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On the applicability of conventional transmission line theory
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Abstract. We investigate whether or not conventional trans- free space. The distinctive feature of our approach is that we
mission line theory needs to be modified if transmission linestake advantage of a separation of antenna mode currents and
are considered that are located in a cavity rather than in freé¢ransmission line mode currents right from the beginning.
space. Our analysis is based on coupled Pocklington’s equa- Conventional transmission lines are metallic structures
tions that can be reduced to integral equations for the anthat transmit electromagnetic signals and energy. In this re-
tenna mode and the transmission line mode. Under the usualpect they are very similar to systems of transmitting and re-
assumptions of conventional transmission line theory thesgeiving antennas. However, the physical mechanisms that
modes do approximately decouple within a cavity. As a re-govern the electromagnetic transmission along transmission
sult, cavity properties will primarily influence the antenna lines is quite different if compared to the electromagnetic
mode but not the transmission line mode. transmission between pairs of antennas, comparelFig.

In between a pair of antennas the electromagnetic trans-
mission results from a propagating electromagnetic field
which, for practical purposes, can often be approximated by
a radiation field. This does not mean that in such a situation
no Coulomb fields are present. Coulomb fields will be related
involve electric and electronic components that are located® the €lectric charges that move along the antennas and con-

stitute their near-fields. But in many cases the transmitting

within cavities Tesche et al.1997 Lee 1995. Usually, e o
transmission lines will constitute a part of these components1d receiving antennas are sufficiently far apart such that the

To model the electromagnetic propagation along transmis™Main coupling is mediated by the radiation field which re-

sion lines we have to resort to the Maxwell theory. It is de- sembles a freely propaggting electromagnetic field. Electric
sirable to simplify Maxwell's equations to Telegrapher equa_charges are not mvolv_ed in the actual electromagnetic trans-
tions since solutions of Telegrapher equations are fairly easy!iSSion that happens in between the antennas. They only are
to obtain. But in case of interior problems we have to ex- reduired at the beginning and at the end of the transmission
amine if these simplification can be made inside a cavity and™ Order to, respectively, generate and receive the transmit-
this is the subject of this paper. Our strategy will be to exhibit N9 electromagnetic field. o o
the steps that are necessary to derive conventional transmis- 1"€ electromagnetic transmission along a transmission
sion line theory from integral equations of antenna theory.in€ does involve electric charges. These charges are located
There already is a number of such derivations (see, for exam@" the transmission line which normally consists of a highly
ple, King, 1955 Tkachenko et 81995 Tesche et al1997 ~ conducting material. They are accompanied by Coulomb
Haase et al2004. These approaches use electric field inte- f!elds which dpmmate thelr_mutual eIec’FromagneUc interac-
gral equations as physical basis but differ in the assumption§0n at short distances. While the electric charges get accel-
and approximations that are made in order to arrive at theérated they will produce radiation fields. In particular, this
conventional transmission line theory. Also they assume, im-Will happen at high frequencies or if the transmission line is

plicitly or explicitly, that the transmission lines are located in Strongly curved or bent. Normally, such a creation of radi-
ation fields by the electric charges on the transmission line

Correspondence tdr. Gronwald is an unwanted effect which influences the properties of the
(Frank.Gronwald@et.uni-magdeburg.de) transmission line. For many situations this influence is small

1 Introduction

Interior problems of Electromagnetic Compatibility analysis
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118 F. Gronwald: On the applicability of conventional transmission line theory within cavities

1. The conductors are geometrically uniform, i.e. the
transmission line is not curved or bent.

2. The distance between the conductors of the transmis-
o 3 sion line is small compared to the wavelength of the ex-
electromagnetic field | citing electromagnetic field.

CHEVAVAVAVAVAV. S I
transmitting | | receivin _ o
antenna g 3 ! antennag 3. The thickness of the conductors of the transmission is

small if compared to the wavelength of the exciting
electromagnetic field.

transmission

4. The conductors are perfectly conducting.

The second and third of these restrictions are not clearly cut
since “smallness” with respect to a wavelength is not a pre-
cise notion. The reason for these approximate criteria is that,
in fact, one would like to remove the influence of radiation
] : fields on the transmission line. However, Coulomb fields and
‘ electric charges radiation fields are inseparably intertwined. Therefore, in the
C—a 3 [z, conventional transmission line theory, one only takes into ac-
network 3 receiving count elegtromagnetlc interactions k_Jetween e_IeCtrlc charge_s
source L 3 load at short distances where Coulomb fields dominate and radi-
ation fields can be neglected. Also the first and fourth re-
striction are put forth to avoid an influence of radiation fields
| on the transmission line. In contrast to the second and third
restriction they can be formulated in a mathematically exact
way with no approximations involved. Since in the derivation
of the Telegrapher equations approximations are inevitable
Fig. 1. Electromagnetic transmission by means of a pair of antennadt iS often acceptable to relax the first and fourth conditions
(upper part) and a transmission line (lower part). In between theto some degree and allow for transmission lines which are
antennas an electromagnetic field mediates the actual transmissiaglightly bent, i.e. which are characterized by radii of curva-
while the transmission line provides electric charges that mediateure that are large compared to the wavelength of the exciting
the transmission between the source and the load. field, and which are good conducting rather than perfectly
conducting, i.e. which are characterized by a conductivity
that fulfills the requirements | > |ew|.

and negligible. Therefore, in the conventional transmission |t has been mentioned that in the derivation of the conven-
line theory focus is put on the electric charges and their acyjona| transmission line theory it usually is assumed that the
companying Coulomb fields. transmission line is located in free space. It follows that in
The conventional transmission line theory can be derivedhe derivation of the Telegrapher equations the Green’s func-
from the Maxwell theory as a limiting case and contains thetion of free space is employed. If we want to consider a
electric current, representing electric charges, and the eledransmission line within a resonating environment we may
tric voltage, representing the associated Coulomb fields, asmploy a cavity’s Green'’s function rather than the Green’s
main physical quantities. Clearly, these two quantities arefunction of free space. Thus, it is necessary to check if this
not independent of each other. They are related by the Telemodification has an influence on the validity of the Telegra-
grapher equations, which constitute a set of coupled first orpher equations of the conventional transmission line theory.

der differential equations, and are much easier to solve than \we stress that the motivation to work within the frame-
the Maxwell equations. work of transmission line theory stems from the simplicity of

In the derivation of the Telegrapher equations from thethe Telegrapher equations if compared to the Maxwell equa-
Maxwell equations it is customary to consider some, a pri-tions. Alternatively, we can always work on the level of elec-
ori, arbitrary transmission line and to assume a number ofric field integral equations and directly apply approximate
restrictions Tesche et aJ.1997): analytic methods or numerical methods.

e —

transmission
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2 Coupled Pocklington’s equations, antenna and
transmission line mode ; e ;
| 1 |

We consider a set of coupled Pocklington’s equations that

models the electromagnetic coupling to a system of wires and r T wire 1
represents a transmission line. For concreteness we consider | !
two wires and assume a thin-wire approximation. Then the : wire2
corresponding coupled Pocklington’s equations are given by ! !
Nakano(1996 | |
_ g 3 Tz eTz 3
jou / G (t1, 1) la(r)) drg | |
LJwire 1 ! ‘ -
—E .
+ [ G ] e = B . @ o o 8
wire 2
. i —E / ’ /
JOR fwire 1 G (r2. i)z dmy Fig. 2. Introduction of a common variable which parameterizes
- - _ the wires of a transmission line.
+/_ 2G (12, rﬁ)lz(ré)dré] -er, = Egn(r2) . (2)
wire

Here we introduced the variableg t2 that parameterize the . .

length of wire 1 and wire 2, respectively. Fixed values of The inverse equations are
these variables represent fixed wire positions. The unit vec-

torse,, e;, are tangent to the line-like wires &, 2. The Iy =1Ia+1I7L,
currentsl1(t1), I2(2) result from the thin-wire approxima- I, = I — IT_.

tion and are defined by

®)
©)

These identifications are well-known from the conventional

I;(7;) = liey (3)

fori =1, 2. The scalat; is the value of the electric current

at the wire positiorr;. Finally, we denote bﬁE the dyadic
Green'’s function for the electric field&i, 1994.

If the wires form a transmission line we expect that they
can be parameterized by a common coordigatéth & = &g
at the beginning and =&, at the end of the line, compare

Fig. 2. We take this coordinate as a common integration vari-

able and write Eqs 1) and @) as

/

Ty

g’

&L

o],

(EEm, I(t)

—E 01, 1 i
4G (o 32 ) de'| e = B @
§L /g ot/ ]
jop |:/ (G (2, t)I1(T) —=
) 9
—E 81'/ ] i
+G (12, té)lz(fﬁ)a—;) dg'| - e, = Eg(2) . (5)

The variables1, o are now understood as functions of the
parametek.

Next we introduce two current& and T, as linear com-
binations off1 and >,

(6)
()

In=3I1+1y),
It :=31-1I2) .
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transmission line theory wherEy represents the so-called
“antenna mode” or “common mode” aidd represents the
so-called “tranmission line mode” or “differential mode”. In
our present context these identifications are still formal. We
note that neithel o nor I need to be tangent to one of the
wires. But it is clear that we still may spllia andI1 into a
component and a unit vector,

Ia (Ler, + Ioer,) =: Iney, (10)

(llefl — ]2812) =:ItLer, . (11)

NI NI

~
_‘
—

If the relations 8) and Q) are inserted into Eqs4) and 6)
it is simple to find

. 51 —E , 37,'1 —E , a‘[é ,
Jop I:/;o <|:G (71, T1)3_5’+G (11, tz)a_é’j| IanE)
I a / _ 3 /
+ [GE@L fDa—? -G (m, ré)a—ﬂ I (5’)) ds’} e
= Efn(r),  (12)
o ral / a7 - , 1) ,
jou |:féo <|:GE(T2, Tl)a_;‘FGE(‘L'z, rz)a—;} IA(E)
. or, a9t/
+ [GE(rz’ fDa—; -G (2, ré)a—;ﬂ It @’)) ds’} - er,
— El%).  (13)
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We both add and subtract these equations and obtain

yho :
. %-L E / / / : 3
Jop (G+A(rl, 72, 71, T IA(§) : :
) | |
+Gq (r1, 12, 71, TH L (&’)) d§' | -7 . wire 1
. | Zl - 21, ,
= B + B, (1) e 55 ez | O
2 l2-3| z; }
. S E / / / ! :
Jjou (G_A(Tl, 72, 71, To) IA (") | ‘
éo | |
+GEq (n1, T2, 7], THITLE) dE v N
= Egan(t1) — Ean(72) . (15)
where we introduced the abbreviations Fig. 3. Geometry of a straight two-wire transmission line.
Gia(ti, 12,11, 1) = (16)
(G (1. T )_ + Gt (11, T5) /) ce; such that the-axis is parallel to the wires and may choose
T BT A £ = z. This leads to the simplifications
a7y 0T,
+eq, (72, Tl)_g + G (12, Tz) Yy c€], €r) =€, =€y =€Ipy, (20)
—E
erlyz -G - eIA,TL GZEZ s (21)
at1 012
G (t. 10,11, 1)) o= S B (22)
/ /
(G (11, Tl) 35’ _Gt (11, Tz) % > erL Accordingly, Egs. 16) — (19) reduce to
7 7} Gia(z1, 22,21, 25) = GE(z1, 7)) + GE (21, 7))
. G P} G ’ : ’
ten ( (r2 Tl) as/ (72 72) 5 &’ ) Girt +GF (22, 2) + GE(z2,25) ., (23)
GE A (et 2, T}y 7)) = (18) Gy (21, 22,24, 25) = GE(z1. 7)) — GE (21, 2h)
o o7 +GE(22,7h) — GL(z2.2) . (24)
G (t1, Tl)a_%_, + G (t1, Tz) %_ Ia
/ ! GE ,,/,/zGE ,/—}-GE ’/
—eq, - (G (12, rl) 1, G" (12, rz) ) ey, , ~AleL, 22,21, 27) Zg(m Zl,) Zz(m ZZ,)
98’ 08’ ~G.(22,7) — GL(22,2) . (25)
GEq (t, 12, 1), 7)) = (29) GEr (21,22, 21, 25) = GE (21, 2) — GE (21, 2h)
oty % ~Gl(22,7) + GL(z2,25), (26
€ry - ( (t1, Tl)a_%'/ - ( 71, 2) E ) erL 2z 1 2z 2 (26)
, , Let us now suppose that the transmission line is located in
—eq, - ( (12, 1)) —= 0y G (12, Tz) > cen L. free space such that the Green'’s function is that of free space,
9§’ 9§’ GE =G, Itis, in particular, translation invariant,
Giree (2, 7) = Gfee (12 = 2. (27)
3 Decoupling of antenna and transmission line mode freezz freeze
in free space For straight, parallel wires we have, compare Big.
/ /!
The expressions we obtained so far look more complicated 11 — 21l = 22 — 22| (28)
than the original Egs.1 and @) that we started from. To = Glee..(21,7) = GEe . (22, 2)
nevertheless appreciate this form of the coupled Pockling- |21 — 25l = |22 — 24 (29)
ton’s equations we specialize to the case of straight and par- E , E ,
allel wires. Then we may align a Cartesian coordinate system = Giree: (21, 22) = Giree; (22, 21) -
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It follows that the relationsa3) — (26) reduce to per-unit-length charge’ by the continuity equation
E
GE (21, 22, 25 2)) 2_’ +jwg =0 (38)
= 2(Gficers(z1. %) + Gficern(c1. 7)) . (30) ,
and define a potentidl? b
GEqy (21,22, 2. 2) =0, (31) o P y
, L
GEp (21,22, 24 2p) = O, CIRNT / 6%z, 2)q' () . (39)
GE1 (21,22, 24, 25) <0
Furthermore, in view of Eq.33), we introduce the
E E
=2 (GfreeZz(Zl’ Z/l) - Gfreezz(zl’ Zé)) ’ (33) combinations
and in view of the integral equation systedw), (15) itis G (z,7)) = 2(Gloe(z1. 71) — Ghee(z1: 7)) » (40)
recognized that the antenna mofje and the transmission , n , A ,
line modelt. completely decouple, GL1 (2. 7) = 2(Giree (21, 21) — Giree . (21, 22)) . (41)
@z , o and note thaniTL and G4, are localized functions that
jou GIa(z1, 22,29, 25)Ia(2) dz . X X
o + are characterized by a sharp peak in the domain where the

distance|z —7/| is small. This feature is often used in

_ inc inc
= TEan(0) + E@n(22), (34 the derivation of the conventional transmission line theory
L
jwM/ GETL(ZL 22,24, 2p) ITL(2) d7’ (s_eeT_kachenko et al.1995 for example). It leads to the
20 simplifications
= +EQaG) — B2 . (35) @, o
J ARG ENCRVIEYE
20
. . L L
4 .Reduct|0n to conventional transmission line theory %q/(z)/ GfTL(z,z/) d7 (42)
in free space

<L

The antenna mode currefif in Eg. (34) vanishes at the / G (z,HI(Z)d7
beginning and at the end of the transmission line. This is”<° .

. L
analogous tp the poundary conditions of the antenna cur- ~ I(z)/ GfTL(Zs dz 43)
rent on a single wire antenna. Also the Green’s function
G% (21, 22, 24, 7) is similar to the kernel of the Pockling-
ton’s equation for a single wire antenna since in E2{) (
the tgrmﬂﬁeezg (21, 2}) ant_jG]feeZZ (21, 7) add up and only
considerably differ if the distande — 7’| is smaller or of the
order of the distance between wire 1 and wire 2. It follows  5y/¢’

The mixed potential integral Eq37) and the continuity
Eqg. (38) can now be written as conventional Telegrapher
equations

that Eq. 84) can be solved with methods of antenna theory —~ (2) + joL'I(z) = —(ERS(z1) — EBS(22)) (44)
in cavities Gronwald 20095. 1
The conventional transmission line theory is contained in—(z) + jwC’ ve () = (45)
Eq. 35). To explicitly see this we first note that a Pockling- %
ton’s equation with
o | = ° =~ 46
qufz GL(z, )1 d7 = Eg(z) (36) Gl (a2 e ~ @/ (49)
L
L
is equivalent to a mixed potential integral equatiblakang L' := u/ G4 (z,7)d7 ~ % In(d/p). (47)
1996 20
. s , , Here the distance between the wires is, as before, denoted
L 96%(z,2) 91(z) (37) by d and the wire radius is denoted jpy
jwe 0z a7

2 ~A / / / _ _ ginc L. . . "
ThGZ (2, )z )] dz’ = -E;7() 5 Transmission lines in cavities

with G?(z,7') and GA (z,Z') indicating the Green’s func- In the derivation of the Telegrapher Eq44) and @5) from
tions for the scalar potentlaﬂ and the magnetic vector po- the Pocklington’s Eqs.1j and @) we employed three times
tential A in the Lorenz gauge, respectively. We introduce athe properties of free space Green'’s functions:
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122 F. Gronwald: On the applicability of conventional transmission line theory within cavities

1. To decouple for straight, parallel wires the antenna The irrotational eigenvectors are solutions of electro-
mode from the transmission line mode we used trans-static Poisson equations and contain the Coulomb singularity.
lation invariance of the free space Green’s function Their spatial variation diverges close to a Coulomb singular-
GE,,.. INEq. 27). ity and, otherwise, decays quickly. SinGe= Gcav— Giree

contains no Coulomb singularity we expect that, in general,

2. To pull in Egs. #2) and @3) the charge density’ and  the jrrotational eigenvectors will lead to no significant spa-
the current/ out (_)f the ir_1tegrals_we l_Jsed the strong tjg| variation of G. There is only one situation where this
Coulomb singularity that is contained in the free spaceargument does not apply and this is when the distance of one
Green’s fUﬂCtiOﬂS{??}ee andG{,.,.- of the wires to a cavity wall is of the order or smaller than

the wire distancel. In this case there can be a dominant
o > ) Coulomb interaction with the cavity wall (that is, with the
used the exp,I|C|t ma}the?atlcal e>f<\pressmn for the freemirrored wires) which is embedded @& since Gyree does
space Green'’s function; ., and G .- not take into account scattering contributions from the cavity

Within a cavity the Green’s functions can always be writ- walls. Then the spatial variation @ might becomg Iqrge

nd one would need to actually calculate the derivatives of

ten as a sum of a free space part and a boundary part whic e : S )
takes into account the effect of the cavity walls, éq (63) for the specific conﬂguratlon in order to see if they
still lead to only small corrections.

3. To calculate the per-unit-length parametémandC’ we

Geav= Giree + G . (48) 2. We need to reconsider the approximatiof?) @nd @3)
with

We now state that the steps 1.-3. can approximately be 5 ) ) )

performed within a cavity: G4 (z,7) = 2(Gl(z1, 7)) — Glalz1. 25)) (54)

1. The decoupling of antenna and transmission IineGi‘TL (z,7) = Z(Géavu(zl’ ) - Géasz(Zl’ Zé)) . (55)

; E
mode requires the kerneIsG+TL(zl,z2,z’1,z’2) and

GEA(ZL 2, 1/1’ Z/z) to vanish. From the relations24) The approximations4@) and @3) are valid since the differ-
and @5), and Fig.3 with d = y1 — y it follows that it is  ences of the fornG (z1, z}) — G(z1, z5) approximately can-

meaningful to consider the Taylor expansions cel if |z — 2’| is much larger than the separatiénThe sharp
. peak OfG‘fTL(z, 7)) andG4; (z, 7)) atz=7is due to the
GE(z1,25) ~ GE (21,2 — %ﬁ'z(m, 2)d (49) factthat forz — 2’ we have, withp <« d,
= A aGE 1 /1 1
GE(z1,25) ~ GE (20, 2) + (22, 25)d G0 6% () =G ()~ o (; — E) >1. (56)
~E 'N ~ E i 3@_{% /
Gz(22,2) ~ G (22, 25) + 9y (22, 2)d (51) This feature is unaffected by the presence of the cavity. Rota-
~ ~ ~E . - . =~ . .
GE (22, 2) ~ GE (z1. 7)) — & AL 52 tional contributions ofG to G¢ay Will approximately cancel
(22 21) (e 2y) — 5y an ) ®2) within the differences4) and 65), and Coulomb interac-
since then tions with the cavity walls will not significantly change the
B _ property 66).
Giq (21,22, 74, 2) = GEp(z1, 22, 24, 25) 3. The electrostatic calculation that led to the values of the
~E 3GE per-unit-length parameterd7) and @6) consists of the eval-
~ ( 5 (21, 21) + 5 < (22, z&)) d. (53) uationofthe integralf_Lﬁ2 G%4\ (z, 7/) dZ'. Within a cavity
4 Y these parameters will significantly change only if one or both

of the wires is close to a cavity wall such that the Coulomb
function are small the keme"GJIiTL (21.72. 2. 25) and field in the vicinity of the transmission lines is.significantly

E ., perturbed by the presence of the cavity. In this case the pa-
GZa(21, 22, 23, 25) are small as well and, as a result, an- o077 " have to be calculated from an electrostatic
tenna and tran§m|SS|_on line T“Od? approxmately decouF)lec:alculation which takes into account the cavity wall.
For a general discussion of this point one might represent the
cavities Green'’s functiol .5y by means of an expansion in
rotational and irrotational eigenvector&a(, 1994). 6 Conclusions

The rotational eigenvectors are solutions of sourceless
Helmholtz equations and their spatial variation is of the or- Conventional transmission line is applicable not only in free
der of the wavelength considered. Then the contributionsspace but also within a cavity. The dynamical (rotational)
of these rotational eigenvectors to the first order terms inelectromagnetic fields within the cavity will mainly couple
Egs. 49)—-(52) will be of the order ofkd. Thus, according to the antenna mode current which approximately is decou-
to the usual assumptidr/ <« 1 of conventional transmission pled from the transmission line mode. In particular, reso-
line theory, these contributions will be small. nances of the cavity will strongly interact with the antenna

If the terms involving the derivative of the Green's
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