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Correspondence to:C. Lanni (cristiano.lanni@gmail.com)

Received: 8 March 2012 – Published in Hydrol. Earth Syst. Sci. Discuss.: 28 March 2012
Revised: 28 August 2012 – Accepted: 4 September 2012 – Published: 2 November 2012

Abstract. Topographic index-based hydrological models
have gained wide use to describe the hydrological control
on the triggering of rainfall-induced shallow landslides at the
catchment scale. A common assumption in these models is
that a spatially continuous water table occurs simultaneously
across the catchment. However, during a rainfall event iso-
lated patches of subsurface saturation form above an imped-
ing layer and their hydrological connectivity is a necessary
condition for lateral flow initiation at a point on the hillslope.

Here, a new hydrological model is presented, which al-
lows us to account for the concept of hydrological connec-
tivity while keeping the simplicity of the topographic index
approach. A dynamic topographic index is used to describe
the transient lateral flow that is established at a hillslope el-
ement when the rainfall amount exceeds a threshold value
allowing for (a) development of a perched water table above
an impeding layer, and (b) hydrological connectivity between
the hillslope element and its own upslope contributing area.
A spatially variable soil depth is the main control of hydro-
logical connectivity in the model. The hydrological model
is coupled with the infinite slope stability model and with a
scaling model for the rainfall frequency–duration relation-
ship to determine the return period of the critical rainfall
needed to cause instability on three catchments located in the
Italian Alps, where a survey of soil depth spatial distribution
is available. The model is compared with a quasi-dynamic
model in which the dynamic nature of the hydrological con-
nectivity is neglected. The results show a better performance
of the new model in predicting observed shallow landslides,
implying that soil depth spatial variability and connectivity
bear a significant control on shallow landsliding.

1 Introduction

Effective management of the hazard associated with shal-
low landsliding requires information on both the location of
potentially unstable hillslopes and the conditions that cause
slope instability. The need for spatial assessment of land-
slide hazard, along with the widespread use of Geographical
Information Systems (GISs), has led to the proliferation of
mathematical, GIS-based models (e.g. Montgomery and Di-
etrich, 1994; Pack et al., 1998; Borga et al., 2002a; Tarolli
and Tarboton, 2006; Baum et al., 2008) that can be applied
over broad regions to assist forecasting, planning, and risk
mitigation. Such models couple a hydrologic model, for the
analysis of the pore-water pressure regime, with an infinite
slope stability model, for the computation of the factor of
safety (i.e. the ratio of retaining to driving forces within the
slope) at each point of a landscape.

In particular, with the increasing availability of digital ele-
vation models (DEMs), the topographic wetness index, (TWI
– Kirkby, 1975), computed from digital analysis as the ratio
between specific upslope contributing areaA/b (i.e. upslope
contributing area,A, per unit contour length,b) and local
slope angle tanβ, has been largely used as a general indi-
cator of the influence of topography on soil–water storage
dynamics (e.g. Beven and Kirkby, 1979; Lanni et al., 2011)
and shallow landslide triggering (e.g. Montgomery and Diet-
rich, 1994; Wu and Sidle, 1995; Casadei et al., 2003). SHAL-
STAB (Montgomery and Dietrich, 1994) and SINMAP (Pack
et al., 1998) are among the most popular topography-based
slope stability models, where the water table depth is com-
puted based on a steady-state hydrologic balance, and it is
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expressed as a function of TWI. Borga et al. (2002b) relaxed
the hydrological steady-state assumption used in SHAL-
STAB by using a modified version of the quasi-dynamic wet-
ness index developed by Barling et al. (1994). This model,
called Quasi-Dynamic Shallow Landsliding Model – QD-
SLaM, permits us to describe the transient nature of lateral
subsurface flow (Grayson et al., 1997).

However, research in the last decade has shown that the
establishment of hydrological connectivity (the condition by
which disparate regions on the hillslope are linked via sub-
surface water flow, Stieglitz et al., 2003) is a necessary
condition for lateral subsurface flow to occur at a point
(e.g. Spence and Woo, 2003; Buttle et al., 2004; Graham
et al., 2010; Spence, 2010). Lack of or only intermittent
connectivity of subsurface flow systems invalidates the as-
sumptions built into the TWI theory (i.e. the variable – and
continuum – contributing area concept originally proposed
by Hewlett and Hibbert, 1967). Both field (e.g. Freer et al.,
2002; Tromp van Meerveld and McDonnell, 2006) and nu-
merical (e.g. Hopp and McDonnell, 2009; Lanni et al., 2012)
studies have shown that subsurface topography (and there-
fore soil-depth variability) has a strong impact in controlling
the connectivity of saturated zones at the soil–bedrock inter-
face, and in determining timing and position of shallow land-
slide initiation (Lanni et al., 2012). However, despite these
evidences, most shallow landslide models do not include a
connectivity component for subsurface flow modelling.

Here, we propose a new Connectivity Index-based Shal-
low LAndslide Model (CI-SLAM) that includes the concept
of hydrological connectivity in the description of the subsur-
face flow processes while keeping the simplicity of the topo-
graphic index approach needed to conduct large scale analy-
sis. In our model framework, hydrological connectivity is re-
lated to the spatial variability of soil depth across the inves-
tigated catchments and the initial soil moisture conditions.
Vertical rainwater infiltration into unsaturated soil is simu-
lated by using the concept of drainable porosity (i.e. the vol-
ume of stored soil-water removed/added per unit area per unit
decline/growth of water table level; Hilberts et al., 2005; Cor-
dano and Rigon, 2008). This allows simulation of pore-water
pressure dynamics under the assumption of quasi-steady
state hydraulic equilibrium and to estimate the time for devel-
opment of saturated conditions at the soil/bedrock interface.
The model incorporates the computation of a characteristic
time for describing the connection of these “patches” of sat-
uration. Specifically, it is assumed that an element (x,y) in a
hillslope connects (hydrologically) with its own upslope con-
tributing areaA(x,y) when the water table forms a continu-
ous surface throughoutA(x,y). Once hydrological connec-
tivity is established, the dynamic topographic index devel-
oped by Lanni et al. (2011) is used to describe the transient
subsurface flow converging to the element in (x,y).

The hydrological module is then coupled with the infinite
slope stability equation to derive CI-SLAM, a shallow land-
slide model which is able to (a) account for the (positive)

effect of the unsaturated zone storage on slope stability, and
(b) reproduce pre-storm unsaturated soil conditions. This im-
plicitly helps reducing the fraction of catchment area which
is categorized as unconditionally unstable (i.e. failing even
under dry soil moisture conditions), improving the confi-
dence in model results (Keijsers et al., 2011).

Model testing is carried out in three study sites located
in the central Italian Alps. In this area, shallow landslides
are generally triggered by local, convective storms during
the summer and early fall seasons. Moreover, accurate field
surveys provide a description of hydraulic and geotechnical
properties of soils, and a detailed representation of soil depth
variation as a function of local slope is reported. An inventory
of shallow landslides is also available. Finally, the proposed
shallow landslide model is compared with a quasi-dynamic
model (QDSLaM) in order to gain insight on the potential
improvement brought by the new modelling framework.

2 The modelling framework

2.1 The hydrological model

Figure 1 schematizes the hydrological model developed here.
During a rainfall event the generation of lateral flow is pre-
ceded by the development of a positive pressure head (i.e.
perched water table) at the soil-bedrock interface. Several
researchers (McNamara et al., 2005; Rahardjo et al., 2005;
D’Odorico et al., 2005) have shown that vertical flow in
the unsaturated soil zone is reduced when the infiltration
front meets a less permeable layer (for example, the bedrock
layer). Under this condition, the infiltrating rainwater col-
lects at the less permeable soil layer, inducing rapid increases
of pore-water pressure and unsaturated hydraulic conduc-
tivity (according to the relationship between matric suction
head and unsaturated hydraulic conductivity). As a result,
a perched water table will form on the surface of the low-
conductive layer, and a subsurface flow will move laterally
along the upper surface of this layer (e.g. Weyman, 1973;
Weiler et al., 2005). Moreover, in the model it is assumed
that a generic hillslope element (x,y) receives flow from the
related upslope catchment areaA(x,y) only when isolated
patches of transient saturation become connected with ele-
ment (x,y) (Fig. 2).

In the model, unsaturated soil conditions through the
whole soil profile (i.e. positive suction head or negative pres-
sure head) are used to initialize our model (step 1 in Fig. 1).
For each hillslope element (x,y), the timetwt(x,y) needed
to build up a perched zone of positive pore pressure at the
soil–bedrock interface is computed by using the following
expression (step 2 in Fig. 1):

twt(x,y) =
Vwt(x,y) − V0(x,y)

I
, (1)

whereV0 [L] is the initial storage of soil moisture through the
soil profile before of a rainfall event (Fig. 3);Vwt [L] is the
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Fig. 1.A flow chart depicting the coupled saturated/unsaturated hydrological model developed in this study.
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Fig. 2.The concept of hydrological connectivity. Lateral subsurface
flow occurs at point (x,y) when this becomes hydrologically con-
nected with its own upslope contributing areaA(x,y).

storage of soil moisture needed to produce a perched water
table (i.e. zero-pressure head) at the soil–bedrock interface
(Fig. 3); andI [LT−1] is the rainfall intensity assumed to be
uniform in space and time. Computation ofV0 andVwt re-
quire the use of a relationship between soil moisture content
θ [−] and suction headψ [L], and a relationship betweenψ
and the vertical coordinate (positive upward)z [L] (Fig. 3).

By using the assumption that the suction head profileψ(z)

changes from one steady-state situation to another over time,
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Fig. 3. θi(z) andψi(z) are, respectively, the initial water content
and the initial suction head vertical profiles.θwt(z) andψwt(z) rep-
resents the linear water content and suction head vertical profiles
associated with zero-suction head at the soil–bedrock interface.

the relation betweenψ [L] and z [L] is that of hydraulic
equilibrium:

ψ = ψ(z = 0) + z = ψb + z, (2)

whereψb =ψ(z = 0) is the suction head at the soil–bedrock
interface. Bierkens (1998) argued that this assumption is
valid for a shallow system where redistribution of soil-water
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is rapid. The constitutive relationship betweenθ andψ used
in this study is the van Genuchten function (van Genuchten,
1980):

θ(ψ) = θr + (θsat − θr)
[
1 + (αψ)n

]−m (3)

with θsat [−] = saturated water content;θr [−] = residual wa-
ter content;α [L−1] = parameter that depends approximately
on the air-entry (or air-occlusion) suction; andn [−] andm
[−] = van Genuchten parameters. Combining Eqs. (2) and (3)
we obtain:

θ(ψ) = θr + (θsat − θr)
[
1 + (α (ψb + z))n

]−m
. (4)

Based on Troch (1992), the following relationship between
the parametersm andn is used in the model:

m = 1 +
1

n
, (5)

The storage of soil moisture through the soil profileV is ob-
tained by integrating Eq. (4) from the bedrock to the ground
surface:

V =

z=L∫
z=0

θ(z)dz = θr · L + (θsat − θr)

[
(L + ψb)

(
1 + (α (L + ψb))

n
)−

1
n − ψb

(
1 + (αψb)

n
)−

1
n

]
. (6)

whereL [L] is the soil depth measured along the vertical.
Vwt can be obtained by setting a zero-pressure head at the
soil–bedrock interface (ψb = 0):

Vwt = θr · L + (θsat − θr) · L ·
(
1 + (αL)n

)−
1
n . (7)

The suction head value at the soil–bedrock interface at
a generic timet < twt(x,y) (i.e. before development of a
perched water table),ψbt , can be calculated by using the
concept of drainable porosityf [−] proposed by Hilberts et
al. (2005):

f =
dV

dψb
= (θsat − θr) ·

[(
1 + (α (L + ψb))

n
)−1−

1
n

−
(
1 + (αψb)

n
)−1−

1
n

]
. (8)

By using Eq. (8), we can derive an expression for dψb/dt ,
useful for estimating the suction head at the soil–bedrock in-
terface at a generic timet , ψbt (step 5a in Fig. 1):

dψb

dt
=
I

f

implies
⇒ ψbt = ψbt−1 (9)

+
I

(θsat− θr) ·

[(
1+ (α (L+ψb))

n
)−1−

1
n −

(
1+ (αψb)

n
)−1−

1
n

]1t.
where1t is the temporal integration time. Fort ≥ twt(x,y),
the generic hillslope element (x,y) exhibits a perched water
table at the soil–bedrock interface.

However, this does not guarantee the hydrological connec-
tivity between element (x,y) and its related upslope con-
tributing areaA(x,y). In fact, due to the heterogeneity of
initial soil moisture and soil depth, isolated patches of sat-
uration which do not necessarily connect with point (x,y)
may have developed insideA(x,y). We assume that lateral
subsurface flow affects the local soil-water storage of point
(x,y) when the water table timetwt indicates continuous sat-
uration throughA(x,y). Thus, each point (x,y) has two wa-
ter table characteristic times: (1)twt, which indicates the local
time for the development of a perched water table; and (2) a
connectivity timetup

wt – given by the maximum value oftwt in
A(x,y) – which indicates the time required by element (x,y)
to become hydrologically connected withA(x,y). Therefore,
a generic hillslope element (x,y) receives flow from its own
upslope contributing area starting fromt = tup

wt (x,y) (steps 3
and 4b in Fig. 1). Details on the formulation of the connec-
tivity time tup

wt are given in Appendix A.
The value of the lateral flow rate at element (x,y) is then

calculated by using the upslope contributing areaA(x,y) as a
surrogate for lateral flow (Borga et al., 2002b). In particular,
we use the method proposed by Lanni et al. (2011) to de-
scribe the variable upslope contributing area which changes
linearly with time:

At (x,y) =
t − t

up
wt (x,y)

τc(x,y)− t
up
wt (x,y)

A(x,y)

for t
up
wt (x,y) < t ≤ τc(x,y)≤ d (10a)

At (x,y) = A(x,y) for τc(x,y) ≤ t ≤ d (10b)

At (x,y) = max

{
0, A(x,y)

[
1 +

d − t

τc(x,y) − t
up
wt (x,y)

]}
for t ≥ d ≥ τc(x,y) ≥ t

op
wt (x,y) (10c)

At (x,y) = max

{
0, A(x,y)

[
1 +

2d − t
up
wt (x,y) − t

τc(x,y) − t
up
wt (x,y)

]}
for t ≥ d ≥ t

up
wt (x,y) if τc(x,y) > d (10d)

whereAt (x,y) [L2] and A(x,y) [L2] are the time vari-
able upslope contributing area and the steady state upslope
contributing area extending to the divide, respectively;t

[T] = time; d [T] = rainfall duration;τc(x,y) is given by the
combination oftup

wt (x,y) and the timeτ ′
c(x,y) required to the

lateral flow to reach point (x,y) from the most hydrologically
remote location in the corresponding drainage areaA(x,y):

τc(x,y)= τ ′
c(x,y)+ t

up
wt (x,y) (11)

The value ofτ ′
c(x,y) is computed based on the method de-

scribed in Lanni et al. (2011).
Therefore, under the assumptions of constant rainfall in-

tensityI in time and space, the positive pore pressure value
at the soil–bedrock interface of point (x,y) for a generic time
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t ≥ t
up
wt (x,y), hbt (x,y), is given by (step 6b2 in Fig. 1):

hbt (x,y) = −ψbt (x,y)

= min

[
I

Ksat(x,y)
·

At (x,y)

b(x,y) · sin[β(x,y)]
, L(x,y)

]
, (12)

whereβ is the local ground inclination,Ksat(x,y) [L T−1] is
the saturated hydraulic conductivity andAt/b [L] is the time
variable contributing area at timet per unit contour length.

2.2 The coupled hydrological slope stability model,
CI-SLAM

For hillslopes it is common to define the safety factor as
the ratio between maximum retaining forces,Fr, and driving
forces,Fd:

FS =
Fr

Fd
. (13)

The slope is stable for FS>1, while slope failure occurs
when the critical state FS = 1 (such thatFr =Fd) is achieved.
Lu and Likos (2006) derived a formulation to compute the
factor of safety of an infinite slope model that accounts for
saturated/unsaturated zones. If the failure surface is located
at the soil–bedrock interface, then the Lu and Likos’ factor
of safety can be written as:

FS =
2 · c′

γ · L · sin[2β]
+

tanϕ′

tanβ

+Se (ψb)
γw

γ

ψb

L
(tanβ + cotβ) · tanϕ′

for ψb > 0(hb < 0) (14a)

FS =
2 · c′

γ · L · sin[2β]
+

tanϕ′

tanβ
+
γw

γ

ψb

L
(tanβ + cotβ) · tanϕ′

for ψb ≤ 0(hb ≥ 0) (14b)

with c′ [FL−2] = effective soil cohesion;ϕ′ [◦] = effective soil
frictional angle;γw andγ [FL−3] = volumetric unit weight of
water and soil, respectively; andSe [−] = relative saturation
degree. Equations (14a, b) allow the (positive) role played
by suction head on the hillslope stability to be taken into ac-
count. In this work, locations that are neither unconditionally
unstable or unconditionally stable (i.e. locations that are sta-
ble when saturated) will be called conditionally unstable as
proposed in the pioneering work of Montgomery and Diet-
rich (1994).

By coupling the hydrological model (Eqs. 9 and 12) with
the slope stability model (Eqs. 14a, b) the factor of safety
for conditionally unstable locations (x,y) at a generic timet
reads:

FSt (x,y) =
2 · c′(x,y)

γ · L · sin [2β(x,y)]
+

tanϕ′(x,y)

tanβ(x,y)

+Se
(
ψbt (x,y)

) γw(x,y)

γ (x,y)

ψbt (x,y)

L(x,y)

(tanβ(x,y) + cotβ(x,y)) · tanϕ′(x,y)

for ψbt (x,y) > 0
(
hbt (x,y) < 0

)
(15a)

FSt (x,y) =
2 · c′(x,y)

γ · L · sin[2β(x,y)]
+

tanϕ′(x,y)

tanβ(x,y)

+
γw(x,y)

γ (x,y)

I

Ksat(x,y) · L(x,y)

At (x,y)

b(x,y) · sinβ(x,y)

(tanβ(x,y) + cotβ(x,y)) · tanϕ′(x,y)

for ψbt (x,y) ≤ 0
(
hbt (x,y) ≥ 0

)
. (15b)

2.3 Intensity–duration–frequency relationship for
extreme storms

The variability of rainfall intensity with rainfall duration
for a specified frequency level is often represented by the
intensity–duration–frequency (IDF) relationship proposed
by Koutsoyiannis et al. (1998):

IF(d) = ςF · dmF−1 (16)

with IF(d)= rainfall intensity that can be exceeded with a
probability of 1−F. ςF andmF are parameters estimated by
least squares regression ofIF(d) against rainfall durationd. It
has been shown (Burlando and Rosso, 1996) that a Gumbel
simple scaling model describes well the distribution of an-
nual maximum series of rainfall in the Central Italian Alps.
Based on this model, the rainfall intensityIF(d) can be de-
termined as:

IF(d) = ς1

[
1 −

CV
√

6

π

(
ε + yTR

)]
· dm−1 (17)

with ε = Euler’s constant (∼ 0.5772).ς1 andm can be esti-
mated by linear regression of expectations of rainfall depth
against duration, after log transformation, whereas the value
of the coefficient of variation (CV) can be obtained as the
average of coefficients of variation computed for the differ-
ent durations, in the range of durations for which the scaling
property holds.yTR is given by:

yTR = ln

(
ln

(
TR

TR − 1

)
,

)
(18)

whereTR[T] is the return period. By combining Eqs. (17)
and (18),TR can be written as a function of rainfall intensity
and duration:

TR =

exp
[
exp

[
π

CV
√

6

(
1− ς1

IF(d)

dm−1

)
− ε

]]
exp

[
exp

[
π

CV
√

6

(
1 − ς1

IF(d)

dm−1

)
− ε

]]
− 1

. (19)
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Fig. 4.Study catchments. The map shows the location of the three catchments, and the landslide distribution.

3 Study sites and the analysis of soil depth variability

The study area is represented by three small catchments
located in the central Italian Alps: Pizzano, Fraviano, and
Cortina (Fig. 4), with sizes of 4.43, 2.00 and 1.03 km2,
respectively, and overall surface of 7.46 km2. A 10 m-
resolution DEM, derived from a 1:10 000 scale contour map,
is available for the study area. Elevations (E) range from
1250 to 2830 m a.s.l., with an average value of 1999 m a.s.l.
Pizzano is characterized by higher elevations, whereas
Cortina is located at lower altitudes, with Fraviano in in-
termediate position. Cortina and Fraviano have similar slope
distribution, with mean slopes of 27.5◦ and 28◦, respectively.
Pizzano is steeper, with a slope of 30.4◦. The morphology
of the catchments shows two different structures: a flatter
area in the upper portions of the basins, and a narrow, steeper
river course in the downstream portions. The vegetation dis-
tribution is controlled by the tree-line altitude, with Cortina
exhibiting a larger portion of forest stands (74.2 %) (mainly
conifers) than Fraviano and Pizzano, where forest covers a
lower percentage of the basins (around 55 %). The remain-
ing land cover is represented by grassland (8.2 % for Cortina
and 24 % for Fraviano and Pizzano) and bedrock outcrops.

Most of the shallow landslides analyzed in this work were
triggered during the falls of 2000 and 2002 as a result of
relatively short duration storms. The landslide inventory de-
scribed in this work is part of a more comprehensive archive
of shallow landslides which has been described in other pa-
pers as well (Borga et al., 1998, 2002a,b, 2004; Tarolli et al.,
2008, 2011) and executed with a common surveying method-
ology. The landslides were surveyed during the fall of 2005
and their spatial distribution is reported in Fig. 4, where
only the initiation areas are shown. Most of the landslides

are found in the lower portion of the basins, where the ter-
rain is steeper and the soil may be deep enough to trigger
slope instability. During the survey, the shallow landslides
which were evidently induced by forest roads were marked
and identified as such and excluded from the model analysis.

3.1 Soil depth survey and the relationship with the
local slope

Soil depth is an important input parameter in hillslope hy-
drology (Tromp Van-Merveeld and McDonnell, 2006), but
its estimation is usually missing in landslide literature, where
often a soil of uniform depth is assumed to stand over an
impermeable bedrock. The spatial distribution of soil depth
is controlled by complex interactions of many factors (to-
pography, parent material, climate, biological, chemical and
physical processes) (e.g. Summerfield, 1997; Pelletier and
Rasmussen, 2009; Nicotina et al., 2011). As a result, soil
depth is highly variable spatially and its prediction at a point
is difficult. Moreover, a soil depth survey is time consum-
ing, and soil depth is difficult to measure even for small
basins (Dietrich et al., 1995). Various methods have been
explored to allow the estimation of soil depth over land-
scapes. A process-based approach was suggested by Dietrich
et al. (1995) for predicting the spatial distribution of colluvial
soil depth. Based on this approach, topographic curvature
may be considered a surrogate for soil production. Heim-
sath et al. (1997, 1999) validated the relationship between
curvature and soil production based on observations of cos-
mogenic concentrations from bedrock in their Tennessee Val-
ley site in California. This approach was incorporated into a
landscape evolution model by Saco et al. (2006) to evaluate
the dependence of soil production on simulated soil moisture.
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Roering et al. (1999) supported the idea that soil production
follows a non-linear equation and, therefore, modified the de-
pendence of soil depth relationships. However, the various
modelling approaches for predicting soil depth over land-
scapes, described above, showed only partial success (Tesfa
et al., 2009).

In contrast to the process-based approaches, a number of
studies have applied statistical methods to identify relation-
ships between soil depth and landscape topographic variables
(e.g. slope, wetness index, plan curvature, distance from hill-
top, or total contributing area) (e.g. Gessler et al., 1995; Tesfa
et al., 2009; Catani et al., 2010). Some of these works re-
ported good predictive capabilities for these statistical rela-
tionships. For instance, Tesfa et al. (2009) report that their
statistical models were able to explain about 50 % of the mea-
sured soil depth variability in an out-of-sample test. This is
an important result, given the complex local variation of soil
depth.

For the purpose of this work, we use a statistical approach
for the estimation of the spatial distribution of soil depth
over the study catchments. This is based on the availabil-
ity of a rather dense sample of soil depth measurements.
During the fieldwork, conducted in the fall of 2005, 410 di-
rect point measurements of soil depth were made. Survey lo-
cations were chosen to represent the range of topographic
variation in the areas of model application. Measurements
were carried out by driving a 150 cm long, 1.27 cm diam-
eter, sharpened, copper-coated steel rod graduated at 5 cm
intervals vertically into the ground until refusal. The advan-
tage of the depth to refusal method is that it is a direct and
simple measurement of soil depth. A disadvantage is that the
measurement is biased to underestimating the actual depth to
bedrock, since there is uncertainty as to what actually causes
refusal. Each point measurement is represented by the aver-
age of the measures from two or three replicates taken very
close each other (at less than 0.5 m distance) (three replicates
were taken when the difference between the first two was
more than 20 cm). In order to represent soil depth over the
extent of grid-size topographic elements, the survey was car-
ried out by taking five point measures 2–3 m apart over a
5 m size grid. A “grid-size” soil depth observation was ob-
tained by taking the average over the five point measures.
This permitted us to obtain 82 grid-size observations, which
were divided into two subsets: the first (49 grid-size observa-
tions) was used to identify and calibrate the statistical model,
the second (33 grid-size observations) was used to perform a
validation.

The field measurements allowed us to derive the following
relationship between soil depthL and local slope tanβ:

L(x,y)= 1.01− 0.85tanβ(x,y). (20)

Equation (20) is limited to local slope less than 45◦ (below
2000 m a.s.l.) and 40◦ (above 2000 m a.s.l.). In fact, locations
with local slope angle larger than these threshold angles are
generally characterized by rocky outcrops or very shallow
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Fig. 5.Validation of the soil depth–local slope model: modelled ver-
sus observed soil depth over 33 grid-size observations.

soil thickness and discontinuous soil coverage. The eleva-
tion of 2000 m a.s.l. defines a threshold in soil pedological
properties (as reported also by Aberegg et al., 2009). The
analysis of the soil type distribution showed that Episkeletic
Podzols and Dystri-Chromic Cambisols predominantly ap-
pear on slopes between 1400 to 1900 m a.s.l. Enti-Umbric
Podzols are characteristic for southern exposures at altitudes
higher than 2000 m a.s.l.

Other topographic variables, such as plan curvature and
specific catchment area, and land cover attributes showed no
statistically significant relationship with soil depth. The rela-
tionship between soil depth and slope identified for the study
watersheds is consistent with findings reported in the litera-
ture (Saulnier et al., 1997; Tesfa et al., 2009).

In order to examine the predictive power of the statisti-
cal relationship, Eq. (20) was applied over the 33 grid-size
observations considered for testing purposes. The compari-
son between modelled and observed soil depth is reported in
Fig. 5. We compared the testing data set with the model soil
depth values at testing locations using the Nash–Sutcliffe ef-
ficiency coefficient (NSE) (Nash and Sutcliffe, 1970). NSE
is a normalized model performance measure that compares
the mean square error generated by a particular model to the
variance of the observations. NSE is equal to 0.4 for our test-
ing case, with a mean error equal to 7 %. This shows that the
statistical relationship given by Eq. (20) reproduces the vari-
ance of the observations considerably better than the simpler
model represented by the mean soil depth. While it is clear
that a significant uncertainty affects the modelled results, we
should note that the reported NSE is in the range of model
performance statistics reported in the literature. For instance,
Tesfa et al. (2009) reported, for their statistical model appli-
cations in Idaho, NSE values ranging from 0.26 to 0.52.
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Table 1. Hydraulic and mechanical soil parameters relative to the
three investigated catchments.

Soil-parameter Unit Value

Density ratio (γs/γw) [−] 1.8
Saturated water contentθsat [−] 0.3
Residual water contentθr [−] 0.05
α – van Genuchten m−1 3.44
n – van Genuchten [−] 4.42
Saturated hydraulic conductivityKsat ms−1 10−3

Effective frictional angleφ ◦ 38
Effective cohesionc′ kPa 0

3.2 Model application

CI-SLAM has been applied on the study catchments by us-
ing the hydraulic and mechanical soil parameters reported in
Table 1, identified based on a field survey carried out during
the summer season 2005. The soil properties are assumed
to be the same for all the three catchments. Based on ob-
servations on the erosion crowns and along the forest roads,
the survey revealed that the trees in this area are character-
ized by shallow root systems that spread laterally with small
vertical sinker roots that penetrate deeper into the soil. Ow-
ing to these observations, we decide not to consider the root
strength contribution into the shallow landslide stability anal-
ysis. Since the factor of safety calculated by the infinite slope
stability equation is fairly insensitive to the values of tree
surcharge (Borga et al., 2002a), we omitted considering this
factor too.

The soil moisture initial conditions were assumed to rep-
resent average climatic conditions based on estimated evapo-
transpiration fluxes and inter-storm duration statistics which
are typical of the seasons where shallow landslides were
recorded (summer season and first half of the fall season).
These unsaturated soil moisture conditions correspond to
considerable cohesion which is due to capillarity, as concep-
tualized in the generalized principle of effective stress (Lu
and Godt, 2008; Godt et al., 2009).

We used the procedure reported by Borga et al. (2005) to
estimate the following scaling parameters of the IDF rela-
tionship (Eq. 18): CV = 0.42,m= 0.48,ς1 = 13.7 mm h1−0.48.
These parameters are kept spatially uniform across the three
catchments.

The model was not implemented on areas likely char-
acterized by bedrock outcrops, i.e. on topographic ele-
ments characterized by slope exceeding either 45◦ (for ele-
vation<2000 m a.s.l.) or 40◦ (for elevation≥ 2000 m a.s.l.).
These areas amount to low percentages on Cortina and Fra-
viano (with 0.7 % and 1 % of catchment area, respectively),
whereas they are much more considerable on the steeper Piz-
zano catchment, where they amount to 11.7 %.

Two general procedures may be considered for shal-
low landslide model application: diagnostic and predictive
(Rosso et al., 2006). With the first procedure, terrain stability
is simulated for a given temporal pattern of rainfall intensity
and for given initial soil moisture conditions. This allows ex-
ploration of the pattern of instability generated by specific
storms and could be used to make real-time forecast of shal-
low landslides. In the predictive mode, the lowest return pe-
riod of the critical rainfall is computed for each condition-
ally unstable cell in the landscape. This procedure is well
suited for generating maps of shallow landsliding suscepti-
bility, and can be specifically adapted to assess CI-SLAM’s
capability of predicting shallow landslides which are gener-
ated by multiple storms with different storm depth and inten-
sities. The predictive procedure is adopted in this work based
on the following steps. First, the critical durationdc of rain-
fall which generates instability (i.e. FS = 1) is computed for
a range of constant rainfall intensitiesI (ranging from 5 to
60 mm h−1 at a 5 mm h−1 step) which are kept uniform both
in time and in space. Then, the return periodTr is computed
for each considered (I, dc) pair by using Eq. (19). Finally,
the lowest return period for each conditionally stable loca-
tion is selected. The map of the return period of the critical
rainfall will provide a representation of the susceptibility to
shallow landsliding across the landscape.

4 Results and comparison with QDSLaM

By using the predictive procedure discussed in the previous
paragraph, we derived the shallow landslide susceptibility
map of Fig. 6, where the surveyed landslides are also re-
ported. The criterion of shallow landslide susceptibility is
based on the return period of the critical rainfall; higher re-
turn period values represent medium (TR = 30–100 yr) and
low (TR>100 yr) shallow landslide propensity, and lower re-
turn period values represent high (TR = 10–30 yr) and very
high (TR<10 yr) shallow landslide propensity. A “very low”
level of shallow landslide susceptibility is assigned to uncon-
ditionally stable points (i.e. locations that are stable when
completely saturated).

The landslide susceptibility map indicates that the catch-
ments can be subdivided into two geomorphological units.
Topographic elements with very high shallow landsliding
susceptibility (TR<10 yr) are reported only in the lower por-
tion of the three catchments, where also surveyed shallow
landslides are reported. Conversely, areas characterized as
“unconditionally stable” or with very low landsliding suscep-
tibility ( TR>100 yr) are found mostly in the upper portion of
the catchments, where no landsliding activity was observed.

The assessment of the predictive power of CI-SLAM is
carried out by superimposing the map of the observed land-
slides onto the map of return period of critical rainfall caus-
ing slope instability. The analysis is performed by compar-
ing the proportion of catchment area placed in the various
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Table 2.Percentages of catchment area (C) and observed landslide area (L) in each range of critical rainfall frequency (i.e. return periodTR)
for CI-SLAM.

TR Susceptibility Pizzano Fraviano Cortina
level

Ca Lb Ca Lb Ca Lb

Years Category % % % % % %

0–10 Very high 1.8 51.6 2.5 63.8 3.9 24.3
10–30 High 34.1 41.4 27.2 36.2 24.3 75.7
30–100 Medium 20.2 5.9 22.4 0.0 26.4 0.0
>100 Low 20.2 1.1 25.6 0.0 22.1 0.0
Uncond. stable Very low 23.7 0.0 23.3 0.0 23.3 0.0

a C = catchment area;b L= landslide area
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Fig. 6. Patterns of return periodTR (years) of the critical rainfalls for shallow landslide triggering (i.e. FS≤ 1) and associated levels of
landslide susceptibility obtained by means of CI-SLAM.

critical rainfall ranges with the corresponding fraction of the
landslide area (Table 2). Good model performances are ex-
pected when a large percentage of observed landslides and
a small percentage of catchment area occur for low values
of return time. For example, this is the case for the Pizzano
basin where the percentage of catchment area withTR in
the range of 0–10 yr is equal to 1.8 % (34.1 % in the range
of 10–30 yr), while the corresponding fraction of observed
landslide area is equal to 51.6 % (41.4 % in the range of 10–
30 yr). On the other hand, the percentage of landslide area
with TR>100 yr is only 1.1 % versus 43.9 % of the catch-
ment area (including the locations classified as uncondition-
ally stable). Therefore, CI-SLAM is able to correctly classify
with a high or very high levels of shallow landslide suscepti-
bility most of the observed landslide areas. This is confirmed
by the results for the Cortina and the Fraviano catchments,
with this last one showing the best model predictions (63.8 %

of landslide area falling in the 2.5 % of catchment area with
TR ≤ 10 yr).

Our results suggest that model predictions capture a high
percentage of observed landslides at the expense of some
overprediction of slope instability. However, one should note
that overprediction of landsliding susceptibility has been ob-
served in other applications of topographic index-based shal-
low landsliding models (e.g. Dietrich et al., 2001) and may
be due to a number of reasons, including: (i) inaccurate to-
pographic data, (ii) legacy effects of previous landslides, and
(iii) limitation of the landslide surveys.

Comparison with QDSLaM

To assess the role of the variable soil depth and infiltration
in generating landslides, we found it useful to compare the
predictive capability (i.e. the ability to discriminate areas of
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Table 3.Percentages of catchment area (C) and observed landslide area (L) in each range of critical rainfall frequency (i.e. return periodTR)
for QDSLaM.

Susceptibility
Pizzano Fraviano Cortina

TR level Ca Lb Ca Lb Ca Lb

Years Category % % % % % %

Uncond Unstable 9.9 60.2 7.7 77.7 8.5 56.8
0–10 Very high 20.3 26.9 16.1 18.5 13.5 39.2
10–30 High 7.8 0.0 5.6 1.5 5.8 4.0
30–100 Medium 6.0 9.7 5.9 2.3 6.7 0.0
>100 Low 42.9 3.2 53.5 0.0 54.7 0.0
Uncond. stable Very low 13.1 0.0 11.2 0.0 10.8 0.0

a C = catchment area;b L= landslide area

high slope failure hazard) of CI-SLAM with that of the quasi-
dynamic model QDSLaM (Borga et al., 2002b).

QDSLaM is based on coupling a hydrological model to
a limit-equilibrium slope stability model to calculate the
critical rainfall necessary to trigger slope instability at any
point in the landscape. The hydrological model assumes
that flow infiltrates to a lower conductivity layer and fol-
lows topographically-determined flow paths to map the spa-
tial pattern of soil saturation based on analysis of a “quasi-
dynamic” wetness index. With respect to the model pro-
posed in this paper, QDSLaM does not consider the follow-
ing aspects: (i) vertical rainwater infiltration into unsaturated
soil; (ii) analysis of the connectivity to compute the quasi-
dynamic wetness index; and (iii) soil depth variability. All re-
maining aspects of the modelling framework are described in
a consistent way by the two models. Both models have been
applied to the three catchments by using the same parameters

set. A map of shallow landsliding susceptibility obtained by
using QDSLaM is reported in Fig. 7, whereas Table 3 reports
the corresponding percentages of slope-stability categories in
terms of catchment area and observed landslide area in each
range of critical rainfall frequency (i.e. return periodTR). Ex-
amination of Fig. 7 and of Table 3 shows the considerable
impact of the areas considered unconditionally unstable in
QDSLaM. The percentage of topographic elements consid-
ered unconditionally unstable ranges from 7.7 % (Fraviano)
to 9.9 % (Pizzano). This overrepresentation is reported both
in the lower and in the upper portions of the catchments,
where high local slope values are present. CI-SLAM does
not predict unconditionally unstable locations. In fact, the
contribution of negative pressure head (Eq. 15a) ensures the
stability of steeper topographic elements (i.e. locations with
tanβ ≥ tanϕ′ for cohesionless soils) that would be otherwise
classified as unconditionally unstable by QDSLaM (as well

Hydrol. Earth Syst. Sci., 16, 3959–3971, 2012 www.hydrol-earth-syst-sci.net/16/3959/2012/



C. Lanni et al.: Modelling shallow landslide susceptibility 3969

as by other traditional landslide models, e.g. Montgomery
and Dietrich, 1994; Wu and Sidle, 1995; Pack et al., 1998,
among others), which does not account for the role of nega-
tive pressure head on soil shear strength.

We also carried out a comparison of the areas which are
considered as conditionally unstable by both models. The
procedure consists of comparing the proportions of catch-
ment area which fall beneath various return time levels to the
corresponding fraction of the landslide area. To compare the
two models, theTR values are set so that the same percentage
of terrain elements falls beneath the values. The two sets of
unstable regions, resulting from the application of the mod-
els, are partially overlapping but are not the same. Then the
percentage of observed landslide area within each unstable
region is computed. The model with the higher percentage
provides a better prediction of landslide hazard. This assess-
ment may be repeated for variousTR values, obtaining two
empirical distribution functionsFB(TR) andFL(TR),defined
for the terrain elements and for the observed landslide cells,
respectively.FB(TR) and FL(TR) represent the fraction of
catchment area and of landslide area, respectively, charac-
terized by return time less thanTR.

A function is defined by reportingFL(TR) versusFB(TR)

(Fig. 8). In the figure, better model performance would be re-
flected as a steeper curve, which indicates larger differences
between fractions of catchment and observed landslide area
corresponding to a givenTR value. The “naive” model, which
predicts that the distribution of slope instability occurs in di-
rect proportion to the terrain area mapped for each threshold,
is represented in Fig. 8 by the 1 : 1 line. The figure shows
that, for a given percentage of basin area with value ofTR
less than the threshold, many more observed landslides fall
in the area mapped by CI-SLAM. For instance, 60 % of the
observed landslides fall in the 10 % less stable fraction of the
basin defined by using CI-SLAM, whereas only 26 % of the
landslides fall in the corresponding fraction of the basin de-
fined by using QDSLaM. This shows that CI-SLAM provides
a better representation of the susceptibility to shallow lands-
liding with respect to QDSLaM. At the same time, this quan-
tifies the impact that the combination of various hydrological
processes (transport in the unsaturated zone, connectivity and
soil depth) that are not taken into account by QDSLaM has
on shallow landslide triggering.

5 Summary and conclusions

The shallow landslide model developed in this study, CI-
SLAM, takes into account both the vertical infiltration in un-
saturated soil and the lateral flow in the saturated zone in
modelling of the local pore-water pressure, and introduces in
its framework the concept of hydrological connectivity.

CI-SLAM’s hydrological module is based on the idea that
lateral flow occurs when a perched water table develops over
the whole upslope area, and identifies a connectivity time for

Fig. 8. Comparison of CI-SLAM and QDSLaM: relationship be-
tween cumulative frequenciesFL(TR) andFB(TR) for the study
area.

such a condition to be achieved. This connectivity time rep-
resents therefore the time lag (from the onset of rainfall) re-
quired for a point in the basin to become hydrologically con-
nected with its own upslope contributing area. For time less
than the connectivity time, vertical infiltration is simulated
by using the concept of drainable porosity under the assump-
tion of quasi-steady state hydraulic equilibrium. For times
greater than the connectivity time, a dynamic topographic in-
dex allows us to describe the transient lateral flow dynamics.
Moreover, unlike the traditional, lateral flow-dominated, to-
pographic index-based models, CI-SLAM is able to account
for partial soil saturation, which, in turn, affects the soil shear
strength used for modelling slope stability. A spatially vari-
able soil depth is the main control of hydrological connectiv-
ity in the model.

Model performance was evaluated over three catchments
located in the central Italian Alps, where reliable intensity–
duration–frequency relationships of extreme rainfall events,
detailed inventories of shallow landslides, and estimates of
soil depths are available. We found that in the case studies
CI-SLAM provides a reasonably correct estimation for fail-
ure initiation probability. CI-SLAM has also been compared
to the simpler QDSLaM conceptual model, showing better
performances in predicting shallow landslide activities, as
quantified by the statistical analysis of the results.

Appendix A

Computation of the connectivity time t
up
wt as a time of

subsurface hydrological connectivity

The connectivity timetup
wt for each point (x,y) in the basin is

calculated as follows: Starting at each point in the basin, each
flow path is traced downslope, recording the highest value
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of the water table timetwt encountered along this flow path.
This highest value is assigned to each new cell encountered
downslope until a higher value is encountered. This can be
done because of the use of the D8 flow algorithm which as-
sumes that each cell has a unique downslope flow direction.
Therefore, when a flow path P2 converges in a pre-processed
path P1, P2 is terminated if it contains a water table time
lower than the encountered water table time in P1. On the
other hand, P2 continues downslope to modify P1 with the
highest upslope water table time.

Thus, each grid cell in the basin has both atwt value, which
indicates the local time for the development of a perched wa-
ter table, and a connectivity timetup

wt , which defines when a
cell is hydrologically connected with its own upslope con-
tributing area.
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