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Abstract. In this work the eddy resolving data sets
of salinity, temperature, and oxygen content aquired in
the framework of the German-Russian project MESODYN
(MESOscale DYNamics) in the Arkona Basin, the Bornholm
Basin, the Stolpe Furrow, and the Eastern Gotland Basin dur-
ing summer and winter stratification situations are utilized to
examine to which extent the observations at the central mon-
itoring stations within these basins are representative for the
spatial mean state of the corresponding region with respect
to comparative monitoring purposes of the whole Baltic Sea.
The investigation covers profiles of salinity, potential temper-
ature, oxygen content, potential density, and squared buoy-
ancy or Brunt-V̈ais̈alä frequency. Moreover, some parame-
ters of the halocline, namely its depth, thickness, and upper
and lower boundaries, and the first baroclinic Rossby radii
are subject to the investigation. The profiles match best for
the squared buoyancy or Brunt-Väis̈alä frequency. The pro-
files of salinity match best in the Eastern Gotland Basin and
worst in the Arkona Basin both for summer and winter strat-
ification situations. The overall agreement for the halocline
parameters is good. The baroclinic Rossby radii match their
spatial mean values well, if the depth range considered for
their calculation is restricted to the mean depth in each re-
gion at the bottom side. In doing so they also match the spa-
tial mean values of the first baroclinic Rossby radii calculated
considering the whole depth range at each station. Overall,
the regional characteristics of the investigated quantities and
parameters are represented well by the hydrographic mea-
surements at the central stations in the four regions in spite of
some significant differences between the spatial mean states
and the observations at the central stations. In particular,
the observations at the central stations seem to be usefull for
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comparisons between these regions. However, the observed
differences may affect regional investigations covering just a
single region.

1 Introduction

The Baltic Sea is a semienclosed marginal sea, connected to
the world ocean by the North Sea (e.g.Rodhe, 1998). The
connection to the North Sea through the Kattegat and the
Danish Straits is shallow and narrow resulting in a strongly
suppressed water exchange between the Baltic and the North
Sea. Moreover, the Baltic Sea itself is distinctly divided in
basins and channels seperated by shallow sills. While precip-
itation and evaporation over the Baltic Sea are of the same or-
der of magnitude on the annual scale, there is a large surplus
of fresh water due to the huge drainage area of the Baltic Sea
resulting in an outflow of fresh water at the surface. Contri-
butions to the water balance of the Baltic Sea were estimated
by HELCOM (1986), Bergstr̈om and Carlsson(1994), Lin-
dau(2002), Hennemuth et al.(2003), andOmstedt and Nohr
(2004), for example. A review is given byOmstedt et al.
(2004). The loss of salt due to this outflow is compensated by
incidental inflows of saline water from the North Sea. The in-
flowing water of high salinity and, consequently, high density
spreads at the bottom into the western Baltic Sea. Depend-
ing on the magnitude of the inflow, the mixing, and regional
stratification it adjusts accordingly to its density and follows
a sequence of basins and channels into the Baltic proper.

As a consequence of the freshwater surplus in the Baltic
Sea there are both a salinity gradient from the brackish wa-
ters in the western Baltic Sea to the nearly fresh waters in
its northern parts and a strong permanent halocline, particu-
larly in its deeper parts. The permanent halocline vigorously
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Fig. 1. Regions under investigation:AB: Arkona Basin,BB: Born-
holm Basin,SF: Stolpe Furrow,EGB: Eastern Gotland Basin.

suppresses the vertical exchange of surface and bottom wa-
ters. Not even the convection in winter ranges deeper than
the halocline. Therefore the bottom water below the halo-
cline in the deep basins is transformed and, in particular,
ventilated mainly by horizontal advection due to the inflows.
This is the main reason for monitoring programmes such as
the Baltic Monitoring Programme (BMP) or the Baltic Year
(BY) to follow the inflow path along the sequence of basins
and channels. Within these programmes the hydrographic
conditions in the different basins are predominantly charac-
terized by profiling measurements at one or a few single sta-
tions close to the center of each basin at their deepest loca-
tions.

Single hydrographic profiles from central locations were
also utilized to describe regional characteristics in the Baltic
Sea for other purposes than the mentioned monitoring. For
example,Matthäus(1986) investigated the regional charac-
teristics of the deep water in three basins of the Baltic Sea
during stagnation periods using the time series of profiles
resulting from one monitoring station in each considered
basin.Kõuts and Omstedt(1993) analysed the deep water ex-
change and mixing properties in the Baltic proper by means
of temperature and salinity profiles measured during the pe-
riod from 1970 to 1990 at seven stations each representing
one basin or pool in the employed approach of modelling the
corresponding in- and outflows.Omstedt and Axell(1998)
used temperature and salinity profiles from five stations lo-
cated at central positions in five of 13 sub-basins for the vali-
dation of 15-year simulations modelling the Baltic Sea as 13
horizontally averaged sub-basins.

Although there is evidence of fluctuations inside the basins
(e.g.Hagen and Feistel, 2004), all of these exemplified works
have the basic assumption in common that single hydro-

graphic profils measured at central stations in certain regions
are representative for the regional conditions there. The pur-
pose of this work is to examine to which extent this assump-
tion is valid in four basins of the Baltic Sea utilizing three-
dimensional data fields of salinity, temperature, and oxygen
content. Ideally, each of these data fields should represent
the regional characteristics describing the overall condition
in the respective area of investigation at a given time. There-
fore their spatial coverage should be as high as possible re-
solving at least all relevant structures causing regional vari-
ations such as eddies or inflowing currents of different wa-
ter masses with horizontal extensions in the order of a few
baroclinic Rossby radii. On the other hand the time span for
each complete survey should be as short as possible to get
a nearly real snapshot of the hydrographic fields at the given
time. At least the time span between each two stations should
be shorter than the time a baroclinic wave needs to propagate
along the distance between the corresponding two stations to
minimize aliasing. Obviously, these requirements are con-
tradicting and, consequently, it is impossible to aquire a data
field perfectly meeting the needs for an ideal description of
the regional characteristics. Balancing the need of a high
coverage of the region with as much uniformly distributed
stations as possible with the need of a time span for the sur-
vey as short as possible the utilized three-dimensional data
fields were aquired quasi-synoptically with respect to the me-
teorological forcing using eddy resolving station grids. The
data sets from the four basins, namely the Arkona Basin
(AB), the Bornholm Basin (BB), the Stolpe Furrow (SF), and
the Eastern Gotland Basin (EGB) are considered seperately
for summer and winter stratification situations.

2 Data basis

The German-Russian project MESODYN (MESOscale DY-
Namics) was initiated to investigate the spreading and trans-
formation of dense deep water in the Baltic Sea. Therefore
hydrographic data fields of salinity, temperature, and oxygen
content were aquired using a standard CTD probe during 12
field campaigns in four deep basins of the Baltic Sea. The
four basins were the AB, BB, SF, and EGB. The exact re-
gions under investigation are indicated in Fig.1. Addition-
ally, their accurate boundaries are given in Table1.

For all CTD surveys in each region the same regular sta-
tion grid was applied. The respective four station grids are
presented in Fig.2. The horizontal spacing of each CTD
survey was 2.5 nm (≈4.6 km) in both zonal and meridional
direction. The corresponding resolutions in degrees of lati-
tude and longitude are given in Table1. Fennel et al.(1991)
calculated baroclinic Rossby radii in the order of magnitude
of about 5 km for various regions of the Baltic Sea during
different seasons. However, these regions were considerably
larger than those investigated here and the hardly justified
assumtion of a flat bottom was implied by taking the mean
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Table 1. Exact coordinates of the regions under investigation, the meridional resolution is 2.5′ for all four areas.

Latitude Longitude
Region from to from to Resolution

AB 54◦ N 50′ 55◦ N 15′ 13◦ E 0′ 14◦ E 27′ 4.35′

BB 55◦ N 0′ 55◦ N 35′ 15◦ E 20.7′ 16◦ E 26.2′ 4.37′

SF 55◦ N 5′ 55◦ N 30′ 16◦ E 29.43′ 17◦ E 43.67′ 4.37′

EGB 56◦ N 55′ 57◦ N 35′ 19◦ E 32.1′ 20◦ E 27.9′ 4.65′
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Fig. 2. Station grids of the four regions under investigation overlaid on contours of depth given in meters. Additionally, the BMP and BY
monitoring stations considered as representative for the regions are indicated.

depth in each region as depth limit for the calculation of the
baroclinic Rossby radii. Therefore larger baroclinic Rossby
radii can be expected for the deeper central parts of these re-
gions covering the areas considered here when the general in-
crease of the baroclinic Rossby radius with increasing depth
is taken into account. Accordingly, the most baroclinic ed-
dies observed in the Baltic Sea are reported to have diameters
between 10 km and 20 km. With respect to these values the

resulting data fields can be assumed as eddy resolving. Verti-
cally the CTD profiles were sampled to 1 dbar corresponding
to approximately 1 m. This vertical resolution provides a suf-
ficient reproduction of the vertical gradients in the halocline
and thermocline.

The data acquisition times range between 92 h and 173 h
for all surveys. On the occurrence of dramatic changes
in the meteorological forcing the surveys were terminated.
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Table 2. Data sets from the AB.

Data set Period Duration Stations Stratification

MD-04 04/12/1996–09/12/1996 117 h 231 winter
MD-12 16/10/1999–20/10/1999 92 h 170 winter

Table 3. Data sets from the BB.

Data set Period Duration Stations Stratification

MD-03 08/09/1996–13/09/1996 134 h 176 summer
MD-05 27/02/1997–06/03/1997 173 h 240 winter

Table 4. Data sets from the SF.

Data set Period Duration Stations Stratification

MD-01 02/03/1996–07/03/1996 116 h 192 winter
MD-06 10/06/1997–14/06/1997 96 h 198 summer
MD-09 07/11/1998–11/11/1998 94 h 176 winter

Table 5. Data sets from the EGB.

Data set Period Duration Stations Stratification

MD-02 11/06/1996–17/06/1996 135 h 208 summer
MD-07 29/08/1997–04/09/1997 151 h 208 summer
MD-08 19/04/1998–24/04/1998 141 h 195 winter
MD-10 22/11/1998–27/11/1998 104 h 182 winter
MD-11 19/08/1999–25/08/1999 133 h 221 summer

Therefore each survey and resulting data fields can be con-
sidered as quasi-synoptic with respect to the synoptic mete-
orological forcing over the Baltic Sea with a time scale of
three to six days. Admittedly, it was not possible to execute
all stations of the respective station grid on every campaign
because of the weather conditions and the cruise time sched-
ules.

Each data set is assigned to a summer or winter situation
according to the stratification with or without the thermo-
cline in summer, respectively. An overview over the data
aquisition times, the number of executed stations, and the
stratification situations of the 12 data sets resulting from the
MESODYN field campaigns is given in the Tables2 to 5 by
region.

In conclusion, the MESODYN data fields represent the re-
gional characteristics in the respective areas of investigation
at given times with respect to the requirements for this pur-
pose given in Sect.1.

3 Methods and results

In Fig. 2 the positions of the BMP and BY monitoring sta-
tions which are considered as representative for the four re-
gions are indicated. For each data set the station with the
smallest ratiodmon

st /1pst is determined. These stations are
chosen as the central station of each data set having regard of
both the distancedmon

st from each station to the correspond-
ing monitoring station and the depth range1pst covered by
the profiles at each station. In most cases the central station
is the closest station to the corresponding monitoring station
(smallestdmon

st ) in each data set as well due to the location
of the monitoring stations in the vicinity of the deepest parts
of the basins. The only exception occurs in data set MD-02.
The central station of data set MD-02 is the second closest
station to the monitoring station BMP J1/BY 15 which is the
next station to the west of the closest one. The closest one
is not chosen because the corresponding profiles only reach
about half the way to the bottom due to technical problems
at this station. The resulting distancesdmon

c from the cho-
sen central station to the corresponding monitoring station
are listed in Table7 for all data sets.
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Table 6. Vertical rms andσ parameters derived from the profiles of salinityS, potential temperatureTpot, oxygen contento, and potential
density%pot and the numbers of samplesnrms andnσ used for the calculations of therms andσ , respectively, for all data sets.

S/psu Tpot/◦C o/(ml/l) %pot/(kg/m3)
Region Season Data set rms σ rms σ rms σ rms σ nrms nσ

AB winter MD-04 3.346 0.901 0.440 0.394 0.1 0.2 1.883 0.682 45 46
winter MD-12 2.769 1.369 0.203 0.581 0.2 0.6 1.566 1.031 45 47

BB summer MD-03 0.177 0.330 0.519 0.832 0.2 0.4 0.113 0.299 85 93
winter MD-05 1.221 0.576 0.672 0.710 0.7 0.7 0.708 0.435 86 93

SF summer MD-06 0.150 0.352 0.213 0.485 0.1 0.3 0.092 0.283 88 88
winter MD-01 0.899 0.577 0.840 0.572 1.1 0.7 0.527 0.442 84 88
winter MD-09 0.084 0.425 0.523 0.676 0.4 0.7 0.068 0.342 87 88

EGB summer MD-02 0.026 0.141 0.267 0.332 0.2 0.4 0.017 0.111 228 237
summer MD-07 0.001 0.097 0.136 0.239 0.0 0.3 0.003 0.085 234 237
summer MD-11 0.006 0.083 0.171 0.263 0.0 0.2 0.009 0.083 232 238
winter MD-08 0.021 0.103 0.021 0.164 0.0 0.3 0.012 0.076 234 237
winter MD-10 0.046 0.158 0.421 0.244 0.3 0.2 0.034 0.121 215 237

Table 7. Distancedmon
c from the central station to the corresponding monitoring station, verticalrms andσ parameters derived from the

profiles of squared buoyancy or Brunt-Väis̈alä frequencyN2, and the numbers of samplesnrms andnσ used for the calculations of therms

andσ , respectively, for all data sets.

N2/(1/106 s2)
Region Season Data setdmon

c /km rms σ nrms nσ

AB winter MD-04 1.0 11.657 2015.851 43 44
winter MD-12 1.0 5.317 2256.154 43 45

BB summer MD-03 0.8 0.352 600.294 83 91
winter MD-05 1.1 2.734 890.936 84 91

SF summer MD-06 0.9 0.524 722.717 86 86
winter MD-01 1.4 3.902 982.217 82 86
winter MD-09 1.0 0.383 750.266 85 86

EGB summer MD-02 3.3 0.019 111.344 226 235
summer MD-07 1.9 0.036 147.111 232 235
summer MD-11 2.3 0.188 176.361 230 236
winter MD-08 1.9 0.026 97.594 232 235
winter MD-10 2.3 0.041 123.434 179 234

In this section the profiles and deduced quantities from
the central stations are compared with the respective aver-
ages over all stations in the corresponding data set to exam-
ine to which extent the monitoring stations are representa-
tive for the considered regions. The differences are evaluated
in terms of the respective standard deviationsσ . Subject to
comparison are some profiles of measured and derived hy-
drographic and physical quantities, parameters of the perma-
nent halocline, and the first baroclinic Rossby radii.

3.1 Profiles of hydrographic and physical quantities

In a first step the profiles of salinity, potential temperature,
and oxygen content are directly compared for one summer
and one winter stratification situation for each region. The

only exception is the AB for which no data set representing
a summer stratification situation is available, see Table2. As
an example for a winter stratification situation in the AB the
data set MD-04 is chosen. For the BB exactly one data set
is available for each of both situations, see Table3. For the
SF exactly one data set is available for a summer stratifica-
tion situation and data set MD-01 is taken as an example for
a winter stratification situation, see Table4. For the EGB
the data sets MD-11 and MD-08 are chosen to represent a
summer and a winter stratification situation, respectively, see
Table5. The profiles of potential temperature with reference
level pref=0 were calculated by solving the entropy conser-
vation equation according toFeistel(2003) numerically by
means of Newton iteration as proposed byFeistel (2005).
The resulting plots are shown in the Figs.3 to 6 by region.
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Fig. 3. Profiles of salinity, potential temperature, and oxygen content at the central station in comparison with the respective mean profiles
accompanied by variation limits of one standard deviationσ and the number of samples with respect to depth for a winter stratification
situation in the AB (MD-04). No data set with a summer stratification situation in the AB is available.

These figures also include the information about the depth
dependence of the number of samples. The legends given in
the corresponding subplots are valid for all plots in the fig-
ures.

The average profiles over all stations in the corresponding
data set, which are assumed to be representative for the hy-

drographic conditions in the respective region, are chosen as
the respective isobaric mean profiles here. Accordingly, the
respective isobaric standard deviations are given to evaluate
the differences between the profiles at the central stations and
the corresponding average profiles. Obviously, the isobaric
averaging is not the only choice. It is chosen as the most
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Fig. 4. Profiles of salinity, potential temperature, and oxygen content at the central station in comparison with the respective mean profiles
accompanied by variation limits of one standard deviationσ and the number of samples with respect to depth for a summer and a winter
stratification situation in the BB (MD-03 and MD-05, respectively).

intuitive one because it keeps the depth co-ordinate given by
the profiling CTD measurements. Moreover, the pressure di-
rectly corresponds to a spatial depth within the uncertainties
of the profiling. On the other hand, the isobaric averageing
causes a smoothing of the profiles. However, the definition of
the representative profiles is reasonable if the isobaric vari-
ations are taken into account. For example, the smoothing

of the mean profiles due to varying depths of the halocline
in the region, which might be much sharper in each single
profile than in the isobaric mean profile, is indicated by large
variations in the depth range of the halocline compared to the
rest of the profile. In the opposed case of a smooth isobaric
mean profile with small variances in the range of the halo-
cline a smooth halocline with nearly the same depth in the
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Fig. 5. Profiles of salinity, potential temperature, and oxygen content at the central station in comparison with the respective mean profiles
accompanied by variation limits of one standard deviationσ and the number of samples with respect to depth for a summer and a winter
stratification situation in the SF (MD-06 and MD-01, respectively). Due to technical problems the profile of the oxygen content is missing at
one station. Therefore the number of samples has to be reduced by one in the depth range from 4 dbar to 62 dbar for the oxygen content.

whole region would be indicated by isobaric standard devi-
ations in the same order of magnitude over the whole depth
range.

The Figs.3 to 6 give a valuable visual impression of the
differences between the profiles at the central station and the

respective mean profiles and the isobaric variations within
the regions, particularly of their vertical differences. But
it is also reasonable to reduce these informations to a few
numbers for reasons of clarity and to provide an easy ap-
proach for a quantitative comparison of the different data
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Fig. 6. Profiles of salinity, potential temperature, and oxygen content at the central station in comparison with the respective mean profiles
accompanied by variation limits of one standard deviationσ and the number of samples with respect to depth for a summer and a winter
stratification situation in the EGB (MD-11 and MD-08, respectively).

sets. Therefore the vertical root mean squaresrms of the
deviations of the profiles at the central stations from the cor-
responding mean profiles were calculated as an intuitive es-
timate of a standardised isobaric overall deviation between
these profiles. For comparison the vertical mean valuesσ

of the isobaric standard deviations were calculated as an in-
tuitive estimate of a standardised isobaric overall variation

within the corresponding region. In Table6 the results for
the profiles of salinityS, potential temperatureTpot, oxygen
contento, and potential density%pot are given for all data
sets. The profiles of%pot with reference levelpref=0 were
calculated analogous to that ofTpot before. In Table7 the
analogous results forrms andσ of the profiles of squared
buoyancy or Brunt-V̈ais̈alä frequencyN2 are given for all
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data sets accompanied by the distancesdmon
c from the respec-

tive central stations to the corresponding monitoring station.
Using the acceleration due to gravityg the profiles ofN2

were calculated according to :

N2
= −

g

%pot

d%pot

dz
(1)

The derivation of%pot with respect to the vertical, upward di-
rected coordinatez of the potential density profiles in Eq. (1)
at each data point is determined by means of a linear least
squares fit to the considered and its two directly neighbour-
ing data points. If one or both of the neighbouring data points
of one data point are missing in the profile no derivation is
determined for that data point. Therefore the profiles ofN2

consist of at least two data points less than the other profiles
because of the upper and the lower end of the profiles. This
is also the reason why separate numbers of samplesnrms and
nσ used for the calculations of therms andσ , respectively,
are given in Table7 for the calculations concerningN2. For
the data set MD-10 the numbersnrms and nσ for N2 dif-
fer by more than two from the respective numbers for the
other quantities because the profiles aquired during the corre-
sponding field campaign contain a couple of data gaps due to
the hard weather conditions at that time. For example, each
of the measured profiles at the central station contain 20 data
gaps which are evenly distributed over the hole depth range
fortunately. The corresponding profile ofN2 at the central
station has even more data gaps due to the determination of
the derivation of%pot. The difference betweennrms andnσ

for each data set originates from the different pressure levels
covered by the profiles at the respective central station and
the corresponding profiles of standard deviations.

3.2 Parameters of the permanent halocline

Four parameters describing the permanent halocline are de-
rived from the salinity profiles. The four parameters are
the depthd of the permanent halocline, its upper and lower
boundariesu andl, respectively, and its thickness1d=l−u.
The depthd is determined by means of the first derivation
dS/dz of the salinityS with respect to the vertical, upward
directed coordinatez of the salinity profiles. It is defined as
d=−z by the locationz of the absolute minimum ofdS/dz

at the local minima ofdS/dz. In most cases this location co-
incides with the location of the absolute minimum ofdS/dz.
In other cases the absolute minimum ofdS/dz is located at
the bottom and no local minima ofdS/dz exist. These cases
are interpreted as situations without any permanent halocline
and, according to its definition, no halocline depthd is ob-
tained for the respective profiles. If a halocline depthd was
found for a certain salinity profile, it is tried to determine the
upper and lower boundaryu andl of the halocline by means
of the second derivationd2S/dz2 of the salinityS with re-
spect to the vertical coordinatez. Analogous to the halocline
depth they are defined asu=−z andl=−z by the locationsz

of the local maximum and minimum ofd2S/dz2 which are
the closest tod in upward and downward direction, respec-
tively. The thickness1d of the halocline is simply deter-
mined to1d=l−u, if both boundariesu and l of the halo-
cline could have been determined.

The derivationsdS/dz and d2S/dz2 were determined
from the profiles ofS anddS/dz, respectively, in the same
way as the derivation of the potential density%pot with re-
spect to the vertical coordinatez in the context of Eq. (1) in
Sect.3.1. But the salinity profilesS were linear interpolated
before their first derivationdS/dz was determined to avoid
large data gaps within the profiles ofdS/dz andd2S/dz2.
Moreover, the closest ten neighbouring data points to each
data point (five to the top and five to the bottom) were used
for the linear fits determining the derivations instead of only
the closest two ones to get the derivations somewhat more
smooth and less sensitve for small fluctuations in the salin-
ity. This choice is appropriate for the determination of the
halocline parameters because in this way the linear fits cover
a depth range of the same order of magnitude as the thickness
of the permanent halocline leading to reasonable results. A
disadvantage of this choise is that for the profile ofdS/dz

5 m and ford2S/dz2 even 10 m are lost at the bottom and
the top. While in most cases this loss does not matter at the
top, sometimes it causes the lower halocline boundaryl (and
therefore the halocline thickness1d) or even the complete
halocline, i.e.d, not to be found.

The halocline parameters were determined from the salin-
ity profil at each station and their mean values and respective
standard deviations were determined for each data set. Ad-
ditionally, the halocline parameters resulting from the iso-
baric mean profil of salinity were determined for each data
set. The results for the halocline depthd and its thickness
1d are given in Table8 for all data sets, i.e. the mean halo-
cline depthd, the corresponding number of samplesnd and
the respective standard deviationσd , the halocline depthdc

determined from the salinity profile at the central station, the
halocline depthdS determined from the isobaric mean pro-
file of salinity, and the analogous parameters1d, n1d , σ1d ,
1dc, and1dS for the halocline thickness1d. The analogous
resultsu, nu, σu, uc, uS for the upper boundaryu of the halo-
cline andl, nl , σl , lc, lS for its lower boundaryl are given in
Table9.

3.3 First baroclinic Rossby radii

In general, the first baroclinic Rossby radii are calculated
from the profiles of the squared buoyancy or Brunt-Väis̈alä
frequencyN2 by solving the vertical eigenvalue problem
for the vertical eigenfunctionsFn(z) and the corresponding
eigenvaluesλ2

n :

d

dz

(
1

N2(z)

d

dz
Fn(z)

)
+ λ2

nFn(z) = 0 (2)
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Table 8. The mean halocline depthd, the corresponding number of samplesnd and the respective standard deviationσd , the halocline depth
dc determined from the salinity profile at the central station, the halocline depthd

S
determined from the isobaric mean profile of salinity, and

the analogous parameters1d, n1d , σ1d , 1dc, and1d
S

for the halocline thickness1d for all data sets.

Region Season Data setd/m nd σd /m dc/m d
S

/m 1d/m n1d σ1d /m 1dc/m 1d
S

/m

AB winter MD-04 31 105 7 31 40 8 13 1 N/A N/A
winter MD-12 27 141 7 19 31 9 56 2 9 N/A

BB summer MD-03 54 162 4 55 53 11 137 2 10 12
winter MD-05 54 224 6 61 58 9 181 1 8 11

SF summer MD-06 42 136 20 61 64 10 57 2 9 10
winter MD-01 42 138 21 72 67 9 40 2 N/A 10
winter MD-09 47 113 18 62 63 9 36 1 10 11

EGB summer MD-02 80 202 14 86 81 11 189 4 26 27
summer MD-07 72 206 8 73 74 11 200 2 12 13
summer MD-11 69 219 8 70 70 11 213 2 10 12
winter MD-08 63 192 6 64 64 10 189 2 9 10
winter MD-10 67 180 9 68 67 12 176 4 8 19

Table 9. The mean upper boundaryu of the halocline, the corresponding number of samplesnu and the respective standard deviationσu,
the upper boundaryuc of the halocline determined from the salinity profile at the central station, the upper boundaryu

S
of the halocline

determined from the isobaric mean profile of salinity, and the analogous parametersl, nl , σl , lc, and l
S

for the lower boundaryl of the
halocline for all data sets.

Region Season Data setu/m nu σu/m uc/m u
S

/m l/m nl σl /m lc/m l
S

/m

AB winter MD-04 27 94 6 26 35 26 19 7 N/A N/A
winter MD-12 22 131 6 14 26 26 64 5 23 N/A

BB summer MD-03 48 162 4 49 47 59 137 4 59 59
winter MD-05 49 224 6 57 52 58 181 6 65 63

SF summer MD-06 41 115 17 56 59 42 75 21 65 69
winter MD-01 40 121 19 68 62 31 55 11 N/A 72
winter MD-09 44 105 15 57 57 48 42 21 67 68

EGB summer MD-02 75 198 11 72 62 84 193 14 98 89
summer MD-07 66 206 8 66 67 78 200 7 78 80
summer MD-11 63 218 7 65 64 75 214 6 75 76
winter MD-08 58 190 3 59 59 68 191 6 68 69
winter MD-10 60 180 10 64 57 72 176 7 72 76

with the boundary conditions :

dFn

dz
(0) = −

N2(0)

g
Fn(0) (3)

dFn

dz
(−H) = 0 (4)

at the surface (z=0) and at the bottom (z=−H ) with the up-
ward directed vertical coordinatez, the depthH of the water
column, and the acceleration due to gravityg. In most cases
the solutions of the vertical eigenvalue problem have to be
found numerically, in particular, this applies for measured
profiles ofN2 such as used for this work. For the numerical

solution it is common to transform Eq. (2) to:

d2

dz2
Zn(z) + λ2

nN
2(z)Zn(z) = 0 (5)

using the relation:

1

N2(z)

d

dz
Fn(z) = Zn(z) (6)

Moreover, it is convenient to apply the rigid lid boundary
condition at the surface because it suppresses the barotropic
mode which is of no interest here due to the purpose to es-
timate the first baroclinic Rossiby radii from the profiles of
N2. In the rigid lid approximation the boundary conditions
for Eq. (5) corresponding to Eqs. (3) and (4) become to:

Zn(0) = 0 (7)
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Zn(−H) = 0 (8)

The first baroclinic Rossby radiusr is calculated from the
smallest baroclinic eigenvalueλ2

1, i.e. the inverse of the
largest respective squared phase speedc2

1=1/λ2
1, according

to :

r =
1

λ1|f |
(9)

with the inertial frequency or Coriolis parameter
f =2� sin(ϕ) calculated from the rotation rate� of
the earth and the geographical latitudeϕ.

The system of Eqs. (5), (7), and (8) is solved for the mea-
sured profiles ofN2 using a finite differences approach which
reduces the problem to the determination of the eigenvalues
of an ordinary square matrix.

The profiles ofN2 used for the solution of the vertical
eigenvalue problem were determined from the profiles of the
potential density%pot exactly in the same way as before in
the context of Eq. (1) in Sect.3.1. But the profiles of%pot
were linear interpolated before their first derivationd%pot/dz

was determined by the linear fits to avoid large data gaps
within the profiles ofN2. Moreover, the resulting profiles of
N2 were constantly extrapolated to the lowest pressure level
p=1 dbar at the surface. The depth range considered for the
solution of the vertical eigenvalue problem ranges from the
additional surface pressurep=0 to the maximum pressure
pmax in the corresponding profiles representingH in the cal-
culations although no values ofN2 exist for these two pres-
sures. However, the values ofN2 at the bottom and the sur-
face are irrelevant for the calculations due to the boundary
conditions according to Eqs. (7) and (8).

The first baroclinic Rossby radiusr was calculated from
the profil of the squared buoyancy or Brunt-Väis̈alä fre-
quencyN2 at each station considering the whole covered
depth range of all profiles at the same station and its mean
value and respective standard deviation was determined for
each data set. Additionally, the first baroclinic Rossby radius
resulting from the total isobaric mean profil ofN2 was calcu-
lated for each data set. The resulting first baroclinic Rossby
radiusr is very sensitive to the depthH considered for each
calculation. Therefore the mean valuepmax of pmax from
all profiles in each data set was calculated representing the
mean depthH of the region covered by the respective field
campaign and another first baroclinic Rossby radiuss was
defined using the corresponding mean depthH as depth limit
for the calculations of the first baroclinic Rossby radii in each
data set. Consequently, the same calculations as for the first
baroclinic Rossby radiusr resulting from the profiles with
the corresponding total depthH were done considering only
the upper depth range up toH using all profiles with a maxi-
mum pressurepmax≥pmax. The results for the first baroclinic
Rossby radiir ands are given in Table10for all data sets, i.e.
the mean first baroclinic Rossby radiusr, the corresponding
number of samplesnr and the respective standard deviation

σr , the first baroclinic Rossby radiusrc determined from the
profile of the squared buoyancy or Brunt-Väis̈alä frequency
N2 at the central station, and the first baroclinic Rossby ra-
dius r

N2 determined from the isobaric mean profile ofN2

from the complete profiles acompanied by the mean depth
H and the analogous parameterss, ns , σs , sc, ands

N2 for
the first baroclinic Rossby radiis from the limited profiles of
N2.

4 Discussion

The evaluation of the representativeness of the conditions at
the central stations for the regional mean conditions depends
on the purpose for which they are intended to be used as rep-
resentative for the regional conditions. This purpose deter-
mines the accuracy needed. Basically, there are two classes
of such purposes. On the one hand, there are comparative
investigations between two or more regions such as a spa-
tial monitoring of the hydrographic conditions in the whole
Baltic Sea at one time. For these investigations a lower de-
gree of accuracy in the representativeness of the conditions
at the central stations is sufficient because the regional vari-
ations can be assumed to be small in relation to the interre-
gional variations. Therefore in these investigations, the con-
ditions at a central station are representative for the corre-
sponding region if they agree with the respective regional
mean values within the range of the typical regional varia-
tions given by the respective regional standard deviationsσ .
On the other hand, there are regional investigations cover-
ing just one of the regions including time series analysis for
example. These investigations need a higher degree of accu-
racy in the representativeness of the conditions at the central
stations because the deviations from the regional mean val-
ues have to be small in relation to the variations of the mean
values in time. In these investigations the conditions at a
central station should agree with the corresponding regional
mean values within a range in the order of the uncertainty
of the mean values to be representative for the region. The
uncertainty of the mean values is estimated byσ/

√
n, i.e. the

uncertainty of a single measurement in the estimation of the
respective mean values given by the respective regional stan-
dard deviationsσ reduced by the square root of the respective
numbern of samples as denominator.

A general evaluation of the representativeness of the con-
ditions at the central stations for the regional mean condi-
tions is not possible because of the different accuracies in
the representativeness needed for different purposes. Follow-
ing the motivation of this work, the representativeness of the
conditions at the central stations is evaluated with respect to
comparative monitoring purposes of the whole Baltic Sea in
this article. For other purposes requiring different accuracies
in the representativeness it has to be judged independently if
the representativeness of the conditions at the central stations
satisfies the needs of the intended investigation. However,
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Table 10. The mean first baroclinic Rossby radiusr, the corresponding number of samplesnr and the respective standard deviationσr , the
first baroclinic Rossby radiusrc determined from the profile of the squared buoyancy or Brunt-Väis̈alä frequencyN2 at the central station,
and the first baroclinic Rossby radiusr

N2 determined from the isobaric mean profile ofN2 (all from the complete profiles), the mean depth

H , and the analogous parameterss, ns , σs , sc, ands
N2 for the first baroclinic Rossby radiis from the depth limited profiles ofN2 for all

data sets.

Region Season Data setr/km nr σr /km rc/km r
N2/km H /m s/km ns σs /km sc/km s

N2/km

AB winter MD-04 3.1 231 2.0 5.6 4.7 40 2.7 157 1.4 4.6 2.9
winter MD-12 5.4 170 1.6 6.2 6.5 41 5.5 124 0.6 5.7 5.4

BB summer MD-03 7.2 176 1.5 7.9 9.4 78 7.1 110 0.3 6.9 7.1
winter MD-05 6.9 240 1.9 8.1 9.1 77 7.2 129 0.4 6.7 7.0

SF summer MD-06 2.9 198 1.7 6.4 7.1 56 2.0 100 0.2 2.1 2.0
winter MD-01 2.1 192 1.9 6.3 6.8 58 1.4 97 0.6 1.7 1.4
winter MD-09 2.4 176 2.2 6.8 7.2 57 1.5 87 0.8 0.9 1.6

EGB summer MD-02 7.4 208 2.0 9.7 9.9 165 7.8 108 0.2 7.6 7.7
summer MD-07 8.3 208 1.7 10.4 10.5 165 8.7 108 0.1 8.6 8.6
summer MD-11 8.3 221 1.7 10.3 10.5 164 8.6 115 0.1 8.5 8.6
winter MD-08 8.0 195 1.9 10.1 10.1 167 8.5 99 0.2 8.6 8.5
winter MD-10 8.2 182 2.0 10.6 10.4 167 8.7 93 0.1 8.8 8.6

the results presented in this article are helpful to support such
evaluations necessary for other purposes.

4.1 Profiles of hydrographic and physical quantities

The Figs.3 to 6 reveal the differences between the profiles
of salinity, potential temperature, and oxygen content at the
central station and the corresponding isobaric mean profiles
for one summer and one winter stratification situation for
each of the four regions under investigation except for the AB
for which no data set representing a summer stratification sit-
uation is available, see Table2. For the winter stratification
situation in the AB some discrepancies occur in all profiles in
the range of the halocline with respect to the respective stan-
dard deviations. Moreover, the general shape of the profiles
at the central station differs from that of the corresponding
isobaric mean profiles which are more smooth due to the av-
eraging. The same applies for all profiles corresponding to
the winter stratification situation in the BB and the SF while
all profiles at the central station for the summer stratification
situation in the BB are in good agreement with the corre-
sponding isobaric mean profiles in relation to the respective
standard deviations. For the summer stratification situation
in the SF some discrepancies in the profiles of potential tem-
perature occur in the depth range between the seasonal ther-
mocline and the permanent halocline. The potential temper-
ature profile at the central station reveals some fluctuations
in this depth range which are filtered out in the correspond-
ing isobaric mean profile resulting in significant differences
both in relation to the respective standard deviations and in
shape. The respective profiles of salinity and oxygen content
for the summer stratification situation in the SF reveal dis-
crepancies with respect to the respective standard deviations

and in shape such as found for the winter stratification situa-
tions in the AB, BB, and SF. For the EGB all profiles at the
central station match the corresponding isobaric mean profile
well in shape over the whole depth range with some minor
differences in relation to the respective standard deviations
in the depth range over the permanent halocline and below it
both for the summer and the winter stratification situation.

In the Tables6 and7 the vertical root mean squaresrms of
the deviations of the profiles at the central stations from the
corresponding mean profiles and the vertical mean valuesσ

of the isobaric standard deviations are compared for the pro-
files of salinity, potential temperature, oxygen content, po-
tential density, and squared buoyancy or Brunt-Väis̈alä fre-
quency for all data sets. While the vertical root mean squares
rms characterise the overall deviation of the profiles at the
central station from the corresponding isobaric mean pro-
files, the vertical mean valuesσ of the isobaric standard devi-
ations give a corresponding measure of the overall variations
within the complete data fields. Therefore in a sense a profile
at the central station can be assumed to represent the corre-
sponding isobaric mean profile well, if the vertical root mean
squaresrms for this profile is small compared to the cor-
responding vertical mean valueσ of the respective isobaric
standard deviations.

The results given in Table6 reveal that this condition is
meet by most data fields listed there. The data fields from
the EGB meet this condition most clearly, in particular the
data fields of salinity and, consequently, the data fields of po-
tential density which is mainly determined by salinity in the
Baltic Sea. Accordingly, the fewest exceptions are found for
the data fields from the EGB, the most for the data fields from
the AB. All exceptions belong to data fields representing a
winter stratification situation. In spite of the standardised
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estimates of the isobaric overall deviations and variations the
good matches for the data fields from the EGB partly may
be attributed to the smaller fraction of the total depth of the
profiles covered by the halocline in which the major isobaric
variations and, consequently, deviations occur, see Figs.3 to
6. However, even if the good matches for the data sets from
the EGB solely resulted from a smaller fraction of the total
depth covered by the halocline, this result would be reason-
able because the profiles at the central station in the EGB
would be more representative for a larger depth fraction of
the profiles and, consequently, would have a better overall
match than the profiles from the central stations in the other
regions.

For all data fields of the squared buoyancy or Brunt-
Väis̈alä frequency presented in Table7 the vertical root mean
squaresrms for the profil at the central station is smaller than
the corresponding vertical mean valueσ of the isobaric stan-
dard deviations by about three orders of magnitude. There-
fore the condition of small vertical root mean squaresrms for
the profil at the central station compared to the correspond-
ing vertical mean valueσ of the isobaric standard deviations
is meet by the data fields of the squared buoyancy or Brunt-
Väis̈alä frequencyN2 most clearly. The smoothing of the
profiles ofN2 within their calculation due to the estimation
of the derivationd%pot/dz can not be assumed to cause these
good matches. The according minimal noise reduction nec-
essary to get realistic profiles ofN2 can not be expected to
change the order of magnitude of the isobaric standard de-
viations or the deviations between the profiles at the central
stations and the corresponding isobaric mean profiles ofN2.
The large vertical mean valuesσ of the isobaric standard de-
viations may be attributed to large scale inclinations of the
seasonal thermocline and the permanent halocline resulting
in large isobaric variations of the squared buoyancy or Brunt-
Väis̈alä frequency.

4.2 Parameters of the permanent halocline

The depthd of the permanent halocline, its upper and lower
boundariesu andl, respectively, and its thickness1d=l−u

were determined from the salinity profile at each station and
from the corresponding isobaric mean profile for each data
set. The results in Tables8 and9 reveal a satisfactory agree-
ment of the result for each halocline parameter determined
from the salinity profile at the central station, the respective
result determined from the isobaric mean profile of salinity,
and the respective mean value over all stations with respect
to the respective standard deviation for most data sets. The
most significant differences are found in a data field from the
SF representing a winter stratification situation for the depth
of the halocline and its boundaries and in a data field from
the EGB representing a summer stratification situation for
the halocline thickness. In spite of this, the overall agree-
ment of the various halocline parameters is the best for the
EGB as can be assumed from the discussion in Sect.4.1.

The worst overall agreement of the various halocline param-
eters is found in the SF according to the numerous signif-
icant differences in the corresponding data fields, although
the standard deviations of all halocline parameters other than
the halocline thickness1d are twice and more times larger
for the data sets from the SF than for the data sets from the
other regions. In general, the results for the boundaries of
the halocline and, consequently, for its thickness determined
from the salinity profile at the central station match the re-
spective mean values somewhat better with respect to the re-
spective standard deviations than the respective results deter-
mined from the isobaric mean profiles of salinity due to the
smearing of a large scale inclined halocline caused by the
isobaric spatial averaging.

4.3 First baroclinic Rossby radii

The first baroclinic Rossby radiir ands were calculated from
the profiles of the squared buoyancy or Brunt-Väis̈alä fre-
quency at each station and from the corresponding isobaric
mean profile for each data set. While the whole depth range
covered by the profiles was considered for the calculations
of the first baroclinic Rossby radiir, only the depth range
from the surface to the mean depthH of all profiles in each
data set was taken into account for the corresponding cal-
culations of the first baroclinic Rossby radiis. Therefore
the first baroclinic Rossby radiis could have been calculated
only for profiles reaching at least as deep as the mean depth
H for the corresponding data set. The results in Table10
reveal a satisfactory agreement between the first baroclinic
Rossby radiir calculated from the profile of squared buoy-
ancy or Brunt-V̈ais̈alä frequency at the central station and
those calculated from the corresponding isobaric mean pro-
file for all data sets. However, they reveal significant dif-
ferences between each of both and the corresponding mean
value of the first baroclinic Rossby radiir over each data set
in relation to the respective standard deviations for most data
sets. The discrepancies are most striking for the data sets
from the SF. Obviously, the reason for these differences is
the dependence of the resulting first baroclinic Rossby radii
on the considered depthH which varies considerably within
each data set for the first baroclinic Rossby radiir, since the
whole depth range covered by each profile is taken into ac-
count in the corresponding calculation. The dependence of
the resulting first baroclinic Rossby radiirbc on the consid-
ered depthH ′ is illustrated in Fig.7 for the profile of the
squared buoyancy or Brunt-Väis̈alä frequency at the central
station and the corresponding isobaric mean profile of the
data set MD-07 representing a summer stratification situa-
tion in the EGB. Additionally, the resulting first baroclinic
Rossby radiir are plotted which were calculated from the
corresponding complete profile reaching to the depthH at
each station. The Fig.7 suggests that the results given in
Table10concerning the first baroclinic Rossby radiir calcu-
lated from the complete profiles are reasonable in spite of the
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significant differences found between the mean values of the
first baroclinic Rossby radiir and those calculated from the
corresponding profile of squared buoyancy or Brunt-Väis̈alä
frequency at the central station or the corresponding isobaric
mean profile.

In contrast to the first baroclinic Rossby radiir, the first
baroclinic Rossby radiis are calculated from the profiles of
the squared buoyancy or Brunt-Väis̈alä frequency taking into
account the same depth range for all profiles which is cho-
sen to the depth range from the surface to the mean depthH

of all profiles in each data set. Therefore no differences of
the calculated first baroclinic Rossby radiis can result from
different depth ranges considered for single profiles. Conse-
quently, the results given in Table10 for the first baroclinic
Rossby radiis reveal a high degree of agreement between all
the first baroclinic Rossby radiis calculated from the pro-
file of the squared buoyancy or Brunt-Väis̈alä frequency at
the central station, those calculated from the corresponding
isobaric mean profile, and the corresponding mean value of
the first baroclinic Rossby radiis over each data set in re-
lation to the respective standard deviations for all data sets.
The only two exceptions occur for the first baroclinic Rossby
radii s calculated from the profile of squared buoyancy or
Brunt-Väis̈alä frequency at the central station of the two data
sets representing a winter stratification situation, one from
the AB and one from the BB. Remarkably, all of the three
first baroclinic Rossby radiis given in Table10 for each data
set also match the mean value of the corresponding first baro-
clinic Rossby radiir calculated from the complete profiles of
squared buoyancy or Brunt-Väis̈alä frequency quiet well for
all data sets.

5 Conclusions

Although some discrepancies between the profiles at the cen-
tral stations and the corresponding isobaric mean profiles
exist, the profiles of salinity, potential temperature, oxygen
content, potential density, and squared buoyancy or Brunt-
Väis̈alä frequency at the central station match the corre-
sponding isobaric mean profiles in a satisfactory way with re-
spect to the respective standard deviations. The best matches
are found for the squared buoyancy or Brunt-Väis̈alä fre-
quency which may be attributed to large scale inclinations
of the seasonal thermocline and the permanent halocline re-
sulting in large isobaric variations of the squared buoyancy
or Brunt-Väis̈alä frequency. With respect to the regions the
best agreements are found in the EGB, the worst in the AB.
Furthermore, the best agreements in the EGB are found for
salinity irrespectively of the stratification situation and, con-
sequently, for potential density which is mainly determined
by salinity in the Baltic Sea. The worst matches in the AB
are also revealed for salinity and potential density.

The depth, thickness, upper, and lower boundaries of the
permanent halocline are represented well by the salinity pro-
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Fig. 7. Dependence of the resulting first baroclinic Rossby radii
rbc on the considered depthH ′ for the profile of the squared buoy-
ancy or Brunt-V̈ais̈alä frequency at the central station and the corre-
sponding isobaric mean profile of the data set MD-07 representing
a summer stratification situation in the EGB and the resulting first
baroclinic Rossby radiir calculated from the corresonding com-
plete profile reaching to the depthH at each station.

files at the central stations compared to both the respective
parameters determined from the isobaric mean profiles of
salinity and the respective mean values of the parameters de-
termined at each station in the data field. This result is ac-
cording to the results for the salinity profiles and applies for
all of the four regions and both summer and winter stratifica-
tion situations.

The first baroclinic Rossby radii calculated from the pro-
fil of squared buoyancy or Brunt-V̈ais̈alä frequency at the
central station are in good agreement with the first baro-
clinic Rossby radii calculated from the corresponding iso-
baric mean profile and the mean value of the first baroclinic
Rossby radii calculated from the corresponding profiles at
each station in the region, if the depth range taken into ac-
count for the calculations ranges from the surface to the mean
depth of the region. This applies for all of the four regions
and both summer and winter stratification situations. More-
over, the first baroclinic Rossby radii calculated from the
depth limited profil of squared buoyancy or Brunt-Väis̈alä
frequency at the central station match the mean values of the
first baroclinic Rossby radii calculated from the correspond-
ing complete profiles at all stations in the region fairly well
in all cases investigated.

Overall, the regional characteristics of the investigated
quantities and parameters are represented well by the hydro-
graphic measurements at the central stations in the four re-
gions of the Baltic Sea considered in this work. In particular,
the observations at the central stations of the AB, BB, SF,
and EGB seem to be usefull for comparisons between these
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regions in spite of the occuring differences between the spa-
tial mean states and the observations at the central stations.
However, it is emphasised again that the representativeness
of the conditions at the central stations for the regional mean
conditions is evaluated with respect to comparative monitor-
ing purposes of the whole Baltic Sea in this article. Other
purposes such as regional studies covering just one of the
regions require different accuracies in the representativeness
and, consequently, this evaluation may be invalid for other
purposes. Therefore the required accuracy in the representa-
tiveness has to be determined for each purpose separately and
the results presented in this article may be used to evaluate
the representativeness of the conditions at the central stations
according to the needs of the intended investigation.
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