required data (precipitation and temperature), the Thornth-
waite (1948) equation was applied. This is a simplified model
of potential evaporation, and it has recently been recognized
that its empirical relationship of temperature tends to over-
estimate the potential evaporation when extrapolated into the
future (Dai, 2011, 2013; Sheffield, 2012). Hence, the choice
of formula is probably contributing to the large disparities

between the SPEI and SPI by 2031–2060. In order to bet-
ter quantify the percentage of time with moderate, severe
and extreme drought conditions under future climates, forth-
coming applications of the SPEI should also be based on the
Penman–Monteith equation (Monteith, 1965) for the assess-
ment of potential evaporation.

The simulated annual IWD of 1815 Mm3 agrees very well
with statistics for the years 2000–2004. For this period, the
annual water withdrawal for irrigation and livestock was es-
timated to be 1129 Mm3 in Israel, 89 Mm3 in the State of
Palestine, and 611 Mm3 in Jordan (FAO, 2009). These num-
bers add up to a total water withdrawal of 1829 Mm3. Nev-
ertheless, there are some uncertainties that can be discussed.
Since reliable information regarding irrigation practices are
missing, the IWD is simulated based on a pretty simple ap-
proach. Furthermore, data regarding multiple cropping and
areas equipped for irrigation are in general not available. On
the one hand, an overestimation of the area equipped for irri-
gation would overestimate the IWD, and, on the other hand,
an underestimation of the areas that are doubled-cropped
would underestimate the IWD. These potential errors could
cancel each other out, and it still results in a good agreement
between the simulated IWD and the statistics. Nonetheless,
the model components are up to date with our present knowl-
edge of the regional irrigation practices.

5 Conclusions

In a region where the interannual variability in precipitation
is high and drought conditions recurrently occur, the bene-
fits of a well performing drought index are many. A well-
known drought index is the SPI, as well as the further devel-
opment SPEI. Often, however, the drought indices are ap-
plied without further considerations to the most appropri-
ate timescale. By conducting correlation analyses between
multiple timescales of SPEI/SPI, simulated soil moisture and
NDVI received from remote sensing, it can be seen that the
choice of SPEI/SPI timescale is crucial. A too short timescale
fails to recognize longer periods of abnormally wet or dry
conditions, and a too long timescale includes redundant in-
formation. This study identifies the 6-month SPEI as the most
appropriate index when addressing agricultural drought in
the wider Jordan River region under the current climate. Al-
though not extensively addressed, it is also shown that the
SPI performs almost just as well and could be applied if tem-
perature data are not available.

For the development of a long-term regional water plan
and the preparedness for drought, information regarding fu-
ture drought conditions is valuable. The hydrological re-
sponse to a changing climate can be addressed by applying
the SPEI/SPI and a hydrological model on data received from
several GCM/RCM combinations. The results of this study
show that the percentage of time with moderate, severe and
extreme drought conditions tends to be overestimated when
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comparing the climate model control run with observed ref-
erence data. Nonetheless, by comparing the future projec-
tions with the control run, it is shown that the percentage
of time with moderate, severe and extreme drought is ex-
pected to increase strongly in the southeastern Mediterranean
region. The increase is much larger when applying the SPEI
than when using the SPI. It is also demonstrated that the in-
tensified droughts lead to large increases in the annual IWD.
Hence, the agricultural sector is expected to become even
more vulnerable to drought in the future.
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