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Abstract. Southern elephant seals (Mirounga leonina), fitted
with Conductivity-Temperature-Depth sensors at Macquarie
Island in January 2005 and 2010, collected unique oceano-
graphic observations of the Adélie and George V Land con-
tinental shelf (140–148◦ E) during the summer-fall transition
(late February through April). This is a key region of dense
shelf water formation from enhanced sea ice growth/brine
rejection in the local coastal polynyas. In 2005, two seals
occupied the continental shelf break near the grounded ice-
bergs at the northern end of the Mertz Glacier Tongue for
several weeks from the end of February. One of the seals
migrated west to the Dibble Ice Tongue, apparently utilising
the Antarctic Slope Front current near the continental shelf
break. In 2010, immediately after that year’s calving of the
Mertz Glacier Tongue, two seals migrated to the same re-
gion but penetrated much further southwest across the Adélie
Depression and sampled the Commonwealth Bay polynya
from March through April. Here we present observations of
the regional oceanography during the summer-fall transition,
in particular (i) the zonal distribution of modified Circum-
polar Deep Water exchange across the shelf break, (ii) the
upper ocean stratification across the Adélie Depression, in-
cluding alongside iceberg C-28 that calved from the Mertz
Glacier and (iii) the convective overturning of the deep rem-
nant seasonal mixed layer in Commonwealth Bay from sea
ice growth. Heat and freshwater budgets to 200–300 m are
used to estimate the ocean heat content (400→50 MJ m−2),
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flux (50–200 W m−2 loss) and sea ice growth rates (max-
imum of 7.5–12.5 cm day−1). Mean seal-derived sea ice
growth rates were within the range of satellite-derived es-
timates from 1992–2007 using ERA-Interim data. We spec-
ulate that the continuous foraging by the seals within Com-
monwealth Bay during the summer/fall transition was due
to favorable feeding conditions resulting from the convective
overturning of the deep seasonal mixed layer and chlorophyll
maximum that is a reported feature of this location.

1 Introduction

One of the key challenges facing the global ocean climate
modelling community, in particular in the Southern Ocean
around Antarctica, is the scarcity of oceanographic observa-
tions that adequately describe the temporal and spatial vari-
ability. The introduction of the ARGO float program has
made great steps to address this imbalance, supplying near
real-time data on the ocean state. In association with this
technology has come the deployment of similar instruments
on marine mammals, birds and fish, which have proven very
successful in collecting complementary and unique datasets
to the ARGO float program (seeBiuw et al.(2007); Boehme
et al. (2008); Charrassin et al.(2008); Costa et al.(2008);
Meredith et al.(2011) and references therein). However, the
standard ARGO floats do not extend into the sea ice zone
and whilst the newly developed and recently deployed Ice-
ARGO floats can, these are still limited to the north of the
continental slope (ocean depths greater than 2000 m). The
most sparsely-observed and logistically difficult region is the
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Fig. 1. Southern elephant seal tracks from IMOS in 2010 (black lines). Specific seals that sampled the Adélie and George V Land continental
shelf: seals I1 and I2 (blue and red lines, respectively), and SEaOS seals (2005) S1 and S2 (green lines). Inset: Change in direction of seals I1
and I2 (blue and red, respectively) from SSE to SSW after leaving Macquarie Island (start) in February 2010, hypothesised to be in response
to the calving of the Mertz Glacier Tongue (MGT).

Antarctic coastal region south of the continental shelf break.
In this region, at specific seasons, biologically-mounted ob-
servation platforms are often the only source of in situ data.

Female elephant seals (Mirounga leonina) equipped with
oceanographic sensors provide valuable observations on the
environment, and the biological responses to its variability,
around the Southern Ocean (Biuw et al., 2007; Bailleul et al.,
2007). In the Australian/South Indian sector, southern ele-
phant seals from Macquarie Island were tagged as part of
the Southern Elephant as Oceanographic Samplers (SEaOS,
http://biology.st-andrews.ac.uk/seaos/) and Integrated Ma-
rine Observing Systems through the Australian Animal
Tracking and Monitoring System facility (IMOS/AATMS,
hereafter IMOS –http://imos.org.au/aatams.html) programs.
Nine and fifteen animals were tagged in 2005 (SEaOS)
and 2010 (IMOS), respectively. Their annual migration
south covered a wide region from 120◦ E–140◦ W (see
Fig. 1). Conductivity-Temperature-Depth (CTD) data from
the SEaOS and IMOS seals was collected on the continental
shelf after the beginning of the sea ice growth season. Of par-
ticular interest here is the data collected from the Adélie and
George V land (hereafter collectively referred to as AGV)
region of East Antarctica (140–148◦ E, see Fig.2), which is
a key formation region of the dense shelf water precursor
for Antarctic Bottom Water (AABW) produced in this sector
(Gordon and Tchernia, 1972; Rintoul, 1998; Whitworth III,
2002).

AGV dense shelf water is formed during the austral winter
(April–October) via brine rejection from enhanced sea ice
formation in the coastal polynyas of this region (Williams
et al., 2008a). When sufficiently dense and successfully ex-
ported north across the shelf break, this water mass mixes
down the AGV continental slope to produce a local vari-
ety of Antarctic Bottom Water to the Australian-Antarctic

Basin (Williams et al., 2010a). Recent observational pro-
grams using standard ship-based CTD surveys and moored
instrument arrays have described the seasonal cycle of water
mass transformation in the Adélie Depression (Williams and
Bindoff, 2003; Williams et al., 2008a). These observations
have been essential for validating models seeking to predict
the future sensitivity of dense shelf export from this region
(Marsland et al., 2004, 2007; Kusahara et al., 2011a,b) and
studies seeking to groundtruth estimates of sea ice produc-
tion from satellite data (Tamura et al., 2008). Nonetheless
logistic constraints have led to spatial and temporal gaps in
the observations and consequently our understanding of the
oceanography.

In this paper we detail new, unique oceanographic mea-
surements for the Ad́elie Depression during the summer/fall
transition from the SEaOS (February–March 2005) and
IMOS (February–April 2010) deployments. In Sect. 2 we
provide the background to the study region and its oceanog-
raphy. Section 3 details the data and methods. Section 4
presents the seal-mounted CTD data and describes (i) the
seasonal variability in the zonal distribution of modified Cir-
cumpolar Deep Water intrusions along the AGV shelf break,
(ii) the vertical stratification across the Adélie Depression at
the end of summer 2010 and (iii) the overturning of the rem-
nant summer mixed layer at the start of the sea ice growth
season in Commonwealth Bay, from late February through
April 2010. We use the repeat profiling by the IMOS seals
in Commonwealth Bay to estimate ocean heat content, heat
flux and daily sea ice growth rates from heat and freshwater
budgets in the upper 200–300 m. In Sect. 5 we compare the
sea ice growth rates to satellite derived analyses and discuss
new insights gained into the oceanographic processes of the
region, speculating on how the Elephant seals may be utilis-
ing these to benefit their migration/foraging strategies.
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Fig. 2. The Ad́elie Depression and surrounds with 500m resolution bathymetry fromBeaman(2009) between 139–148◦ E andETOPO1
(2009) from 148–149◦ E. Major contour intervals shown for 4000, 3000, 2000, 1000, 500 and 200 m. The minor contour interval is 100m
and 200 m north and south of the 1000-m isobath, respectively. Features include the Adélie Bank (AB), Ad́elie Depression (AD), the Ad́elie
Sill (AS), Mertz Bank (MB), Mertz Depression (MD) and Mertz Sill (MS). Coastal embayments shown are Commonwealth Bay (CB), Watt
Bay (WB) and Buchanan Bay (BB). Glacial features include the Mertz Glacier (MGT, pre-2010), iceberg B-9b and a fast ice region east of
the MGT. Grounded icebergs indicated by black dots. The occupation of the Mertz Bank and Sill by SEaOS seals (S1 green-filled circles, S2
yellow-filled circles) and IMOS seals I1 and I2 (blue and red lines/circles, respectively) is shown. For the IMOS seals, filled circles/full lines
indicate the pathway into the region (26–28 February) and the open circles/dashed lines indicate the exit pathway. The pre-calving position
of the MGT and iceberg B9-b is shown in red. The post-calving position of iceberg C28 on the 26 February is indicated by the thick black
line (digitized from a MODIS image). Inset shows timing of seal CTD profiles in the Commonwealth Bay area, the black box indicating the
limit of data used for sea ice growth estimates.

2 The Adélie and George V land continental shelf

2.1 Bathymetry and glacial features

Our study area is the Adélie Depression and surrounds (see
Fig. 2 and 3), situated across the transition from Adélie
Land (136–142◦ E) to George V Land (142–153◦ E). The
Adélie Depression (AD), also referred to as the Mertz-Ninnis
Trough, was formed during a previous extension of the conti-
nental ice sheet. The major cryospheric features are the float-
ing extension of the Mertz Glacier Tongue (MGT), which
prior to its calving in February 2010 extended nearly 100 km
across the AD and onto a region of the continental shelf
termed the Mertz Bank, and the enhanced sea ice produced in
the coastal polynyas that form each winter. Historically the
sea ice formation regions over the Adélie Depression have
been collectively referred to as the Mertz Glacier Polynya.
More recently there has been a sub-regionalisation distin-
guishing between the polynya in the western lee of the MGT
and grounded icebergs to the north and the polynyas in the
coastal bays to the west, namely Buchanan Bay, Watt Bay
and Commonwealth Bay (from east to west).Massom et al.

(2001) suggested that along the coast the polynyas were more
influenced by the katabatic wind system draining from the
continent and that the polynya in the lee of the MGT was
more influenced by synoptic systems, i.e., the interaction be-
tween the cold high-pressure system over the Antarctic con-
tinent and the band of westerly, warm low-pressure systems
to the north.

Commonwealth Bay, infamously known as the “Home of
the Blizzard” (Mawson, 1930), is the windiest sea-level lo-
cation on earth, with mean annual wind speeds of∼20 ms−1

(Parish and Wendler, 1991; Adolphs and Wendler, 1995).
Bathymetrically, Commonwealth Bay is partially isolated
from the greater Ad́elie Depression. Divided zonally, the
main region of open water associated with the polynya is
over relatively shallow coastal bathymetry in the eastern sec-
tor. The western sector has a more complex bathymetry, with
3–4 “holes” or sinkholes in the continental shelf that were
discovered during a high-resolution SEABEAM survey in
the austral summer of 2000–2001. The largest hole, here-
after referred to as the Commonwealth Bay Hole, is 875 m
deep and isolated from the larger Adélie Depression below
375 m. It effectively traps the dense shelf water formed in
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Fig. 3. The location of high quality ship-borne summertime CTD measurements from NBP00–08 (squares). Specific CTD locations also
shown for Fig. 4 from summer near Commonwealth Bay (NBP00–08, stations 17 and 61, red squares) and from winter near the MGT over
the AD (AU9901, stations 27, 51 and 84, blue circles). Seasonal shelf break transects for Fig. 6 indicated by dashed lines for winter (AU9901,
blue), spring (NBP0410, green), summer (NBP00–08, red) and summer/fall (SEaOS, S2, black).

this region in winter, as detected during NBP00-08 (station
17) which found salinities as high as 34.77, greater than any-
thing observed in the greater Adélie Depression during the
wintertime occupation of 1999 (Williams and Bindoff, 2003)
or mooring deployments from April 1998 to February 2000
(Williams, 2004; Williams et al., 2008a).

2.2 Water masses

The seasonal cycle of water mass transformations in the
Adélie Depression is primarily surface-driven by the annual
growth and decay of sea ice (Williams et al., 2008a). In ad-
dition there is seasonally variable lateral input at mid-depths
from warm modified Circumpolar Deep Water (mCDW) in-
cursions across the shelf break and cold Ice Shelf Water
(ISW) from ocean/ice shelf interactions beneath the Mertz
Glacier. Figure4a–b shows the spatial distribution of mCDW
and ISW, following the definitions ofOrsi and Wierderwahl
(2009), using bottle-calibrated CTD data from the NBP00–
08 summertime survey aboard the RVIBNathaniel B Palmer
in January 2001 (Jacobs et al., 2004).

The intensity of the mCDW intrusions, depicted as the
potential temperature (◦ C) at the dissolved oxygen mini-
mum within the mCDW layer (28.00<γ n <28.27 kg m−3),
describes the transport of mCDW over the shelf break and
into the Ad́elie Depression through the eastern part of the
Adélie Sill, and to a lesser extent into the Mertz Depres-
sion region (147–148.5◦ E). The mCDW signal weakens to

the south and is not detected in stations against the coast, in
particular the interior of Commonwealth Bay. While there is
an additional intrusion to the east at 140◦ E, there is no ev-
idence of this mCDW communicating eastwards across the
Adélie Bank into the Ad́elie Depression. The spatial distri-
bution of ISW, as indicated by potential temperatures colder
than−1.95◦ C, extends northwestwards from Buchanan Bay,
quickly losing its cold signature through mixing with the
summertime water masses. As in the case of mCDW, we
assume there is no direct influence of ISW into Common-
wealth Bay, though both water masses are likely to be indi-
rectly mixed into the local shelf water properties.

The seasonal change in vertical stratification from summer
to winter is demonstrated in Fig.4c, using two summertime
CTD profiles from Commonwealth Bay (station 17 and 62
from NBP00-08), and CTD profiles from the Adélie Depres-
sion against the MGT collected during the Mertz Polynya
Experiment, hereafter labelled as A9901 (Rosenberg et al.,
2001), in July–August 1999 that best represent the bulk win-
ter properties (stations 27, 51, 84). The locations of these
stations are shown in Fig.3. The wintertime oceanography
over the Ad́elie Depression is dominated by the formation
of dense shelf water at freezing temperatures and increasing
salinity throughout the water column in response to polynya
activity, with only minor contributions from mCDW and
ISW (Williams and Bindoff, 2003; Williams et al., 2008a).
The water column is near-homogeneous in both salinity and
temperature (see Fig.4c–e). In summer the upper water

Ocean Sci., 7, 185–202, 2011 www.ocean-sci.net/7/185/2011/
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Fig. 4. Summary of regional water masses and seasonal stratification from historical ship-based CTD data. Planform distribution of(a)
mCDW and(b) ISW from the NBP00–08 summertime CTD surveys. MCDW intensity indicated by potential temperature (◦) at the dissolved
oxygen minimum within the mCDW layer (28.00< γ n < 28.27). ISW intensity shown as potential temperature (<-1.94◦C). Panelsc–e
shows characteristic vertical profiles andθ −S diagrams for summer (stations 17 and 61 from NBP00–08 in Commonwealth Bay) and winter
(stations 27, 51 and 84 from A9901 over the Adélie Depression north of Watt Bay). Color scale is raw CTD-fluoresence for the vertical
profile of potential temperature and dissolved oxygen (mL L−1) for salinity and theθ −S diagram. In Fig.4e, the black contours ofγ n =
28.00 and 28.27 kg m−3 define the mCDW layer and the black horizontal line is the maximum temperature (θ <= −1.85) for Shelf Water.
The thick dashed blue line is the maximum temperature (θ <= −1.95◦C) for ISW and the thin blue line is the surface freezing point.

column re-stratifies, as a warm, fresh and oxygen-rich Sea-
sonal Mixed Layer (SML) forms at the surface from the wind
driven convection of sea ice melt. The SML in Common-
wealth Bay is the deepest for the region at 350 m as reported
by Vaillancourt et al.(2003). Station 17 from NBP00-08 in
Commonwealth Bay also demonstrates the previously men-
tioned salinity maximum of 34.77 at depth within the Com-
monwealth Bay Hole. The main temporal gap in our obser-

vational datasets of an Antarctic polynya region such as this,
is the summer/fall transition that preconditions the full-depth
convective winter mixed layer capable of forming dense shelf
water, and it is this specific period that we focus on in this pa-
per.

www.ocean-sci.net/7/185/2011/ Ocean Sci., 7, 185–202, 2011
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3 Datasets and methods

3.1 Seal-derived CTD measurements

3.1.1 The SEaOS survey

The migration of the SEaOS and IMOS seals, equipped
with autonomous CTD-Satellite Relay Data Loggers (CTD-
SDRL) at Macquarie Island, around the AGV continental
shelf is detailed in Fig.2. In late February 2005, two of nine
SEaOS seals tracked from Macquarie Island entered the re-
gion near the Mertz Sill. In this paper we will refer to these
SEaOS seals as S1 and S2, with corresponding GTS iden-
tification numbers 38566 and 43855, respectively. Seal S1
(green filled circles, Fig.2) surveyed the eastern sector of
the Mertz Depression region and then exited the region near
147◦ E at the end of March. Seal S2 (yellow circles, Fig.2)
also entered the region through the Mertz Sill, but did not
penetrate as far south into the Mertz Depression, remaining
in the western sector of the sill region before moving to the
western lee of the grounded icebergs near the Mertz Bank.
Whereas seal S1 rapidly headed northwest away from the re-
gion, seal S2 migrated west to the Dibble Ice Tongue along
the upper continental slope immediately north of the shelf
break from 12–18 March. This trajectory is similar to those
of icebergs transported by the Antarctic Slope Current (Aoki,
2003), which often includes a narrow, fast westward jet close
to the 1000-m isobath (Williams et al., 2008a, 2010b).

3.1.2 The IMOS survey

In 2010, two of the fifteen IMOS seals equipped with CTD-
SDRL instruments on Macquarie Island also chose to migrate
south to the AGV region. In this paper we will refer to these
SEaOS seals as I1 and I2, with corresponding GTS identi-
fication numbers 55044 and 55052, respectively. Both seals
were originally heading SSE, but then between 12–14 Febru-
ary changed direction to the SSW (see Fig.1b). Interestingly
this coincides with the reported timing of the calving of the
MGT (B. Legŕesy, personal communication, 2010). As in the
case of the SEaOS seal, both IMOS seals approached the re-
gion through the Mertz Sill area, I1 (blue filled circles, Fig.2)
entering through the centre and I2 (red filled circles, Fig.2)
following two days later on the shallow topography to the
west. Both seals then tracked closely, albeit 2–3 days apart,
to the southern end of the grounded iceberg zone at 146◦ E.
The seals then moved along the northern flank of iceberg C-
28 that had recently calved from the MGT, en route to Com-
monwealth Bay at the end of February/ beginning of March.
In Commonwealth Bay, I1 stayed in the eastern sector and
departed (blue open circles, Fig.2) on 26 March, collecting
55 profiles. I2 stayed nearly one month later, until 26 April
(thereafter red open circles, Fig.2), and occupied a wider
area of Commonwealth Bay across both east and west sec-
tors.

3.1.3 Instrumentation

As detailed inBoehme et al.(2008), the autonomous CTD-
SDRLs used in the SEaOS and IMOS programs were con-
structed at the Sea Mammal Research Unit (SMRU) at the
University of St Andrews, using a CTD sensor package built
and calibrated by Valeport Ltd, Devon, UK. These units were
harmlessly fixed to the seals fur after their annual moult in
January/February. The data was relayed via the ARGOS
system and distributed through the SMRU website. Previ-
ous studies have used comparisons of CTD-SDRL data with
nearby ship-based CTD data to assess the accuracy of the
salinity and temperature data. Unfortunately there is no use-
ful ship-based data relevant to the timing and location of the
data being used in this paper. Therefore followingBoehme
et al. (2008) we assume the uncertainty in both salinity and
temperature to be 0.02. Basic post-processing was completed
to remove all data points associated with density inversions
in the profiles, with a 10% reduction in data. The assumption
is made that the sensors are not accurate enough to detect in-
stabilities in density due to the overturning from brine rejec-
tion at the surface. One area of known problems is the AR-
GOS satellite telemetry error associated with location of the
CTD profiles (Vincent et al., 2002; Patterson et al., 2010). In
this paper we use the original location data, which is clearly
not perfect given the handful of points that are on land (see
Fig. 2a: Inset), but sufficient for this particular study.

3.2 Estimation of heat content, flux and sea ice growth
rates

Following Costa et al.(2008) we estimate the upper Ocean
Heat Content (OHC, J m−2) by calculating the heat content
relative to the in situ freezing point (T −Tf ) and integrating
it over a range of depths (e.g.,z1=−6 m, z2 = −50, −100,
−200,−300 m) as follows:

OHC=

∫ z1

z2

ρzcpz(Tz −Tfz)dz (1)

whereρz andcpz are the in situ density (kg m−3) and specific
heat of seawater (J◦ C−1 kg−1). We then time difference this
to get the OHC Flux (OHCF, W m−2).

OHCF= d(OHF)/dt (2)

We estimate sea ice production using the salinity budget
method detailed inCharrassin et al.(2008).

ρoVoSo = ρoVf Sf +ρiViSi (3)

whereρo is the sea water density = 1027 kg m−3; Vo is the
initial volume of water, with initial salinitySo; Vi is the vol-
ume of ice formed with densityρi = 920 kg m−3 and salinity
10; andVf = Vo−Vi is the final volume of the seawater with
salinitySf .

Ocean Sci., 7, 185–202, 2011 www.ocean-sci.net/7/185/2011/
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Fig. 5. Weekly locations of IMOS seals I1 and I2 (black dots) within Commonwealth Bay with mean sea ice concentration from AMSR-E
(AMSR-E, 2008) from March through April 2010. Location of Cape Denison (CD) Automatic Weather Station as indicated by the triangle.

3.3 Environmental data

3.3.1 Satellite derived
sea ice concentration

In this paper we use AMSR-E sea ice concentration data
(AMSR-E, 2008) to examine the co-location of the seals’
movements with the open water areas of the Commonwealth
Bay Polynya. Figure5 shows the weekly mean sea ice
concentration with corresponding seal locations from March
through April. For the first few weeks there is relatively low
sea ice concentration across the region. In week 1 the seals
aggregate on both the western and eastern sectors. Towards
the end of March the sea ice concentration is developing in
the offshore region and the morphology of the Common-
wealth Bay polynya takes definition in the central/eastern
sector. This pattern is consistent in April and the seals are
co-located with the region of greatest open water/lowest sea
ice concentration.

3.3.2 AWS data from Cape Denison

For many years there has been an automatic weather station
on the coast at Cape Denison (AWS, 2010) but the extreme
wind regime has made it very difficult to collect robust and
ongoing wind measurements.1. For our study period there
were no reliable wind measurements. In the Discussion sec-
tion of this paper we present the available data for air tem-
perature (◦ C) and air pressure (hPa). Ten-minute data was
available across March through April, with a short break be-
tween 30 March and the 5 April.

1“The Adélie coast is bad news,” says Matthew Lazzara (prin-
cipal investigator for the AWS program and Antarctic Meteoro-
logical Center at the University of Wisconsin-Madison). “Its a
place to throw away hardware.”, from The Antarctic Sun,http:
//antarcticsun.usap.gov/science/contenthandler.cfm?id=2031.

www.ocean-sci.net/7/185/2011/ Ocean Sci., 7, 185–202, 2011
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Fig. 6. Vertical sections of potential temperature (◦C) across the
AGV shelf break. Panelsa–e(from top to bottom): winter (August
1999, A9901); spring (October 2004, NBP04–10); summer (Jan-
uary 2001, NBP00-01); summer, dissolved oxygen (mL L−1); and
summer/fall (March 2005, SEaOS).

4 Results

4.1 Seasonal distribution of modified circumpolar deep
water intrusions

Previous ship-based CTD surveys have provided some sea-
sonal coverage of the shelf break region (see Fig.3). Fig-
ure 6 shows vertical sections of potential temperature for
all four seasonal transects: A9901 (winter, Fig.6a) with
the RV Aurora Australis in August 1999, and NBP04–10
(spring, Fig.6b) and NBP00-08 (summer, Fig.6c) with the
RVIB Nathaniel B Palmerin October 2004 and January
2001, respectively. The CTD transect provided by the SEaOS
seal movement complements these data by detailing the wa-
ter masses and stratification in early March 2005 (Fig.6e).
An additional section is provided for NBP00–08 (summer)

showing the dissolved oxygen (mL L−1, Fig. 6d) to help de-
lineate the warm/low oxygen mCDW signature at bottom-
to-mid depths from the warm/high oxygen properties of the
ice-free summer mixed layer above. Though the transects are
from different years and do not perfectly repeat in a region of
abrupt changes in depth, they offer the most complete picture
of the temporal and spatial variability in mCDW intrusions.

Starting in winter (Fig.6a), the relatively small coverage
between 143–146◦ E identified mCDW as warm as−1◦ C
below 200m between 144–145◦ E, east of the Ad́elie Sill.
In spring (Fig.6b, late October 2004), the water column
is predominantly cold, dense shelf water. The shelf-break
transect showed weaker mCDW properties relative to Au-
gust. While this could be variability in the strength, tim-
ing and location of mCDW intrusions for this region, we
can also expect that this could be related to the increase in
shelf water from August–October through the last part of
the sea ice growth season (Williams et al., 2008b), which
presents a density barrier that blocks/dilutes the mCDW in-
trusions/properties. For summer (Fig.6c–d), the transect
from NBP00-08 extended from 141–148◦ E and showed the
main core of warm, oxygen-poor mCDW over the Adélie Sill
between 142–143◦ E.

The SEaOS transect in early March covered a similar
region and showed the most numerous profiles with evi-
dence of warm mCDW, of all seasons (Fig.6e). The same
mCDW region east of the Ad́elie Sill was observed, however
even stronger signals were detected upstream near the Mertz
Sill (146–147◦ E), and downstream west of the Adélie Bank
(140–141◦ E) near the entrance to the D’Urville Trough. The
mCDW near the D’Urville Trough, and to a lesser extent at
the Mertz Sill, is near 0◦C and indicative of the close prox-
imity of the Antarctic Slope Front. This transect also shows
the change in the vertical stratification of the Antarctic Sur-
face Water (AASW) layer above the mCDW, in particular
from 141–144◦ E (Fig. 6d). By March this warmer summer
mixed layer has been eroded and the preconditioning of the
new winter mixed layer has begun(Fig.6e).

4.2 Upper water mass properties across the Ad́elie
Depression in 2010 post-MGT calving

The MGT calved around the 12–13 February 2010 after the
mega-iceberg B9-b repositioned itself. The resulting 75 km
iceberg C-28 had a short existence, breaking up further af-
ter the 10 March near the Adélie Sill before leaving the re-
gion completely. Both seals arrived in the Adélie Depression
when C-28 had pivoted clockwise on its northern point, prior
to its movement across the Adélie Depression, and com-
pleted ENE–WSW CTD transects across the northern flank
of C-28 en route to Commonwealth Bay. Vertical sections
of salinity and potential temperature for these transects are
shown in Fig.7. In the Antarctic Surface Water (AASW)
layer, from east (145–147◦ E) to west (143–145◦ E) there is
a freshening of the layer and a deepening of the seasonal
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Fig. 7. Vertical sections of salinity (panels a–b) and potential tem-
perature (C◦, panelsc–d) across the Ad́elie Depression 25-28th
February from IMOS seals I1 and I2, respectively. Vertical black
dashed lines indicate the zonal location of iceberg C-28 between
∼145–147◦ E

pycnocline that defines its base. This is likely to be the result
of increased exposure to wind mixing and a greater amount
of ice-free time closer to the coast in the west (Williams et al.,
2008b, 2010b). The surface water is cooled to near the freez-
ing point; the remnant summer mixed layer is observed in
the west, at depths between 50–150 m between 144–145◦ E
and in Commonwealth Bay between 142–143◦ E. Warm wa-
ter anomalies below this depth are associated with mCDW
intrusions which are more dominant in the north-east. There
was no detection of ISW in potential temperature.

Both seals completed deep dives when near the C–28 ice-
berg, often diving to greater than 400 m. This is also the
estimated depth of the iceberg. It is possible that the seals
explored beneath the iceberg during these dives. While the
profiles collected by seals in this location had the potential
to observe ocean/ice shelf interaction, there were cold ex-
cursions from the surface freezing point in the vertical pro-
files of potential temperature. Seal I2 came the closest, as
indicated near 145◦ E in Fig. 7d. As introduced earlier, the
volume of ISW is relatively small and the spatial impact on
water mass properties are limited to the immediate region
around Buchanan Bay. The seal CTD instruments would re-
quire greater precision to detect such subtle changes.

4.3 Preconditioning of the winter mixed layer in
Commonwealth Bay

The nine week occupation of Commonwealth Bay by seals I1
and I2 resulted in a unique dataset of CTD profiling through
the upper layer of a coastal Antarctic polynya. In total, seals
I1 and I2 collected 216 CTD profiles within the Common-

wealth Bay region from the 1st March to the 25 April (seal
I1: 55 profiles from 1st March to 27 March and seal I2: 161
profiles from 2 March to the 25 April). The mean depth
and standard deviation of these profiles were 324± 88 m and
367± 92 m for seals I1 and I2, respectively. Vertical sections
of salinity, potential temperature (◦C) and potential density
anomaly (kg m−3), presented in Fig.8, clearly show the ero-
sion of the warm, fresh subsurface remnant of the summer
mixed layer. The surface layer is already cold, indicating that
the first phase of atmospheric cooling has already eroded the
upper part of the summer mixed layer. Surface salinity in-
creases from the beginning of the record, indicating that the
secondary phase of sea ice formation/brine rejection has also
already begun. There is a clear shoaling of theS = 34 iso-
haline through March until the week leading into April when
there is a deepening and freshening/cooling.

Figure9 also presents the same time evolution of the up-
per water column using vertical profiles of salinity (Fig.9a)
and potential temperature (◦ C, Fig.9b) and combinedθ −S

space (Fig.9c). The most dramatic changes occur in the sur-
face layer, in conjunction with a broad shift in the deep water
mass properties to colder, more saline values. One histor-
ical cast from NBP00–08 (dark gray line) is included. We
note that seal I2 occupied the Commonwealth Bay hole in its
deepest dive to>750 m, and recorded a maximum salinity
of 34.86 (uncalibrated), higher than the maximum of 34.77
from the NBP00-08 measurement in January 2001 (station
17, Fig.4d). As described earlier, the salinity maximum in
this location is a proxy for the previous season’s polynya ac-
tivity/sea ice production and so this qualitatively implies that
there was more dense shelf water formed in this region in
2009 than 2000. For potential temperature, it is clear that
the surface layer in Commonwealth Bay was already cooled
relative to the historical summertime profiles before the seals
arrived. Inθ −S space (◦ C, Fig.9c), the data points collapse
with time towards the freezing point line as the water column
becomes relatively homogeneous Shelf Water.

4.3.1 Upper ocean heat content and flux

The time-series in Figs8–9 showed the erosion of the rem-
nant summer stratification in the preconditioning of the new
winter mixed layer. We now consider a 1-D model for the
temperature budget and in Fig.10 present the Ocean Heat
Content (OHC, Eq. 1), i.e., how much heat is present in the
upper water column during the summer/fall transition, and
the Ocean Heat Content Flux (OHCF, Eq. 2), i.e. the time
rate at which the heat content changes. This is not to be
confused with the ocean heat flux into the sea ice. In the
absence of any lateral advection of heat into the region, e.g.,
via mCDW, both the OHC and OHCF can be expected to de-
crease and asymptote towards zero as the water column is re-
turned to the freezing point. Figure10a shows time-series of
the 4-day running mean of hourly potential temperature data
near the surface (6 m) and averaged over the 50 and 200 m

www.ocean-sci.net/7/185/2011/ Ocean Sci., 7, 185–202, 2011



194 G. D. Williams et al.: Autumnal upper ocean sea ice growth seals

01/03 01/04

0

200

400

600  

 

a) Salinity 33.4
33.6
33.8
34
34.2
34.4

01/03 01/04

0

200

400

600  

 

b) Potential Temperature (°C) 1.8
1.6
1.4
1.2
1

01/03 01/04

0

200

400

600  

 

c) Potential Density kg m 3 26.8
27
27.2
27.4
27.6
27.8

Fig. 8. Vertical sections of(a) salinity,(b) potential temperature (C◦) and(c) potential density (kg m−3) for seal CTD data in Commonwealth
Bay. Profiles collected by seal I1 indicated by blue “+” symbol.

33.5 34 34.5

0

200

400

600

800 a)
2 1.5 1

0

200

400

600

800  

 

b) 01/03

15/03

01/04

15/04

33.5 34 34.5

2

1.5

1

c)
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depth ranges. The surface value reaches the freezing point
on 13 March, though it is likely that sea ice growth has al-
ready started prior to this point, since the mean salinity is
increasing at all levels from 1 March (Fig.10d). That this
occurs when the temperature is not at the freezing point in-
dicates that there is small-scale freezing occuring in the very
surface/skin layer (0–6 m).

The hourly OHC averaged over the 200 m depth range
across the Commonwealth Bay region is∼400 MJ m−2 at the
beginning of March and decreases to∼50 MJ m−2 at the end
of April (green line in Fig.10b). An 8-day running mean
was applied to smooth the high frequency perturbations as-
sociated with the movement of the seal and internal dynam-
ics within the survey area (blue line in Fig.10b). Based on
the OHF trend, assuming no further net advection of heat

into the region from mCDW or otherwise, the OHC in the
upper 200 m is expected to have reached zero in the first
week of May 2010. The OHCF based on this 8-day run-
ning mean (blue line in Fig.10c) fluctuates on roughly syn-
optic timescales, reaching∼ −200 W m−2 in a peak period
between 9–16 March. After 20 March there is a transition
to weaker OHFC, peaking at−100 W m−2 thereafter. Over-
all, whilst the OHCF is very sensitive to small changes in the
mean layer properties, we do find a pattern of net heat loss
from the region consistent with our earlier finding from sum-
mertime ship-borne CTD data (see Fig.4a), that Common-
wealth Bay is removed from the major pathways of mCDW
influence in the Ad́elie Depression.
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4.3.2 Sea-ice growth rates

We estimate bulk daily sea ice growth rates over the area oc-
cupied by the seals in Commonwealth Bay during March and
April using the simple 1-D salinity budget of (Charrassin
et al., 2008) in Eq. (3). This method assumes the effect of
horizontal advection on the freshwater budget is negligible.
Clearly full-depth profiles are required to capture the total
change in salinity from brine rejection. However we are
limited to the dive depth of the seals and therefore this esti-
mate will be conservative when the brine-driven overturning
is deeper than our budget volume depth. In Fig.10d–e we
present the 4-day running mean time series of mean layer
salinity (as in Fig.10a) and inferred daily sea ice growth
based on the 200 m and 300 m layers, which accounted for
98 and 76% of the available profiles, respectively. The time
series of mean layer salinity (Fig.10d) shows how the in-
crease in salinity at the surface convects, creating a new ho-
mogeneous water mass from the top down. The surface and
50 m layer salinities are correlated through March, becoming
more stratified between 16–31 March and then less so there-
after. The 50 and 200 m layers converge approximately two
weeks later. The record shows two major peaks in the in-
ferred daily sea ice growth rates to greater than 10 cm day−1

around 8 March and 6–8 April, respectively (Fig.10e). We
identify two sustained periods of sea ice growth from the seal
data, i.e., 4–29 March and 3–18 April, and estimate mean sea
ice growth over these periods to be 5.1 and 7.2 cm day−1, re-
spectively.

Charrassin et al.(2008) stated the biggest error in this 1-D
method of estimating sea ice production was neglecting the
impact of surface freshening by precipitation. However the
precipitation rates in Commonwealth Bay are likely to be
small compared to the 5–10 cm day−1 of sea ice growth es-
timated here. The largest potential source of error here is
the advection of salinity, in particular from the influence of
the polynyas to the east in Watt and Buchanan Bay. In the
most extreme scenario, the increase in salinity in Common-
wealth Bay (see Fig.10d) could be purely the result of sea ice
production in the polynya regions upstream. However the
case for strong sea ice production/brine rejection in Com-
monwealth Bay is compelling, including the mooring data
from 1998–2000 inWilliams et al. (2008b) that showed a
distinct input of salinity from sea ice production in the Com-
monwealth Bay region when comparing the Adélie Sill re-
gion to the region west of the Mertz Glacier. Assuming there
is some salinity advection, then this method will overesti-
mate sea ice growth in our study. We anticipate being able to
quantify the influence of salinity advection when new moor-
ing data from Commonwealth Bay is available, in particular
instruments at depth in the Commonwealth Bay Hole.
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Fig. 10. Time series of ocean properties, linearly interpolated from
the seal CTD data onto an hourly grid. From top to bottom,(a)
Potential temperature (◦C, 4-day running mean) at the near-surface
(6 m, black line) and averaged over the 6–50 m (blue) and 6–200 m
(green) depth range. Near-surface freezing points shown as dashed
black line; b) Ocean Heat Content in the 6–200 m layer (MJ m−2)
from Eq. (1). Data shown is hourly (green) and the 8-day run-
ning mean of the hourly data (blue); c) Ocean Heat Content Flux
(W m−2) from Eq. (2), based on the 8-day running mean data (blue)
shown in b); d) as in a), but for salinity and(e)Sea ice growth rates
(m day−1) from the salinity budget (Eq. 3). Estimates are for the 6–
200 m layer and 6–300 m layer (green and red, respectively). Mean
sea ice growth over two sustained periods of sea ice growth from
the seal data, i.e., 4–29 March and 3–18 April, are estimated to be
5.1 and 7.2 cm day−1, respectively.

4.3.3 Correlating sea ice growth to meteorological and
sea ice concentration data

From previous studies, the meteorology of Commonwealth
Bay is a combination of synoptic (warm, low-pressure sys-
tems propagating from the north-west interacting with the
dominant cold, high-pressure system over Antarctica) and
katabatic (cold, dense gravitational winds steered into this
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Fig. 11. Time series of:(a) AWS data from Cape Denison. Air
pressure (HPa, blue, y-axis reversed) and air temperature (◦C,
black); (b) Running correlation (8-day window) between linearly
de-trended air pressure and temperature. Dashed lines indicate 95%
confidence level;(c) Sea ice concentration (%) with normalised sea
ice growth rate estimates (%) from Fig. 10e (6–200 m) shown in
green. Colors indicated mean value within 10 km radius of seal
locations (red) and over the eastern sector of Commonwealth Bay
(blue, with 4-day running mean in black).(d) Correlation coef-
ficients between linearly de-trended sea ice growth (based on 6–
200 m layer in Fig. 10e) and sea ice concentration (4-day running
mean from Fig. 11c). Dashed lines indicate 95% confidence level.
Open circles indicate significant correlations (p < 0.05).

region by the upstream topography) processes. In terms of
available data, we have at best the record of air tempera-
ture and air pressure from March through April, with missing
data between the 30 March and the 5 April (Fig.11a – note
the reversal of the pressure axis). The trend upon entering
and leaving this data gap suggests the influence of a decreas-
ing pressure/increasing air temperature event over this time-
frame. In the absence of wind measurements, we seek evi-
dence of katabatic processes by examining a running corre-
lation with an 8-day window between de-trended air temper-
ature and pressure (Fig.11b). The negative values in the first
period, albeit punctuated by short positive events, suggest the

influence of the synoptic regime (temperature and pressure
are out-of-phase). In the second period (5–18 April) there
is a shift to a more persistent positive correlation (temper-
ature and pressure in-phase), implying the increasing influ-
ence of katabatic processes from April. That is, the pressure
dropped significantly, but air temperatures remained cold, or
decreased further, instead of increasing as expected in a syn-
optic regime. It is hoped that future AWS deployments can
retrieve longer time-series in conjunction with robust wind
data to test these ideas further.

We now consider the relationship between sea ice growth
and sea ice concentration in an active polynya. The sea ice
concentration is presented as the daily mean of the AMSR-
E estimate within a 10 km radius of the seal’s location, and
as the daily mean in the eastern sector of Commonwealth
Bay (Fig. 11c). This region was identified earlier as being
the centre of the low sea ice concentration in Fig.5. The
two estimates agree well, in particular during those times
when the seals were sampling in the eastern sector. The sea
ice growth rates over the same period (green line, Fig.10e)
are normalised and overlaid here for comparison (green line,
Fig. 11c). The correlation between concentration and growth
(Fig. 11d) is weak and confused in March, but there are peri-
ods of significant (p < 0.05) negative correlation (29 March–
4 April; 8–12 April and 17–20 April) in association with pe-
riods of increased sea ice concentration. One explanation for
this could be a short-term negative feedback during the lat-
ter stages of a sea-ice growth period. If the polynya forms
sufficient ice, without advecting it away, then the growth rate
would fall in relation to the reduced ocean-atmosphere heat
flux. The main caveat to our interpretation here is the po-
tential impact of sea ice advection from outside of Common-
wealth Bay. However this is likely to be negligible when the
polynya is active, due to the morphology of the bay and the
expected direction of the offshore wind forcing, but could
be important during the inactive phase between peak events.
However our time-series is too short to state this conclu-
sively, the relationship between sea ice concentration and
production being complex and requiring greater analysis of
the total surface energy budget, as inRenfrew et al.(2002).

5 Discussion

5.1 Validation of satellite-derived sea ice growth rates

The assessment and monitoring of sea ice production in
polynya regions is vital to our understanding of the polar
climate, in particular the variability of the associated dense
shelf water formation and its role in the meridional overturn-
ing circulation. Satellite-based studies of sea ice production
offer the greatest coverage in time and space, but require in
situ measurements from field-based studies for comparison.
Sea ice production estimates were made byWilliams and
Bindoff (2003), for the polynya region adjacent to the MGT,
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Fig. 12. Comparison of seal-derived (this paper) and satellite-
derived (followingTamura et al.(2008), using ERA-Interim and
NCEP-2 data) sea ice growth rates. Time series of seal-derived sea
ice growth rates (m day−1) are from Fig. 10e (6–200 m in green,
6–300 m in red). The shaded areas represent one standard deviation
either side of the mean daily satellite-derived sea ice growth rates
over the entire Commonwealth Bay polynya area from 1992–2007.
Results are shown for NCEP-2 data (dark gray shaded area) and
ERA-Interim data (light gray shaded area), respectively. The max-
imum daily satellite-derived values are shown as thick lines (again,
NCEP-2 is dark gray, ERA-Interim light gray). As in the caption
for Fig. 10, the mean sea ice growth estimated from both satellite
datasets, over the two sustained periods of sea ice growth from the
seal data, i.e., 4–29 March and 3–18 April, between 1992–2007, are
3.3 and 4.3 cm day−1, respectively.

using heat and freshwater budgets around a near-closed loop
of ship-based CTD measurements and an assumption that ac-
tive sea ice formation occurred over a 20 km2 area. Com-
monwealth Bay was not sampled during this experiment due
to logistic constraints, as the sea ice to the north was too thick
(>5 m thick) for the RVAurora Australisto break. Therefore
the sea ice growth estimates in this paper are unique, in both
the timing (during the summer/fall transition) and location.

The most current satellite-based estimates of sea ice
growth come from the heat-flux algorithm for thin-ice pre-
sented byTamura et al.(2007, 2008) using the NCEP-2
and ERA-40 datasets.Tamura et al.(2008) showed how
these data agreed well the wintertime measurements from
Williams and Bindoff(2003) over the region alongside the
Mertz Glacier. Williams et al. (2010a) used these data to
examine the regional variability of mean annual ice produc-
tion from 1992–2005 and found that the Commonwealth Bay
polynya region had maximum annual production rates of
∼15 m which produced on average 25–40 km3 of sea ice per
year, or 10–15% of the sea ice production over the Adélie
Depression.

Here we compare the seal-derived estimates from this
study with an update to theTamura et al.(2008) satellite-

derived estimates that uses ERA-Interim data, instead of
ERA-40 data, between 1992–2007 (Tamura et al., 2011). At
the time of publication, the satellite-derived estimates for
March–April 2010 necessary for direction comparison with
the seal data were not available. Figure12 shows one stan-
dard deviation of the mean daily sea ice growth rates from
1992–2007 from NCEP-2 (dark gray shaded area) and ERA-
Interim (light gray shaded area), respectively. The maximum
daily growth rates for the same period are shown for each
case as dark and light gray lines. For the purposes of this
study we assume that these NCEP-2 and ERA-Interim esti-
mates represent upper and lower bounds, respectively. The
seal-derived results from this study include the 200 m and
300 m layer estimates from Fig.10e, as green and red lines,
respectively. For the same periods of sea-ice growth iden-
tified earlier from the seal data, i.e., the 4–29 March and
3–18 April, the mean satellite-derived sea ice growth rates
for the same dates, over the 1992–2007 period, were 3.3
and 4.3 cm day−1, respectively. While this is lower than
the seal-derived estimates (5.1 and 7.2 cm day−1, respec-
tively), the magnitude of the maximum mean daily growth
rates for March and April from 1992–2007 are between 7–
12 cm day−1 and are in good agreement with the seal results.
As mentioned earlier, our 1-D calculation could overestimate
sea ice growth, as it currently neglects the influence of salin-
ity advection from the coastal polynyas to the east of Com-
monwealth Bay.

Nonetheless, this result is very promising for the long-
term monitoring of sea ice growth using satellites. When
the data becomes available for the 2010 season there will
be further opportunity to examine the temporal variability
of the sea ice growth on shorter time-scales, in particular
the 2–3 “peak events” discerned from the in situ estimates.
Care will be needed in assessing the sources of error for
both satellite-derived and in situ estimates. As discussed ear-
lier, our estimates are likely to be conservative because they
are not based on the full-depth salinity budget. Additionally
our method provides a bulk estimate over a wide area and
is therefore likely to smooth over peak sea ice growth rates
in the peak polynya regions against the coast. For exam-
ple, helicopter-borne observations in August 1999, over the
polynya region in Buchanan Bay, where the Mertz Glacier
departs the coast, estimated sea ice growth rates as high as
20 cm day−1 (Roberts et al., 2001).

5.2 New insights into the oceanography of the Ad́elie
Depression

As detailed in the Introduction, ship-based CTD data from
Antarctic fieldwork is typically limited to the ice-free sea-
son in the austral summer and surveys outside of this are
rare and relatively limited in spatial coverage. The only win-
tertime survey of the Ad́elie Depression in July–September
1999 experienced very thick sea ice over the south-western
sector of the Ad́elie Depression and was unable to reach
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Fig. 13.Schematic of seasonal evolution that leads to the foraging behavior of the IMOS seals in Commonwealth Bay during the summer-fall
transition (March through April). In winter the entire water column is near homogeneous at the freezing point and gains salinity from sea
ice growth/brine rejection. In summer a SML develops above the remnant winter mixed layer (orTmin layer). In Commonwealth Bay a
particularly deep SML develops in conjunction with a deep chlorophyll maximum. At the end of summer, atmospheric cooling brings the
surface waters back to the freezing point, initiating sea ice growth and the development of the new winter mixed layer. During the summer-
fall transition the remnant SML is eroded by convection of the upper layer. Our hypothesis is that the seals forage here at this time to take
advantage of the secondary production (fish, krill etc) that have responded to the primary production of the DCM earlier in summer.

the Commonwealth Bay at all. While there have been ad-
vances in the ARGOS system, with new Ice-ARGO floats
capable of making CTD measurements beneath sea ice out-
side of this summer period, these are limited to depths
greater than 2000–3000 m and therefore do not observe the
coastal/continental shelf region. Similarly there are moor-
ing arrays that offer year-round observations beneath, such
as the Mertz Polynya Experiment, but do not adequately ob-
serve the upper surface water column due to the threat from
icebergs.

In 2010 the two IMOS seals that travelled to the AGV
coast, collected the first observations of upper water mass
transformations beneath newly-formed sea ice in a polynya
during the summer/fall transition.Williams et al.(2008a) re-
ferred to this late summer/early autumn period as the ’condi-
tioning’ phase where the remnant summertime water masses
are convected, first by atmospheric cooling and preliminary
sea ice formation in preparation for the development of the
winter mixed layer during the sea ice growth period in win-
ter. However in that study there was no direct measurement
of this process since the shallowest instrument in this was
around 375 m. The IMOS seals have successfully overcome
this data gap, acting as the first moored CTD profiler over
the surface layer (consistently down to 300 m) in a polynya
region against the Antarctic coast. The resulting data has

clearly shown the erosion of the summer mixed layer after
the surface reaches the freezing point and the new sea ice
season begins.

Ocean heat content has been estimated before from seal-
mounted temperature sensors byCosta et al.(2008), specif-
ically in the region of the West Antarctic Peninsula during
the fall-winter period (April–August).Costa et al.(2008)
showed there was strong variability over this region associ-
ated with the greater influence of Circumpolar Deep Water.
Our study has shown that ocean heat content in Common-
wealth Bay trends to zero after the remnant summer mixed
layer has been eroded. This means the Commonwealth Bay
polynya is solely a latent-heat polynya. The implication
that mCDW does not penetrate into this region agrees with
the spatial distribution of mCDW from summertime surveys
(Fig.4a). This is different to the polynya area over the greater
Adélie Depression against the pre-calving position of the
MGT, whereWilliams and Bindoff(2003) determined that
mCDW, albeit highly modified through cross-shelf exchange
with the newly formed winter mixed layer on the shelf, pro-
vided a small but detectable ocean heat flux to the region.

This study has demonstrated the processes of the sum-
mer/fall transition that (a) recondition the surface water col-
umn in the polynya back to the near-surface freezing point
necessary to initiate sea ice growth and then (b) remove the
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salt deficit and sub-surface heat content to initiate full con-
vective overturning of the winter mixed layer and new shelf
water formation. The timing of these processes is relative
to the air-sea interactions driving them and the initial strat-
ification of the upper water column at the end of summer,
influenced by the SML properties and presence/absence of
mCDW. Regions with shallow/weak SMLs and/or minimal
penetration from mCDW can therefore be expected to start
the sea ice growth season, and subsequent shelf water for-
mation earlier. It follows that any regional changes to these
processes in future climate scenarios will lead to the changes
in the start of the sea ice growth/shelf water season. More
work is required to completely understand the temporal and
spatial variability of mCDW around Antarctica relative to the
major polynya regions.

5.3 Utilisation of oceanographic processes in elephant
seal foraging behavior

This study has revealed not only physical oceanographic pro-
cesses, but also shed some light onto how the elephant seals
are utilising these processes in their behavior. We would like
to now suggest four physical processes that possibly influ-
enced the foraging strategies, namely: (i) the calving of the
MGT; (ii) the Antarctic Slope Current; (iii) the cross-shelf
pathways of modified Circumpolar Deep Water; (iv) and the
late summer overturning of the upper surface layer in Com-
monwealth Bay. Beginning with the seals response to the
calving event, we showed in Fig.1b that seals I1 and I2
both changed direction from SSE to SSW between the 11–
14 February, which corresponds to the calving event of the
MGT. The ocean is an excellent medium for the transmis-
sion of sound and there has been detection of calving events
around Antarctica by acoustic instruments in West Australia
(Gavrilov and Vazques, 2005) and beyond (Talandier et al.,
2002). We note that only two out of fifteen of the IMOS seals
decided to go to the AGV region, and that seals have visited
the AGV region before, in years when there wasn’t a calv-
ing event, i.e. seals S1 and S2 from the SEaOS deployments.
Nonetheless this was the first time that seals penetrated be-
yond the shelf break itself and both seals “investigated” the
iceberg C-28 once there.

The second oceanographic process that appears to be
utilised by the seals, in particular in the SEaOS deployment,
is the westward Antarctic Slope Current (ASC) over the up-
per continental slope. This region is documented around
other regions of East Antarctica as having a narrow, fast-
flowing westward jet (20–30 cm−1) that is vertically homo-
geneous and pinned to the 1000 m isobath (Williams et al.,
2008b; Meijers et al., 2010; Williams et al., 2010b). While
elephant seals can and do move independently of ocean cur-
rents and are not expected to act like Lagrangian floats, they
are known to periodically operate in “drift mode”, during
which time they could be expected to “go with the flow”.
Figure2 showed that seal S2, after initially investigating the

polynya region in the vicinity of the Mertz Bank and Mertz
Depression, travelled westwards from 147–141◦ E. We es-
timate a mean “drift” speed of 17.5 cm s−1 along this path,
which is conservative given the extra time taken to complete
a minimum of twelve dives plus additional random move-
ments. This does not provide a robust observation of the
ASC, however as it is in reasonable agreement with the re-
ported speeds of the ASC jet in other regions, it does suggest
the ASC exists across the AGV slope and that the seal was
utilising it in its movement.

In both SEaOS and IMOS deployments, the seals that trav-
elled to the AGV region all approached the continental shelf
break between 146–148◦ E. As discussed in an earlier sec-
tion, this is a region of mCDW penetration across the shelf
break. Based on these two surveys we speculate that this is
the third oceanographic process the seals are using, i.e. the
upwelling of warm, saline mCDW onto and across the con-
tinental shelf break, as a preferential pathway into the con-
tinental shelf region. Potential benefits include the energy
saved by staying in warmer water and going with the flow.
Again it is difficult to speculate on the robustness of this as-
sertion with only two years of data. Future work examining
the dive behavior of the seals will explore in greater detail
their interaction with the processes of the Antarctic Slope
Front.

The repeat foraging in Commonwealth Bay in conjunction
with the summer/fall re-conditioning of the upper water col-
umn is a final example of bio-physical coupling utilised by
the IMOS seals. Given the short amount of time the SEaOS
seals spent foraging in the early stage of the polynya near
the Mertz Bank, we consider that something different was
keeping the IMOS seals, in particular I2, diving and feed-
ing in Commonwealth Bay for close to two months. One of
the key summertime observations from the NBP00–08 sur-
vey in January 2001 was the deep chlorophyll maximum as-
sociated with well-developed seasonal (summer) mixed layer
in the Commonwealth Bay region. This was attributed to the
subduction from a shoreward driven Ekman transport that re-
sulted from the strong south-easterly katabatic wind regime
in this region (Vaillancourt et al., 2003; Sambrotto et al.,
2003). One explanation for why the IMOS seals foraged so
heavily in this region relates to this phenomenon. In our sim-
ple hypothesis (see Fig.13) we suggest that in early summer
the conditions in Commonwealth Bay promote elevated pri-
mary production that is ultimately pushed below the euphotic
zone, possibly allowing even greater production to continue
above. In the latter half of summer we suggest there could be
increased secondary production in response to the primary
production. Finally we conclude that when the water column
begins to overturn during the summer/fall transition there is
enhanced food availability for any seals, and possibly their
prey, willing to stay within the growing pack of the new sea
ice season.
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6 Conclusions

Southern elephant seals (Mirounga leonina), fitted with
Conductivity-Temperature-Depth sensors at Macquarie Is-
land in January 2005 and 2010, collected unique oceano-
graphic observations of the Adélie and George V Land
continental shelf (140–148◦ E) from late February through
April. In this paper we presented these data and the new
insights gained into the oceanography of this region during
the summer-fall transition. The seal data added a new late-
summer snapshot from 2005 of the zonal distribution of mod-
ified CDW exchange across the shelf break, that extended
further east than previous observations, and showed a strong
mCDW signal (θ up to 0◦ C) near 140◦ E in addition to the
known regions of mCDW inflow east of the Adélie Sill. Seal
transects across the Adélie Depression, including alongside
iceberg C-28 that calved from the Mertz Glacier, demon-
strated the late summer stratification, with the SML above
modified CDW at mid-depths. These highlighted the recon-
ditioning required to return the water column to the winter
state necessary to form dense shelf water, i.e., full-depth ho-
mogeneity at the freezing point with increasing salinity from
brine rejection. This was confirmed by the near-repeat CTD
profiling conducted by the IMOS seals from March through
April in Commonwealth Bay, one of the key polynya re-
gions, which captured the convective overturning of the deep
remnant SML at the beginning of the sea ice growth season.
Heat and freshwater budgets to 200-300 m were used to es-
timate the ocean heat content (400→50 MJ m−2), flux (50-
200 W m−2 loss) and sea ice growth rates (maximum of 7.5-
12.5 cm day−1). Mean seal-derived sea ice growth rates were
within the range of satellite-derived estimates from 1992-
2007 using ERA-Interim data. The heat content time series
showed that the contribution of heat from advection was min-
imal and confirmed that Commonwealth Bay is primarily a
latent-heat polynya region. We have demonstrated that these
seal-derived data are invaluable in filling in previous gaps
in our understanding of the temporal and spatial variability
of the Antarctic coastal region. In particular the results in
this paper will provide useful benchmarks for examining the
satellite and model derived estimates of sea ice growth nec-
essary for future monitoring and prediction of this important
source region of Antarctic Bottom Water.
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