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Abstract. The representation of polynyas in viscous-plastic
dynamic-thermodynamic sea-ice models is studied in a sim-
plified test domain, in order to give recommendations about
parametrisation choices.Bjornsson et al.(2001) validated
their dynamic-thermodynamic model against a polynya flux
model in a similar setup and we expand on that work
here, testing more sea-ice rheologies and new-ice thickness
formulations. The two additional rheologies tested give
nearly identical results whereas the two new-ice thickness
parametrisations tested give widely different results. Based
on our results we argue for using the new-ice thickness
parametrisation ofHibler (1979). We also implement a new
parametrisation for the parameterh0 from Hibler’s scheme,
based on ideas from a collection depth parametrisation for
flux polynya models.

1 Introduction

One of the most interesting features of sea ice, in a climate
context, is the fact that it acts as an insulating layer between
the atmosphere and the ocean. As the ice grows, the transfer
of heat from ocean to atmosphere is greatly reduced. This
slows further ice formation down and allows the atmosphere
to cool much more than it otherwise would.

This blanket of ice is subject to atmospheric and oceanic
momentum forcing, which can create openings in the cover,
allowing direct heat exchange between the ocean and the at-
mosphere. Where this happens, the heat transfer may in-
crease up to hundredfold, causing vigorous ice formation,
brine release and heating of the atmosphere near the opening.
This paper focuses on large openings, known as polynyas,
but smaller openings are referred to as leads.
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Polynyas and leads are an important part of the climate
system at high latitudes.Maykut (1982), for instance, es-
timates that about 50% of the total atmosphere-ocean heat
exchange over the Arctic Ocean in winter occurs through
polynyas and leads. During summer, these openings ad-
mit shortwave radiation into the ocean, warming it up and
thus impacting the heat and mass balance of the ice and
ocean (Maykut and Perovich, 1987; Maykut and McPhee,
1995). Arctic polynyas also play a large role in halocline
and deep water formation andWinsor and Bj̈ork (2000) es-
timate a mean ice production from all Arctic polynyas of
300±30 km3 yr−1. The resulting salt flux is about 30% of
the estimated flux needed to maintain the halocline.

In terms of general circulation models, polynyas are mod-
elled using dynamic-thermodynamic sea-ice models. This
has been done successfully by a number of researchers;
e.g. Marsland et al.(2004), Kern et al.(2005) and Smed-
srud et al.(2006). Not all researchers use the same criterion
to define a polynya in dynamic-thermodynamic models. The
most straightforward approach would seem to be to use ice
concentration alone, likeKern et al.(2005). However,Smed-
srud et al.(2006) use a combination of ice concentration and
thickness andMarsland et al.(2004) use a combination of ice
concentration and freezing rate.

This appears to be due to a fundamental difference in the
model results ofKern et al.(2005) andMarsland et al.(2004)
on one hand and that ofSmedsrud et al.(2006) on the other.
In the former studies a polynya can be characterised as an
area of low ice concentration surrounded by ice of high con-
centration. In the latter case the polynya is an area of thin ice
(but high concentration) surrounded by thick ice.

These differences serve as an incentive to take a closer
look at how polynyas form in dynamic-thermodynamic sea-
ice models. Highly idealised setups are useful when trying
to understand the basic processes involved and so we choose
to revisit a study originally made byBjornsson et al.(2001).
In their study,Bjornsson et al.(2001) compared the granular
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model of Tremblay and Mysak(1997) to the polynya flux
model ofWillmott et al. (1997) in an idealised basin. In an
idealised setup, comparison with measurements is not possi-
ble and so the polynya flux model was used to validate the
dynamic-thermodynamic model results.

Here we expand on the work done byBjornsson et al.
(2001) and compare the granular model to the more com-
mon viscous-plastic model ofHibler (1979) and the lesser
known modified Coulombic yield curve byHibler and Schul-
son(2000) in a setting similar to that used byBjornsson et al.
(2001). The granular model results are used to assess the out-
come from the other two yield curves. Secondly, we consider
formulations byHibler (1979) andMellor and Kantha(1989)
for the thickness of newly formed ice. The former formula-
tion was used byKern et al.(2005) andMarsland et al.(2004)
and the latter bySmedsrud et al.(2006). Finally, we use the
collection depth parametrisation ofWinsor and Bj̈ork (2000)
to parametrise the new-ice thickness. Thus we address the
important points of a polynya simulation; first the behaviour
of the consolidated ice, which is determined by the rheology,
and secondly ice formation inside the polynya, determined
by the new-ice thickness parametrisation.

The layout of this paper is as follows: in Sect.2 we dis-
cuss polynya formation and how to interpret the results of
dynamic-thermodynamic models in light of what we know
about polynyas. That section also includes a short descrip-
tion of the dynamic-thermodynamic model and a presenta-
tion of the control run by which the following experiments
are assessed. In Sect.3 the response of the model using dif-
ferent yield curves is presented. Section4 presents the effects
different formulations for the thickness of newly formed ice
have on the model results. Section5 contains a discussion of
the model results followed by the conclusions of this study.

2 Polynyas in a dynamic-thermodynamic model

We will now discuss wind-driven polynyas and how they
are modelled using dynamic-thermodynamic sea-ice mod-
els. The discussion focuses on understanding the processes
involved in polynya formation and how to relate those to
the results of the dynamic-thermodynamic model. We find
that when it comes to understanding the model behaviour in-
side the polynya it helps to keep some of the assumptions
of the flux polynya models in mind. Polynya flux mod-
els are simplified physical models which underline the im-
portant processes in polynya formation. They have been
proven to be useful in simulating a variety of situations (see
e.g.Morales Maqueda et al., 2004). In Subsects.2.1and2.2
we briefly describe the dynamic-thermodynamic model and
the control run used to assess other model results.

Wind-driven coastal polynyas form where the ocean is ini-
tially covered by ice and a wind starts blowing off the coast.
This causes the ice to move off-shore, opening a polynya at
the coast (or fast ice edge). Inside the polynya the ocean is

at the freezing point causing frazil ice to form and be herded
downstream by the wind and waves. The frazil ice then con-
solidates at the edge of the initial ice. The polynya remains
open as long as the off-shore wind component remains strong
enough to maintain it.

The ice in and near a polynya can be divided into three
distinct regimes: The thick initial ice, the consolidated ice
and the frazil ice inside the polynya. The polynya edge is
the interface between the polynya and the consolidated ice.
This threefold separation is the basis of flux polynya mod-
els. They calculate the location of the polynya edge based
on the drift velocity of the consolidated (and thick) ice, the
ice formation rate inside the polynya and the thickness of the
consolidated ice (H , also referred to as collection depth).

In the first flux polynya model, proposed byPease(1987),
the frazil ice inside the polynya is immediately transferred
to the edge of the consolidated ice, where it piles up. The
model byOu (1988), and later models, assume a constant
(and finite) velocity for the frazil ice, but this must always be
greater than the velocity of the consolidated ice. In reality
the frazil ice drifts faster than the consolidated ice because
frazil ice, near or at the surface, experiences less water shear
stress than the consolidated ice. The water velocity inside
the polynya is also different from that under the consolidated
ice, but this can be difficult to account for in a simplified
setup. Finally the initial ice pack may not drift at the (local)
free drift speed, as the wind that creates the polynya is non-
uniform and may be weaker further off shore. Islands and
other coast lines may also slow down the drift of the initial
ice pack.

Polynya flux models focus on the frazil ice representation
and the parametrisation of the collection depth. The velocity
of the thick initial ice must, however, always be prescribed.
Dynamic-thermodynamic models are, on the other hand, de-
signed to model the movement of this thick ice, but they gen-
erally do not include any frazil ice parametrisations. When
ice forms over open water in dynamic-thermodynamic mod-
els solid ice of a predetermined thickness,h0 (see Sect.2.1),
is immediately formed, more akin to pancake ice than frazil
ice.

In a polynya modelled by a dynamic-thermodynamic
model the ice in the polynya interior drifts towards the ini-
tial ice pack, forming the consolidated ice. The consolidated
ice consequently has thickness close toh0, which, in this
particular setup, is then effectively the model’s “collection
depth”. Assuming that the ice in the polynya interior drifts
faster than the consolidated ice, like theOu(1988) model de-
mands, the dynamic-thermodynamic model should also show
the three ice regimes the polynya flux models do (see Fig.1).
In additionBjornsson et al.(2001) showed that the transition
from freely drifting ice in the polynya interior to consolidated
ice can occur over a few grid cells. This transition region is
then analogous to the polynya edge predicted by flux polynya
models.
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We also note that since the consolidated ice and the ice in
the polynya interior are modelled using the same drag coef-
ficients their free drift speed will be the same. Absent any
other forcing, or a divergence in the wind forcing, no sharp
polynya edge will form. This is because the polynya that
opens up fills with ice drifting at the same speed as the con-
solidated ice, resulting in linearly increasing ice concentra-
tion inside the polynya.Bjornsson et al.(2001) noted this be-
haviour (see their Fig. 4). In their study a polynya edge forms
because the drift of the consolidated ice is slowed down by
one of the side walls of their ideal basin. This approach is
also used here.

A final point here is that we assume the polynya being
modelled to be large enough to cover a substantial number of
model grid points. In particular we demand that the model
resolve the three ice regimes and the polynya edge. A single
grid cell not completely covered with ice may often be inter-
preted to contain a polynya, especially if the grid resolution
is low. In this study, however, we only consider polynyas that
are properly resolved by the model grid.

2.1 The dynamic-thermodynamic model

The ice model is a two class (ice and open water) dynamic-
thermodynamic sea-ice model which was written to be cou-
pled with the VOM ocean model (Backhaus, 2008). In this
paper the ice model is coupled to a stationary slab ocean. In
the present context the most important points to discuss re-
garding the model are the facts that one can choose between
three different viscous-plastic rheologies and two different
ways in representing the newly formed ice. In this section
we briefly describe the model focusing on the rheology and
new-ice thickness formulations.

The ice is modelled as a continuum using an Eulerian per-
spective. It moves in a horizontal plane, subject to both ex-
ternal and internal forces. Temporal evolution of the sea-
ice cover is described using two continuity equations and the
momentum equation. The continuity equation for mass is

∂m

∂t
+ ∇ · (vm) = Sm, (1)

wherem is the sea-ice mass per unit area,Sm is a thermo-
dynamic source/sink term andv is velocity. The source/sink
term is a simple mass conservation formula:

Sm = ρiA1h + ρi(1 − A)1how, (2)

whereρi is the ice density,A the fractional ice concentra-
tion, 1h represents the thickness changes in the ice already
present in the grid cell andρi(1−A)1how represents mass
addition through ice formation over open water.

An equation for the evolution of the ice thickness distri-
bution within each cell is also needed. The model uses two
ice classes; i.e. ice and open water and so this becomes an

Wind direction

Polynya Thick iceConsolidated ice

(a)
Hhc

(b) h0

Fig. 1. Polynya formation in polynya flux models and a dynamic-
thermodynamic sea-ice model.(a) In thePease(1987) model, frazil
ice that forms inside the polynya is immediately transported to-
wards the thick ice. There it forms consolidated ice of thickness
H . In the Ou (1988) model, the frazil ice has constant (and fi-
nite) drift speed inside the polynya and therefore non-zero thick-
nesshc (dashed line). (b) In a dynamic-thermodynamic sea-ice
model newly formed ice is immediately transformed into solid ice
of thicknessh0.

equation of conservation of sea-ice concentration. That takes
the same basic form;

∂A

∂t
+ ∇ · (vA) =SA, (3)

with SA being a source/sink term. The average ice thickness
over ice-covered area,h can be derived usingm=Ahρi . The
source/sink termSA will be discussed below. In addition the
conditionA≤1 is imposed. This can be interpreted as a ridg-
ing condition sincem (and thush) can increase even ifA
does not (Hibler, 1979). Together these equations describe
the advection of the ice in a given velocity field.

The momentum equation used is (Coon et al., 1974)

D(mv)

Dt
= τa + τw − mf k × v − mg∇H − ∇ · σ . (4)

Herek is a unit vector normal to the surface,τa andτw are
air and water stresses,f is the Coriolis factor,g is the grav-
itational acceleration,H is the sea surface height andσ is
the sea-ice stress tensor. Of the forcing terms on the right
hand side∇·σ describes forces due to internal stress while
the other terms are all external factors. The term on the left
hand side is the material derivative; D/Dt=∂/∂t+v·∇. It
can in most cases be safely ignored (Rothrock, 1975), but
may start to play a role at very high resolution. Its effects
will be discussed further in Sect.3. The momentum equation
is solved using pseudo-time stepping. We use 20 pseudo-
time steps, but if the maximum velocity difference between
two consecutive pseudo-time steps is less than 0.1 mm/s no
further pseudo-time steps are taken.

Wind and water stresses are modelled as quadratic drag
(McPhee, 1975);

τa = ρaCda|va|va (5)
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Fig. 2. The three yield curves discussed in the text plotted in stress
invariant space; the elliptic, the modified Coulombic and the granu-
lar model’s yield curves, depicted as solid, dashed and dotted lines,
respectively.

τw = ρwCdw|v − vw|(v − vw), (6)

whereCdw andCda are drag coefficients,ρw andρa are air
and water densities andvw andva are the near surface water
and wind velocities. This assumes that the wind velocity is
much larger than the ice velocity; i.e. that|v−va|≈|va|.

The last term in Eq. (4) is the force due to the divergence of
the internal stress tensorσ . Stress and strain rate (and thus
ice velocity) are related through the sea-ice rheology. The
three rheologies tested here are those suggested byHibler
(1979), Tremblay and Mysak(1997) andHibler and Schul-
son(2000), which are all isotropic viscous-plastic rheologies.

In isotropic viscous-plastic models the relation between
stress and strain can be represented using the stress invari-
ants

σI = ζ ε̇I − P/2
σII = ηε̇II ,

(7)

whereζ andη are the non-linear bulk and shear viscosities,ε̇I
andε̇II are the strain rate invariants andP is a pressure term.
The viscosities,ζ andη, depend on the strain rate andP . We
briefly describe each rheology here, but refer the reader to
the original publications for more detail.

The rheology suggested byHibler (1979) is by far the most
commonly used viscous-plastic rheology. It uses an elliptical
yield curve (see Fig.2) and a normal flow rule. For typical
strain rates, plastic flow occurs, while for very small strain
rates the ice becomes linear viscous and enters so called
“creep flow”. This creep flow occurs for all three yield curves
at small strain rates. The pressure term is calculated via

P = P ∗Ah exp (−C[1 − A]), (8)

whereP ∗ andC are constants, which must be chosen em-
pirically. The elliptical yield curve reproduces basic sea-ice

characteristics, i.e. the ice is weak in tension, strong in shear
and strongest in compression.

A different approach to the elliptic yield curve was sug-
gested byTremblay and Mysak(1997), who proposed
a model based on a granular material rheology. This is equiv-
alent to dynamic friction between two dry surfaces where the
frictional shear force is proportional to the normal force. For
stress ratios of shear force vs. normal force smaller than a
given coefficient of friction the ice behaves like an elastic
solid, while for larger stress ratios it flows like a fluid. The
pressure term is found by perturbing the last known solu-
tion to the momentum equation so that the resulting veloc-
ity field has a divergence determined by a given angle of
dilation. This is done via an additional iterative solver and
the numerical performance of the granular model is there-
fore worse than that of the other two formulations. For pres-
sure larger than the maximum, determined by Eq. (8), the
ice compresses but otherwise behaves like an incompressible
Newtonian fluid with non-linear shear viscosity. The bulk
viscosity (ζ ) is therefore always zero. For the granular model
P ∗ in Eq. (8) is replaced withP ∗/1.5 in accordance with
Tremblay and Hakakian(2006). The resulting yield curve
is a triangle (see Fig.2).

Finally we include a yield curve which can be thought of as
a combination of the other two. This is the so-called modified
Coulombic yield curve, introduced byHibler and Schulson
(2000). Even though the term “modified Coulombic yield
curve” (coined byHeil and Hibler, 2002) is used here, this
yield curve is really a modification of the elliptic yield curve
proposed byHibler (1979). The curve gives friction-based
failure up to a limiting compressive stress while the elliptic
formulation holds for higher stresses. This limit is set at pure
shear deformation, in accordance with the results of labo-
ratory experiments. The pressure term is calculated using
Eq. (8). The yield curve also includes a small amount of ten-
sile stress. The resulting shape is elliptical for large stresses
and triangular for small stresses (see Fig.2).

The other main focus of this study is on the formulation
of the new-ice thickness, which is expressed through the
source/sink termSA in Eq. (3). The two methods for cal-
culating SA considered, were formulated byHibler (1979)
andMellor and Kantha(1989).

Hibler’s approach can be written as

SA = (1 − A) max (1how,0)/h0 + A min (Sm,0)/2m, (9)

whereh0 is a demarcation thickness separating thick and thin
ice. Hibler (1979) assumed a constanth0, but in Sects.4 and
5 we discuss ways to parametrise it. Ice forms over open wa-
ter (i.e.1how>0) when the ocean cools below the freezing
point, but the ocean temperature is calculated via the thermo-
dynamics routines from VOM (which are the same routines
as inHarms et al., 2003). The amount of ice formed over
open water is calculated from the energy needed to bring the

The Cryosphere, 4, 147–160, 2010 www.the-cryosphere.net/4/147/2010/
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ocean surface from its super-cooled state to freezing. When
freezing1how>0 andSm>0 so that Eq. (9) becomes simply

SA = (1 − A)1how/h0. (10)

This means that the newly formed ice covers an areaSA so
that its thickness is greater than or equal toh0.

The other approach to calculatingSA considered here is
the one originally proposed byMellor and Kantha(1989).
Based on an empirical formula byNikiferov (1957) they for-
mulateSA as

SA = 8(1 − A)
1how

h
, (11)

where8 is an empirically determined function.Mellor and
Kantha(1989) differentiate between melting and freezing by
giving 8 different constant values;

8 =

{
8F = 4 if 1how > 0
8M = 0.5 otherwise.

(12)

We can easily recover Eq. (10) from Eq. (11) by setting
8F=h/h0, which givesh0=h/8F. Equation (11) therefore
states that during freezing the newly formed ice will have a
thickness equal toh/8F. In particular, this means that when
ice forms in a grid cell that previously had no ice (i.e.h=0)
this cell will become fully covered with ice with thickness
1how.

2.2 Control run

The model domain is a bay, 135 km long and 75 km wide at
2.5 km resolution (see Fig.3), similar to the setupBjornsson
et al.(2001) used. At such a high resolution we must assume
that on average the ice floes being modelled are no larger than
250 m in diameter. This is because a scale of approximately
10 grain widths can generally be modelled without resolv-
ing each individual element using a granular model (Savage,
1998). McNutt and Overland(2003) state that at the multi-
floe scale (approximately 2–10 km) sea ice behaves like a
granular material, so the granular model should be ideal for
a simulation at that scale. We can assume the ice floes in the
polynya interior are no larger than pancake ice, which is not
much larger than 3 m in diameter. The ice in the polynya in-
terior, and by extension the consolidated ice, is therefore well
within the maximum allowed floe size. However, assuming
that individual floes are no larger than 250 m in diameter may
not always be valid for the thick initial ice, depending on the
geographical location of the polynya as well as the time of
year. This is only a minor concern for this study since it fo-
cuses on the steady state solution where the thick initial ice
does not play a role (as it has drifted out of the model do-
main).

A polynya is created by having a 15 m/s wind blow uni-
formly at a 30◦ angle to the direction along the bay. The
polynya forms at the bottom of the bay and the excess ice
flows out the open boundary at the mouth of the bay. The

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

 x [km]

 y
 [k

m
]

Θ

Polynya interior

Consolidated ice

Thick ice

Fig. 3. The size of the basin (in km) and wind direction during the
polynya experiments. The figure also shows the three ice regimes
one expects; the polynya interior (where the ice is in free drift),
consolidated ice and thick initial ice.

atmospheric temperature is kept constant atTair=−20◦C
and the oceanic temperature is kept at the freezing point for
a salinity ofS=32. The water velocity is always zero. The
model is initialised with ice concentrationA=0.9 and thick-
nessh=1 m. For the solid boundaries, a no-slip condition is
used, while for the open boundary zero gradient Neumann
boundary conditions are applied to all variables. The Neu-
mann condition is also used for the ice pressureP , which
Bjornsson et al.(2001) set to zero at the open boundary.
This is done because using the Neumann condition improves
the model behaviour near the open boundary by eliminating
the excessive ice speed observed there byBjornsson et al.
(2001).

For the ice pressure constantsC andP ∗ in Eq. (8) we use
the same valuesBjornsson et al.(2001) used; i.e.C=30 and
P ∗=30 kN/m2. Bjornsson et al.(2001) showed that these pa-
rameters have little effect on the model results using the gran-
ular model and we have found the same to be true for the
other yield curves. A list of the relevant constants is included
in Table1.

To illustrate the temporal evolution of the polynya, Fig.4
shows a Hovm̈oller diagram of the ice concentration field
taken along a section aty=37.5 km. The response to the
applied wind stress is immediate and a discernible polynya
edge starts to form during the first day of the model integra-
tion. After two days the polynya has a clear structure and
can be considered fully formed. A practically steady state
has been reached after eight days. When the polynya has
fully formed a band of large gradient in the concentration
field analogous to the polynya edge always exists. For fur-
ther reference Fig.5 shows the ice concentration in the basin
after eight days of model integration. As Figs.4 and5 show,
the edge in this simulation is at a concentration of between
A=0.6 andA=0.9.

Ice formation rates in the model are closely linked to the
fractional ice concentration. For open water the ice formation
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Fig. 5. Sea-ice concentration in the control experiment (A) after
eight days of model integration. The polynya edge is visible as a
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rate isF(A=0)=13.83 cm/day. In the polynya interior the
ice is between 30 cm and 34 cm thick. If we assume all that
ice is 32 cm thick we can calculate the ice formation rate in
the polynya interior as a weighted average ofF(A=0) and
F(A=1, h=32cm)=3.31 cm/day; i.e.

F = AF(A = 1, h = 32 cm) + (1 − A)F(A = 0). (13)

This approximation is correct to within 0.05 cm/day for
A.0.8, but starts breaking down as the consolidated ice gets
thicker. Defining the polynya as all points for whichA<0.8
(this choice will be discussed further below), the mean ice
formation rate in the polynya isF=11.1 cm/day after two
days andF=10.7 cm/day after eight days.

According toOu (1988), ice velocity in the model should
fall into two categories; that of free drift in the polynya

Table 1. Main physical parameters and constants used in the simu-
lation.

Variable Symbol Value

air drag coefficient Cda 1.2×10−3

air temperature Tair −20◦C
angle of dilatency δ 10◦C
basin dimensions L, W 135 km, 75 km
cloud cover Fc 80%
Coriolis factor f 1.33×10−4 s−1

ellipse axis ratio e 2
horizontal resolution 1x 2.5 km
ice demarcation thickness h0 30 cm
ice density ρi 930 kg/m3

ice strength parameters C, P ∗ 30, 30 kN/m2

internal angle of friction φ 30◦

min. viscosity (Hibler) ζmin 4×108 kg/s
relative humidity HR 80%
water drag coefficient Cdw 5.5×10−3

wind speed, angle |va|, 2 15 m/s, 30◦

itself and that of the consolidated ice. In the dynamic-
thermodynamic model this velocity change gives the ice
drifting in the polynya interior a barrier of slower consol-
idated ice to pile up against. Figure6 shows the velocity
field and speed in the control experiment after eight days.
The speed does indeed fall into two categories: The free
drift speed|vf |=32.6 cm/s and the speed of the consolidated
ice |vc|.25 cm/s, depending on the distance away from the
y=75 km boundary. More importantly the cross channel ve-
locity, v, changes fromvf=15.7 cm/s tovc.3 cm/s in the con-
solidated ice.Bjornsson et al.(2001) showed that it is the
cross channel velocity that is most important for the size
and shape of the polynya. In the polynya interior the ice
drifts with the wind but the consolidated ice slides along the
y=75 km boundary with a small cross channel velocity com-
ponent due to ridging at the boundary.

This setup exhibits the three fold separation of ice men-
tioned previously; free drift ice in the interior of the polynya,
consolidated ice at the polynya edge and thick initial ice be-
yond that. This can be seen in the ice concentration field
since the concentration is low (A.0.6) in the polynya inte-
rior and high (A≈1) in the consolidated ice. The transition
between the two takes place over approximately 5 grid cells,
a region referred to here as the polynya edge. A similar tran-
sition is seen in the velocity field; the ice in the interior is in
free drift while the consolidated ice drifts slower. The tran-
sition between the consolidated ice and the thick initial ice
can only be seen in the ice thickness field. The ice in the
polynya interior is almost as thick as the consolidated ice so
the polynya edge is not apparent in the ice thickness field. In
this control run the polynya is most readily defined as an area
of low ice concentration and the polynya edge as the area of
a large ice concentration gradient.
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Fig. 6. Ice velocity (v) and speed (|v|) in the control experiment
after eight days of model integration. The polynya edge is visible
as a sharp decrease in the ice velocity.

In the rheologies used here Eq. (8) dictates the ice strength
under compression as a function of ice thickness and con-
centration. When this term is small the rheology term be-
comes small and the ice is in free drift. Since the ice in the
polynya interior is in free drift we propose that the location
of the polynya edge, in this particular setup, can be approxi-
mated byA=0.8. This is becauseP(A=0.8)/P (A=1)≈0.01
so the rheology will play a negligible role at lower concen-
trations. This choice is valid for the control run since the
A=0.8 contour is within the high gradient region where the
polynya edge is found (see Fig.5). It is also valid for all
the following experiments done here, except when using a
minimum on the bulk viscosity (ζ ) and when using the new-
ice thickness parametrisation ofMellor and Kantha(1989).
These two cases will be discussed separately.

3 Different yield curves

An important part of the motivation for this study was to
compare the results ofBjornsson et al.(2001), using the
granular model, to a similar setup using different rheologies.
The elliptic yield curve ofHibler (1979) is the most popular
yield curve in use today, but it was designed for much lower
resolution. It is therefore important to see how it fares in this
high resolution setup. The modified Coulombic yield curve
was, on the other hand, designed to model ice at high reso-
lution so it will be instructive to see its performance here as
well. In this section the focus is on the model response in
the consolidated ice, since the rheology does not play a role
inside the polynya itself.

In his modelHibler (1979) used a minimum for the bulk
viscosity; ζmin=4×108 kg/s “in order to insure against any
nonlinear instabilities” noting that that value is “several or-
ders of magnitude below typical strong ice interaction val-
ues and effectively yields free drift results” (Hibler, 1979,
p. 823). The lower bound should only be necessary when the
material derivative is included in the momentum Eq. (4) since
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Fig. 7. The polynya edge (A=0.8) using the elliptic and modified
Coulombic yield curves and the granular model after eight model
days. The differences between different model formulations are mi-
nor.

in that case having no lower bound will typically result in a
noisy solution (Griffies and Hallberg, 2000). Most modern
ice models ignore the material derivative and do not include
a lower bound onζ . However, as the resolution increases
the material derivative becomes more important. The scaling
argument made byRothrock(1975) shows that the material
derivative may need to be included as the shortest significant
length scale becomes smaller than about 5 km.

In this idealised setup the material derivative has very little
effect on the final solution, regardless of which rheology is
used. The difference between the results with and without
the material derivative is about 7 mm/s in the grid cells at the
x=0 boundary and about 2 mm/s at they=75 km boundary
and at the polynya edge. Everywhere else in the domain the
difference is less than 0.1 mm/s. Compared to the free drift
speed of|vf |=32.6 cm/s this is small. We also observe no
noise, even when the material derivative is included and the
lower bound onζ is set to zero.

Without a lower bound onζ the results using the elliptic
yield curve are nearly identical to those using the granular
model. There is a sharp transition from free drift ice to con-
solidated ice, analogous to the polynya edge, just like in the
granular model. This polynya edge forms at nearly the same
location as it does in the granular model. Using the modified
Coulombic yield curve also gives results very similar to the
granular model. This is to be expected, since the modified
Coulombic yield curve is in a way a combination of the other
two yield curves. The difference between the three model
formulations is limited to a small variance in polynya size,
which as Fig.7 shows, is due to a shift of the polynya edge
by a few grid boxes. In particular, the commonly used el-
liptic yield curve is sufficient and can be used safely in this
context.

Using a minimum onζ does, however, give considerably
different results from the control run. Setting the minimum to
ζmin=4×108 kg/s, likeHibler (1979) did, results in a polynya
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Fig. 8. Sea-ice concentration (top) and speed and velocity (bottom)
using Hibler’s original formulation for the elliptic yield curve, after
eight days of model integration. Neither figure shows a discernible
polynya edge. The dash-dotted line shows the isoline forA=0.8
from the control run.

with a very diffuse edge, as Fig.8 shows. Speed and veloc-
ity also fail to meet the criteria for forming a polynya edge;
i.e. there is no clear separation between the velocity of the ice
in the polynya interior and consolidated ice (see Fig.8). In
addition, the ice in the polynya interior does not flow at a con-
stant speed and its speed is sometimes lower than that of the
consolidated ice, which is clearly not plausible. The speed of
the ice in the polynya interior when usingζmin=4×108 kg/s is
also always lower than it is in the control run. A decrease in
the ice concentration is also seen by they=75 km boundary,
contrary to what can be seen in the control run. These effects
were noted byHunke (2001) in a different setup, but that
discussion focused on the effects seen at the solid boundary,
which will not be discussed further here.

The polynya edge becomes so diffuse because when im-
posing such a high minimum onζ , the viscosity is consis-
tently kept at its minimum value forA.0.9 throughout the
simulation. This is because the viscosity is related to the ice
pressure via

ζ = P/21 and η = ζ/e2, (14)

and the pressure to ice concentration via Eq. (8). The flow
whereA is sufficiently small is therefore linear viscous, but
choosing as a minimumζmin=4×108 kg/s does not result in

effectively free drift. Lu et al. (1989) also found that this
limit was too high compared to measurements.

As previously stated, we observed no non-linear insta-
bilities using ζmin=0 kg/s. Some noise is, however, to be
expected in a realistic simulation and so a non-zeroζmin
may be required if one wants to include the material deriva-
tive. In that case one would need to choose a low, but
non-zero value forζmin. The resolution of Hibler’s model
was 125 km and since viscosity scales with the distance
squared, a choice ofζmin=4×104 kg/s seems in order. This
yields nearly the same results as withζmin=0 kg/s; the
largest difference in concentration between the two model
runs being1A=0.006. The maximum concentration gra-
dient when usingζmin=0 is max(|∇A|)=0.230 km−1 and
it is max(|∇A|)=0.228 km−1 when usingζmin=4×104 kg/s.
When choosing larger values forζmin, the effects of the cap-
ping start to show. Forζmin=4×105 kg/s the maximum gra-
dient is max(|∇A|)=0.212 km−1 and the difference in con-
centration between that run and the one with zeroζmin is
1A=0.08. Forζmin=4×106 kg/s the maximum gradient is
max(|∇A|)=0.164 km−1 and the concentration difference is
1A=0.3.

4 New-ice thickness

As we have already seen, the ice rheology affects the ini-
tial ice pack and the consolidated ice. The interior of the
polynya, on the other hand, is primarily affected by the new-
ice thickness parametrisation. This determines the thick-
ness, and thus the concentration of the ice formed inside the
polynya.

The most popular method for parametrising the new-ice
thickness is probably the one suggested byHibler (1979) (see
Sect.2.1). Put simply the new-ice thickness is not allowed to
drop below a certain minimum,h0. If the total mass of newly
formed ice is not enough to cover the open water fraction of
the grid cell at that thickness then the concentration of newly
formed ice is adjusted accordingly. If more ice is formed then
the new ice is simply thicker thanh0.

The choice ofh0 is not obvious and appears to range from
10 to 50 cm or even more in some cases.Bjornsson et al.
(2001) argued for usingh0=30 cm and that is the value used
here so far. Their argument is based on the assumption that
the ice that forms in the polynya immediately forms pancake
ice. However,Bjornsson et al.(2001) state that pancake ice
thickness is closer to 10 cm than 30 cm. We therefore include
a model run withh0=10 cm.

The main result of usingh0=10 cm is that with a lower
h0 the polynya fills up much faster. The newly formed ice
is thinner, therefore has a larger surface area, which results
in faster ice concentration growth in the polynya itself and
causes the polynya edge to form closer to the bottom of the
bay than before. The polynya edge is also not as sharp in the
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Fig. 9. The ice concentration (A, top) and speed and velocity (v and
|v|, bottom) usingh0=10 cm after eight model days. The resulting
polynya is smaller and has a higher ice concentration than the con-
trol run. The dash-dotted line shows the isoline forA=0.8 from the
control run.

concentration field as when usingh0=30 cm. It is, however,
still sharp in the velocity field, as can be seen in Fig.9.

The mean ice formation rate in the polynya is about 1%
lower here than in the control run. The total ice formation is
therefore reduced almost only because the polynya is smaller.
Using h0=30 cm gives polynya area ofAp=4.5×103 km2

after eight days, but usingh0=10 cm the polynya area is
Ap=2.4×103 km2 after eight days; an approximately 50% re-
duction in size. Finally, the consolidated ice is thinner since
its thickness equalsh0.

The other approach to determining the thickness of newly
formed ice described in Sect.2.1is the one proposed byMel-
lor and Kantha(1989). There the thickness of newly formed
ice is based on the thickness of the ice already present in the
grid cell. Mellor and Kantha(1989) argued that the thick-
ness of newly formed ice should be a quarter of the old ice
thickness. This also means that when there is no ice in the
grid cell when new ice forms, the ice spreads uniformly over
the entire cell, potentially very thinly. A polynya in such a
model may therefore be hard to recognise by the change in
concentration and researchers using this approach often con-
sider ice below a certain cut-off thickness to represent the
polynya.Smedsrud et al.(2006), for instance, useAh=30 cm
for this cut-off thickness.
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Fig. 10. The ice concentration (A, top) and speed and velocity
(v and|v|, bottom) using the new-ice thickness parametrisation by
Mellor and Kantha(1989) after eight model days. The resulting
polynya is very small with no discernible edge in the velocity field.
The dash-dotted line shows the isoline forA=0.8 from the control
run.

Using this approach results in a “polynya” that is hardly
recognisable in the concentration field, as Fig.10 shows.
Even after eight days there is only a thin sliver of an open-
ing along thex=0 km andy=0 km boundaries and theA=0.8
isoline is a grid box or two away from the shore. More seri-
ously perhaps the velocity field, also shown in Fig.10, shows
no sign of the discontinuity deemed necessary for proper
polynya formation. The ice slows down gradually moving
away from thex=0 boundary, contrary to our previous as-
sumptions about how a polynya is formed.

Ice thickness near the coast is indeed lower than the initial
ice thickness, but as Fig.11 shows there is no real polynya
edge to be found in the ice thickness field. In that respect
there is no conceptual difference between usingh or Ah. As
before the thick initial ice drifts out of the basin, but in this
case the ice that replaces it does not have a uniform thickness.
It is very thin at the coast with linearly increasing thickness
towards the thick initial ice.

We have already mentioned that considerable effort has
been put into parametrising the collection depth in polynya
flux models. Given the large variation between the results
already presented in this section we find it worth consider-
ing whether the polynya flux model parametrisations can be
applied in the dynamic-thermodynamic model.
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wind speed.

The parametrisation byWinsor and Bj̈ork (2000)
lends itself well to immediate inclusion in the dynamic-
thermodynamic model. It is based only on the wind speed
and not the polynya width, frazil ice speed or other quan-
tities not accessible to the dynamic-thermodynamic model.
By using this parametrisation we aim at improving the mod-
elled consolidated ice thickness and thus also the size of the
polynya.

Winsor and Bj̈ork (2000) assumed the collection depth to
be a function of wind speed as

H =
a + |va|b

c
, (15)
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Fig. 13. The polynya size (Ap) after eight days as a function of
wind speed (|va|). The size is calculated as the sum of the size of
all model points whereA<0.8.

where|va| is the surface wind velocity,a=1 m, b=0.1 s and
c=15. In particular,H≈7 cm for |va|=0 andH=30 cm for
|va|=35 m/s so this parametrisation is well within the range
of plausible values forh0. Equation (15) is then used to cal-
culateh0=H in each grid point.

Using this parametrisation results in smaller polynyas at
low wind speeds, compared toh0=30 cm or larger polynyas
at high wind speeds, compared toh0=10 cm. Figure12
shows the polynya usingh0=30 cm and the parametrisation
for the wind speeds 10, 20 and 30 m/s. At lower winds the
polynya edge starts to become diffuse, which is to be ex-
pected. For further reference Fig.13 shows the size of the
resulting polynya as a function of wind speed. The mean ice
formation rate in the polynya increases fromF=10 cm/day
for |va|=10 m/s toF=11 cm/day for|va|=35 m/s and choos-
ing different values forh0 contributes to about 1% change
in the ice formation rate. At the same time the polynya size
grows approximately four times as the wind strength grows
from 10 m/s to 35 m/s. It is therefore clear that variations in
polynya size control the variations in total ice formation in
the polynya.

5 Discussion

Bjornsson et al.(2001) have already shown that the granular
model can be used to model polynyas in an idealised set-
ting by comparing their results to a polynya flux model. We
have shown that this is also the case when using the modified
Coulombic yield curve ofHibler and Schulson(2000) and
when using the elliptic yield curve ofHibler (1979). This
is important since the numerical performance of the granular
model is considerably worse than that of the other two mod-
els. We find that the granular model requires almost twice the
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computing time the other two rheologies require. The elliptic
yield curve ofHibler (1979) is also already in use in the vast
majority of sea-ice models.

All three yield curves give nearly identical results (with the
exception of using a cappedζ as discussed below). Looking
at the stress states (Fig.14) we see that when using the gran-
ular model theσI values for points in the consolidated ice are
all clustered aroundσI=−P/1.5. This means that at these
points the ice cover yields or is very close to yielding under
compression. When this is the case the behaviour of the ice
is controlled by Eq. (8), which is also one of the main equa-
tions governing the behaviour of the other two yield curves.
The difference between the granular model and the other two
is then almost entirely explained by the different formulation
of shear strength between the model formulations. As Fig.2
shows, the granular model and the ellipse have a lower shear
strength than the modified Coulombic yield curve, which
is why using the modified Coulombic yield curve gives a
smaller polynya.

Using the other two yield curves, the stress states are much
more evenly distributed along theσI axis. For the modi-
fied Coulombic yield curve the stress states that lie on the
Coulombic slope are all inside the polynya while the stress
states in the consolidated ice are all on the elliptic part of the
yield curve. This happens because in the consolidated ice
the divergence (̇ε) is always negative, so according to Eq. (7)
σI≤−P/2. Using the elliptic and modified Coulombic yield
curves therefore yields similar results for the consolidated
ice, where both yield curves have an elliptic shape. In the
polynya interior the ice is in free drift so the shape of the
yield curve has no effect there.

Using a largeζmin, in particularζmin=4×108 kg/s asHibler
(1979) suggests, does, however, give results that are not plau-
sible. Using this original formulation results in a polynya that
is smeared out with no proper edge and a velocity field that
has little relation to polynya formation. This happens be-
cause the capping ofζ in the model turns the viscous-plastic
formulation into a linear viscous model for ice concentration
A<0.9.

Hibler (1979) used the lower bound onζ to dampen grid
scale noise which can arise when the grid Reynolds number
constraint is not satisfied. Considering the limited case of
Burger’s equation in one dimension:

dv

dt
+ v

dv

dx
= A

d2v

dx2
, (16)

A must be bounded byA>1
2v1x (Griffies and Hallberg,

2000). In free drift and ignoring the sea surface tilt term, the
momentum equation becomes Burger’s equation and for the
one dimensional caseA = ζ/ρi . Using the free drift speed of
|vi |=32.6 cm/s and1x=2.5 km the viscosity is bounded by
ζ>1

2ρi |vi |1x≈4×105 kg/s.
The grid Reynolds number constraint is therefore an or-

der of magnitude larger than our preferred value for a non-
zeroζmin. Since ignoring the material derivative had much
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Fig. 14. Stress states using the granular model (top), the elliptic
yield curve (centre) and modified Coulombic yield curve (bottom)
after eight model days plotted in stress invariant space. The colour
scale indicates the ice concentration at each point (A) and points
with high concentration are drawn on top of those with a lower con-
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the regionσI ≤−P/2. Points near the open boundary are excluded
from the figure.

less effects on the simulation than using a non-zeroζmin we
conclude that ignoring the material derivative is preferable to
including it and a non-zeroζmin.

With regards to the ice behaviour inside the polynya we
considered three ways in which to parametrise the thickness
of ice forming over open water. These are the methods sug-
gested byHibler (1979), Mellor and Kantha(1989) and an
adaptation of the collection depth parametrisation byWinsor
and Bj̈ork (2000). Hibler’s method was used when investi-
gating the dynamic aspects (Sect.3) with an ice demarca-
tion thicknessh0=30 cm afterBjornsson et al.(2001). That
value may be too high and so we also ran the model using
h0=10 cm.

Using a lowerh0 resulted in a smaller polynya but little
change in mean ice formation rates (about 1%). The ice con-
centration in the polynya interior was higher and as a result
the concentration field did not show a sharp polynya edge.
The velocity field, on the other hand, still showed a clear dis-
continuity at the polynya edge. The width of the polynya did
decrease, but that was to be expected and can be understood
in relation to the Lebedev-Pease width of a polynya (Pease,
1987)

L =
HU

F
, (17)
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whereL is the polynya width andHU is the flux of consoli-
dated ice. The collection depth,H , is analogous toh0 in the
dynamic-thermodynamic model. Loweringh0 from 30 cm to
10 cm results in approximately 1% reduction in the ice for-
mation rate (F ). The polynya width is therefore bound do
decrease.

Results obtained using the formulation ofMellor and Kan-
tha(1989) were, however, very different from those obtained
in the control run. Using Mellor and Kantha’s formula-
tion there are two ice regimes; thick ice and thin ice, which
may be characterised as nilas. This replaces the threefold
separation of thick ice, consolidated ice (of uniform thick-
ness) and frazil/free drift ice, seen in polynya flux models
and the control run. The polynya edge is considered to be
what separates the consolidated ice and frazil/free drift ice,
but this distinction is lost when using theMellor and Kantha
(1989) approach. The new-ice thickness formulation byMel-
lor and Kantha(1989) is therefore not suitable for modelling
polynyas.

On the whole, the approach byHibler (1979) is also more
reasonable from a physical standpoint. This is because wind
and waves, which cannot be resolved by ocean or atmosphere
models, will transform the frazil ice in the polynya into pan-
cake ice, similar to the ice formation in that scheme. What
is unrealistic about Hibler’s approach is that solid ice forms
inside the polynya, even where in reality the ice is mainly
frazil ice. The thin ice formed using Mellor and Kantha’s
approach is more akin to grease ice or nilas which form in
calmer conditions.

Wind speed is therefore an important factor in determining
the new-ice thickness and it is consequently an important part
of collection depth parametrisations for polynya flux models.
Winsor and Bj̈ork (2000) parametrised the collection depth
in thePease(1987) model based only on wind speed and we
found that parametrisation easily adoptable for inclusion in
the dynamic-thermodynamic model.

Using theWinsor and Bj̈ork (2000) parametrisation gives
results in the range between the results when using a constant
h0=10 cm andh0=30 cm. We have already expressed a pref-
erence for theHibler (1979) parametrisation for the new-ice
thickness and using theWinsor and Bj̈ork (2000) parametri-
sation enables us to choose a sensible value forh0. As a
result the polynya size should depend on wind strength in a
more realistic manner than when using a constanth0. Using
the parametrisation should also give more realistic ice thick-
ness for the consolidated ice.

On a more general note, such a small value forh0 may not
be suitable for models describing the central pack ice as well.
In such a situation the approach ofMellor and Kantha(1989)
may give better results since the thick pack ice appears to
require a largerh0.

It is trivial to combine all three approaches to new-ice
thickness parametrisation discussed here into one:

h0 = max

(
h

8
,

a + |va|b

c

)
, (18)

with 8=4, a=1 m, b=0.1 s andc=15, as before. This ap-
proach modifies the previously constanth0 of Hibler (1979)
so that for thick ice the approach ofMellor and Kantha
(1989) is used and for thinner ice the parametrisation ofWin-
sor and Bj̈ork (2000) is used. Using one value for thick ice
and one for thin is appropriate sinceh0 is only analogous to
the collection depth in a polynya or the marginal ice zone.
Where the ice is thicker the ice behaviour should be simi-
lar to that described byMellor and Kantha(1989), given the
empirical origin of their formulation.

In our setup the result of Eq. (18) will always be the same
as that of Eq. (15) since the ice in the polynya is always
thin in the sense thath<8(a+|va|b)/c. Further testing of
this new parametrisation can therefore not be done here but
should be carried out in a realistic simulation.

In conclusion we note that in this idealised setup the
polynya is best defined as the area whereA<0.8. This is
really the concentration where the ice behaviour starts chang-
ing from free drift, forA.0.8, to being heavily influenced by
internal stresses, forA≈1. This separation is based on Eq. (8)
and on the choice ofC. TheA=0.8 isoline is also consistently
within the high gradient region forA in all experiments, ex-
cept when using too high a minimum for the bulk viscosity
and when using the new-ice thickness parametrisation from
Mellor and Kantha(1989). But both these cases were found
to give implausible results.

6 Conclusions

We have used an idealised setup to test three different sea-ice
rheologies and three different formulations for the thickness
of newly formed ice during polynya formation. These tests
were done using a dynamic-thermodynamic sea-ice model in
an idealised channel, similar to whatBjornsson et al.(2001)
did.

We were able to reproduce the results of the granular
model using both the modified Coulombic yield curve of
Hibler and Schulson(2000) and the elliptic yield curve of
Hibler (1979). This is important, since the numerical per-
formance of the granular model is substantially worse than
that of the other two models and also since the elliptic yield
curve is already in popular use. We also found that including
the material derivative and setting a minimum on the bulk
viscosity is not a viable alternative to ignoring the material
derivative.

The formulation of new-ice thickness suggested byHi-
bler (1979) turned out to give much better results than that
of Mellor and Kantha(1989). Using Mellor and Kantha’s
formulation failed to give a clear polynya edge, both in the
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concentration and velocity field. We conclude therefore that
this approach does not enable us to properly model polynyas.
Hibler’s approach, on the other hand, gave a clear separation
of the consolidated ice and the polynya itself.

Using Hibler’s new-ice thickness parametrisation and any
of the rheologies tested here should give realistic results
when modelling polynyas. Polynyas that are fully resolved
by the model grid can then be recognised as areas of low
concentration enclosed by compact ice and/or land. We also
suggest usingA<0.8 as a criterion for low concentration.

Hibler (1979) assumed a constant demarcation thickness
(h0). We suggest, however, using the collection thickness
parametrisation ofWinsor and Bj̈ork (2000) to parametrise
h0. This results in a value forh0 which is dependent on
wind strength and in the range already deemed acceptable
for h0. As an aside, a combination of this parametrisation
with the approach ofMellor and Kantha(1989) is proposed.
This should give a parametrisation forh0 applicable for both
the marginal ice zone and the central ice pack.
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