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Abstract. The representation of polynyas in viscous-plastic Polynyas and leads are an important part of the climate
dynamic-thermodynamic sea-ice models is studied in a simsystem at high latitudesMaykut (1982, for instance, es-
plified test domain, in order to give recommendations aboutimates that about 50% of the total atmosphere-ocean heat
parametrisation choicesBjornsson et al(200]) validated exchange over the Arctic Ocean in winter occurs through
their dynamic-thermodynamic model against a polynya fluxpolynyas and leads. During summer, these openings ad-
model in a similar setup and we expand on that workmit shortwave radiation into the ocean, warming it up and
here, testing more sea-ice rheologies and new-ice thickneshus impacting the heat and mass balance of the ice and
formulations. The two additional rheologies tested give ocean Maykut and Perovich1987 Maykut and McPhee
nearly identical results whereas the two new-ice thicknessl995. Arctic polynyas also play a large role in halocline
parametrisations tested give widely different results. Basedind deep water formation amlinsor and Bprk (2000 es-
on our results we argue for using the new-ice thicknesgtimate a mean ice production from all Arctic polynyas of
parametrisation ofibler (1979. We also implement a new 300+30knPyr—1. The resulting salt flux is about 30% of
parametrisation for the parametgy from Hibler's scheme, the estimated flux needed to maintain the halocline.
based on ideas from a collection depth parametrisation for In terms of general circulation models, polynyas are mod-
flux polynya models. elled using dynamic-thermodynamic sea-ice models. This
has been done successfully by a number of researchers;
e.g. Marsland et al(2004), Kern et al.(2005 and Smed-
1 Introduction srud et al.(2006. Not all researchers use the same criterion
to define a polynya in dynamic-thermodynamic models. The
One of the most interesting features of sea ice, in a climatenost straightforward approach would seem to be to use ice
context, is the fact that it acts as an insulating layer betweerconcentration alone, likern et al.(2005. However,Smed-
the atmosphere and the ocean. As the ice grows, the transferud et al (2006 use a combination of ice concentration and
of heat from ocean to atmosphere is greatly reduced. Thishickness andlarsland et al(2004 use a combination of ice
slows further ice formation down and allows the atmosphereconcentration and freezing rate.
to cool much more than it otherwise would. This appears to be due to a fundamental difference in the
This blanket of ice is subject to atmospheric and oceaniamodel results oKern et al.(2005 andMarsland et al(2004)
momentum forcing, which can create openings in the coverpn one hand and that &medsrud et a[2006 on the other.
allowing direct heat exchange between the ocean and the ata the former studies a polynya can be characterised as an
mosphere. Where this happens, the heat transfer may irarea of low ice concentration surrounded by ice of high con-
crease up to hundredfold, causing vigorous ice formationgcentration. In the latter case the polynya is an area of thin ice
brine release and heating of the atmosphere near the openin¢but high concentration) surrounded by thick ice.
This paper focuses on large openings, known as polynyas, These differences serve as an incentive to take a closer
but smaller openings are referred to as leads. look at how polynyas form in dynamic-thermodynamic sea-
ice models. Highly idealised setups are useful when trying
to understand the basic processes involved and so we choose

Correspondence tcE. O. Olason to revisit a study originally made bgjornsson et al(2001).
BY (einar.olason@zmaw.de) In their study,Bjornsson et al(2001) compared the granular
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model of Tremblay and MysaK1997) to the polynya flux  at the freezing point causing frazil ice to form and be herded

model of Willmott et al. (1997) in an idealised basin. In an downstream by the wind and waves. The frazil ice then con-

idealised setup, comparison with measurements is not posssolidates at the edge of the initial ice. The polynya remains

ble and so the polynya flux model was used to validate theopen as long as the off-shore wind component remains strong
dynamic-thermodynamic model results. enough to maintain it.

Here we expand on the work done Bjornsson et al. The ice in and near a polynya can be divided into three
(2001 and compare the granular model to the more com-distinct regimes: The thick initial ice, the consolidated ice
mon viscous-plastic model dfiibler (1979 and the lesser and the frazil ice inside the polynya. The polynya edge is
known modified Coulombic yield curve Byibler and Schul-  the interface between the polynya and the consolidated ice.
son(2000 in a setting similar to that used IBjornsson etal.  This threefold separation is the basis of flux polynya mod-
(2001). The granular model results are used to assess the ouels. They calculate the location of the polynya edge based
come from the other two yield curves. Secondly, we consideron the drift velocity of the consolidated (and thick) ice, the
formulations byHibler (1979 andMellor and Kanthg1989 ice formation rate inside the polynya and the thickness of the
for the thickness of newly formed ice. The former formula- consolidated icef, also referred to as collection depth).
tion was used b ern et al.(2005 andMarsland et al(2004) In the first flux polynya model, proposed Beas€1987),
and the latter bysmedsrud et a({2006. Finally, we use the the frazil ice inside the polynya is immediately transferred
collection depth parametrisation dfinsor and Bprk (2000 to the edge of the consolidated ice, where it piles up. The
to parametrise the new-ice thickness. Thus we address thaodel byOu (1988, and later models, assume a constant
important points of a polynya simulation; first the behaviour (and finite) velocity for the frazil ice, but this must always be
of the consolidated ice, which is determined by the rheology,greater than the velocity of the consolidated ice. In reality
and secondly ice formation inside the polynya, determinedthe frazil ice drifts faster than the consolidated ice because
by the new-ice thickness parametrisation. frazil ice, near or at the surface, experiences less water shear

The layout of this paper is as follows: in Se2twe dis-  stress than the consolidated ice. The water velocity inside
cuss polynya formation and how to interpret the results ofthe polynya is also different from that under the consolidated
dynamic-thermodynamic models in light of what we know ice, but this can be difficult to account for in a simplified
about polynyas. That section also includes a short descripsetup. Finally the initial ice pack may not drift at the (local)
tion of the dynamic-thermodynamic model and a presentafree drift speed, as the wind that creates the polynya is non-
tion of the control run by which the following experiments uniform and may be weaker further off shore. Islands and
are assessed. In Se8tthe response of the model using dif- other coast lines may also slow down the drift of the initial
ferentyield curves is presented. Sectigqresents the effects  ice pack.
different formulations for the thickness of newly formed ice  Polynya flux models focus on the frazil ice representation
have on the model results. Sect®nontains a discussion of and the parametrisation of the collection depth. The velocity
the model results followed by the conclusions of this study. of the thick initial ice must, however, always be prescribed.

Dynamic-thermodynamic models are, on the other hand, de-
signed to model the movement of this thick ice, but they gen-
2 Polynyas in a dynamic-thermodynamic model erally do not include any frazil ice parametrisations. When
ice forms over open water in dynamic-thermodynamic mod-
We will now discuss wind-driven polynyas and how they els solid ice of a predetermined thicknesg (see Sect2.1),
are modelled using dynamic-thermodynamic sea-ice modis immediately formed, more akin to pancake ice than frazil
els. The discussion focuses on understanding the processée.
involved in polynya formation and how to relate those to In a polynya modelled by a dynamic-thermodynamic
the results of the dynamic-thermodynamic model. We findmodel the ice in the polynya interior drifts towards the ini-
that when it comes to understanding the model behaviour intial ice pack, forming the consolidated ice. The consolidated
side the polynya it helps to keep some of the assumptionsce consequently has thickness closeitp which, in this
of the flux polynya models in mind. Polynya flux mod- particular setup, is then effectively the model's “collection
els are simplified physical models which underline the im- depth”. Assuming that the ice in the polynya interior drifts
portant processes in polynya formation. They have beerfaster than the consolidated ice, like tha (1988 model de-
proven to be useful in simulating a variety of situations (seemands, the dynamic-thermodynamic model should also show
e.g.Morales Maqueda et aR004). In Subsects2.1and2.2 the three ice regimes the polynya flux models do (seelfig.
we briefly describe the dynamic-thermodynamic model andin additionBjornsson et al(2001) showed that the transition
the control run used to assess other model results. from freely drifting ice in the polynya interior to consolidated

Wind-driven coastal polynyas form where the ocean is ini-ice can occur over a few grid cells. This transition region is
tially covered by ice and a wind starts blowing off the coast. then analogous to the polynya edge predicted by flux polynya
This causes the ice to move off-shore, opening a polynya amodels.
the coast (or fast ice edge). Inside the polynya the ocean is
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We also note that since the consolidated ice and the ice in  wind direction

the polynya interior are modelled using the same drag coef- — =

ficients their free drift speed will be the same. Absent any Polynya Consolidatedice  Thick ice
other forcing, or a divergence in the wind forcing, no sharp

polynya edge will form. This is because the polynya that ————=—=—==—===="""=== i

opens up fills with ice drifting at the same speed as the con- @ he H

solidated ice, resulting in linearly increasing ice concentra-
tion inside the polynyaBjornsson et al(2001) noted this be-
haviour (see their Fig. 4). In their study a polynya edge forms U U 0O LJoJl

because the drift of the consolidated ice is slowed down by ®) ho
one of the side walls of their ideal basin. This approach is
also used here. Fig. 1. Polynya formation in polynya flux models and a dynamic-

A final point here is that we assume the polynya beingthermodynamic sea-ice modék) In thePeas¢1987) model, frazil
modelled to be large enough to cover a substantial number ofe that forms inside the polynya is immediately transported to-
model grid points. In particular we demand that the modelWards the thick ice. There it forms consolidated ice of thickness
resolve the three ice regimes and the polynya edge. A singlé!- 'n the Ou (1988 model, the frazil ice has constant (and fi-
grid cell not completely covered with ice may often be inter- nite) drift speed inside the polynya and therefore non-zero thick-

. . . . . nessh. (dashed line). (b) In a dynamic-thermodynamic sea-ice
prleted to E.Omam a EOIynya’ eSpeC:a”y i the grldl resolut;]on model newly formed ice is immediately transformed into solid ice
is low. In this study, however, we only (_:onSIder polynyas that ;¢ thicknessh.
are properly resolved by the model grid.

2.1 The dynamic-thermodynamic model equation of conservation of sea-ice concentration. That takes

the same basic form;
The ice model is a two class (ice and open water) dynamic-

thermodynamic sea-ice model which was written to be cou--= 4 v . (pA) =S4, (3)
pled with the VOM ocean modeB@ackhaus2008. In this dt
paper the ice model is coupled to a stationary slab ocean. Iwith S, being a source/sink term. The average ice thickness
the present context the most important points to discuss reever ice-covered area,can be derived using=Ahp;. The
garding the model are the facts that one can choose betweesburce/sink terns,, will be discussed below. In addition the
three different viscous-plastic rheologies and two differentconditionA<1 is imposed. This can be interpreted as a ridg-
ways in representing the newly formed ice. In this sectioning condition sincen (and thusi) can increase even il
we briefly describe the model focusing on the rheology anddoes not Mibler, 1979. Together these equations describe
new-ice thickness formulations. the advection of the ice in a given velocity field.
The ice is modelled as a continuum using an Eulerian per- The momentum equation used &qon et al. 1974
spective. It moves in a horizontal plane, subject to both ex-
. : D(mv)

ternal and internal forces. Temporal evolution of the sea-
ice cover is described using two continuity equations and the D1
momentum equation. The continuity equation for massis Herek is a unit vector normal to the surface; andz,, are

air and water stresseg, is the Coriolis factorg is the grav-
am _ itational accelerationH is the sea surface height andis
— + V- (vm) =S, (1) . - :
ot the sea-ice stress tensor. Of the forcing terms on the right
hand sideV-o describes forces due to internal stress while
the other terms are all external factors. The term on the left
hand side is the material derivative;/Dt=9/0t+v-V. It
can in most cases be safely ignordRbthrock 1975, but
may start to play a role at very high resolution. lIts effects
will be discussed further in Se@&. The momentum equation
is solved using pseudo-time stepping. We use 20 pseudo-

wherepj is the ice densityA the fractional ice concentra- time steps, but if the maximum velocity difference between

tion, Ak _represents the thickness changes in the ice aIreadeo consecutive pseudo-time steps is less than 0.1 mm/s no
present in the grid cell angdi(1—A)Ahqy represents mass further pseudo-time steps are taken.

addition thr‘?UQh ice formatlon over opep watgr. o Wind and water stresses are modelled as quadratic drag
An equation for the evolution of the ice thickness distri- (McPhee 1975

bution within each cell is also needed. The model uses two '

ice classes; i.e. ice and open water and so this becomes aty = p3Cdalvalva (5)

=tTa+tTw—mfk xv—mgVH —V -0. (4)

wherem is the sea-ice mass per unit arég, is a thermo-
dynamic source/sink term andis velocity. The source/sink
term is a simple mass conservation formula:

Sm = PiAAR + pi(1 — A)Ahow, (2)
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o /P characteristics, i.e. the ice is weak in tension, strong in shear
and strongest in compression.

A different approach to the elliptic yield curve was sug-
gested byTremblay and Mysak(1997, who proposed
a model based on a granular material rheology. This is equiv-
alent to dynamic friction between two dry surfaces where the
frictional shear force is proportional to the normal force. For
o /P \\‘ ‘ L stress ratios of shear force vs. normal force smaller than a
T j T given coefficient of friction the ice behaves like an elastic
. o solid, while for larger stress ratios it flows like a fluid. The
pressure term is found by perturbing the last known solu-
. tion to the momentum equation so that the resulting veloc-
e ity field has a divergence determined by a given angle of
dilation. This is done via an additional iterative solver and
the numerical performance of the granular model is there-
Fig. 2. The three yield curves discussed in the text plotted in stresfore worse than that of the other two formulations. For pres-
invariant space; the elliptic, the modified Coulombic and the granu-sure larger than the maximum, determined by E), the
lar model’s yield curves, depicted as solid, dashed and dotted linegce compresses but otherwise behaves like an incompressible
respectively. Newtonian fluid with non-linear shear viscosity. The bulk
viscosity ¢) is therefore always zero. For the granular model
P* in Eq. @) is replaced withP*/1.5 in accordance with
Tw = pwCawlv — vw|(v — vw), 6) Tremblay and Hakakia(2006. The resulting yield curve

where Cqw and Cy, are drag coefficientspy and p, are air is a triangle (see Figp).

and water densities ang, andv, are the near surface water Finally we include ayield curve which can be thought of as
and wind velocities. This assumes that the wind velocity is@ combination of the other two. This is the so-called modified

much larger than the ice velocity; i.e. tHat-va~|val. Coulombic yield curve, introduced bitibler and Schulson

The last term in Eq4) is the force due to the divergence of (2000. Even though the term "modified Coulombic yield
the internal stress tenset. Stress and strain rate (and thus €Urve” (coined byHeil and Hibler 2002 is used here, this
ice velocity) are related through the sea-ice rheology. TheYi€ld curve is really a modification of the elliptic yield curve
three rheologies tested here are those suggestéditiigr proposed byHibler (1979. The curve gives friction-based
(1979, Tremblay and Mysak1997 andHibler and Schul- failure up to a limiting compressive stress while the elliptic
son(2000), which are all isotropic viscous-plastic rheologies. formulation hold_s for_higher stresses. _This limit is set at pure

In isotropic viscous-plastic models the relation betweenshear deformation, in accordance with the results of labo-

stress and strain can be represented using the stress invaftory experiments. The pressure term is calculated using

ants Eqg. 8). The yield curve also includes a small amount of ten-

) sile stress. The resulting shape is elliptical for large stresses
o = é“fl —P/2 @) and triangular for small stresses (see R)g.
ol = nen,

The other main focus of this study is on the formulation
where¢ andn are the non-linear bulk and shear viscositigs, Of the new-ice thickness, which is expressed through the
andéy are the strain rate invariants afds a pressure term. source/sink ternf, in Eq. @). The two methods for cal-
The viscosities; andz, depend on the strain rate aRdWe ~ culating S4 considered, were formulated Byibler (1979
briefly describe each rheology here, but refer the reader t@ndMellor and Kanthg1989.
the original publications for more detalil. Hibler's approach can be written as

The rheology suggested biibler (1979 is by far the most
commonly used viscous-plastic rheology. It uses an ellipticalg, — (1 — A) max (Ahow,0)/ho + A min (S, 0)/2m, (9)
yield curve (see Fig2) and a normal flow rule. For typical
strain rates, plastic flow occurs, while for very small strain  nerey is a demarcation thickness separating thick and thin
rates the ice b_ecomes linear viscous and entgrs so calleda Hipler (1979 assumed a constaig, but in Sects4 and
“creep flow”._ This creep flow occurs for a!l three yield CUIVES 5 e discuss ways to parametrise it. Ice forms over open wa-
at small strain rates. The pressure term is calculated via 1, (i.e. Ahow>0) when the ocean cools below the freezing
P = P*Ah exp (—=C[1 — A)), (8) point, but the ocean temperature is calculated via the thermo-

dynamics routines from VOM (which are the same routines

where P* and C are constants, which must be chosen em-as inHarms et al.2003. The amount of ice formed over
pirically. The elliptical yield curve reproduces basic sea-ice open water is calculated from the energy needed to bring the
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ocean surface from its super-cooled state to freezing. When

. . 70
freezingAhow>0 ands,, >0 so that Eq.g) becomes simply
60 Thick ice
Sa = (1— A)Ahow/ ho. (10) 50 Consolidated ice

This means that the newly formed ice covers an &@gao E 40 o
= Polynya interior

that its thickness is greater than or equat o

The other approach to calculatirfty considered here is %0
the one originally proposed bylellor and Kantha(1989. 20
Based on an empirical formula BNikiferov (1957 they for- 10 ©
mulateS, as 0
AR 0 20 40 60 80 100 120
Sa=d1-A)—2, (11) X Tkm]

h

where® is an empirically determined functiodellor and Fig. 3. The size of the basin (in km) and wind direction during the

Kantha(1989 differentiate between melting and freezing by POlynya experiments. The figure also shows the three ice regimes
giving ® different constant values: one expects; the polynya interior (where the ice is in free drift),
' consolidated ice and thick initial ice.

dpm = 0.5 otherwise (12)

©— {<I>|:=4 if Ahow >0
atmospheric temperature is kept constantlgi=—20°C
and the oceanic temperature is kept at the freezing point for
a salinity of $=32. The water velocity is always zero. The
model is initialised with ice concentratiofi=0.9 and thick-
nessh=1m. For the solid boundaries, a no-slip condition is
used, while for the open boundary zero gradient Neumann
boundary conditions are applied to all variables. The Neu-
mann condition is also used for the ice pressBrewhich
Bjornsson et al(200)) set to zero at the open boundary.
This is done because using the Neumann condition improves
The model domain is a bay, 135 km long and 75 km wide atthe model behaviour near the open boundary by eliminating
2.5 km resolution (see Fi@), similar to the setujornsson  the excessive ice speed observed theréjoynsson et al.
et al.(2001) used. At such a high resolution we must assume(2007).
that on average the ice floes being modelled are no larger than For the ice pressure constadtsand P* in Eq. @) we use
250 m in diameter. This is because a scale of approximatelyhe same valueBjornsson et al(200J) used; i.eC=30 and
10 grain widths can generally be modelled without resolv- P*=30 kN/n?. Bjornsson et al(2001) showed that these pa-
ing each individual element using a granular mo&zage  rameters have little effect on the model results using the gran-
1998. McNutt and Overland2003 state that at the multi- ular model and we have found the same to be true for the
floe scale (approximately 2-10km) sea ice behaves like @ther yield curves. A list of the relevant constants is included
granular material, so the granular model should be ideal foiin Tablel.
a simulation at that scale. We can assume the ice floes in the To illustrate the temporal evolution of the polynya, Hg.
polynya interior are no larger than pancake ice, which is notshows a Hovriller diagram of the ice concentration field
much larger than 3 m in diameter. The ice in the polynya in-taken along a section at=37.5km. The response to the
terior, and by extension the consolidated ice, is therefore welbpplied wind stress is immediate and a discernible polynya
within the maximum allowed floe size. However, assuming edge starts to form during the first day of the model integra-
that individual floes are no larger than 250 m in diameter maytion. After two days the polynya has a clear structure and
not always be valid for the thick initial ice, depending on the can be considered fully formed. A practically steady state
geographical location of the polynya as well as the time ofhas been reached after eight days. When the polynya has
year. This is only a minor concern for this study since it fo- fully formed a band of large gradient in the concentration
cuses on the steady state solution where the thick initial icdield analogous to the polynya edge always exists. For fur-
does not play a role (as it has drifted out of the model do-ther reference Fig shows the ice concentration in the basin
main). after eight days of model integration. As Figsand5 show,

A polynya is created by having a 15m/s wind blow uni- the edge in this simulation is at a concentration of between
formly at a 30 angle to the direction along the bay. The A=0.6 andA=0.9.
polynya forms at the bottom of the bay and the excess ice Ice formation rates in the model are closely linked to the
flows out the open boundary at the mouth of the bay. Thefractional ice concentration. For open water the ice formation

We can easily recover EqlQ) from Eq. (L1) by setting
®de=h/hg, which givesho=h/®g. Equation (1) therefore
states that during freezing the newly formed ice will have a
thickness equal th/ ®f. In particular, this means that when
ice forms in a grid cell that previously had no ice (ix=0)
this cell will become fully covered with ice with thickness
Ahow.

2.2 Control run

www.the-cryosphere.net/4/147/2010/ The Cryosphere, 4,18072010
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, ’ Table 1. Main physical parameters and constants used in the simu-
120} , 1 lation.
/
100} /./ 1 Variable Symbol  Value
sol ol | air drag coefficient Cda 1.2x10°3
= , air temperature Tair —20°C
X, / angle of dilatency 8 10°C
x 60f 7 09— basin dimensions LW 135km, 75km
/ %R::f cloud cover Fe 80%
40t , /o2 ; Coriolis factor f 1.33x104s71
P 6/ ellipse axis ratio e 2
20F 24 0.3 03 i horizontal resolution Ax 2.5km
: i ice demarcation thickness i 30cm
0 % ‘ ‘ ‘ ‘ ice density 0i 930 kg/n?
0 2 4 6 8 ice strength parameters C, P* 30, 30 kN/n?
t[days] internal angle of friction ¢ 30
min. viscosity (Hibler) Zmin 4x108kgls
Fig. 4. A Hovmoller diagram of the ice concentration field)(in relative humidity HR 80%
the control experiment taken along a sectiorya87.5km. The water drag coefficient Caw 5.5%103
vertical axis §) is the along-channel distance and the horizontal wind speed, angle lval, ®  15m/s, 30

axis () is the model time. The dash-dotted line shows /ikd& m
isoline separating the thick initial ice and consolidated ice.

itself and that of the consolidated ice. In the dynamic-
thermodynamic model this velocity change gives the ice
drifting in the polynya interior a barrier of slower consol-
idated ice to pile up against. Figufeshows the velocity
field and speed in the control experiment after eight days.
The speed does indeed fall into two categories: The free
drift speed|v:|=32.6 cm/s and the speed of the consolidated
ice |vc| <25 cm/s, depending on the distance away from the
y=75km boundary. More importantly the cross channel ve-
locity, v, changes fromy;=15.7 cm/s ta: <3 cm/s in the con-
solidated ice.Bjornsson et al(200] showed that it is the
0 20 40 60 80 100 120 cross channel velocity that is most important for the size
x [km] L X
and shape of the polynya. In the polynya interior the ice
Fig. 5. Sea-ice concentration in the control experimefi} &fter dr_ifts with the wind bl.Jt the consolidated ice slides al_ong the
eight days of model integration. The polynya edge is visible as ay_75 km bound_ary with a small cross channel velocity com-
sharp increase in concentration. ponent due to ridging at the boundary.
This setup exhibits the three fold separation of ice men-
tioned previously; free drift ice in the interior of the polynya,
rate is F(A=0)=13.83cm/day. In the polynya interior the consolidated ice at the polynya edge and thick initial ice be-
ice is between 30 cm and 34 cm thick. If we assume all thatyond that. This can be seen in the ice concentration field
ice is 32 cm thick we can calculate the ice formation rate insince the concentration is lowAd(0.6) in the polynya inte-
the polynya interior as a weighted averageFqfA=0) and rior and high @~1) in the consolidated ice. The transition
F(A=1, h=32cm=3.31 cm/day; i.e. between the two takes place over approximately 5 grid cells,
_ _ _ _ a region referred to here as the polynya edge. A similar tran-
F=AF(A=1h=32cm+1-AHF(A=0). (13) sition is seen in the velocity field; the ice in the interior is in
This approximation is correct to within 0.05cm/day for free drift while the consolidated ice drifts slower. The tran-
A<0.8, but starts breaking down as the consolidated ice getsition between the consolidated ice and the thick initial ice
thicker. Defining the polynya as all points for whigh<0.8 can only be seen in the ice thickness field. The ice in the
(this choice will be discussed further below), the mean icepolynya interior is almost as thick as the consolidated ice so
formation rate in the polynya ig¥'=11.1cm/day after two the polynya edge is not apparent in the ice thickness field. In
days andF=10.7 cm/day after eight days. this control run the polynya is most readily defined as an area
According toOu (1988, ice velocity in the model should of low ice concentration and the polynya edge as the area of
fall into two categories; that of free drift in the polynya a large ice concentration gradient.
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Fig. 6. Ice velocity @) and speed|¢|) in the control experiment Fig. 7. The polynya edge4=0.8) using the elliptic and modified

after eight days of model integration. The polynya edge is visible Coulombic yield curves and the granular model after eight model

as a sharp decrease in the ice velocity. days. The differences between different model formulations are mi-
nor.

In the rheologies used here EB) (lictates the ice strength
under compression as a function of ice thickness and CoNy, w4t case having no lower bound will typically result in a

centration. When this term is small the rheology term be- i« soiution Griffies and Hallberg2000. Most modern
comes small and the ice is in free drift. Since the ice in the;

| . ior is in f . hat the | _~ice models ignore the material derivative and do not include
polynya interior is in free drift we propose that the location o |qer hound ore. However, as the resolution increases

of the polynya edge, in this particular setup, can be approXiyhe material derivative becomes more important. The scaling
mated byA=0.8. Th's IS becausl?(A:O.S)/P(A:l)%0.0l argument made bRothrock(1975 shows that the material
so the rheology will play a negligible role at lower concen- yeiyative may need to be included as the shortest significant
trations. This 9h0|c';e.|s vaI|d. for the pontrol run since the length scale becomes smaller than about 5 km.
A=0.8 contour'|s within the h|gh grad'lent region where the In this idealised setup the material derivative has very little
polynya e_dge IS fognd (see Fifj). Itis also valid for aI_I effect on the final solution, regardless of which rheology is
th? _followmg experlme_nts d_one here, except_ when using &sed. The difference between the results with and without
minimum on the bulk V|§co§|ty§0 and when using the new- the material derivative is about 7 mm/s in the grid cells at the
ice thickness parametnsa_tlon bfellor and Kantha(1989. £=0 boundary and about 2mm/s at the75km boundary
These two cases will be discussed separately. and at the polynya edge. Everywhere else in the domain the
difference is less than.Dmm/s. Compared to the free drift
3 Different yield curves speed of|vf|=32.6 cm/s this is small. We also observe no
noise, even when the material derivative is included and the
An important part of the motivation for this study was to lower bound ort is set to zero.
compare the results dBjornsson et al(200J), using the Without a lower bound oy the results using the elliptic
granular model, to a similar setup using different rheologies.yield curve are nearly identical to those using the granular
The elliptic yield curve oHibler (1979 is the most popular model. There is a sharp transition from free drift ice to con-
yield curve in use today, but it was designed for much lowersolidated ice, analogous to the polynya edge, just like in the
resolution. It is therefore important to see how it fares in thisgranular model. This polynya edge forms at nearly the same
high resolution setup. The modified Coulombic yield curve location as it does in the granular model. Using the modified
was, on the other hand, designed to model ice at high reso€oulombic yield curve also gives results very similar to the
lution so it will be instructive to see its performance here asgranular model. This is to be expected, since the modified
well. In this section the focus is on the model response inCoulombic yield curve is in a way a combination of the other
the consolidated ice, since the rheology does not play a roléwo yield curves. The difference between the three model
inside the polynya itself. formulations is limited to a small variance in polynya size,
In his modelHibler (1979 used a minimum for the bulk which as Fig.7 shows, is due to a shift of the polynya edge
viscosity; min=4x 108 kg/s “in order to insure against any by a few grid boxes. In particular, the commonly used el-
nonlinear instabilities” noting that that value is “several or- liptic yield curve is sufficient and can be used safely in this
ders of magnitude below typical strong ice interaction val- context.
ues and effectively yields free drift resultsMipler, 1979 Using a minimum ort does, however, give considerably
p. 823). The lower bound should only be necessary when thelifferent results from the control run. Setting the minimum to
material derivative is included in the momentum B .gince  ¢min=4x10° kg/s, likeHibler (1979 did, results in a polynya
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effectively free drift. Lu et al. (1989 also found that this
limit was too high compared to measurements.

As previously stated, we observed no non-linear insta-
bilities using ¢min=0kg/s. Some noise is, however, to be
expected in a realistic simulation and so a non-zgr@
may be required if one wants to include the material deriva-
tive. In that case one would need to choose a low, but
non-zero value fokmin. The resolution of Hibler's model
was 125km and since viscosity scales with the distance
squared, a choice afnin=4x10*kg/s seems in order. This
yields nearly the same results as within=0kg/s; the
largest difference in concentration between the two model
runs beingAA=0.006. The maximum concentration gra-
dient when usingZmin=0 is max|VA|)=0.230knT! and
Cf o 5 oSS it is max(|VA[)=0.228 knT! when using¢min=4x 10" kg/s.

y [km]

_ 50 When choosing larger values fogin, the effects of the cap-
g 40 ping start to show. Foimin=4x10° kg/s the maximum gra-
> 20 dient is max|V A|)=0.212knt! and the difference in con-
N centration between that run and the one with zgyg, is
20 AA=0.08. Forimin=4x10°kg/s the maximum gradient is
10 max(|VA|)=0.164 knt! and the concentration difference is
0 . AA=0.3.
0 20 40 60 80 100 120

x [km]

Fig. 8. Sea-ice concentration (top) and speed and velocity (bottom? New-ice thickness

using Hibler’s original formulation for the elliptic yield curve, after

eight days of model integration. Neither figure shows a discernibleAs we have already seen, the ice rheology affects the ini-

polynya edge. The dash-dotted line shows the isolineA®0.8  tjal ice pack and the consolidated ice. The interior of the

from the control run. polynya, on the other hand, is primarily affected by the new-
ice thickness parametrisation. This determines the thick-

with a very diffuse edge, as Fig.shows. Speed and veloc- N€SS and thus the concentration of the ice formed inside the

ity also fail to meet the criteria for forming a polynya edge; Polynya.
i.e. there is no clear separation between the velocity of theice The most popular method for parametrising the new-ice
in the polynya interior and consolidated ice (see Bjg.In  thickness is probably the one suggestedtiijler (1979 (see
addition, the ice in the polynya interior does not flow at a con- Sect.2.1). Put simply the new-ice thickness is not allowed to
stant speed and its speed is sometimes lower than that of tH&op below a certain minimury. If the total mass of newly
consolidated ice, which is clearly not plausible. The speed oformed ice is not enough to cover the open water fraction of
the ice in the polynya interior when usiggin=4x 10 kg/sis  the grid cell at that thickness then the concentration of newly
also always lower than it is in the control run. A decrease informed ice is adjusted accordingly. If more ice is formed then
the ice concentration is also seen by %5 km boundary, the new ice is simply thicker thair.
contrary to what can be seen in the control run. These effects The choice ofig is not obvious and appears to range from
were noted byHunke (200]) in a different setup, but that 10 to 50cm or even more in some cas&jornsson et al.
discussion focused on the effects seen at the solid boundar{2001) argued for usingdp=30 cm and that is the value used
which will not be discussed further here. here so far. Their argument is based on the assumption that

The polynya edge becomes so diffuse because when imthe ice that forms in the polynya immediately forms pancake
posing such a high minimum ap, the viscosity is consis- ice. HoweverBjornsson et al(200]) state that pancake ice
tently kept at its minimum value for <0.9 throughout the  thickness is closer to 10 cm than 30 cm. We therefore include
simulation. This is because the viscosity is related to the icea model run withzg=10 cm.
pressure via The main result of usingp=10cm is that with a lower

_ 2 ho the polynya fills up much faster. The newly formed ice
¢=P/2h andn=¢/e, (14) is thinner, therefore has a larger surface area, which results
and the pressure to ice concentration via B). (The flow  in faster ice concentration growth in the polynya itself and
whereA is sufficiently small is therefore linear viscous, but causes the polynya edge to form closer to the bottom of the
choosing as a minimurtimin=4x 108 kg/s does not result in  bay than before. The polynya edge is also not as sharp in the
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Fig. 9. The ice concentratiory, top) and speed and velocity &énd Fig. 10. The ice concentration4 top) and speed and velocity

|v|, bottom) usingzg=10 cm after eight model days. The resulting (v and|v|, bottom) using the new-ice thickness parametrisation by

polynya is smaller and has a higher ice concentration than the conMellor and Kantha(1989 after eight model days. The resulting

trol run. The dash-dotted line shows the isoline A30.8 from the polynya is very small with no discernible edge in the velocity field.

control run. The dash-dotted line shows the isoline 0.8 from the control
run.

concentration field as when usifhg=30 cm. It is, however,
still sharp in the velocity field, as can be seen in Big.

The mean ice formation rate in the polynya is about 1%
lower here than in the control run. The total ice formation is
therefore reduced almost only because the polynya is smalle
Using ho=30cm gives polynya area ohp=4.5x10°km?
after eight days, but usingp=10cm the polynya area is
Ap=2.4x 10° km? after eight days; an approximately 50% re-
fjucti_on in size. Finally, the consolidated ice is thinner Sinceaway from thex=0 boundary, contrary to our previous as-
its thickness equal. - . sumptions about how a polynya is formed.

The qther appfoach to deter_mmmg the thickness of newly Ice thickness near the coast is indeed lower than the initial
formed ice described in Sed.1is th'e one proposed Byel- ice thickness, but as Fig.1 shows there is no real polynya
!or z_;md Kanths(1989. _There the th'CI.(neSS of newly form_ed edge to be found in the ice thickness field. In that respect
ice is based on the thickness of the ice already present in thﬁwere is no conceptual difference between ugirg Ah. As

grid cell. Mellor and Kanth(1989 argued that the thick- ¢ 0 the thick initial ice drifts out of the basin, but in this

Ness of newly.formed ice should be a quarter_ of th? Ol.d IC€ase the ice that replaces it does not have a uniform thickness.
thickness. This also means that when there is no ice in th

id cell wh oo f the i d forml ftis very thin at the coast with linearly increasing thickness
grid cell when new ice forms, the ice spreads uniformly over, .\ o o spicl initial ice.

the entire cell, potentially very thinly. A polynya in such a We have already mentioned that considerable effort has

model may therefore be hard ta recognise by the change iIrlBeen put into parametrising the collection depth in polynya

concentration and researchers using this approach often COlix models. Given the large variation between the results

sider ice below a certain cut-off thickness to represent the

. v already presented in this section we find it worth consider-
FoorhtlgiiaéEtrgifdtizléine;sas(zooa, for instance, usdk=30cm ing whether the polynya flux model parametrisations can be

applied in the dynamic-thermodynamic model.

Using this approach results in a “polynya” that is hardly
recognisable in the concentration field, as Fi@. shows.
Even after eight days there is only a thin sliver of an open-
ing along thex=0 km andy=0 km boundaries and th&=0.8
[soline is a grid box or two away from the shore. More seri-
ously perhaps the velocity field, also shown in Rif,. shows
no sign of the discontinuity deemed necessary for proper
polynya formation. The ice slows down gradually moving

www.the-cryosphere.net/4/147/2010/ The Cryosphere, 4,18072010



156 E.O. Olason and I. Harms: Polynyas in an ice model
8
120
7 L
100 6l
L — 5 L
_ 8 e
E <
= > 4
X< 60f =
o
< 3t E
40t h,=30cm
2 v )
- _ h0:10cm
20r L= _ _ _variablehy
7/,
0 ‘ 0 s s s ‘ ]
0 2 4 6 8 10 15 20 25 30 35
t [days] |va| [m/s]

Fig. 11. A Hovmoller diagram of the ice thickness field)(us-
ing the new-ice thickness formulation Mellor and Kanthg1989
taken along a section §&37.5 km. The vertical axisq is the along
channel distance and the horizontal axjsig the model time. The
dash-dotted line shows the isoline f4+0.8 from the control run.

Fig. 13. The polynya size 4p) after eight days as a function of
wind speed [va]). The size is calculated as the sum of the size of
all model points wheret <0.8.

where|vy| is the surface wind velocityy;=1m, »=0.1s and
¢=15. In particular,H~7 cm for |vy|=0 and H=30cm for

70 — hy=30cm |val=35m/s so this parametrisation is well within the range
60 — - variable hy of plausible values fohg. Equation {5) is then used to cal-
50 culateho=H in each grid point.
T 40 Using this parametrisation results in smaller polynyas at
£ ;
= low wind speeds, compared =30 cm or larger polynyas
30 at high wind speeds, compared kg=10cm. Figurel?2
20 shows the polynya usingp=30 cm and the parametrisation
10 for the wind speeds 10, 20 and 30 m/s. At lower winds the
“““ polynya edge starts to become diffuse, which is to be ex-
% 20 40 60 80 100 120 pected. For further reference Fit3 shows the size of the
x [km] resulting polynya as a function of wind speed. The mean ice

Fig. 12. The polynya edge after eight days using a consigrand
parametrisedig according to Eq.X5). A=0.8 is used as a marker

formation rate in the polynya increases frafi®10 cm/day
for |va)=10 m/s toF=11 cm/day forjvy=35m/s and choos-
ing different values for:g contributes to about 1% change

for the polynya edge and the edge is plotted for 10, 20 and 30 m/3n the ice formation rate. At the same time the polynya size

wind speed.

The parametrisation byWinsor and Bprk (2000

grows approximately four times as the wind strength grows
from 10 m/s to 35m/s. It is therefore clear that variations in
polynya size control the variations in total ice formation in

the polynya.

lends itself well to immediate inclusion in the dynamic-

thermodynamic model. It is based only on the wind speed

and not the polynya width, frazil ice speed or other quan-g piscussion

tities not accessible to the dynamic-thermodynamic model.

By using this parametrisation we aim at improving the mod- Bjornsson et al(2001) have already shown that the granular

elled consolidated ice thickness and thus also the size of thenodel can be used to model polynyas in an idealised set-

polynya. ting by comparing their results to a polynya flux model. We
Winsor and Bprk (2000 assumed the collection depth to  have shown that this is also the case when using the modified

be a function of wind speed as Coulombic yield curve oHibler and Schulsor2000 and

when using the elliptic yield curve dflibler (1979. This

is important since the numerical performance of the granular

model is considerably worse than that of the other two mod-

els. We find that the granular model requires almost twice the

_a+|vglb
=—,

H (15)
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yield curve ofHibler (1979 is also already in use in the vast
majority of sea-ice models. &= 0.2
All three yield curves give nearly identical results (with the o
exception of using a cappedas discussed below). Looking 0 A
at the stress states (Fit®) we see Fhat when using thg gran- ] -05 0 1
ular model they| values for points in the consolidated ice are 0.4 0.8
all clustered around=—P/1.5. This means that at these :
points the ice cover yields or is very close to yielding under o 0.2 // ooy, 06
compression. When this is the case the behaviour of theice o
is controlled by Eq.&), which is also one of the main equa-
tions governing the behaviour of the other two yield curves. 9
The difference between the granular model and the other two 04
is then almost entirely explained by the different formulation ' ", 0
of shear strength between the model formulations. AsFig. N
shows, the granular model and the ellipse have a lower shearB= 0.2 -
strength than the modified Coulombic yield curve, which \ik
is why using the modified Coulombic yield curve gives a 0 P
smaller polynya. -1 -0.8 —0.60 /I—30.4 -02 0
Using the other two yield curves, the stress states are much '
more evenly distributed along thg axis. For the modi-

fied Coulombic yield curve the stress states that lie on the !9 14 Stress states using the granular model (top), the elliptic

. L . ield curve (centre) and modified Coulombic yield curve (bottom)
Coulombic slope are all inside the polynya while the stress;ﬁer eight model days plotted in stress invariant space. The colour

states in the consolidated ice are all on the elliptic part of the, .o indicates the ice concentration at each pofitand points

yield curve. This happens because in the consolidated icg;ih high concentration are drawn on top of those with a lower con-

the divergences is always negative, so according to E@) ( centration. Points with high values @f(4>>0.8) are all located in

01<—P/2. Using the elliptic and modified Coulombic yield the regions; <—P/2. Points near the open boundary are excluded

curves therefore yields similar results for the consolidatedfrom the figure.

ice, where both yield curves have an elliptic shape. In the

polynya interior the ice is in free drift so the shape of the

yield curve has no effect there. less effects on the simulation than using a non-zgye we
Using a larg&min, in particulartmin=4x 10 kg/s asHibler  conclude that ignoring the material derivative is preferable to

(1979 suggests, does, however, give results that are not platincluding it and a non-zertmin.

sible. Using this original formulation results in a polynyathat  \wjith regards to the ice behaviour inside the polynya we

is smeared out with no proper edge and a velocity field thaiconsidered three ways in which to parametrise the thickness

has little relation to polynya formation. This happens be-of ice forming over open water. These are the methods sug-

cause the capping ¢fin the model turns the viscous-plastic gested byHibler (1979, Mellor and Kantha1989 and an

formulation into a linear viscous model for ice concentration adaptation of the collection depth parametrisatioMbigsor

A<0.9. and Bprk (2000. Hibler's method was used when investi-
Hibler (1979 used the lower bound onto dampen grid  gating the dynamic aspects (Se8}.with an ice demarca-

scale noise which can arise when the grid Reynolds numbefion thicknessig=30 cm afterBjornsson et al(2001). That

constraint is not satisfied. Considering the limited case ofyg|ye may be too high and so we also ran the model using

computing time the other two rheologies require. The elliptic 0.4 P

X L.

1 -0.5 0.2

Burger’s equation in one dimension: ho=10cm.
dv dv d?v Using a lowerhg resulted in a smaller polynya but little
ar + Ui T A@’ (16) change in mean ice formation rates (about 1%). The ice con-

1 . centration in the polynya interior was higher and as a result
A must be bounded byi>3vAx (Griffies and Hallberg e concentration field did not show a sharp polynya edge.
2000. In free drift and ignoring the sea surface tilt term, the T yelacity field, on the other hand, still showed a clear dis-
momentum equation becomes Burger's equation and for thentinyity at the polynya edge. The width of the polynya did
one dimensional casé= ¢ /pi. Using the free drift speed of  jocrease, but that was to be expected and can be understood
|vi|=32.6 cm/s and\x=2.5km the viscosity is bounded by i, rejation to the Lebedev-Pease width of a polynpadse

§>%,oi |vi| Ax~4x10° kg/s. 198
The grid Reynolds number constraint is therefore an or-
der of magnitude larger than our preferred value for a non- HU
zero¢min. Since ignoring the material derivative had much L = ——. (17)
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whereL is the polynya width anéiU is the flux of consoli- It is trivial to combine all three approaches to new-ice
dated ice. The collection deptH,, is analogous tég inthe  thickness parametrisation discussed here into one:
dynamic-thermodynamic model. Lowerihg from 30 cm to

10cm results in approximately 1% reduction in the ice for- ;) — max<£, M) (18)
mation rate ). The polynya width is therefore bound do o ¢

decrease. with ®=4, a=1m, b=0.1s andc=15, as before. This ap-

Results obtained using the for_mulatiorMéIIor and Kaq- proach modifies the previously constamtof Hibler (1979
Fha(1989 were, however, very different from those obtained ¢, that for thick ice the approach ®fellor and Kantha
in the control run. Using Mellor and Kantha's formula- (19gq is ysed and for thinner ice the parametrisatiofi-
tion there are two ice regimes; thick ice and thin ice, which ¢, o Bjrk (2000 is used. Using one value for thick ice

may be_ charactferis_ed as nilasf. This_replaces_the thrgefolgnd one for thin is appropriate singg is only analogous to
separation of thick ice, consolidated ice (of uniform thick- 1o collection depth in a polynya or the marginal ice zone.

ness) and frazil/free drift ice, seen in polynya flux models\ypere the ice is thicker the ice behaviour should be simi-

and the control run. The polynya edge is considered 0 b, 1 that described bilellor and Kanthg1989, given the
what separates the consolidated ice and frazil/free drift IC€empirical origin of their formulation.

but this distinction is lost when using tidellor and Kantha In our setup the result of EqL8) will always be the same

(1989 approach. The new-ice thickness formulatioMsl- 55 that of Eq. 15) since the ice in the polynya is always

lor and Kanthg1989 is therefore not suitable for modelling  (in in the sense thalt<® (a-|va|b)/c. Further testing of

polynyas. . . this new parametrisation can therefore not be done here but
On the whole, the apProaCh Ibyble_r (1979 IS also more . should be carried out in a realistic simulation.

reasonable from a physical standpoint. This is because wind In conclusion we note that in this idealised setup the

and waves, which cannot be resolved by ocean or atmospher&)'ynya is best defined as the area whdre0.8. This is

models, will transform the frazil ice in the polynya into pan- o)1y the concentration where the ice behaviour starts chang-

F:ake Ice, s!mllar to the ice formation n that scheme. Whating from free drift, forA <0.8, to being heavily influenced by

is unrealistic about Hibler's approach is that solid ice forms;ionai stresses. fot~1. This separation is based on E). (

inside the polynya, even where in reality the ice is mainly 54 o, the choice af. The A=0.8 isoline is also consistently
frazil ice. _The thin ce formed using Mell_or and_ Kanthas_, within the high gradient region fat in all experiments, ex-
approach is more akin to grease ice or nilas which form 'ncept when using too high a minimum for the bulk viscosity
calmer conditions. and when using the new-ice thickness parametrisation from

Wind speed is therefore an important factor in determining,vIellor and Kantha1989. But both these cases were found
the new-ice thickness and it is consequently an important parf, give implausible results

of collection depth parametrisations for polynya flux models.

Winsor and Bprk (2000 parametrised the collection depth

in the Peas€1987) model based only on wind speed and we 6 Conclusions

found that parametrisation easily adoptable for inclusion in

the dynamic-thermodynamic model. We have used an idealised setup to test three different sea-ice
Using theWinsor and Bprk (2000 parametrisation gives rheologies and three different formulations for the thickness

results in the range between the results when using a constanf newly formed ice during polynya formation. These tests

ho=10 cm andip=30 cm. We have already expressed a pref-were done using a dynamic-thermodynamic sea-ice model in

erence for thddibler (1979 parametrisation for the new-ice an idealised channel, similar to wHajornsson et al(2001)

thickness and using th&finsor and Bprk (2000 parametri-  did.

sation enables us to choose a sensible valugifor As a We were able to reproduce the results of the granular

result the polynya size should depend on wind strength in anodel using both the modified Coulombic yield curve of

more realistic manner than when using a constantJsing Hibler and Schulsorf2000 and the elliptic yield curve of

the parametrisation should also give more realistic ice thick-Hibler (1979. This is important, since the numerical per-

ness for the consolidated ice. formance of the granular model is substantially worse than
On a more general note, such a small valugifpmay not  that of the other two models and also since the elliptic yield

be suitable for models describing the central pack ice as wellcurve is already in popular use. We also found that including

In such a situation the approachMéllor and Kanthg1989 the material derivative and setting a minimum on the bulk

may give better results since the thick pack ice appears twiscosity is not a viable alternative to ignoring the material

require a largehy. derivative.

The formulation of new-ice thickness suggestedHiy
bler (1979 turned out to give much better results than that
of Mellor and Kantha(1989. Using Mellor and Kantha’s
formulation failed to give a clear polynya edge, both in the
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concentration and velocity field. We conclude therefore thatHeil, P. and Hibler, 1ll, W. D.: Modelling the High-Frequency
this approach does not enable us to properly model polynyas. Components of Arctic Sea Ice Drift and Deformation, J.
Hibler’'s approach, on the other hand, gave a clear separation Phys. Oceanogr., 32, 3039-3057, doi:10.1175/1520-0485(2002)
of the consolidated ice and the polynya itself. |0323039:MTHFCQ2.0.CO;2, 2002. .

Using Hibler’s new-ice thickness parametrisation and anyHlbler lll, W. D..- A Dynamic Thermoo!ynamlc Sea Ice Model,
of the rheologies tested here should give realistic results J. Phys. Oceanogr., 9, 815-846, doi:10.1175/1520-0485(1979)

h delli | Pol that full ved 009%0815:ADTSIM2.0.CO;2, 1979.
when modelling polynyas. Folynyas that are iully resolve Hibler Ill, W. D. and Schulson, E. M.: On modeling the anisotropic

by the model grid can then be recognised as areas of low failure and flow of flawed sea ice, J. Geophys. Res., 105, 17105—

concentration enclosed by compact ice and/or land. We also 17120, doi:10.1029/2000JC900045, 2000.

suggest usingl <0.8 as a criterion for low concentration.  Hunke, E. C.: Viscous-plastic sea ice dynamics with the EVP
Hibler (1979 assumed a constant demarcation thickness model: Linearization issues, J. Comput. Phys., 170, 18-38, doi:

(ho). We suggest, however, using the collection thickness 10.1006/jcph.2001.6710, 2001.

parametrisation oWinsor and Byrk (2000 to parametrise ~ Kern, S., Harms, I., Bakan, S., and Chen, Y.: A comprehensive view

ho. This results in a value fohg which is dependent on of Kara Sea polynya dynamic_s, sea-ice compactness and export

wind strength and in the range already deemed acceptable oM model and remote sensing data, Geophys. Res. Lett., 32,

for hg. As an aside, a combination of this parametrisation 115501, doi:10.1029/2005GL023532, 2005.

. . Lu, Q.-M., Larsen, J., and Tryde, P.: On the Role of Ice Interaction
with the approach oellor and Kanthg1989 is proposed. due to Floe Collisions in Marginal Ice-Zone Dynamics, J. Geo-

This should give a parametrisation feg applicable forboth 05 "Res | 94, 1452514537, doi:10.1029/JC094iC10p14525,
the marginal ice zone and the central ice pack. 1989.
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