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Abstract. We investigate whether or not conventional trans-
mission line theory needs to be modified if transmission lines
are considered that are located in a cavity rather than in free
space. Our analysis is based on coupled Pocklington’s equa-
tions that can be reduced to integral equations for the an-
tenna mode and the transmission line mode. Under the usual
assumptions of conventional transmission line theory these
modes do approximately decouple within a cavity. As a re-
sult, cavity properties will primarily influence the antenna
mode but not the transmission line mode.

1 Introduction

Interior problems of Electromagnetic Compatibility analysis
involve electric and electronic components that are located
within cavities (Tesche et al., 1997; Lee, 1995). Usually,
transmission lines will constitute a part of these components.
To model the electromagnetic propagation along transmis-
sion lines we have to resort to the Maxwell theory. It is de-
sirable to simplify Maxwell’s equations to Telegrapher equa-
tions since solutions of Telegrapher equations are fairly easy
to obtain. But in case of interior problems we have to ex-
amine if these simplification can be made inside a cavity and
this is the subject of this paper. Our strategy will be to exhibit
the steps that are necessary to derive conventional transmis-
sion line theory from integral equations of antenna theory.
There already is a number of such derivations (see, for exam-
ple,King, 1955; Tkachenko et al., 1995; Tesche et al., 1997;
Haase et al., 2004). These approaches use electric field inte-
gral equations as physical basis but differ in the assumptions
and approximations that are made in order to arrive at the
conventional transmission line theory. Also they assume, im-
plicitly or explicitly, that the transmission lines are located in
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free space. The distinctive feature of our approach is that we
take advantage of a separation of antenna mode currents and
transmission line mode currents right from the beginning.

Conventional transmission lines are metallic structures
that transmit electromagnetic signals and energy. In this re-
spect they are very similar to systems of transmitting and re-
ceiving antennas. However, the physical mechanisms that
govern the electromagnetic transmission along transmission
lines is quite different if compared to the electromagnetic
transmission between pairs of antennas, compare Fig.1.

In between a pair of antennas the electromagnetic trans-
mission results from a propagating electromagnetic field
which, for practical purposes, can often be approximated by
a radiation field. This does not mean that in such a situation
no Coulomb fields are present. Coulomb fields will be related
to the electric charges that move along the antennas and con-
stitute their near-fields. But in many cases the transmitting
and receiving antennas are sufficiently far apart such that the
main coupling is mediated by the radiation field which re-
sembles a freely propagating electromagnetic field. Electric
charges are not involved in the actual electromagnetic trans-
mission that happens in between the antennas. They only are
required at the beginning and at the end of the transmission
in order to, respectively, generate and receive the transmit-
ting electromagnetic field.

The electromagnetic transmission along a transmission
line does involve electric charges. These charges are located
on the transmission line which normally consists of a highly
conducting material. They are accompanied by Coulomb
fields which dominate their mutual electromagnetic interac-
tion at short distances. While the electric charges get accel-
erated they will produce radiation fields. In particular, this
will happen at high frequencies or if the transmission line is
strongly curved or bent. Normally, such a creation of radi-
ation fields by the electric charges on the transmission line
is an unwanted effect which influences the properties of the
transmission line. For many situations this influence is small
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Fig. 1. Electromagnetic transmission by means of a pair of antennas
(upper part) and a transmission line (lower part). In between the
antennas an electromagnetic field mediates the actual transmission
while the transmission line provides electric charges that mediate
the transmission between the source and the load.

and negligible. Therefore, in the conventional transmission
line theory focus is put on the electric charges and their ac-
companying Coulomb fields.

The conventional transmission line theory can be derived
from the Maxwell theory as a limiting case and contains the
electric current, representing electric charges, and the elec-
tric voltage, representing the associated Coulomb fields, as
main physical quantities. Clearly, these two quantities are
not independent of each other. They are related by the Tele-
grapher equations, which constitute a set of coupled first or-
der differential equations, and are much easier to solve than
the Maxwell equations.

In the derivation of the Telegrapher equations from the
Maxwell equations it is customary to consider some, a pri-
ori, arbitrary transmission line and to assume a number of
restrictions (Tesche et al., 1997):

1. The conductors are geometrically uniform, i.e. the
transmission line is not curved or bent.

2. The distance between the conductors of the transmis-
sion line is small compared to the wavelength of the ex-
citing electromagnetic field.

3. The thickness of the conductors of the transmission is
small if compared to the wavelength of the exciting
electromagnetic field.

4. The conductors are perfectly conducting.

The second and third of these restrictions are not clearly cut
since “smallness” with respect to a wavelength is not a pre-
cise notion. The reason for these approximate criteria is that,
in fact, one would like to remove the influence of radiation
fields on the transmission line. However, Coulomb fields and
radiation fields are inseparably intertwined. Therefore, in the
conventional transmission line theory, one only takes into ac-
count electromagnetic interactions between electric charges
at short distances where Coulomb fields dominate and radi-
ation fields can be neglected. Also the first and fourth re-
striction are put forth to avoid an influence of radiation fields
on the transmission line. In contrast to the second and third
restriction they can be formulated in a mathematically exact
way with no approximations involved. Since in the derivation
of the Telegrapher equations approximations are inevitable
it is often acceptable to relax the first and fourth conditions
to some degree and allow for transmission lines which are
slightly bent, i.e. which are characterized by radii of curva-
ture that are large compared to the wavelength of the exciting
field, and which are good conducting rather than perfectly
conducting, i.e. which are characterized by a conductivityσ

that fulfills the requirement|σ | � |εω|.

It has been mentioned that in the derivation of the conven-
tional transmission line theory it usually is assumed that the
transmission line is located in free space. It follows that in
the derivation of the Telegrapher equations the Green’s func-
tion of free space is employed. If we want to consider a
transmission line within a resonating environment we may
employ a cavity’s Green’s function rather than the Green’s
function of free space. Thus, it is necessary to check if this
modification has an influence on the validity of the Telegra-
pher equations of the conventional transmission line theory.

We stress that the motivation to work within the frame-
work of transmission line theory stems from the simplicity of
the Telegrapher equations if compared to the Maxwell equa-
tions. Alternatively, we can always work on the level of elec-
tric field integral equations and directly apply approximate
analytic methods or numerical methods.
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2 Coupled Pocklington’s equations, antenna and
transmission line mode

We consider a set of coupled Pocklington’s equations that
models the electromagnetic coupling to a system of wires and
represents a transmission line. For concreteness we consider
two wires and assume a thin-wire approximation. Then the
corresponding coupled Pocklington’s equations are given by
Nakano(1996)

jωµ

[∫
wire 1

G
E
(τ1, τ

′

1)I1(τ
′

1) dτ ′

1

+

∫
wire 2

G
E
(τ1, τ

′

2)I2(τ
′

2) dτ ′

2

]
· eτ1 = Einc

tan(τ1) , (1)

jωµ

[∫
wire 1

G
E
(τ2, τ

′

1)I1(τ
′

1) dτ ′

1

+

∫
wire 2

G
E
(τ2, τ

′

2)I2(τ
′

2) dτ ′

2

]
· eτ2 = Einc

tan(τ2) . (2)

Here we introduced the variablesτ1, τ2 that parameterize the
length of wire 1 and wire 2, respectively. Fixed values of
these variables represent fixed wire positions. The unit vec-
tors eτ1, eτ1 are tangent to the line-like wires atτ1, τ2. The
currentsI1(τ1), I2(τ2) result from the thin-wire approxima-
tion and are defined by

I i(τi) := Iieτi
(3)

for i = 1, 2. The scalarIi is the value of the electric current

at the wire positionτi . Finally, we denote byG
E

the dyadic
Green’s function for the electric field (Tai, 1994).

If the wires form a transmission line we expect that they
can be parameterized by a common coordinateξ with ξ = ξ0
at the beginning andξ = ξL at the end of the line, compare
Fig.2. We take this coordinate as a common integration vari-
able and write Eqs. (1) and (2) as

jωµ

[∫ ξL

ξ0

(
G

E
(τ1, τ

′

1)I1(τ
′

1)
∂τ ′

1

∂ξ ′

+G
E
(τ1, τ

′

2)I2(τ
′

2)
∂τ ′

1

∂ξ ′

)
dξ ′

]
· eτ1 = Einc

tan(τ1) , (4)

jωµ

[∫ ξL

ξ0

(
G

E
(τ2, τ

′

1)I1(τ
′

1)
∂τ ′

1

∂ξ ′

+G
E
(τ2, τ

′

2)I2(τ
′

2)
∂τ ′

2

∂ξ ′

)
dξ ′

]
· eτ2 = Einc

tan(τ2) . (5)

The variablesτ1, τ2 are now understood as functions of the
parameterξ .

Next we introduce two currentsIA andITL as linear com-
binations ofI1 andI2,

IA :=
1
2 (I1 + I2) , (6)

ITL :=
1
2 (I1 − I2) . (7)

ξ
0

ξ
L ξ

τ2 eτ2

wire 2

wire 1τ1

eτ1

Fig. 2. Introduction of a common variableξ which parameterizes
the wires of a transmission line.

The inverse equations are

I1 = IA + ITL , (8)

I2 = IA − ITL . (9)

These identifications are well-known from the conventional
transmission line theory whereIA represents the so-called
“antenna mode” or “common mode” andITL represents the
so-called “tranmission line mode” or “differential mode”. In
our present context these identifications are still formal. We
note that neitherIA nor ITL need to be tangent to one of the
wires. But it is clear that we still may splitIA andITL into a
component and a unit vector,

IA =
1

2

(
I1eτ1 + I2eτ2

)
=: IAeIA

, (10)

ITL =
1

2

(
I1eτ1 − I2eτ2

)
=: ITLeIT L

. (11)

If the relations (8) and (9) are inserted into Eqs. (4) and (5)
it is simple to find

jωµ

[∫ ξL

ξ0

([
G

E
(τ1, τ

′

1)
∂τ ′

1

∂ξ ′
+ G

E
(τ1, τ

′

2)
∂τ ′

2

∂ξ ′

]
IA(ξ ′)

+

[
G

E
(τ1, τ

′

1)
∂τ ′

1

∂ξ ′
− G

E
(τ1, τ

′

2)
∂τ ′

2

∂ξ ′

]
ITL(ξ ′)

)
dξ ′

]
· eτ1

= Einc
tan(τ1) , (12)

jωµ

[∫ ξL

ξ0

([
G

E
(τ2, τ

′

1)
∂τ ′

1

∂ξ ′
+ G

E
(τ2, τ

′

2)
∂τ ′

2

∂ξ ′

]
IA(ξ ′)

+

[
G

E
(τ2, τ

′

1)
∂τ ′

1

∂ξ ′
− G

E
(τ2, τ

′

2)
∂τ ′

2

∂ξ ′

]
ITL(ξ ′)

)
dξ ′

]
· eτ2

= E inc
tan(τ2) . (13)
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We both add and subtract these equations and obtain

jωµ

∫ ξL

ξ0

(
GE

+A(τ1, τ2, τ
′

1, τ
′

2)IA(ξ ′)

+GE
+TL(τ1, τ2, τ

′

1, τ
′

2)ITL(ξ ′)
)

dξ ′

= Einc
tan(τ1) + Einc

tan(τ2) , (14)

jωµ

∫ ξL

ξ0

(
GE

−A(τ1, τ2, τ
′

1, τ
′

2)IA(ξ ′)

+GE
−TL(τ1, τ2, τ

′

1, τ
′

2)ITL(ξ ′)
)

dξ ′

= Einc
tan(τ1) − Einc

tan(τ2) , (15)

where we introduced the abbreviations

GE
+A(τ1, τ2, τ

′

1, τ
′

2) := (16)

eτ1 ·

(
G

E
(τ1, τ

′

1)
∂τ ′

1

∂ξ ′
+ G

E
(τ1, τ

′

2)
∂τ ′

2

∂ξ ′

)
· eIA

+eτ2 ·

(
G

E
(τ2, τ

′

1)
∂τ ′

1

∂ξ ′
+ G

E
(τ2, τ

′

2)
∂τ ′

2

∂ξ ′

)
· eIA

,

GE
+TL(τ1, τ2, τ

′

1, τ
′

2) := (17)

eτ1 ·

(
G

E
(τ1, τ

′

1)
∂τ ′

1

∂ξ ′
− G

E
(τ1, τ

′

2)
∂τ ′

2

∂ξ ′

)
· eIT L

+eτ2 ·

(
G

E
(τ2, τ

′

1)
∂τ ′

1

∂ξ ′
− G

E
(τ2, τ

′

2)
∂τ ′

2

∂ξ ′

)
· eIT L ,

GE
−A(τ1, τ2, τ

′

1, τ
′

2) := (18)

eτ1 ·

(
G

E
(τ1, τ

′

1)
∂τ ′

1

∂ξ ′
+ G

E
(τ1, τ

′

2)
∂τ ′

2

∂ξ ′

)
· eIA

−eτ2 ·

(
G

E
(τ2, τ

′

1)
∂τ ′

1

∂ξ ′
+ G

E
(τ2, τ

′

2)
∂τ ′

2

∂ξ ′

)
· eIA

,

GE
−TL(τ1, τ2, τ

′

1, τ
′

2) := (19)

eτ1 ·

(
G

E
(τ1, τ

′

1)
∂τ ′

1

∂ξ ′
− G

E
(τ1, τ

′

2)
∂τ ′

2

∂ξ ′

)
· eIT L

−eτ2 ·

(
G

E
(τ2, τ

′

1)
∂τ ′

1

∂ξ ′
− G

E
(τ2, τ

′

2)
∂τ ′

2

∂ξ ′

)
· eIT L .

3 Decoupling of antenna and transmission line mode
in free space

The expressions we obtained so far look more complicated
than the original Eqs. (1) and (2) that we started from. To
nevertheless appreciate this form of the coupled Pockling-
ton’s equations we specialize to the case of straight and par-
allel wires. Then we may align a Cartesian coordinate system

z1

z ’2

z ’1

z2

zz’z

|z − z’ |1

|z − z’ |
2

|z − z’ |2

|z − z’ |1

1

z0 zL

wire 1

wire 2
2

2
1

y

d

Fig. 3. Geometry of a straight two-wire transmission line.

such that thez-axis is parallel to the wires and may choose
ξ = z. This leads to the simplifications

eτ1 = eτ2 = eIA
= eIT L

, (20)

eτ1,2 · G
E

· eIA,TL = GE
zz , (21)

∂τ1

∂ξ
=

∂τ2

∂ξ
= 1 . (22)

Accordingly, Eqs. (16) – (19) reduce to

GE
+A(z1, z2, z

′

1, z
′

2) = GE
zz(z1, z

′

1) + GE
zz(z1, z

′

2)

+GE
zz(z2, z

′

1) + GE
zz(z2, z

′

2) , (23)

GE
+TL(z1, z2, z

′

1, z
′

2) = GE
zz(z1, z

′

1) − GE
zz(z1, z

′

2)

+GE
zz(z2, z

′

1) − GE
zz(z2, z

′

2) , (24)

GE
−A(z1, z2, z

′

1, z
′

2) = GE
zz(z1, z

′

1) + GE
zz(z1, z

′

2)

−GE
zz(z2, z

′

1) − GE
zz(z2, z

′

2) , (25)

GE
−TL(z1, z2, z

′

1, z
′

2) = GE
zz(z1, z

′

1) − GE
zz(z1, z

′

2)

−GE
zz(z2, z

′

1) + GE
zz(z2, z

′

2) , (26)

Let us now suppose that the transmission line is located in
free space such that the Green’s function is that of free space,
GE

zz = GE
freezz. It is, in particular, translation invariant,

GE
freezz(z, z

′) = GE
freezz(|z − z′

|) . (27)

For straight, parallel wires we have, compare Fig.3,

|z1 − z′

1| = |z2 − z′

2| (28)

H⇒ GE
freezz(z1, z

′

1) = GE
freezz(z2, z

′

2) ,

|z1 − z′

2| = |z2 − z′

1| (29)

H⇒ GE
freezz(z1, z

′

2) = GE
freezz(z2, z

′

1) .
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It follows that the relations (23) – (26) reduce to

GE
+A(z1, z2, z

′

1, z
′

2)

= 2
(
GE

freezz(z1, z
′

1) + GE
freezz(z1, z

′

2)
)

, (30)

GE
+TL(z1, z2, z

′

1, z
′

2) = 0 , (31)

GE
−A (z1, z2, z

′

1, z
′

2) = 0 , (32)

GE
−TL(z1, z2, z

′

1, z
′

2)

= 2
(
GE

freezz(z1, z
′

1) − GE
freezz(z1, z

′

2)
)

, (33)

and in view of the integral equation system (14), (15) it is
recognized that the antenna modeIA and the transmission
line modeITL completely decouple,

jωµ

∫ zL

z0

GE
+A(z1, z2, z

′

1, z
′

2)IA(z′) dz′

= +Einc
tan(z1) + Einc

tan(z2) , (34)

jωµ

∫ zL

z0

GE
−TL(z1, z2, z

′

1, z
′

2)ITL(z′) dz′

= +Einc
tan(z1) − Einc

tan(z2) . (35)

4 Reduction to conventional transmission line theory
in free space

The antenna mode currentIA in Eq. (34) vanishes at the
beginning and at the end of the transmission line. This is
analogous to the boundary conditions of the antenna cur-
rent on a single wire antenna. Also the Green’s function
GE

+A(z1, z2, z
′

1, z
′

2) is similar to the kernel of the Pockling-
ton’s equation for a single wire antenna since in Eq. (30)
the termsGE

freezz(z1, z
′

1) andGE
freezz(z1, z

′

2) add up and only
considerably differ if the distance|z − z′

| is smaller or of the
order of the distanced between wire 1 and wire 2. It follows
that Eq. (34) can be solved with methods of antenna theory
in cavities (Gronwald, 2005).

The conventional transmission line theory is contained in
Eq. (35). To explicitly see this we first note that a Pockling-
ton’s equation

jωµ

∫ zo

zL

GE
zz(z, z

′)I (z′) dz′
= E inc

tan(z) (36)

is equivalent to a mixed potential integral equation (Nakano,
1996)

1

jωε

∫ zL

z0

[
∂Gφ(z, z′)

∂z

∂I (z′)

∂z′
(37)

+k2GA
zz(z, z

′)I (z′)
]

dz′
= −Einc

z (z)

with Gφ(z, z′) and GA
zz(z, z

′) indicating the Green’s func-
tions for the scalar potentialφ and the magnetic vector po-
tentialA in the Lorenz gauge, respectively. We introduce a

per-unit-length chargeq ′ by the continuity equation

∂I

∂z
+ jωq ′

= 0 (38)

and define a potentialV q ′

by

V q ′

:=
1

ε

∫ zL

z0

Gφ(z, z′)q ′(z′) dz′ . (39)

Furthermore, in view of Eq. (33), we introduce the
combinations

G
φ
−TL(z, z′) = 2

(
G

φ

free(z1, z
′

1) − G
φ

free(z1, z
′

2)
)
, (40)

GA
−TL(z, z′) = 2

(
GA

freezz(z1, z
′

1) − GA
freezz(z1, z

′

2)
)
, (41)

and note thatGφ
−TL andGA

−TL are localized functions that
are characterized by a sharp peak in the domain where the
distance|z − z′

| is small. This feature is often used in
the derivation of the conventional transmission line theory
(seeTkachenko et al., 1995, for example). It leads to the
simplifications∫ zL

z0

G
φ
−TL(z, z′)q ′(z′) dz′

≈ q ′(z)

∫ zL

z0

G
φ
−TL(z, z′) dz′ (42)∫ zL

z0

GA
−TL(z, z′)I (z′) dz′

≈ I (z)

∫ zL

z0

G
φ
−TL(z, z′) dz′ (43)

The mixed potential integral Eq. (37) and the continuity
Eq. (38) can now be written as conventional Telegrapher
equations

∂V q ′

∂z
(z) + jωL′I (z) = −

(
Einc

tan(z1) − Einc
tan(z2)

)
, (44)

∂I

∂z
(z) + jωC′V q ′

(z) = 0 , (45)

with

C′
:=

ε∫ zL

z0
G

φ
−TL(z, z′) dz′

≈
πε

ln(d/ρ)
, (46)

L′
:= µ

∫ zL

z0

GA
−TL(z, z′) dz′

≈
µ

π
ln(d/ρ) . (47)

Here the distance between the wires is, as before, denoted
by d and the wire radius is denoted byρ.

5 Transmission lines in cavities

In the derivation of the Telegrapher Eqs. (44) and (45) from
the Pocklington’s Eqs. (1) and (2) we employed three times
the properties of free space Green’s functions:
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1. To decouple for straight, parallel wires the antenna
mode from the transmission line mode we used trans-
lation invariance of the free space Green’s function
GE

freezz in Eq. (27).

2. To pull in Eqs. (42) and (43) the charge densityq ′ and
the currentI out of the integrals we used the strong
Coulomb singularity that is contained in the free space
Green’s functionsGφ

free andGA
freezz.

3. To calculate the per-unit-length parameterL′ andC′ we
used the explicit mathematical expression for the free
space Green’s functionsGφ

free andGA
freezz.

Within a cavity the Green’s functions can always be writ-
ten as a sum of a free space part and a boundary part which
takes into account the effect of the cavity walls,

Gcav = Gfree + G̃ . (48)

We now state that the steps 1.–3. can approximately be
performed within a cavity:
1. The decoupling of antenna and transmission line
mode requires the kernelsGE

+TL(z1, z2, z
′

1, z
′

2) and
GE

−A(z1, z2, z
′

1, z
′

2) to vanish. From the relations (24)
and (25), and Fig.3 with d = y1 − y2 it follows that it is
meaningful to consider the Taylor expansions

G̃E
zz(z1, z

′

2) ≈ G̃E
zz(z1, z

′

1) −
∂G̃E

zz

∂y
(z1, z

′

1) d (49)

G̃E
zz(z1, z

′

2) ≈ G̃E
zz(z2, z

′

2) +
∂G̃E

zz

∂y
(z2, z

′

2) d (50)

G̃E
zz(z2, z

′

1) ≈ G̃E
zz(z2, z

′

2) +
∂G̃E

zz

∂y
(z2, z

′

2) d (51)

G̃E
zz(z2, z

′

1) ≈ G̃E
zz(z1, z

′

1) −
∂G̃E

zz

∂y
(z1, z

′

1) d (52)

since then

G̃E
+TL(z1, z2, z

′

1, z
′

2) = G̃E
−A(z1, z2, z

′

1, z
′

2)

≈

(
∂G̃E

zz

∂y
(z1, z

′

1) +
∂G̃E

zz

∂y
(z2, z

′

2)

)
d . (53)

If the terms involving the derivative of the Green’s
function are small the kernelsGE

+TL(z1, z2, z
′

1, z
′

2) and
GE

−A(z1, z2, z
′

1, z
′

2) are small as well and, as a result, an-
tenna and transmission line mode approximately decouple.
For a general discussion of this point one might represent the
cavities Green’s functionGcav by means of an expansion in
rotational and irrotational eigenvectors (Tai, 1994).

The rotational eigenvectors are solutions of sourceless
Helmholtz equations and their spatial variation is of the or-
der of the wavelength considered. Then the contributions
of these rotational eigenvectors to the first order terms in
Eqs. (49)–(52) will be of the order ofkd. Thus, according
to the usual assumptionkd � 1 of conventional transmission
line theory, these contributions will be small.

The irrotational eigenvectors are solutions of electro-
static Poisson equations and contain the Coulomb singularity.
Their spatial variation diverges close to a Coulomb singular-
ity and, otherwise, decays quickly. SinceG̃ = Gcav− Gfree
contains no Coulomb singularity we expect that, in general,
the irrotational eigenvectors will lead to no significant spa-
tial variation of G̃. There is only one situation where this
argument does not apply and this is when the distance of one
of the wires to a cavity wall is of the order or smaller than
the wire distanced. In this case there can be a dominant
Coulomb interaction with the cavity wall (that is, with the
mirrored wires) which is embedded iñG sinceGfree does
not take into account scattering contributions from the cavity
walls. Then the spatial variation of̃G might become large
and one would need to actually calculate the derivatives of
Eq. (53) for the specific configuration in order to see if they
still lead to only small corrections.
2. We need to reconsider the approximations (42) and (43)
with

G
φ
−TL(z, z′) = 2

(
Gφ

cav(z1, z
′

1) − Gφ
cav(z1, z

′

2)
)
, (54)

GA
−TL(z, z′) = 2

(
GA

cavzz(z1, z
′

1) − GA
cavzz(z1, z

′

2)
)
. (55)

The approximations (42) and (43) are valid since the differ-
ences of the formG(z1, z

′

1) − G(z1, z
′

2) approximately can-
cel if |z − z′

| is much larger than the separationd. The sharp
peak ofGφ

−TL(z, z′) andGA
−TL(z, z′) at z = z′ is due to the

fact that forz → z′ we have, withρ � d,

G
φ
−TL(z, z′) = GA

−TL(z, z′) ≈
1

2π

(
1

ρ
−

1

d

)
� 1 . (56)

This feature is unaffected by the presence of the cavity. Rota-
tional contributions ofG̃ to Gcav will approximately cancel
within the differences (54) and (55), and Coulomb interac-
tions with the cavity walls will not significantly change the
property (56).
3. The electrostatic calculation that led to the values of the
per-unit-length parameters (47) and (46) consists of the eval-
uation of the integrals

∫ L/2
−L/2 G

φ,A
−TL(z, z′) dz′. Within a cavity

these parameters will significantly change only if one or both
of the wires is close to a cavity wall such that the Coulomb
field in the vicinity of the transmission lines is significantly
perturbed by the presence of the cavity. In this case the pa-
rametersL′, C′ have to be calculated from an electrostatic
calculation which takes into account the cavity wall.

6 Conclusions

Conventional transmission line is applicable not only in free
space but also within a cavity. The dynamical (rotational)
electromagnetic fields within the cavity will mainly couple
to the antenna mode current which approximately is decou-
pled from the transmission line mode. In particular, reso-
nances of the cavity will strongly interact with the antenna
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mode but not with the transmission line mode. Some care
must be taken if the presence of the cavity has a significant
influence on the (irrotational) Coulomb fields in the vicinity
of the transmission line. In this case, quantitative changes of
the per-unit-length parameters are expected and need to be
calculated from the actual transmission line configuration.
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