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ON ELLIPTIC PROBLEMS
WITH A NONLINEARITY

DEPENDING ON THE GRADIENT

Abstract. We investigate the solvability of the Neumann problem (1.1) involving the non-
linearity depending on the gradient. We prove the existence of a solution when the right
hand side f of the equation belongs to Lm(Ω) with 1 ≤ m < 2.
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1. INTRODUCTION

In this paper we investigate the solvability of the nonlinear Neumann problem with
a nonlinearity depending on the gradient. First we consider the following problem−∆u+ |∇u|q + λu = f(x) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.1)

where λ > 0 is a parameter, 1 ≤ q ≤ 2 and Ω ⊂ RN , N ≥ 3, is a bounded domain with
a smooth boundary ∂Ω. It is assumed that f ∈ L1(Ω). If f > 0 on Ω, then solutions,
if they exist, are positive. In Section 3 we consider problem (1.1) with |∇u|q replaced
by a nonlinearity satisfying a sign condition. The boundary value problems with
data in L1 has been studied quite extensively in recent years. The Dirichlet problem
with a nonlinearity depending only on u has been considered in papers [7, 10]. Some
extensions to the Neumann problem can be found in paper [12]. These results has
been extended to the case where a nonlinearity depends on the gradient. In particular,
more general elliptic operators with more general nonlinearities with f ∈ L1(Ω) or
being a Radon measure have been investigated in [3–6,11]. Further extensions to the
Dirichlet problem with L2 boundary data can be found in [11]. We refer to paper [2] for
the bibliographical references. It seems that less is known for the Neumann problem.
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By W 1,p(Ω), 1 ≤ p <∞, we denote the Sobolev space equipped with norm

‖u‖pW 1,p =
∫
Ω

(
|∇u|p + |u|p

)
dx.

Throughout this paper, in a given Banach space X, we denote strong convergence
by “→” and weak convergence by “⇀”. The norms in the Lebesgue spaces Lp(Ω),
1 ≤ p <∞, are denoted by ‖ · ‖Lp .

The paper is organized as follows. In Section 2 we prove the existence of positive
solutions of (1.1) assuming that f is positive and belongs to L1(Ω). Section 3 is
devoted to the problem with a nonlinearity satisfying a sign condition, where we do
not assume that f is positive. The crucial point in our approach are estimates of
W 1,q - norm of solutions of (1.1) in terms of Lm – norm of f (see Lemmas 2.1, 3.1,
3.3). The estimates in terms of Lm norm of f (see Lemmas 3.1, 3.3) in a linear case
were given in [8] and are extended in this paper to solutions of (1.1). In these two
lemmas the important assumption is that q 6= N

N−1 , which is due to the use of special
test functions in the proofs. We were unable to show whether these lemmas continue
to hold for q = N

N−1 . In Section 4 we establish the higher integrability property for
positive solutions of (1.1).

The main results of this paper are Theorems 2.2, 3.2, 3.4. In the proofs we use
some ideas from paper [4].

2. EXISTENCE OF POSITIVE SOLUTIONS

In this section consider problem (1.1) assuming that f > 0 on Ω. Then a solution, if
it exists, is positive on Ω. We need the following definition of a solution of (1.1): let
f ∈ L1(Ω), then a function u ∈W 1,q(Ω) is a solution of (1.1) if∫

Ω

∇u∇v dx+
∫
Ω

|∇u|qv dx+ λ

∫
Ω

uv dx =
∫
Ω

fv dx (2.1)

for every function v ∈W 1,∞(Ω).

Lemma 2.1. Let 1 ≤ q ≤ 2 and f ∈ L∞(Ω) with f > 0 on Ω. If u ∈ W 1,2(Ω) is
a positive solution of (1.1), then∫

Ω

(
|∇u|q + uq

)
dx ≤ C1

∫
Ω

f dx+ C2

(∫
Ω

f dx

)q
, (2.2)

where C1, C2 > 0 are constants independent of u and f .

Proof. Testing (2.1) with the constant function 1 we get∫
Ω

|∇u|q dx+ λ

∫
Ω

u dx =
∫
Ω

f dx. (2.3)
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It is clear that equality (2.3) yields (2.2) if q = 1. To proceed further we use a de-
composition W 1,2(Ω) = V ⊕ span 1, where

V = {v ∈W 1,2(Ω);
∫
Ω

v dx = 0}.

Then u = v+ t, with v ∈ V and t = 1
|Ω|
∫

Ω
u dx > 0, because u is positive. From (2.3)

we deduce
t ≤ 1

λ|Ω|

∫
Ω

f dx. (2.4)

We now observe that the Poincaré inequality is valid in V , that is, there exists a con-
stant C(Ω) > 0 such that ∫

Ω

|v|q dx ≤ C(Ω)
∫
Ω

|∇v|q dx

for every v ∈ V . Consequently, using (2.4), we can estimate the norm of u in W 1,q(Ω)
as follows∫

Ω

(
|∇u|q + uq

)
dx ≤

∫
Ω

|∇v|q dx+ 2q−1

∫
Ω

(
vq + tq

)
dx ≤

≤
∫
Ω

|∇v|q dx+ 2q−1C(Ω)
∫
Ω

|∇v|q dx+ 2q−1|Ω|tq.

This combined with (2.4) and (2.3) implies (2.2).

We are now in a position to formulate the first existence result.

Theorem 2.2. Let 1 ≤ q ≤ 2 and f be a positive function in L1(Ω). Then problem
(1.1) admits a positive solution in W 1,q(Ω).

Proof. The proof will be given in 2 steps.
Step 1. Assume f ∈ L∞(Ω). Consider the problem

−∆u+ λu = f(x) in Ω,
∂u

∂ν
= 0 on ∂Ω,

u > 0 on Ω.

(2.5)

This problem has a unique positive solution v ∈ W 1,2(Ω) ∩ L∞(Ω) (see [1]). We
now use some ideas from papers [5] and [6]. For each n ∈ N we consider the following
problem 

−∆wn +
|∇wn|q

1 + 1
n |∇wn|q

+ λwn = f(x) in Ω,

∂wn
∂ν

= 0 on ∂Ω,

wn > 0 on Ω.

(2.6)
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It is clear that v is a super-solution to problem (2.6) and 0 is a sub-solution. Thus
problem (2.6) admits a solution 0 ≤ wn ≤ v. This fact is known for equation (2.6)
with the Dirichlet boundary conditions (see [5]). The result from [5] can be easily
extended to the Neumann problem (2.6). The sequence {wn} is uniformly bounded
in L∞(Ω). Testing (2.6) with wn we obtain∫

Ω

(
|∇wn|2 + λw2

n

)
dx ≤ ‖f‖L2‖wn‖L2 ,

which shows that the sequence {wn} is bounded in W 1,2(Ω). We may assume that
wn ⇀ w in W 1,2(Ω), wn → w in L2(Ω) and wn → w a.e. on Ω. We now show that
wn → w in W 1,2(Ω). We put φ(s) = s exp( s

2

4 ) for s ∈ R. We introduce notation
Hn(s) = |s|q

1+ 1
n |s|q

. The function φ satisfies φ′(s)− |φ(s)| ≥ 1
2 for s ∈ R. Testing (2.6)

with φ(wn − w) we obtain∫
Ω

∇wnφ′(wn − w)∇(wn − w) dx+
∫
Ω

Hn(|∇wn|)φ(wn − w) dx+

+ λ

∫
Ω

wnφ(wn − w) dx =
∫
Ω

f(x)φ(wn − w) dx.
(2.7)

It is easy to check that∫
Ω

∇wnφ′(wn − w)∇(wn − w) dx =
∫
Ω

|∇(wn − w)|2φ′(wn − w) dx+ o(1). (2.8)

To estimate the second term on the left side of (2.7) we use the inequality: if 1 ≤ q < 2,
then for every ε > 0 there exists Cε > 0 such that

sq ≤ εs2 + Cε for every s ≥ 0. (2.9)

We then have∫
Ω

Hn(|∇wn|)|φ(wn − w)| dx ≤ ε
∫
Ω

|∇wn|2|φ(wn − w)| dx+ Cε

∫
Ω

|φ(wn − w)| dx =

= ε

∫
Ω

|∇(wn − w)|2|φ(wn − w)| dx−

− ε
∫
Ω

|∇w|2|φ(wn − w)| dx+

+ 2ε
∫
Ω

∇wn∇w|φ(wn − w)| dx+

+ Cε

∫
Ω

|φ(wn − w)| dx.

(2.10)
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Since ∫
Ω

|∇w|2|φ(wn − w)| dx→ 0,
∫
Ω

∇wn∇w|φ(wn − w)| dx→ 0

and ∫
Ω

|φ(wn − w)| dx→ 0

as n→∞, we derive from (2.10) that∫
Ω

Hn(|∇wn|)|φ(wn − w)| dx ≤ ε
∫
Ω

|∇wn −∇w|2|φ(wn − w)| dx+ o(1). (2.11)

If q = 2, then instead of (2.10) we have∫
Ω

Hn(|∇wn|)|φ(wn − w)| dx ≤
∫
Ω

|∇wn|2φ(wn − w) dx

and (2.11) holds with ε = 1. We also have∫
Ω

f(x)φ(wn − w) dx→ 0 and
∫

Ω

wnφ(wn − w) dx→ 0 (2.12)

as n→∞. If 1 ≤ q < 2 we derive from (2.7), (2.8), (2.11) and (2.12) that

1
2

∫
Ω

|∇(wn − w)|2 dx ≤
∫
Ω

(
φ′(wn − w)− ε|φ(wn − w)|

)
|∇(wn − w)|2 dx = o(1).

Thus wn → w in W 1,2(Ω). If q = 2, the above inequality continues to hold with ε = 1.
In this case we also have that wn → w in W 1,2(Ω). Since 1 ≤ q ≤ 2, ∇wn → ∇w in
Lq(Ω). For each φ ∈W 1,2(Ω) ∩ L∞(Ω) and for each n we have∫

Ω

∇wn∇φdx+
∫
Ω

|∇wn|q

1 + 1
n |∇wn|q

φdx+ λ

∫
Ω

wnφdx =
∫
Ω

fφ dx.

Letting n→∞ we get∫
Ω

∇w∇φdx+
∫
Ω

|∇w|qφdx+ λ

∫
Ω

wφdx =
∫
Ω

fφ dx.

So w ∈W 1,2(Ω) ∩ L∞(Ω) is a weak solution of (1.1).
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Step 2. First we consider the case 1 ≤ q < 2. Let f ∈ L1(Ω) and let {fn} ⊂ L∞(Ω)
such that fn → f in L1(Ω). By Step 1 for each n ∈ N there exists a solution
un ∈ W 1,2(Ω) ∩ L∞(Ω) to problem (1.1) with f = fn. For each k > 1 we put
Tk(s) = min(s, k) for 0 ≤ s. Taking Tkun as a test function in (1.1) we get∫

Ω

|∇Tkun|2 dx+ λ

∫
Ω

|Tkun|2 dx ≤
∫
Ω

fnTkun dx ≤ k‖fn‖L1 .

Consequently, {Tkun} is bounded in W 1,2(Ω). By Lemma 2.1 we may assume that
un ⇀ u in W 1,q(Ω). We may also assume that Tkun ⇀ Tku in W 1,2(Ω) and Tkun →
Tku in L2(Ω). Let Gk(s) = s− Tk(s) and put ψk−1(s) = T1(Gk−1(s)). Thus

ψk−1(un)|∇un|q ≥ |∇un|qχ(un>k).

Using ψk−1(un) as a test function in (2.1) (with f = fn) we get∫
Ω

|∇ψk−1(un)|2 dx+
∫
Ω

ψk−1(un)|∇un|q dx+λ
∫
Ω

unψk−1(un) dx =
∫
Ω

fnψk−1(un) dx.

Since {un} is bounded in Lp(Ω) for each p ≤ q∗ = Nq
N−q we see that

|{x ∈ Ω; k − 1 < un(x) < k}| → 0 and |{x ∈ Ω; k < un(x)}| → 0

as k →∞ uniformly in n. So

lim
k→∞

∫
un>k

|∇un|q dx = 0 (2.13)

uniformly in n. Using as a test function φ(Tkun − Tku) and repeating the argument
from Step 1 we show that Tkun → Tku in W 1,2(Ω). We now use this to show that
the sequence {|∇un|q} is equi-integrable. This follows from (2.13) and the following
inequality: for every measurable subset E ⊂ Ω we have∫

E

|∇un|q dx ≤
∫
E

|∇Tkun|q dx+
∫

(un≥k)∩E

|∇un|q dx.

Indeed, given ε > 0, according to (2.13), we can find k large enough such that∫
un≥k

|∇un|q dx <
ε

2

for all n. Since ∇Tk(un)→ Tk(u) in L2(Ω) there exists δ > 0 such that∫
E

|∇Tk(un)|q dx < ε

2

provided |E| ≤ δ and for all n. By Vitali’s theorem ∇un → ∇u in Lq(Ω). Thus u is
a weak solution of (1.1). If q = 2, then by Lemma 2.1 the sequence {un} is bounded
in W 1,2(Ω). An obvious modification of Step 2 completes the proof.



On elliptic problems with a nonlinearity depending on the gradient 383

3. NONLINEARITY WITH A SIGN CONDITION

In this section we discuss the solvability of the following problem

−∆u+ g(x, u,∇u) + λu = f(x) in Ω,
∂u

∂ν
= 0 on ∂Ω.

(3.1)

We assume that the nonlinearity g : Ω×R×RN → R is a Carathéodory function, that
is, g(·, s, ξ) is measurable on Ω for every (s, ξ) ∈ R × RN and g(x, ·, ·) is continuous
on R× RN for a.e. x ∈ Ω. Moreover, we assume that

(g1) there exist an increasing and continuous function b : [0,∞)→ [0,∞) with b(0) = 0
and a positive function a ∈ L1(Ω) such that

|g(x, s, ξ)| ≤ b(|s|)
(
|ξ|q + a(x)

)
for a.e. x ∈ Ω and for every (s, ξ) ∈ R× RN .

(g2) g(x, s, ξ) sgn s ≥ 0 for a.e. x ∈ Ω and for every (s, ξ) ∈ R× RN .

A typical example of a nonlinearity satisfying (g1) and (g2) is g(x, s, ξ) = s|ξ|q.
We now consider equation (3.1) without assumption that f is positive on Ω. Ob-

viously, it is assumed that f 6≡ 0 on Ω. We assume that N
N−1 < q < 2. Then there

exists 1 < m < 2N
N+q such that q = m∗ = Nm

N−m . In this case m is given by m = Nq
N+q .

We also use notation q∗ = Nq
N−q . With these notations we establish the estimates of

norms ‖u‖Lq∗ and ‖u‖W 1,q of a solution u of (1.1) in terms of the norm ‖f‖Lm .

Lemma 3.1. Let f ∈ L∞(Ω) and N
N−1 < q < 2. If u ∈W 1,2(Ω)∩L∞(Ω) is a solution

of (3.1), then

∫
Ω

|u|q
∗
dx ≤ C1

(∫
Ω

(
|∇u|q + |u|q

)
dx

) q∗
q

≤

≤ C2‖f‖
q∗
2
Lm

(∫
Ω

|u|q
∗
dx

) (1−r)
2
(∫

Ω

(
1 + u2

) q∗
2 dx

) r
2

,

(3.2)

where r = N(2−q)
N−q and C1 > 0 and C2 > 0 are constants independent of u and f .
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Proof. We follow some ideas from [8], where the same estimate was proved for the
linear problem. Put ϕ(x) = u(

1+u2
) r

2
. Since N

N−1 < q < 2, we have 0 < r < 1. Since

u ∈ L∞(Ω), ϕ is a legitimate test function. Upon the substitution we obtain

(1− r)
∫
Ω

|∇u|2(
1 + u2

) r
2
dx+ λ

∫
Ω

u2(
1 + u2

) r
2
dx ≤

∫
Ω

|fu|(
1 + u2

) r
2
dx ≤

≤ ‖f‖Lm

(∫
Ω

|u|(1−r)m
′
dx

) 1
m′

,

(3.3)

where m′ = m
m−1 . Here we used the fact that∫

Ω

ug(x, u,∇u)(
1 + u2

) r
2

dx ≥ 0

due to assumption (g2). In what follows we denote by C > 0 a constant which is
independent of u and f and may vary from line to line. By the Sobolev inequality we
have(∫

Ω

|u|q
∗
dx

) q
q∗

≤ C
∫
Ω

(
|∇u|q + |u|q

)
dx =

= C

∫
Ω

|∇u|q(
1 + u2

) rq
4

(
1 + u2

) rq
4 dx+

+ C

∫
Ω

|u|q(
1 + u2

) rq
4

(
1 + u2

) rq
4 dx ≤

≤ C
(∫

Ω

|∇u|2(
1 + u2

) r
2
dx

) q
2
(∫

Ω

(
1 + u2

) rq
2(2−q) dx

) 2−q
2

+

+ C

(∫
Ω

u2(
1 + u2

) r
2
dx

) q
2
(∫

Ω

(
1 + u2

) rq
2(2−q) dx

) 2−q
2

.

(3.4)

Inserting (3.3) into (3.4) we derive

(∫
Ω

|u|q
∗
dx

) q
q∗

≤ C
∫
Ω

(
|∇u|q + |u|q

)
dx ≤

≤ C‖f‖
q
2
Lm

(∫
Ω

|u|(1−r)m
′
dx

) q
2m′
(∫

Ω

(
1 + u2

) rq
2(2−q) dx

) 2−q
2

.
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Since r = N(2−q)
N−q , we have rq

2−q = q∗ and (1 − r)m′ = q∗. Therefore the above
inequality becomes∫

Ω

|u|q
∗
dx ≤ C

(∫
Ω

(
|∇u|q + |u|q

)
dx

) q∗
q

≤

≤ C‖f‖
q∗
2
Lm

(∫
Ω

|u|q
∗
dx

) q∗
2m′
(∫

Ω

(
1 + u2

) q∗
2 dx

) (2−q)q∗
2q

.

Since q∗

2m′ = 1−r
2 and (2−q)q∗

2q = r
2 , the result follows.

We are now in a position to formulate the second existence result.

Theorem 3.2. Let N
N−1 < q < 2 and f ∈ Lm(Ω) with m = Nq

N+q . Suppose that
assumptions (g1) and (g2) hold. Then problem (1.1) admits a solution in W 1,q(Ω).

Proof. The proof is similar to that of Theorem 2.2 except some technical modifica-
tions. First we assume that f ∈ L∞(Ω). For every n ∈ N we put

gn(x, s, ξ) =
g(x, s, ξ)

1 + 1
n |g(x, s, ξ)|

and consider the following problem−∆u+ gn(x, u,∇u) + λu = f(x) in Ω,
∂u

∂ν
= 0 on ∂Ω.

(3.5)

Then the functions v1 = ‖f‖∞
λ and v2 = −‖f‖∞λ are a super-solution and a sub-solution

to problem (3.5), respectively. For every n problem (3.5) has a solution wn satisfying
v1 ≤ wn ≤ v2 on Ω. Hence the sequence {wn} is bounded in L∞(Ω), that is, ‖wn‖∞ ≤
M for some constant M > 0 and for all n ∈ N. Testing (3.5) with wn we show that
{wn} is bounded in W 1,2(Ω). So we may assume that wn ⇀ w in W 1,2(Ω), wn → w
in L2(Ω) and wn → w a.e. on Ω. Let φ be a function introduced in the proof of
Theorem 2.2. Testing (3.5) with φ(wn − w) we obtain∫

Ω

∇wnφ′(wn − w)∇(wn − w) dx+
∫
Ω

gn(x,wn,∇wn)φ(wn − w) dx+

+ λ

∫
Ω

wnφ(wn − w) dx =
∫
Ω

f(x)φ(wn − w) dx.

(3.6)

It is clear that∫
Ω

∇wnφ′(wn − w)∇(wn − w) dx =
∫
Ω

|∇(wn − w)|2φ′(wn − w) dx+ o(1). (3.7)
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We use inequality (2.9) and assumption (g1) to estimate the second integral on the
left side of (3.6)∫

Ω

|gnφ(wn − w)| dx ≤ b(M)
∫
Ω

|∇wn|q|φ(wn − w)| dx+
∫
Ω

a(x)|φ(wn − w)| dx ≤

≤ b(M)ε
∫
Ω

|∇wn|2|φ(wn − w)| dx+ Cε

∫
Ω

|φ(wn − w)| dx+

+
∫
Ω

a(x)|φ(wn − w)| dx.

Since φ(wn−w)→ 0 a.e. on Ω and supn |φ(wn−w)| <∞ by the Lebesgue dominated
convergence theorem we get∫

Ω

|gnφ(wn − w)| dx ≤ b(M)ε
∫
Ω

|∇wn|2|φ(wn − w)| dx+ o(1).

As in the proof of Theorem 2.2 we deduce from this that∫
Ω

|gnφ(wn − w)| dx ≤ b(M)ε
∫
Ω

|∇wn −∇w|2|φ(wn − w)| dx+ o(1). (3.8)

Taking εb(M) ≤ 1 we deduce from (3.6), (3.7) and (3.8) that∫
Ω

|∇wn −∇w|2 dx ≤
∫
Ω

(
φ′(wn − w)− εb(M)|φ(wn − w)|

)
|∇wn −∇w|2 dx = o(1).

Thus wn → w in W 1,2(Ω). It is clear that w is a solution of (3.1). In the final step we
choose a sequence {fn} ⊂ L∞(Ω) such that fn → f in Lm(Ω). Then for every n ∈ N
problem (3.1) with f = fn admits a solution un ∈W 1,2(Ω) ∩ L∞(Ω). We now define
a sequence of truncations {Tk(un)} for every k > 0, where Tk = max(−k,min(s, k)).
Let Gk(s) = s− Tk(s) and put ψk−1(s) = T1(Gk−1(s)). Thus

ψk−1(un)|∇un|2 ≥ |∇un|2χ|un|≥k.

As in the proof of Theorem 2.2 we show that the sequence {Tk(un)} is bounded in
W 1,2(Ω). Hence we can assume that Tk(un) ⇀ Tku in W 1,2(Ω), Tk(un) → Tku in
L2(Ω) and Tk(un) → Tk(u) a.e. on Ω. By Lemma 3.1 we may also assume that
un ⇀ u in W 1,q(Ω). Using as a test function ψk−1(un) we show that ∇un → ∇u in
Lq(Ω) and u is a weak solution of (3.1).



On elliptic problems with a nonlinearity depending on the gradient 387

We now turn our attention to positive solutions of (3.1). If f > 0 on Ω, then a
solution obtained in Theorem 4.3 is positive. In this case we can also consider the
interval 1 ≤ q < N

N−1 . We commence with an apriori estimate.

Lemma 3.3. Suppose that 1 ≤ q < N
N−1 , f > 0 on Ω and f ∈ L∞(Ω). If u ∈

W 1,2(Ω) ∩ L∞(Ω) is a positive solution of problem (3.1), then

∫
Ω

uq
∗
dx ≤ C1

(∫
Ω

(
|∇u|q + uq

)
dx

) q∗
q

≤

≤ C2

(∫
Ω

(1 + u)q
∗
dx

) (2−q)q∗
2q

(
‖f‖

q∗
2
L1 + ‖f‖

(2−r)q∗
2

L1

)

where C1, C2 > 0 are constants independent of f and u and r = N(2−q)
N−q .

Proof. The proof is a modification of the argument used in the proof of Lemma 2.5
in [8]. We take as a test function φ(x) = (1 + u)1−r. Since q < N

N−1 , we have r > 1.
Also r < 2 because N ≥ 3. Hence φ(x) ≤ 1 on Ω and upon a substitution we obtain

(r − 1)
∫
Ω

|∇u|2

(1 + u)r
dx =

∫
Ω

g(x, u,∇u)(1 + u)1−rdx+

+ λ

∫
Ω

u(1 + u)1−rdx−

−
∫
Ω

f(1 + u)1−rdx ≤

≤
∫
Ω

g(x, u,∇u)dx+ λ

∫
Ω

u dx.

(3.9)

Testing equation (3.1) with a constant function 1 we obtain

∫
Ω

g(x, u,∇u) dx+ λ

∫
Ω

u dx =
∫
Ω

f dx. (3.10)

From (3.9) and (3.10) we derive

∫
Ω

|∇u|2

(1 + u)r
dx ≤ 1

r − 1

∫
Ω

f dx and
∫
Ω

u dx ≤ 1
λ

∫
Ω

f dx. (3.11)
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By the Sobolev inequality we obtain(∫
Ω

uq
∗
dx

) q
q∗

≤ C
∫
Ω

(
|∇u|q + uq

)
dx =

= C

∫
Ω

|∇u|q

(1 + u)
rq
2

(1 + u)
rq
2 dx+ C

∫
Ω

uq

(1 + u)
rq
2

(1 + u)
rq
2 dx ≤

≤ C
(∫

Ω

|∇u|2

(1 + u)r
dx

) q
2
(∫

Ω

(1 + u)
rq

2−q dx

) 2−q
2

+

+ C

(∫
Ω

u2

(1 + u)r
dx

) q
2
(∫

Ω

(1 + u)
rq

2−q dx

) 2−q
2

≤

≤ C
(∫

Ω

|∇u|2

(1 + u)r
dx

) q
2
(∫

Ω

(1 + u)
rq

2−q dx

) 2−q
2

+

+ C

(∫
Ω

u2−r dx

) q
2
(∫

Ω

(1 + u)
rq

2−q dx

) 2−q
2

≤

≤ C
(∫

Ω

|∇u|2

(1 + u)r
dx

) q
2
(∫

Ω

(1 + u)
rq

2−q dx

) 2−q
2

+

+ C|Ω|
q(r−1)

2

(∫
Ω

|u| dx
) (2−r)q

2
(∫

Ω

(1 + u)
rq

2−q dx

) 2−q
2

.

We now observe that q∗ = rq
2−q . Hence combining the above estimate with (3.11) the

result follows.

It is clear that Lemma 3.3 leads to the following existence result.

Theorem 3.4. Suppose that 1 ≤ q < N
N−1 , f > 0 on Ω and f ∈ L1(Ω). The problem

(3.1) has a positive solution u ∈W 1,q(Ω).

4. HIGHER INTEGRABILITY PROPERTY FOR SOLUTIONS OF (1.1)

The method used in the proof of Lemma 2.1 allows only to estimate the norm W 1,q

of a positive solution, where q is the exponent appearing in the equation. In the
case 1 ≤ q < 2, a question arises whether a solution to (1.1) belongs to W 1,q̄(Ω)
with q < q̄. We distinguish two cases: (i) 1 ≤ q < N

N−1 and (ii) N
N−1 < q < 2. In

the case (i) assuming that f ∈ L1(Ω) we show that a solution belongs to W 1,q̄(Ω) or
every q < q̄ < N

N−1 . In the case (ii) we show that a solution belongs W 1,q̄(Ω) for some
q < q̄ < 2 under some additional assumption on f . According to Step 1 of the proof of
Theorem 2.2, if f ∈ L∞(Ω), then problem (1.1) has a solution u ∈W 1,2(Ω)∩L∞(Ω).
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Lemma 4.1. Suppose that f > 0 on Ω, f ∈ L∞(Ω) and 1 ≤ q < q̄ < N
N−1 .

If u ∈W 1,2(Ω) ∩ L∞(Ω) is a positive solution of (1.1), then there exist constants
C1, C2 > 0, independent of u and f such that

∫
Ω

uq̄
∗
dx ≤ C1

(∫
Ω

(
|∇u|q̄ + uq̄

)
dx

) q̄∗
q̄

≤

≤ C2

(∫
Ω

(
1 + uq̄

∗)
dx

) (2−q̄)q̄∗
2q̄

(
‖f‖

q̄∗
2
L1 + ‖f‖

(2−r̄)q̄∗
2

L1

)
,

where r̄ = N(2−q̄)
N−q̄ and q̄∗ = Nq̄

N−q̄ .

Proof. As in the proof of Lemma 3.3 we take as a test function φ(x) = (1 + u)1−r̄.
Since q̄ < N

N−1 , we have r̄ > 1. Also r̄ < 2 because N ≥ 3. Hence φ(x) ≤ 1 on Ω and
upon a substitution we obtain

(r̄ − 1)
∫
Ω

|∇u|2

(1 + u)r̄
dx =

∫
Ω

|∇u|q(1 + u)1−r̄ dx+ λ

∫
Ω

u(1 + u)1−r̄ dx−

−
∫
Ω

f(1 + u)1−r̄ dx ≤
∫
Ω

|∇u|q dx+ λ

∫
Ω

u dx.

(4.1)

Testing (1.1) with a constant function 1 we obtain∫
Ω

|∇u|q + λ

∫
Ω

u dx =
∫
Ω

f dx. (4.2)

By the Sobolev inequality we obtain

(∫
Ω

uq̄
∗
dx

) q̄
q̄∗

≤ C
∫
Ω

(
|∇u|q̄ + uq̄

)
dx =

= C

∫
Ω

|∇u|q̄

(1 + u)
r̄q̄
2

(1 + u)
r̄q̄
2 dx+ C

∫
Ω

uq̄

(1 + u)
r̄q̄
2

(1 + u)
r̄q̄
2 dx ≤

≤ C
(∫

Ω

|∇u|2

(1 + u)r̄
dx

) q̄
2
(∫

Ω

(1 + u)
r̄q̄

2−q̄ dx

) 2−q̄
2

+

+ C

(∫
Ω

u2

(1 + u)r̄
dx

) q̄
2
(∫

Ω

(1 + u)
r̄q̄

2−q̄ dx

) 2−q̄
2

.
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Combining the above inequality with (4.1) and (4.2) we obtain(∫
Ω

uq̄
∗
dx

) q̄
q̄∗

≤ C
∫
Ω

(
|∇u|q̄ + uq̄

)
dx ≤

≤ C
(∫

Ω

f dx

) q̄
2
(∫

Ω

(
1 + u

)q̄∗
dx

) 2−q̄
2

+

+ C

(∫
Ω

(
1 + u

)q̄∗
dx

) 2−q̄
2
(∫

Ω

u2−r̄ dx

) q̄
2

≤

≤ C
(∫

Ω

(
1 + u

)q̄∗
dx

) 2−q̄
2 [
‖f‖

q̄
2
L1 + ‖f‖(2−r̄)

q̄
2

L1

]
.

This yields the desired estimate.

Lemma 4.2. Let f > 0 on Ω, f ∈ L∞(Ω) and N
N−1 < q < q̄ < 2. If u ∈ W 1,2(Ω) ∩

L∞(Ω) is a positive solution of (1.1), then∫
Ω

uq̄
∗
dx ≤ C1

(∫
Ω

(
|∇u|q̄ + uq̄

)
dx

) q̄∗
q̄

≤

≤ C2‖f‖
q̄∗
2
Lm̄

(∫
Ω

uq̄
∗
dx

) 1−r̄
2
(∫

Ω

(
1 + u2

) q̄∗
2 dx

) r̄
2

,

where C1, C2 > 0 are positive constants independent of u and f , and r̄ = N(2−q̄)
N−q̄ ,

m̄ = Nq̄
N+q̄ .

The proof is similar to that of Lemma 3.1 and is omitted.
These two lemmas yield the following result.

Theorem 4.3. Suppose that f > 0 on Ω.

(i) If f ∈ L1(Ω) and 1 ≤ q < N
N−1 , then problem (1.1) has a solution that belongs

to W 1,q̄(Ω) for every q ≤ q̄ < N
N−1 .

(ii) If f ∈ Lm̄(Ω) with m̄ = Nq̄
N+q̄ ,

N
N−1 ≤ q < q̄ < 2, then problem (1.1) has a

solution belonging to W 1,q̄(Ω).

Higher integrability property can also be established to solutions of problem (3.1).
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équations quasi-linéaires, Portugaliae Math. 41 (1982), 507–534.

[7] H. Brezis, W.A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math.
Soc. Japan 25 (1973) 4, 565–590.

[8] J. Chabrowski, On the Neumann problem with L1 data, Coll. Math. 107 (2007) 2,
301–316.

[9] J. Chabrowski, On the existence of solutions of the Dirichlet problem for nonlinear
elliptic equations, Rend. Circ. Mat. Palermo 37 (1988), 65–87.

[10] T. Gallouët, J.M. Morel, On some linear problems in L1, Bollettino U.M.I. (6) 4-A
(1985), 123–131.

[11] Sergio Seguria de León, Existence and uniqueness for L1 data of some elliptic equations
with natural growth, Advances in Diff. Equations 8 (2003) 11, 1377–1408.

[12] J.R. Ward Jr, Perturbations with some superlinear growth for a class of second order
elliptic boundary value problems, Nonlin. Anal. TMA 6 (1982) 4, 367–374.

Jan Chabrowski
jhc@maths.uq.edu.au

University of Queensland
Department of Mathematics
St. Lucia 4072, Qld, Australia

Received: July 29, 2009.
Accepted: August 17, 2009.


