
Informatica Economică vol. 17, no. 1/2013 DOI: 10.12948/issn14531305/17.1.2013.10 113

Particularities of Verification Processes for Distributed Informatics
Applications

Ion IVAN1, Cristian CIUREA1, Bogdan VINTILĂ2, Gheorghe NOȘCA3

1Department of Economic Informatics and Cybernetics, Academy of Economic Studies,
Bucharest, Romania,

2Ixia, Bucharest, Romania
3Association for Development through Science and Education, Bucharest, Romania

ionivan@ase.ro, cristian.ciurea@ie.ase.ro, vintilabc@gmail.com, r_g_nosca@yahoo.com

This paper presents distributed informatics applications and characteristics of their

development cycle. It defines the concept of verification and there are identified the differences

from software testing. Particularities of the software testing and software verification

processes are described. The verification steps and necessary conditions are presented and

there are established influence factors of quality verification. Software optimality verification is

analyzed and some metrics are defined for the verification process.

Keywords: Distributed Informatics Applications, Software Testing, Software Verification,

Verification Process, Software Optimality

Characteristics of Distributed
Informatics Applications

Distributed informatics applications are
software constructions that are based on
architectures whose components, through
interaction, realize allocations of resources in
real time. Distributed informatics
applications include:
- a heterogeneous group of users, having

many elements that, through interaction,
solve their well-defined problems, as data
entry volume, sequence operations that
activates and with concrete results that
marks the success of performing the
interaction or the need to retake some
components from the operations chain
specifying the cause and the manner of
disposal: after a few replays each user
successfully completes the interaction
getting the message meaning that his
problem has been solved correctly and
completely;

- dynamic definition of computer network
through which is realized the messages
transfer of user exempted in the ground
indefinitely, the only restrictions being
those related to hardware resources that
ensure compatibility with data acquisition
system and connection performance;

- conducting an achievements cycle that
includes steps, such as: defining the target

group and setting its size; defining the set
of distinct problems, which are subject to
processing; in this respect for each
problem are used appropriate definition
tools to reduce the risk of sub-definitions
or supra-definitions, situations attracting
reversals of prior steps when minuses of
information in the case of sub-definitions,
or the excess of information, in the case of
supra-definition of the problem, generate
effects that lead to discontinuation of the
development cycle with the impossibility
to pass to the next stage; the stage of clear
specifications, consistent, the
development stage of informatics
solutions variants accompanied by
performance estimation models requires
choosing the suitable variant against the
criterion with which the multiplication
effects is managed at the moment of
implementation; the code elaboration
stage as optimal resource allocation
process, knowing that the instructions,
data structures defining mechanism and
building of sequences procedures must be
understood as infinite resource use, but
which differ from each other in terms of
performance criteria of informatics
applications, taken as a whole; the testing
stage [1] play a very special role for the
distributed informatics applications

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26868582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

114 Informatica Economică vol. 17, no. 1/2013

because these operates independently of
the developer; the user has limited
possibilities to manage uncontrolled
situations resulting from existing errors in
procedures that allocate resources wrongly
or generates random processing behavior,
which ultimately creates users discomfort
(elaboration, documentation,
implementation).

Modern distributed informatics applications
are investments, so they include:
- the investor who pays the development of

the distributed informatics application;
- staff providing application development;
- staff ensuring exploitation management;
- users that solves the problem with the

distributed informatics application, which
becomes service provider;

- from the amounts transferred by the users
to other destinations, a part returns to the
investor, a part to the management of the
application and the investment is
recovered, and those who ensure the
management have their profit.

Modern distributed informatics applications
have into the user a beneficiary of the
options, database, there are investors who
recover the investment by the fact that users
beneficiates of services: for example
booking.com. It is considered that there is an
investor. In the database the hotels place
details regarding the number of rooms,
prices, photos, etc. In the database are loyal
users and new users after their first
transaction. The hotel owners and the
customers will beneficiate by the services of
the website. The customer pays at the hotel
and an amount x% go to the website or to the
investor, the hotelier pays only to appear
there and to be hosted on the website.
The informatics system from a bank is
collaborative because it has a large number
of components, a large variety of links
between them and requires a high level of
connectivity and integrability [2].
The components of banking informatics
system are distributed applications that

communicate with each other and are
integrated into a whole. Over the time, banks
have improved their informatics systems by
increasing the integrability degree of their
components applications.
Another indicator that banks are seeking is
the portability degree of informatics
applications from the bank, according to a
bank can migrate its informatics system from
one work environment to another, especially
to fulfill the disaster recovery procedures.
A distributed informatics application that is
used in a bank is the Collaborative
Servicedesk application, which allows
analyzing the types of problems reported by
internet banking users. Having the database
with all customer requests, the bank
determines the strategies to address each
client, depending on the history of problems
that he encountered.
The Collaborative Servicedesk application
adapts to input data and modifies its
components so as to provide maximum
utility and customer support regardless of
category they belong.
The verification process of Collaborative
Servicedesk application is different by the
testing process, because it requires
understanding the problem, discussions with
analysts, according with the objectives
established at the application
implementation.
The application testing involves performing a
battery of tests to ensure the accuracy of the
information recorded, and validate the
operation manner of the application.
Verification testing process involves:
- verification that all tests proposed have

been run;
- verification that the tests realized cover all

or a part of the problem;
- verification that the test report correctly

reflects what happened with the
application.

Figure 1 shows the stages of verification
testing process for the distributed informatics
application:

Informatica Economică vol. 17, no. 1/2013 115

Fig. 1. Verification stages of distributed informatics applications

In the current use stage of the application, the
verification process includes the following
elements:
- verification whether the access to

resources was defined for all enrolled
users; if there are n real users and m
enrolled users in the application, then if
n=m is fine, if n>m means that not all
users were enrolled, and if n<m means
that and other users were enrolled,
although they had no access right.

- verification of errors types by application
users; each user, whether is customer or
analyst, check the types of errors and if
the messages received from the
application are consistent with the errors.

The Collaborative Servicedesk distributed
informatics application integrates the
following features:
- automatic change of links position in the

knowledge base, according to the number
of requests registered on each category;

- automatic creation of a new category of
requests;

- automatic creation of vocabulary of
specific terms to the problems recorded;

- automatic distribution of customer
requests to the analysts enrolled;

- reclassification of a request on the
category suggested using a genetic
algorithm.

All these facilities require the verification of
correctness and completeness with which
they are made. In this case, the testing
process does not cover everything, requiring
additional verification of the fulfillment of all
facilities implemented. The verification
process follows what happens with a request
from its registration moment until it is
solved. There are identified routines and
repetitive activities in order to eliminate them
and increase the application performance.

2 Particularities of the Software Testing
Software testing is the process through
which, on the basis of input data sets,
execution and result evaluation, software is
evaluated. Software testing uses input data
sets [3]. These consist of some or all settings
one user can possibly do on a user interface,
regarding configuration, and different values
for data entry fields that statistically cover all
the real-world situations. Figure 2 shows the
spine of the software testing process.

Fig. 2. Software testing process

116 Informatica Economică vol. 17, no. 1/2013

Due to a vast set of factors, the software
testing process must adapt and shorten its
duration. Should all possible tests be run on a
software application, even for a very small
one, the possibilities are almost unlimited
and, thus, the duration of the process is
extremely large. Budget and time are the
main factors of limiting the software testing
to only a very small part of the total
executable test cases.
The quality of the tested software product is
given on a large basis by the experience and
expertise of the QA team that creates,
executes and evaluates the test cases. Test
cases are supposed to cover all execution
paths and for this they must cover all GUI
options as well as supplying different values
in different fields as these influence the
calculations underneath. Should an
inexperienced QA team create test cases that
cover only at a small degree the functionality
of the tested software, the problems will arise
at the customer site and the experience will
be bad.
The execution of the test cases is almost as
important as the test cases themselves. Even
if the test cases cover the largest part of the
application’s functionality and the sample
values are good enough to catch most of the
problems, if run by inexperienced people the
results of the process will be unreliable. In
the execution phase the QA member must
also pay attention to other factors that might
influence the execution of the application
such as the Internet connectivity and
previous actions. Some issues in software
programs occur only after a very long and
complex set of actions and the QA member
executing the test cases must be attentive
enough to remember all actions he did when
a problem arises in order to be able to
successfully and quickly reproduce and
document it.
Test cases and their execution lead to results.
These are the data provided by the software
program under test after the processing of the
data input. In order for an application to have
high quality the results must be correct,
complete and consistent.

The correctness of the results is given by the
fact that actual results for some data input
matches or not the expected results. As QA
team knows the application’s functions, they
also can predict the results for a certain data
input set. If the actual and expected results
don’t match there are some situations that
might have caused this:
- the test case was poorly designed and the

input data set is not valid for the expected
results; this might be due to modifying the
input data set after manually computing
the results, or an error in the manual
computation;

- the test case was executed poorly meaning
that not all settings were done or not all
values were inserted correctly; this is the
result of inexperienced team members or
environment issues such as stress;

- the functionality of the application in the
tested area changed and the QA team is
not aware of it; this might happen because
the changes in functionality are very new
and there was not enough time for the
information to propagate towards the QA
team or because of poor communication
between the development and QA teams;

- there is a problem in the application’s
functionality; in this case the QA team
must raise the problem and document it
well so that the development team can
reproduce it easily and be able to test the
fix once it is done.

The completeness of the results means that
exactly the expected results will be supplied,
no more, no less. If more results than the
expected ones are supplied, there might be a
problem, a setting might not have been done
or a value of the test case might have been
inserted wrongly. The case of missing results
is similar, but adds something more. When
incomplete results appear something might
have happened that halted the application’s
execution at some point and there is likely a
warning or exception thrown about the fact.
When an warning is shown to the user it
notifies him that some of the input data might
cause problems, but the execution will
continue. An exception notifies the user that

Informatica Economică vol. 17, no. 1/2013 117

some data input is wrong and the
computation can’t continue.
Software testing is done in different manners:
on procedures, on modules, on the whole
product, by developers, by QA team
members, by marketing team at the client
site, by clients.
The testing process is present in all stages of
the development cycle and the person that
tests is not the same. Developers test their
code during and after the implementation by
supplying test input values, observing
intermediate results and comparing the final
results with the expected ones. QA team tests
the software once the developers state it
reached a state of stability. Managers and
directors test new features to see how they
work before reaching to clients.

3 Software Verification Processes
Software verification, as opposed to software
testing does not imply the execution phase.
Verification of something means checking if
it complies with the rules it was built by.
Software verification is essential in all
development stages as it leaves room for no
mistakes in design and improper
implementation of applications. In each stage
of the development cycle different things are
verified and they all subject common rules,
but a keen eye must be kept open for any
possible issue.
As very large applications are not designed
and implemented by one team and in a very
small amount of time, the stages of the
development cycle repeat for every single
feature that is developed and we will focus
on the development cycle of features (or very
small applications) instead of focusing on the
development cycle for huge applications.
The problem defining stage is the one in
which the data input, models and algorithms
to be used and results are established. For
this stage the verification consists in
checking if:
- the problem statement includes all

possible particular issues and cases; for
this an analyst must analyze the problem
and the problem statement and see if they
are consistent;

- all data input fields are mentioned; if this
is not the case, later on in the development
cycle major issues will appear as data
needed for computation is not available,
thus halting the entire process to a stop,
causing additional expenses of financial
and time resources;

- all used models can be supplied with data
and they are the simplest that can do the
job; supplying the data falls in the above
category; using simple models that can do
the job well and efficient causes less
defects in the software program as the
members of the development team are
able to easily understand, implement and
work with them;

- all algorithms can be supplied with
required data, are efficient, have a very
large or complete coverage rate; the
effectiveness of an algorithm is give by
the amount of time it needs to solve a
problem when the dimension of the data
input increases greatly; for small data sets
(few hundred entries at max) almost all
algorithms are efficient; even a brute force
algorithm will deliver results very quickly
if the input data set is small, but
increasing the data set leads gives birth to
the need of optimization; as computers
become more and more complex, so does
software and small input data sets are
quite a rarity; thus, verifying an algorithm
is efficient means checking if the
performance level is linear regardless the
size of the input data set; depending on the
nature of the algorithm and the
computation it makes not all of them have
linear behavior, but this is the desired and
best case; verifying if an algorithm has a
very large or complete coverage rate
means to find values that are needed and
the algorithm can’t compute; the
important thing here is to focus on values
that are needed, as, often, not all the
values in a range are needed; if such
values are found and they count a
significant part of the total than the
algorithm doesn’t have a high enough
coverage rate; this means it must either be

118 Informatica Economică vol. 17, no. 1/2013

changed or supplemented by an algorithm
that can compute those values.

When performing verification at this stage of
the development cycle, a keen eye must be
kept open to see if the defined problem is
really the one the users experience. A poor
defining of the problem leads only to waste
of resources.
The target group definition stage of the
development cycle identifies the generic set
of user that the software product addresses.
Defining the target group means considering
criteria such as territory, age, education level,
access frequency, etc. Some of these criteria
are general regardless the software product
that is developed, such as the access
frequency, but most of them depend on the
nature of the software. For this stage
verification consists in:
- checking that no significant part of the

future users have been left aside; small
omissions of user categories are
acceptable as long as their share in the
total is under few percents, but larger
omissions means that the software is not
designed to fit all the users and, thus, is
prone to losing market share;

- checking that groups with a very low
chance of becoming actual users have not
been included in the target group; as
citizen oriented informatics applications
must be designed so that all users from the
target, regardless their education and
experience can use the application without
prior training, including groups with a
very small chance of becoming real users
in the target group just adds extra weight
to the process of design and development
due to extra restrictions these groups add;
also, the benefits brought in by such small
groups are outnumbered by the costs of
the extra resources needed in the
development cycle;

- check that all significant criteria has been
introduced in the characterization of the
target group; the criteria that are used to
characterize the target group determine
the characteristics and particularities of
the software application as, through these
criteria, behavior patterns are determined;

ignoring one or more of the important
criteria might lead to the loss of a
particular part of the target group as the
software product doesn’t correspond to
their requirements;

- check that all criteria used for the
characterization of the target group has an
impact on the behavior patters of the
users; if criteria that have no impact on the
behavior patterns are considered, the
application will be overloaded with
features and particularities that don’t
improve the user experience, but increase
the complexity of the software and the
necessary of resources during the
development cycle.

For online applications success is given not
by the offered service, not by the clean
interface, not by the neat features but by the
number of users. The larger the number of
active users, the larger the number of
potential users and the higher the perception
of the application’s quality are. Social
networks have clients for mobile devices and
for desktops. Not always the interface is
straightforward intuitive, clean or easy to
use, but the very large number of users
attracts more and more users every day.
The specifications definition stage of the
development cycle is the one that gives the
first insight of the real functionality of the
software through the eyes of the user.
Messing up this stage means developing for
no one as you will not respond to any needs
of the users. The specifications must be
exact, complete and correct. To ensure
exactness one must verify that all measurable
input, output or process has limits defined for
values. In the case of a variable, from the
user’s point of view, any wrong values must
be highlighted in GUI along with a clear and
easy to read error. For string variables the
maximum and minimum length must be
specified, for decimal numbers, the
maximum number of decimals is important.
In the case of algorithms the execution time
and memory consumption are the concerns.
In the case of online applications the memory
consumption never occurs to the user as most
of these run within a browser, but for the

Informatica Economică vol. 17, no. 1/2013 119

standalone applications memory is a real
concern. More important than the memory
consumption is the execution time. No user
wants an algorithm that solves a relatively
simple problem to run over a long period of
time. Users don’t actually know which is the
complexity of the problem that the algorithm
solves, but they have a slight perception of it.
The higher the perceived complexity, the
higher the time the user is willing to wait. If
time consuming algorithms can’t be avoided,
one must verify that the GUI includes visual
cues that give the user information about the
progress of the task and, if possible, of the
estimated remaining time. This makes the
users stop the processing less often as they
see clearly that there is progress, the
computations have not stopped and the
remaining time decreases over time. In the
case of trivial problems for which there
aren’t algorithms that have a complete
coverage, it is preferable to limit the input
interval and use a simple and efficient
algorithm, that use a time consuming one.
Computing some values through one efficient
algorithm and others through a time
consuming one that can return a value,
without providing visual cues in GUI is not a
good solution either. Without visual
indicators the users will start to ask why for
some values the application’s feedback is
instant and for others it takes forever, or at
least observable time. Without understanding
the process, they will soon doubt its
correctness and start looking for alternatives.
Providing some visual indicators, such as
messages stating that the input value requires
some special processing that will take some
time, informs the users of the special
situation they find themselves in and makes
them expect something to be different, in this
case, the processing time.
In the project building stage of the
development cycle the data structures,
functions and procedures, modules and
interdependencies are established. The
definition of the modules and
interdependencies is very important for the
modularity of the application and the order of
development for different modules and

functionality. For this, one must verify that a
module that depends on another is not
scheduled for development before that one or
at the same time. Data structures are entities
that are used by functions and procedures to
perform tasks. Problems can be solved in
many ways. The difference between a poor
piece of code ad a good and efficient one is
made by data structures and algorithms.
Using the right data structure and the right
algorithm enables the increase of the
dimension of the input data. Given a simple
problem, such as determining all
combinations of numbers from a set that
summed up give zero, one can easily solve it
by iterating through the set and creating all
possible combinations. If the resulting sum of
the combination is zero the combination will
be added to the solution list. This approach is
simple and easy to implement, but the time
needed for large data sets is very large. For a
set of 10 elements, there are about 10^3
combinations to be done, and that’s not that
large, if not done frequently, but for a set
only 10 times larger, the needed time is 10^6
and its about one thousand times larger than
that of the previous data set. The increase of
the input data set dimension by a factor of 10
leads to the increase of the needed time by a
factor of 10^3. It is clear that this algorithm
is not suitable for solving this problem for
large input data sets. An easy improvement
of the algorithm is to calculate sums of 2
elements and see if there is a third element
that has the same value as the sum, but
negated. This reduces the factor by which the
execution time multiplies.
At this point, one must verify that no data
structures that were defined are unused. If
this is the case, those must be removed. The
algorithms must be verified to see if all the
data structures they need have been defined.
If there are data structures that have not been
defined, these must be defined. After these
two verifications, only the required data
structures will be defined.
For functions and procedures one must verify
the signature, meaning return type and
parameters, if all parameters are used within
the computations and if a result is returned.

120 Informatica Economică vol. 17, no. 1/2013

Table 1. Input data \ Results table

Results
Input data

R1 R2 R3 R4 R5 R6

D1 X X
D2 X X
D3 X X
D4 X
D5 X X
D6
D7 X

For functions and procedures it is very
important that all data input is part of the
results. In Table 1 one can easily identify the
useless data input (D6) and the results that
are not computed (R5). If rows where no X
has been placed are identified that means that
the corresponding component of the data
input set is not used for any results. When
columns where no X has been placed are
identified this means that the corresponding
result uses no input data for computations.

When useless data is identified one must
verify it isn’t needed and then remove it from
the function/procedure’s signature. When
results that use no input data are identified,
these either are calculated from constants,
and in this case they should be cached, either
there is a problem and input data has not
been considered for them. For the last case,
one must identify the necessary input data
and include it.

Table 2. Input data \ Formulae table

Formulae
Input data

F1 F2 F3 F4 F5 F6

D1 X
D2
D3 X
D4 X X
D5 X X
D6 X
D7 X

These considerations are valid for the input
data – formulae relation. All input data must
be used in at least one formula, and all

complex formulae must use at least one
component of the data input set.

Table 3. Results \ Formulae table

Formulae
Results

F1 F2 F3 F4 F5 F6

R1 X X
R2
R3 X
R4 X
R5 X
R6 X
R7 X

In Table 3 the correlation between results and
the formulae used is presented. As before, no

Xs on one row means that the result uses no
formulae for the computation and no Xs on

Informatica Economică vol. 17, no. 1/2013 121

the columns means that the corresponding
formula is used for the computation of no
result.
For a given procedure:
Public Return_type Name(Type1 P1,

Type2 P2, …, Typek Pk)

one has to verify that:
- k is the necessary one; no unnecessary

parameters have been insert and no
necessary parameters have been omitted;

- the parameters are in the correct order; as
function overloading is based on the order
and type of parameters, the correct order
is essential;

- all types (return type and parameters
types) are the correct ones; assuming at
least one type is not the correct one, the
function is useless.

For a for loop:

for (int i=0; i<N; i++)

{

//do something

}

one must verify that:
- the statement’s syntax is correct and

complete; this one is automatically done
by most IDEs nowadays and the developer
can’t quite get it wrong, but at this stage,
where portions of generic code in
algorithms can be defined, is important to
check the correctness of it;

- the counter is initialized with the right
value; initializing the counter variable
with the wrong value leads to incorrect
results due to elements that are not
considered, to inefficient times, memory
corruption, infinite loops;

- the stop condition is valid and it will be
reached after a finite time; placing a
wrong stop condition leads to infinite
runtime and stack overflow;

- the step of the counter variable is correct;
if the step of the counter variable is
incorrect, the results are wrong due to
omitted elements and stack overflow
might occur due to not meeting the stop
condition.

Mistakes in this stage of the development
cycle have long lasting consequences in

development time and resource consumption
but also in maintenance and updating
processes.
The code writing stage of the development
cycle is usually characterized by the parallel
work of multiple programmers that write
different parts of the software module or
application. Most applications strive for a
unique style and language across all modules,
but this is not always possible. There are
applications of very large dimensions that
have been initially developed using one
language, then, as technologies evolved,
some modules were developed using
different programming languages. When
developers use more than one language to
write code in, the coding standards for the
used programming language must be obeyed.
If only one language is used, the developers
make a habit out of the coding standards after
a while and they don’t even pay attention to
how they do it. When using more than one
language, one must be careful in order to be
able to respect the coding standards for each
of them. Verification, at this stage, means
aside checks the correctness of the written
code, making sure that the coding standards
for the used language have been respected.
In the case of the distributed applications, the
server loading stage is the point in time after
which the testing team starts working. At this
point, verification means making sure that
the server has all components needed for the
application to run installed, has enough free
space, enough memory, Internet connectivity,
the test database has users that can access the
application.
The technical testing stage of the
development cycle assumes that the quality
assurance team runs tests to see if the
application works as defined by the
specifications or not. The QA testing
assumes the execution of the application
using test datasets and the comparison of
actual results with expected ones. When
these don’t match, an issue has been
discovered and it’s recorded for further
investigation. Verification, at this stage,
assumes checking if all tests have been
executed, all results have been compared to

122 Informatica Economică vol. 17, no. 1/2013

the expected ones, if the execution has been
correct or not.
The sample testing stage of the development
cycle assumes the testing of the application
with real data samples. Regardless the
experience of the QA team, the number of
tests they can run is limited and can’t cover
all the functionality of the application with
all possible values. The sample testing, on
the other hand, should used random samples
of data input that users utilize. These can be
obtained by recording them from the users,
but without saving sensitive date and by
asking their agreement. By testing using
samples, issues can be found that were
passed by the QA team. Verification at this
stage means checking that the pool from
which the samples are extracted is large
enough and covers a very large part of the
new implemented functionality. Also one
must verify that the tested samples are
correctly executed and they cover the newly
implemented code.
The documenting stage of the development
cycle assumes the documentation of code
through comments. At this point one must
verify that there are no complex code
segments that lack documentation and that
the existing documentation is clear, specific
and exact. If documentation lacks it must be
added and if it is not clear or precise enough,
it must be reformulated.
The implementation stage assumes the
distributed application is installed and
configured on the client’s server. This is one
of the final stages of the development cycle
and of great importance as the real users will
start using the application after this step.
Verification, at this point, means that all
application’s components are installed at the
right place, that the connection to the
database is correct, that the server has all
components needed for the application to
run, that the server has Internet connectivity
and other requirements specific to the
application.
The maintenance stage of the development
cycle lasts between the implementation and
the removal from use. Its purpose is to
correct any problems that were not identified

and corrected during the development cycle
and implement new features as per users’
requests. Verification, at this stage has the
following aspects:
- verification of the issues that are visible

now but they weren’t identified during the
development cycle;

- verification of new features implemented
as per users’ requests.

The verification of the issues that are
discovered during the users’ use assumes
checking which are the conditions under
which the problem appears, checking if the
analyze of the root causes has been complete,
checking if the solution covers all situations
and provides the users with the desired
results.
The verification of new features means, first
of all, to check if the feature is really
required by so many users as to be worth
implementing it. If this is the case, additional
verifications must be done: if the needed
input is available or additional changes must
be done, if the extra feature can cause
problems with the existing application, if the
extra feature’s entry point is where the users’
requested it, if the planned functionality if
the one the users’ demanded.
The software reengineering stage of the
development cycle happens when the
application in cause is so hard to maintain as
to justify a complete refactoring. Not all
applications pass through the software
reengineering stage as not all of them last so
long as to cause maintenance across a few
years to cost as much or more as
implementing the application again using
newer technologies, but when it happens one
must verify that:
- the newly chosen technology is fully

compatible with the existing functionality
of the application;

- the planned development process does not
use more resources that currently
allocated;

- the process is transparent to users;
- the maintenance costs after the

reengineering process will be significantly
lower than the current ones;

Informatica Economică vol. 17, no. 1/2013 123

- the users’ data won’t be affected in any
way by the process;

- the chosen technology is not at the end of
its lifecycle.

Software reengineering is a powerful tool
that allows good applications to benefit of
new technologies and improve even further
the user experience.
Remove from use is the last stage of the
development cycle and it assumes the
application is closed down and users’ data is
archived or dispatched of. At this stage one
must verify that all application’s components
have been removed from the server, that the
database has been backed up and deleted,
that the additional components needed only
by this application have been uninstalled, that
the removal of the application doesn’t affect
other applications that depended on it.

4 Software Optimality Verification
Software optimality [4] assumes that given
some criteria, the piece of software complies
with them all and no improvement in one
area can be done without affecting another.
In the software industry some criteria are
classical, such as cost, time needed to run,
needed memory, storage and communication
needs, number of simultaneous users. Before
one submitting his work, he must verify if it
is optimal or can support further
optimization.
In the case of software products optimization
can have many forms:
- removal of dead code assumes the

analysis of code and removal of the
portions that will never execute;
validations are done in numerous
locations and it is not quite surprisingly
that some areas of code never get
executed as all needed conditions are
never fulfilled; removal of code makes the
remaining code clearer and eases the
effort of maintaining and updating due to
the reduced complexity;

- redundant computing is a time consuming
easily identifiable and removable issue; in
algorithms that compute complex
problems often long expressions are
composed of many smaller ones; by

computing the most common expressions,
storing their values and reusing them
when necessary precious time is saved;
let e=(a2+b2+c2)/ (a2+b2+c2-1) be a
relatively simple expression that is to be
computed; from a glace the number of
operations can be easily identified:
 six multiplications
 four additions
 one subtraction
 one division
 one assignment
to a total of thirteen; by simply rewriting
the expression as e=x/(x-1) where x=(a-
2+b2+c2) we can reduce the operations to:
 three multiplications
 two additions
 one subtraction
 one division
 one assignment
to a total of eight thus saving five
operations, almost forty percent of the
original number; this is just a simple
example and a simple optimization
improves the result by a significant
percent; in complex cases the optimization
makes the difference between the success
and the failure of an algorithm, procedure,
module or even software product [5];

- unneeded conversions are another
problem that causes code to slow down;
many ignore the importance of using the
right data type from the start and abuse the
conversion mechanism thus adding
unnecessary latency to the execution;
assuming conversions can’t be totally
avoided the verification of the
optimization assumes checking if the
minimum number of conversions is done;
for long sequences of code where a
variable must be converted to a certain
format each time it is used, it is
recommended to use a temporary variable
to store the converted form and use it in
the whole sequence and setting back the
final value on the original variable in the
end; this saves all but two conversion for
the entire sequence;

- discarded results assume that the value of
a variable is computed and then the

124 Informatica Economică vol. 17, no. 1/2013

variable is assigned another value without
the prior one to be used in any way; this
happens as the developer starts with one
idea that he drops after half implementing
it and starts developing based on another
idea, but reusing the initial variables; the
verification in this case assumes that the
developer follows the entire code
sequence once it is written and ensure no
variables are computed and discarded
before using the computed value; if such
happen, the computation must be removed
from the sequence, as it is not only
useless, but also a burden for the
efficiency of the code;

- invariance management assumes the
discovery and elimination of operations
that happen multiple times when they
should only happen once; it’s not
uncommon to have repetitive structures in
code when iteration through the elements
of a collection is needed, a certain task
must be executed for many input data;
repetitive structures are places where
disasters can occur if the developer’s
focus is not maintained during the whole
process; let us assume we have a function
to be computed for one billion elements;
each line code that forms that function
will be executed one billion times for our
data; each line of code we remove will not
be executed; even small improvements in
such a function that is executed very often
leads to spectacular increases in
performance and system responsiveness;

- common code grouping assumes to
include as much code in a block as
possible and avoid repetitive atomic
operations; let us consider the following
code sequence that computes the sum of a
vector’s elements, the sum of the positive
elements and the sum of the negative
ones:

s = 0;

sn = 0;

sp = 0;

for (int i=0; i<n; i++)

 s+=x[i]

for (int i=0; i<n; i++)

 if (x[i] < 0)

 sn+=x[i]

for (int i=0; i<n; i++)

 if (x[i] > 0)

sp+=x[i]

for this sequence a number of operations
are made:
 ~5*n additions if there are no null
elements;
 ~5*n comparisons;
 ~5*n assignments
after grouping the common code and
discarding unnecessary for loops we have
the following sequence:

s = 0;

sn = 0;

sp = 0;

for (int i=0; i<n; i++)

 if (x[i] < 0)

 sn+=x[i]

else

sp+=x[i]

s = sn + sp

that has the following number of
operations:
 ~2*n additions
 ~2*n comparisons
 ~2*n assignments
it is clear that through such a small and
simple optimization the final time of
execution for very large vectors is around
two and a half times better for the second
code sequence;

- file reading optimization depends greatly
on the storage technology the machine the
software is running on uses; storage
technology evolved greatly in the last
decade, but the growth has been more in
capacity than performance and it hasn’t
got even close the growth the processors
and graphics knew; considering a machine
that uses a conventional HDD that spins
and has mechanical parts the optimization
must consider the natural limitations of
such devices and address them; for
classical HDDs the speed, number of
operations per second and delay are the
highest bottlenecks; the delay can be
tricked only by accessing the HDD as
seldom as possible; the number of
operation per second is a factor that must

Informatica Economică vol. 17, no. 1/2013 125

be taken into consideration when many
files must be read or written in a short
amount of time; even if their size is not
large, the whole operation will last some
time because the HDD can’t initiate
read/write operations at a very large rate;
to overcome this issue one must design
the storage so that fewer files are
accessed; with the information stored in
fewer logical bags, the number of
read/write operations is reduced and thus
the total operating time; another issue here
might be caused by the reading/writing of
very small data segments; let us consider a
file that has one million integers meaning

around four million bytes and a code
sequence that has to compute different
statistical operations on the data; as one
million integers don’t use a lot of
memory, once these are read from the
HDD, they will be stored in RAM and
used for computations; reading the values
from the file is another story; if one reads
the integers one by one, the HDD will
make one million read operations; divided
by the number of operations per second
we can approximate the time needed for
the operations to complete; in a simple
test run with one hundred million chars,
the data from Table 4 was obtained:

Table 4. Times needed for different operations on same dataset

 Run
Operation 1st 2nd 3rd
Write all 1123 873 996
Write each 2480 2277 2415
Read all 904 702 846
Read each 4914 5085 4989

one can easily see that the operations that
are done in bulk need much less time for
completion than the atomic operations;

- code duplication is something that all
developers avoid due to issues that appear
at maintenance and updating processes;
sometimes, though, the duplication of
code can save lots of time; functions and
procedures calls can be time consuming
and even outlast the time needed for the
procedure to execute; when this is the case
and the procedure’s code is short and
simple, it is better to duplicate code than
to have terrible performance; duplicating
code should not be a habit of any
developer and when such extreme
situations appear, the duplication must be
back-up-ed by serious documentation;

- cost optimization assumes to obtain a set
of predefined results with the minimum
costs; for this, one must verify that the
chosen solution is the one that involves
the smallest costs and he must take into
account the team’s training, the known
technologies, available licenses, etc;
forgetting about an important cost factor

might lead to choosing the not so cheap
solution and once the project starts few
have the guts to step back and restart the
whole development machine.

Through optimization of software machines
that seem obsolete are used again, resources
are saved and efforts are directed through
continuous development and optimization.

5 Verification Processes of Distributed
Informatics Applications and Influence
Factors of Verification
It must be established a very clear relation
between testing, validation and verification.
It is considered a distributed informatics
application currently in use, obtained by
covering the full development cycle phases.
At some point a result R is desired. For this
purpose there are selected the options <O1,
O2, ..., On>. There is a procedure defined that
is executed by an operator for many times
and the success rate is very high.
Verification in this case means to process the
result R and to see if:
- the structure at qualitative level, but also

at quantitative level, is the expected one;

126 Informatica Economică vol. 17, no. 1/2013

- the volume of processed items is the
necessary one, there being some control
keys;

- the indicators making up the result
structure at its overall belong to the
established fields and whether the
correlations identified are respected either
by mathematical formulas or identified
experimentally.

Verification is a routine operation following
the execution of some routine procedures,
and the product verified is used to achieve a
well-defined objective.
The verification result leads to the idea that
the procedure which was executed and what
has been achieved meet the requirements and
the product obtained has quality and is used
successfully. In statistics is supported a
verified product with a specific test that
proves the product is good. The hypothesis is
accepted and result that it is true.
There are situations when verification
concludes that the procedure was executed
and what has been achieved is of good
quality, but when is going to use output it
shows that it is not. The hypothesis is
accepted, but in reality it is false.
There are situations where the hypothesis is
rejected at verification, although is good and
means that the hypothesis was rejected when
it was valid.
The verification has an associated procedure
that shows how this process looks like:
- the entries are established as I1, I2, ..., In;
- the operations are established, which

define the verification op1, op2,..., opm, the
operations are in finite number and in the
sequence imposed, being specified the
situations where interactions are permitted
or indicating which are the optional
operations;

- is established when the verification result
concludes that the product is good, is
accepted and when it must be rejected.

Verification is a routine activity, usual,
which does not bring new elements, focused
on compliance or not with the actions, entries
or outputs from the procedure. The procedure
is a rigorous construction that involves
inputs, actions, activities, outputs (results).

The procedure has the following
characteristics:
- determination;
- finite number of steps;
- applicable to repeat the objective

achievement.
The procedure is defined and constructed to
achieve a goal. It is verified that the
procedure was applied or executed correctly
and completely.
In the case of the replacing operation of a
broken mirror of a car, there is a procedure to
remove the old mirror and a procedure for
new mirror installation. The objective
achievement results from the existence of the
new mirror mounted and functional. It is
verified that the new mirror has all the right
components and do the right thing.
There is a difference between verification
and control. For a procedure to be performed
is verified that the procedure was well done.
Verification is done by one who has executed
the procedure or by someone else. The
control is done explicitly by someone else
and is designed to see if the product or
operation is well done. In the case of control,
there is not about a procedure to follow.
The following actions are specific to the
control, but not to verification:
- control the quality of a product;
- control how moneys were spent.
The action to verify the amount of money
spent, meaning that the sum was correct, is
specific to verification process.
Testing means that for a program or software
product already made someone want to see if
it does what he needs. It is verified a routine
thing. In the case of mounting 1000 mirrors,
it is verified to all of them if the mounting
operation was well done.
In the case of testing, there is a unique
program and is tested to see if it works. For
another program, other tests are carried out.
There exists also the notion of knowledge
testing, which means testing more
individuals having a unique feature.
In the case of web applications, the
verification is essential. For an electronic
payments application:
- the IBAN of the beneficiary is selected;

Informatica Economică vol. 17, no. 1/2013 127

- the payment amount is inserted;
- the payment details are filled.
Verification involves validating the accuracy
of the IBAN and the correlation between the
amount paid and the amount entered by the
user. In the case of a bill payment of 30
RON, if the user enters the amount of 300
RON, the verification involves comparing
the amount of the invoice with the one
submitted in the electronic payment
application. For this, there must be a clear
procedure for verification.
In the case of the production process,
verification is placed between the production
operation and the product use operation.
It is considered the procedure:
P = <I, O, E>,
where:
I – set of inputs;
A – set of operations;
E – set of results.
The procedure is repetitive and involves
effective elements.
P

(mine)
 = <Imine, Omine, Emine>,

In this case, verification is a routine matter to
see if the theoretical I1, I2, ..., Ik are the same
with I1

 mine
, I2

 mine
, ..., Ik

 mine. The same thing
must be realized for operations and outputs.
Verification means that P

theoretical and P
mine

are identical.
Verification for outputs is actually exploiting
the results (outputs) to see if the user really
uses them correctly, or the buttons work
properly in the case of car mirrors.
A relationship must be established between
the concepts of validation, control, testing,
verification, in order to clearly distinguish
the difference between verification and
others.
In the case of production process, the testing
operation appears to the end to see that the
product is made according to the
specifications established. Testing also serves
to quantify the percentage of the
specifications that were met. If we set a
threshold alpha for product acceptance, then
all tests that have results above alpha are
validated and all that fall below the alpha are
rejected.

Verification in audit processes [6] involves
activities throughout the whole period when
the team works to get a better result. Upon
receipt of the software product, the audit
team checks for the following entries:
- specific documentation;
- test datasets;
- source texts;
- executable to be used by customers.
The audit is based on these inputs, the quality
of the final result being influenced by the
outcome of the verification process of them
[7].
During the audit process, verifications are
made in order to give assurances that:
- reports were built in compliance with all

requirements;
- the indicators underpinning the decision

of acceptance or rejection are calculated
using all representative data and the
chosen indicators are appropriate to the
specific of the application that is subject
to audit.

The final audit report should be verified to:
- contain all the standard structure

elements;
- include all the arguments underlying the

final decision;
- provide a clear conclusion, so that the

developer know what to do, based on solid
arguments;

- eliminate redundant elements;
- manage the quality level;
- provide a logical approach, gradual and

rigorous.
The verification of software applications at
client level must show that:
- performs basic functions (if the

application is on mobile phone and
requires a GPS localization, on must see if
it make localization correctly);

- the options are working and whether they
perform directions according to the
keywords generating alternatives;

- validate data entered from the keyboard
and how the re-input process is done (with
introduction only of the inaccurate data or
of all);

- erroneous data are marked with correct
messages;

128 Informatica Economică vol. 17, no. 1/2013

- between what the application require and
the data from invoices there is consistence
(the number of invoices is different from
one utilities provider to another, each
utility provider having its own encoding,
missing a standardization, so that for the
mobile phone, for the energy, for the gas
the invoices look different, the field
position is given by a so-called absurd and
unnecessary custom design;

- the IBAN account position on the invoice
and the lack of contracts between utilities
providers and banks make the data
difficult to enter and the pre-filled
payment orders does not exist;

- in addition, the lack of transparency and
integration of databases (banks does not
read the databases of utilities providers)
make also difficult the data entry on
payment orders.

We must verify the consistence between the
data from the invoice and the ones on the
payment order or verification of any other
data from the documents, and only after this
step we can accept and validate the payment.
Even if the software product indicates errors
and it returns to the initial state with error
messages or with incorrect fields that are
colored in red, verification saves us the
reintroduction and validation of data.
It is worse when we select a resource or if the
payment amount introduced is higher
(wrong), because the allocation of resources
is already made and costs are incurred and
also is necessary time consuming to fix or
spend (for hotel reservation, if we realize the
day before the accommodation is paid that
we want to cancel, then the accommodation
must be paid because the reservation cannot
be canceled).
We can say that it is verified the ease to
identify a product or a service, knowing that
the free search function, where the user
enters a string, if it is not accompanied by
searches using flexible algorithms based on
similarity, will never lead to find the product
or street or town.

6 Conclusions
Software testing proved a vital stage of the
development cycle from the first pieces of
software ever realized. There is no such thing
as software without bugs and without
extensive testing their number would be by
far larger in any software product. Even as
the technologies evolve and numerous
automated testing products appear, as the
applications become more and more
complex, the number of bugs in software
decreases very slowly. Due to the increased
complexity of the software, the number of
test cases increases much more than the
ability of automated tools and thus many
cases remain uncovered.
In order to ease the strain on the testing
process, the software verification is done
mainly by those designing and developing
the software products. After the verification
there are small chances that major errors will
appear further on, thus saving important
resources and limiting the amount of strain in
the bug-fixing period. Not only the strain is
reduced during bug-fixing, but also during
development as correct specifications and
code sequences lead to a lower rate of issues
between developers. Even if the developers
allocate around twenty percent of the
development time to designing and executing
dev-tests, the verification is a vital process as
it can eliminate most of the issues even
before they cause any trouble.
The verification of the software optimality
assumes the consideration of criteria and
areas to work on. Optimizations are done in
order to decrease the time needed for
execution, to decrease the memory footprint,
to lower costs. In areas where there are
plenty of technological and performance
limitations the optimization of software
makes things possible.
Distributed informatics applications should
be standardized. Verification involves seeing
how easy the information can be accessed,
how flexible is the application, in order to
verify that the application is user friendly.

Informatica Economică vol. 17, no. 1/2013 129

References
[1] I. Ivan, B. Vintilă, C. Ciurea, D.

Palaghita, S. Pavel, “Autotesting of the
Citizen Oriented Informatics
Applications,” Ekonomika, statistika i

informatika. Vestnik UMO, MESI, Russia,
No. 4, 2009, ISSN 1994-7844.

[2] P. Pocatilu, C. Ciurea, “Collaborative
Systems Testing,” Journal of Applied

Quantitative Methods, Vol. 4, No. 3,
2009, pp. 394-405, ISSN 1842–4562.

[3] I. Ivan, C. Boja, A. Zamfiroiu, “Procese
de Emulare pentru Testarea Aplicațiilor
Mobile,” Revista Română de Informatică

și Automatică, Vol. 22, No. 1, 2012, pp. 5-
16, ISSN 1220-1758.

[4] H. Eto, T. Dohi, “Optimality of Control-
Limit Type of Software Rejuvenation
Policy,” Proceedings of 11th International

Conference on Parallel and Distributed
Systems, Vol. 2, pp. 483-487, 22-22 July
2005.

[5] C. Boja, M. Popa, I. Niţescu,
“Characteristics for Software
Optimization Projects,” Informatica

Economică, Vol. 12, No. 1(45), 2008, pp.
46-51, ISSN 1453-1305.

[6] M. Popa, “Techniques and Methods to
Improve the Audit Process of the
Distributed Informatics Systems Based on
Metric System,” Informatica Economică,
Vol. 15, No. 2, 2011, pp. 69-78, ISSN
1453-1305.

[7] M. Popa, C. Toma, C. Amancei,
“Characteristics of the Audit Processes for
Distributed Informatics Systems,”
Informatica Economică, Vol. 13, No. 3,
2009, pp. 165-178, ISSN 1453-1305.

Ion IVAN has graduated the Faculty of Economic Computation and Economic
Cybernetics in 1970. He holds a PhD diploma in Economics from 1978 and he
had gone through all didactic positions since 1970 when he joined the staff of
the Bucharest Academy of Economic Studies. He is the author of more than 25
books and over 75 journal articles in the field of software quality management,
software metrics and informatics audit. His work focuses on the analysis of
quality of software applications. He has participated in the scientific committee

of more than 20 Conferences on Informatics and he has coordinated the appearance of 3
proceedings volumes for International Conferences. From 1994 he is PhD coordinator in the
field of Economic Informatics. His main interest fields are: software metrics, optimization of
informatics applications, developments and assessment of the text entities, efficiency
implementation analysis of the ethical codes in informatics field, software quality management
and data quality management.

Cristian CIUREA has a background in computer science and is interested in
collaborative systems related issues. He has graduated the Faculty of
Economic Cybernetics, Statistics and Informatics from the Bucharest Academy
of Economic Studies in 2007. He has a master in Informatics Project
Management (2010) and a PhD in Economic Informatics (2011) from the
Academy of Economic Studies. Other fields of interest include software
metrics, data structures, object oriented programming in C++, windows

applications programming in C# and mobile devices programming in Java.

130 Informatica Economică vol. 17, no. 1/2013

Bogdan VINTILĂ graduated the Bucharest University of Economics, the
Faculty of Cybernetics, Statistics and Economic Informatics. He finished the
PhD in the field of Economic Informatics at University of Economics in 2011.
He is interested in citizen oriented informatics applications, developing
applications with large number of users and large data volumes, e-government,
e-business, project management, applications' security and applications' quality
characteristics.

Gheorghe NOȘCA graduated Mechanical Faculty at Military Technical
Academy in 1981, and Cybernetics, Statistics and Informatics Economics
Faculty at Academy of Economics Studies in 1992. He obtained his PhD
degree in Economics, Cybernetics and Statistics Economics specialty in 2003.
He is currently researcher at Association for Development through Science and
Education. He has published (in co-operation) 3 books, 16 articles in
informatics journals. He has taken part in about 20 national and international

conferences and symposiums. His research interests include data quality, data quality
management, software quality cost, informatics audit, and competitive intelligence.

