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Abstract. The 2004 Gibbs thermodynamic potential func-
tion of naturally abundant water ice is based on much more
experimental data than its predecessors, is therefore signifi-
cantly more accurate and reliable, and for the first time de-
scribes the entire temperature and pressure range of existence
of this ice phase. It is expressed in the ITS-90 temperature
scale and is consistent with the current scientific pure wa-
ter standard, IAPWS-95, and the 2003 Gibbs potential of
seawater. The combination of these formulations provides
sublimation pressures, freezing points, and sea ice proper-
ties covering the parameter ranges of oceanographic interest.
This paper provides source code examples in Visual Basic,
Fortran and C++ for the computation of the Gibbs function
of ice and its partial derivatives. It reports the most important
related thermodynamic equations for ice and sea ice proper-
ties.

1 Introduction

Oceanography demands very accurate knowledge of freez-
ing temperatures of seawater. For instance, global tem-
perature rise, as manifested in the 1.2◦C increase per cen-
tury of northern hemisphere land surface winter temperatures
(Jones, 1994; Hagen and Feistel, 2005), is in general accom-
panied by much smaller changes of ocean temperatures. But
by freezing and melting processes in the polar and mid lati-
tudes, even a tiny cooling or warming of the sea can nonethe-
less have significant, nonlinear impacts on the climate sys-
tem, e.g. in form of growing or shrinking sea ice covers.

Several freezing point formulae are available for water
and seawater. The Unesco fomula of Millero (1978) is
valid for air-saturated seawater at low pressures only (up to
5 MPa=500 dBar) and does not take into account compress-
ibilities of seawater and ice. In the zero salinity limit, it is
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not consistent with the international equation for the melt-
ing pressure of Wagner et al. (1994) for air-free water which
covers more than the oceanic pressure range up to 100 MPa.
Neither formula, moreover, does agree with the most accu-
rate measured Clausius-Clapeyron coefficient within its ex-
perimental uncertainty (Feistel and Wagner, 2005b).

Thermodynamic potential functions (also called funda-
mental or general equations of state) offer a very compact
and consistent way of representing equilibrium properties of
a given substance, both theoretically and numerically (Al-
berty, 2001). This was very successfully demonstrated by
subsequent standard formulations for water and steam (Wag-
ner and Pruß, 2002) and other fluid substances (Span and
Wagner, 2003). With the numerical availability of mutually
consistent formulations for the chemical potentials of wa-
ter (Wagner and Pruß, 2002) and seawater (Feistel, 2003),
a Gibbs function approach to the freezing point computa-
tion problem became appealing. Earlier Gibbs functions of
ice (Feistel, 1993; Feistel and Hagen, 1995; Tillner-Roth,
1998; Feistel, 2003) were based on only few experimental
data from the vicinity of the normal pressure melting point,
and suffered from e.g. the pending significant uncertainty of
ice compressibility. Therefore, a reliable and accurate Gibbs
function of ice was desired, consistent with the correspond-
ing latest descriptions of water, vapour, and seawater, which
can provide freezing points of water and seawater over the
entire oceanographic “Neptunian” pressure range. An ex-
plicit freezing point formula derived from this newly devel-
oped Gibbs formulation is given in Jackett et al. (2005).

When water or seawater freezes under natural conditions,
crystals of hexagonal, so-called ice Ih are formed. At high
pressures, ice possesses at least twelve other crystalline
phases and two amorphous states, exclusively discovered in
the laboratory. In the current formulation, only the naturally
abundant ice phase, ice Ih, is described, applicable to the en-
tire region of its existence from 0 to 210 MPa in pressure und
from 0 to 273.16 K in temperature.
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30 R. Feistel et al.: Gibbs potential of ice

Table 1. Special constants and values used in this paper.

quantity symbol value unit abs. error

triple point pressure Pt 611.657 Pa 0.010
normal pressure P0 101325 Pa exact
triple point temperature Tt 273.160 K exact
Celsius zero point T0 273.150 K exact
normal melting point TM 273.152518 K 2E-6
temperature scale factor τ=Tt /1 K 273.160 −

pressure scale factor ψ=Pt /1 Pa 611.657 −

normal pressure constant p0=P0/Pt 165.6565689594 −

unit specific free enthalpy gU 1 J/kg
unit specific entropy σU 1 J/(kg K)
unit specific volume vU 1 m3/kg
unit specific heat capacity cU 1 J/(kg K)

A detailed derivation of this function is given by Feistel
and Wagner (2005a, b). It was determined by regression
with respect to 339 data points belonging to 26 different
groups of experiments, reproducing these data within their
particular measurement uncertainties. The new formulation
obeys Debye’s cubic law at low temperatures and pressure-
independence of the residual entropy. The typical uncertainty
of about 100% in isothermal compressibilities of previous
formulae is reduced to less than 1%. The resulting Clausius-
Clapeyron slope of the melting curve at normal pressure is
74.305 mK/MPa with an uncertainty of only 0.02%, which is
about 100 times more accurate than the corresponding figures
of the formulae of Millero (1978) or Wagner et al. (1994).
The fresh water melting temperature at normal pressure is
inferred to be 273.152 518±0.000 002 K. Recomputed sea-
water freezing points are given in Table 7; their accuracy is
estimated as 2 mK at atmospheric pressure and 30 mK at high
pressures (Feistel and Wagner, 2005b).

A major advantage of the Gibbs function method applied
to sea ice is that it suffices to study the freezing formula
for pure water, which then in turn automatically implies the
formula for seawater, too. The chemical potential of ice,
once available, predicts the freezing curve of water if com-
pared with the chemical potential of water, available from
the IAPWS-95 formulation (Wagner and Pruß, 2002). Com-
pared with the chemical potential of water in seawater, avail-
able from the Gibbs function of seawater (Feistel, 2003), it as
well provides the freezing curve of seawater with comparable
accuracy.

The current paper provides numerical implementations of
the new Gibbs function of ice and its derivatives in Visual
Basic (VB), Fortran, and C++. These implementations have
been developed independently by the different authors of this
paper, and are subject to specific properties of the particular
programming language and coding rules. To give an exam-
ple, VB does not support complex arithmetic and data types,

which needed to be implemented explicitly. Thus, the three
source code versions differ from each other in various details,
and are therefore described separately one by one in Sect. 3.
These code examples are intended as functioning examples
and possible guides for the development of individual imple-
mentations into custom program environments. They do not
provide any user interface nor support data input or graphical
output.

For reference, a collection of explicit expressions for the
partial derivatives of the Gibbs function, as well as vari-
ous relations to other thermodynamic properties are given in
Sect. 2. Finally, Sect. 4 presents formulae for sea ice, which
additionally require for their evaluation the Gibbs potential
of seawater. Numerical implementations of the 2003 Gibbs
function of seawater in VB, Fortran, and C++ are available
from a companion article earlier in this journal (Feistel, 2004,
2005).

2 Gibbs potential and its derivatives

The thermodynamic Gibbs potential functiong (T , P ) de-
scribed in this paper is the specific free enthalpy (specific
Gibbs energy) of ice, which is equal to the chemical poten-
tial µ (T , P ) of ice. We express absolute temperatureT by
the dimensionless variablet=T

/
Tt with triple point temper-

atureTt , and absolute pressureP by p=P
/
Pt with triple

point pressurePt . Triple point data and other constants are
reported in Table 1.

The functional form ofg (T , P ) for ice is given as a com-
plex function of temperature,

g (T , P )

gU
= g0 − σ0τ · t + τRe{

2∑
k=1

rk

[
(tk−t) ln (tk−t)+ (tk+t) ln (tk+t)−2tk ln tk−

t2

tk

]}
, (1)
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with two coefficients being polynomials of pressure,

g0 (P )=

4∑
k=0

g0k · (p−p0)
k , r2 (P )=

2∑
k=0

r2k · (p−p0)
k .(2)

The unit specific free enthalpy isgU=1 J/kg, the dimension-
less constantτ is τ=Tt/1K=273.160 and the dimensionless
normal pressure isp0=P0/Pt , given in Table 1. The real
constantsg00 to g04 andσ0 as well as the complex constants
t1, r1, t2 andr20 to r22 are given in Table 2.

The complex logarithm ln(z) is the principal value, i.e. it
evaluates to imaginary parts in the interval−π<Im ln (z) ≤

+π . The complex notation used here serves only for com-
pact writing and easy determination of the partial deriva-
tives. The residual entropy coefficientσ0 given in Table 2 is
its “IAPWS-95 version” as required for correct phase equi-
libria determinations between ice and pure water using the
IAPWS-95 formulation (Wagner and Pruß, 2002), or seawa-
ter (Feistel, 2003). Its alternative value represents the true ab-
solute physical zero-point entropy of ice,σ0=189.13, which
is usually not required for practical computations, however.

The first derivative ofg with respect to its independent
variableP , provides density,ρ, and specific volume,v,

1

ρ
= v =

(
∂g

∂P

)
T

v

vU
=

1

ψ

dg0

dp
+
τ

ψ
Re{

dr2
dp

[
(t2−t) ln (t2−t)+ (t2+t) ln (t2+t)−2t2 ln t2−

t2

t2

]}

ψ=
Pt

1 Pa
=611.657,

dg0

dp
=

4∑
k=1

g0k · k · (p−p0)
k−1,

dr2
dp

=

2∑
k=1

r2k · k · (p−p0)
k−1

(3)

and the one with respect toT provides specific entropy,σ ,

σ = −

(
∂g

∂T

)
P

(4)

σ

σU
= σ0 + Re

{
2∑
k=1

rk

[
ln

(
tk − t

tk + t

)
+ 2

t

tk

]}
Further thermodynamic functions are defined by so-called
Legendre transforms:

Specific free energy (also called Helmholtz energy or
Helmholtz free energy),f ,

f = g − Pv = g − P ·

(
∂g

∂P

)
T

(5)

Specific enthalpy,h,

h = g + T σ = g − T ·

(
∂g

∂T

)
P

(6)

Table 2. Coefficients of the Gibbs functions (Eqs.1, 2).

Coefficient Real part Imaginary part

g00 −632578.704355102
g01 0.655029997804786
g02 −1.89952376891314E-08
g03 3.40692612753936E-15
g04 −5.78593658679522E-22
σ0 −3333.18160308627
t1 3.71539090346389E-02 5.10464771184122E-02
r1 45.951447199735 65.223705014775
t2 0.345095829562823 0.343315892017841
r20 −75.8695106343435 −80.9878506462645
r21 −5.75529765634353E-05 5.09059011946526E-05
r22 2.39617513518116E-11 −2.73297877749166E-11

Specific internal energy,e,

e = g + T σ − Pv = g − T ·

(
∂g

∂T

)
P

− P ·

(
∂g

∂P

)
T

(7)

Several thermodynamic coefficients can be derived from sec-
ond derivatives ofg:

Isothermal compressibility,K,

K = −
1

v

(
∂v

∂P

)
T

= −

(
∂2g/∂P 2

)
T

(∂g/∂P )T
(8)

Pt

vUψ

(
∂v

∂P

)
T

=
1

ψ2

d2g0

dp2
+

τ

ψ2
Re

{
d2r2

dp2

[
(t2−t) ln (t2−t)+ (t2+t) ln (t2+t)−2t2 ln t2−

t2

t2

]}

d2g0

dp2
=

4∑
k=2

g0k · k (k − 1) · (p − p0)
k−2,

d2r2

dp2
= 2r22

Isobaric cubic thermal expansion coefficient,α,

α =
1

v

(
∂v

∂T

)
P

=

(
∂2g/∂T ∂P

)
(∂g/∂P )T

(9)

Tt

vU τ

(
∂v

∂T

)
P

=
1

ψ
Re

{
dr2
dp

[
ln

(
t2 + t

t2 − t

)
− 2

t

t2

]}
Specific isobaric heat capacity,cP ,

cP = T

(
∂σ

∂T

)
P

=

(
∂h

∂T

)
P

= −T

(
∂2g

∂T 2

)
P

(10)

cP

cU
= t · Re

{
2∑
k=1

rk

[
1

t − tk
−

1

t + tk
+

2

tk

]}
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Table 3. Factorisation of the Gibbs potential function, Eq. (13).

k 2k (T ) 8k (P )

1 τ ·

[
(t1 − t) ln (t1 − t)+ (t1 + t) ln (t1 + t)− 2t1 ln t1 −

t2

t1

]
r1

2 τ ·

[
(t2 − t) ln (t2 − t)+ (t2 + t) ln (t2 + t)− 2t2 ln t2 −

t2

t2

] 2∑
j=0

r2j · (p − p0)
j

3 τ · t −σ0

4 1
4∑
j=0

g0j · (p − p0)
j

Isentropic (or adiabatic) compressibility,κ,

κ = −
1

v

(
∂v

∂P

)
σ

= K −
α2T v

cP
=(

∂2g/∂T ∂P
)2

−
(
∂2g/∂T 2

)
P

(
∂2g/∂P 2

)
T

(∂g/∂P )T
(
∂2g/∂T 2

)
P

. (11)

Isochoric pressure coefficient,β,

β =
1

P

(
∂P

∂T

)
v

= −
∂2g/∂T ∂P

P ·
(
∂2g/∂P 2

)
T

(12)

We finally note that arbitrary mixed partial derivatives of the
potential function (Eqs.1, 2) can be expressed in closed an-
alytical form. The Gibbs function, depending on two inde-
pendent variables, can be written as a sum of products of
functions, each depending on only one variable,

g (T , P ) = gURe

{
4∑
k=1

2k (T )8k (P )

}
. (13)

The four pairs of functions of Eq. (13) are listed in Table 3.
This factorisation can help in the formal coding of higher,

mixed derivatives due to the separation of variables,

∂(n+m)g (T , P )

∂T n∂Pm
= gURe

{
4∑
k=1

dn2k (T )

dT n
·

dm8k (P )

dPm

}
.(14)

The nontrivial derivatives of the functions in Table 3 as re-
quired for Eq. (14) are in explicit form fork=1 andk=2:

d2k
dT

=
τ

Tt

[
ln (tk + t)− ln (tk − t)−

2t

tk

]
, (15)

d22k
dT 2

=
τ

T 2
t

[
1

t + tk
−

1

t − tk
−

2

tk

]
, (16)

dn2k
dT n =τ · (−Tt )

−n (n−2) ! ·

[
(t+tk)

(1−n)
− (t−tk)

(1−n)
]
,

for n > 2 (17)

dm82
dPm

= P−m
t

2∑
j=m

r2j
j !

(j −m)!
(p − p0)

(j−m), (18)

dm84
dPm

= P−m
t

4∑
j=m

g0j
j !

(j −m)!
(p − p0)

(j−m). (19)

The mathematical proof is easily obtained by complete in-
duction.

3 Source code

The source code implementations in Visual Basic, Fortran
and C++ have been developed independently by these au-
thors, rather than been created as translations of a single tem-
plate program. The codes contain a common set of same
fundamental functions. Additional and auxiliary functions
are different, as are the program organisation and language-
specific details. For clarity, we provide separate descriptions
for all three code samples despite of their various similarities.
Implemented are the Gibbs function and its partial derivates
up to third order. Independent variables, i.e. input parameters
of the functions, are absolute temperatureT in K and abso-
lute pressureP in Pa. P includes atmospheric pressure, in
opposite to many oceanographic formulae which are based
on applied pressurep=P−101325 Pa, taken relative to stan-
dard pressure at the sea surface. Returned values are mea-
sured in appropriate combinations of basic SI units, i.e. kg,
J, Pa, m, etc.

3.1 Visual Basic code

The Visual Basic (VB) code comes in five basic files:

– Gibbs04.vbp: defines the program components and
properties,

– Gibbs04.frm: defines the program window and runs the
start-up program,

– Gibbs04.frx: defines additional properties of the pro-
gram window,

– Complex.bas: implements complex number arithmetic
functions,

– Gibbs04.bas: contains the thermodynamic functions of
ice.
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Table 4. Ice properties implemented in VB and their calls.

quantity function call unit eq.

g ice g(T, P) J/kg 2.1
(∂g/∂T )P ice dgdt(T, P) J/(kg K) 2.4
(∂g/∂P )T ice dgdp(T, P) m3/kg 2.3(
∂2g/∂T 2

)
P

ice d2gdt2(T, P) J/(kg K2) 2.10(
∂2g/∂T ∂P

)
ice d2gdtdp(T, P) m3/(kg K) 2.9(

∂2g/∂P 2
)
T

ice d2gdp2(T, P) m3/(kg Pa) 2.8(
∂3g/∂T 3

)
P

ice d3gdt3(T, P) J/(kg K3)(
∂3g/∂T 2∂P

)
ice d3gdt2dp(T, P) m3/(kg K2)(

∂3g/∂T ∂P 2
)

ice d3gdtdp2(T, P) m3/(kg K Pa)(
∂3g/∂P 3

)
T

ice d3gdp3(T, P) m3/(kg Pa2)

ρ ice density(T, P) kg/m3 2.3
h ice enthalpy(T, P) J/kg 2.6
σ ice entropy(T, P) J/(kg K) 2.4
f ice free energy(T, P) J/kg 2.5
g ice free enthalpy(T, P) J/kg 2.1
cP ice heatcapacity(T, P) J/(kg K) 2.10
e ice internalenergy(T, P) J/kg 2.7
κ ice isentropiccompressibility(T, P) 1/Pa 2.11
K ice isothermalcompressibility(T, P) 1/Pa 2.8
β ice pressurecoefficient(T, P) 1/K 2.12
v ice specificvolume(T, P) m3/kg 2.3
α ice thermalexpansion(T, P) 1/K 2.9

The start-up routine isForm Load in Gibbs04.frm.
It calls FW04demo(T degC, PdBar) with the values
T degC=−10◦C andP dBar=1000 dBar (applied pressure),
which produces upon execution the output in the immedi-
ate (Debug) window of the VB development environment:
T degC=−10◦C
T abs=263.15 K
P dBar=1000 dBar
P abs=10101325 Pa
g −1606.4511744898 J/kg
dg/dT 1299.04800566945 J/(kg K)
dg/dP 1.08787119642917E-03 mˆ3/kg
d2g/dT2−7.67906117056837 J/(kg Kˆ2)
d2g/dTdP 1.66429674881775E-07 mˆ3/(kg K)
d2g/dP2−1.25548611251055E-13 mˆ3/(kg Pa)
d3g/dT3 1.41439364919413E-03 J/(kg Kˆ3)
d3g/dT2dP 5.61033076359349E-10 mˆ3/(kg Kˆ2)
d3g/dTdP2−2.15950418441553E-16 mˆ3/(kg K Pa)
d3g/dP3 8.83364207555687E-23 mˆ3/(kg Paˆ2)
spec. volume 1.08787119642917E-03 mˆ3/kg
density 919.226470268169 kg/mˆ3
enthalpy−343450.933866404 J/kg
entropy−1299.04800566945 J/(kg K)
free energy−12595.3916877597 J/kg

int. energy−354439.874379674 J/kg
heat capacity 2020.74494703507 J/(kg K)
therm. exp. 1.52986562589453E-04 1/K
isoth. compr. 1.15407606767377E-10 1/Pa
adiab. compr. 1.12091901460767E-10 1/Pa
press. coeff. 0.131232229564815 1/K
d(isent. compr)/dP−5.99025933097889E-20 1/Paˆ2

These values may serve as check values whether the im-
plementation works properly.

The thermodynamic functions provided in the module
Gibbs04.bascontain the functions listed in Table 4, as well
as some auxiliary (private) functions not intended for public
calls. Prior to any of these function calls,Sub InitG FW04
must be executed to initialise the field of coefficients.

3.2 FORTRAN code

The Fortran code comes in two basic files:

– main.for: runs the main program

– ice-lib.for: contains the thermodynamic functions of ice

The start-up routine isProgram Ice. It runs a computa-
tion of ice properties with the valuesT abs=263.15 K and

www.ocean-science.net/os/1/29/ Ocean Science, 1, 29–38, 2005
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Table 5. Ice properties implemented in Fortran and their calls.

quantity function call unit Eq.

g ice g(T, P) J/kg 2.1
(∂g/∂T )P ice dgdt(T, P) J/(kg K) 2.4
(∂g/∂P )T ice dgdp(T, P) m3/kg 2.3(
∂2g/∂T 2

)
P

ice d2gdt2(T, P) J/(kg K2) 2.10(
∂2g/∂T ∂P

)
ice d2gdtdp(T, P) m3/(kg K) 2.9(

∂2g/∂P 2
)
T

ice d2gdp2(T, P) m3/(kg Pa) 2.8(
∂3g/∂T 3

)
P

ice d3gdt3(T, P) J/(kg K3)(
∂3g/∂T 2∂P

)
ice d3gdt2dp(T, P) m3/(kg K2)(

∂3g/∂T ∂P 2
)

ice d3gdtdp2(T, P) m3/(kg K Pa)(
∂3g/∂P 3

)
T

ice d3gdp3(T, P) m3/(kg Pa2)

ρ ice density(T, P) kg/m3 2.3
h ice enthalpy(T, P) J/kg 2.6
σ ice entropy(T, P) J/(kg K) 2.4
f ice free energy(T, P) J/kg 2.5
g ice free enthalpy(T, P) J/kg 2.1
cP ice heatcapacity(T, P) J/(kg K) 2.10
e ice internalenergy(T, P) J/kg 2.7
κ ice isentropiccompressibility(T, P) 1/Pa 2.11
(∂κ/∂P )T ice disentropiccompressibilitydp(T,P) 1/Pa2

K ice isothermalcompressibility(T, P) 1/Pa 2.8
β ice pressurecoefficient(T, P) 1/K 2.12
v ice specificvolume(T, P) m3/kg 2.3
α ice thermalexpansion(T, P) 1/K 2.9

P abs=10101325 Pa, which produces upon execution the
output in the default window:
T abs 263.150000000000 K
P abs 10101325.0000000 Pa
g −1606.45117448973 J/kg
dg/dT 1299.04800566944 J/(kg K)
dg/dP 1.087871196429174E-003 m**3/kg
d2g/dT2−7.67906117056837 J/(kg K**2)
d2g/dTdP 1.664296748817753E-007 m**3/(kg K)
d2g/dP2−1.255486112510547E-013 m**3/(kg Pa)
d3g/dT3 1.414393649194133E-003 J/(kg K**3)
d3g/dT2dP 5.610330763593495E-010 m**3/(kg K**2)
d3g/dTdP2−2.159504184415537E-016 m**3/(kg Pa K)
d3g/dP3 8.833642075556870E-023 m**3/(kg Pa**2)
specific volume 1.087871196429174E-003 m**3/kg
density 919.226470268169 kg/m**3
enthalpy−343450.933866404 J/kg
entropy−1299.04800566944 J/(kg K)
free energy−12595.3916877597 J/kg
internal energy−354439.874379674 J/kg
heat capacity 2020.74494703507 J/(kg K)
therm. expansion 1.529865625894533E-004 1/K
isoth. compr. 1.154076067673776E-010 1/Pa

isentr. compr. 1.120919014607667E-010 1/Pa
press. coefficient 0.131232229564815 1/K
disentr. compr./dP−5.990259330978887E-020 1/Pa**2

These values may serve as check values whether the im-
plementation works properly.

The thermodynamic functions provided in the moduleice-
lib.for contain the functions listed in Table 5, as well as some
auxiliary functions not intended for public calls. Prior to any
of these function calls,SUBROUTINE DAT must be exe-
cuted to initialise the field of coefficients.

3.3 C++ code

The C++ code comes in five basic files:

– main.cpp: runs the main program,

– IceIh FW.cpp: contains the thermodynamic functions
of ice,

– IceIh FW Aux.h: header file forIceIh FW.cpp,

– IceIh FW Aux.cpp: contains numerical constants and
auxiliary functions,
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Table 6. Ice properties implemented in C++ and their calls.

quantity function call unit Eq.

g ice g(T, P) J/kg 2.1
(∂g/∂T )P ice dgdt(T, P) J/(kg K) 2.4
(∂g/∂P )T ice dgdp(T, P) m3/kg 2.3(
∂2g/∂T 2

)
P

ice d2gdt2(T, P) J/(kg K2) 2.10(
∂2g/∂T ∂P

)
ice d2gdtdp(T, P) m3/(kg K) 2.9(

∂2g/∂P 2
)
T

ice d2gdp2(T, P) m3/(kg Pa) 2.8(
∂3g/∂T 2∂P

)
ice d3gdt2dp(T, P) m3/(kg K2)(

∂3g/∂T ∂P 2
)

ice d3gdtdp2(T, P) m3/(kg K Pa)(
∂3g/∂P 3

)
T

ice d3gdp3(T, P) m3/(kg Pa2)

ρ ice density(T, P) kg/m3 2.3
h ice enthalpy(T, P) J/kg 2.6
σ ice entropy(T, P) J/(kg K) 2.4
f ice free energy(T, P) J/kg 2.5
cP ice heatcapacity(T, P) J/(kg K) 2.10
e ice internalenergy(T, P) J/kg 2.7
κ ice isentropiccompressibility(T, P) 1/Pa 2.11
(∂κ/∂P )T ice disentropiccompressibilitydp(T,P) 1/Pa2

K ice isothermalcompressibility(T, P) 1/Pa 2.8
β ice pressurecoefficient(T, P) Pa/K 2.12
v ice specificvolume(T, P) m3/kg 2.3
α ice thermalexpansion(T, P) 1/K 2.9

– IceIh FW.h: header file for,IceIh FW Aux.cpp.

The ANSI/ISO C++ standard (Schildt, 1998) implements
a complexclass which represents complex numbers and de-
fines a series of functions that operate on objects of type
complex, including a logarithmic function; there is no need
to provide user-defined operations on complex numbers.

The C++ code was compiled in the Windows and in the
LINUX environments. Borland C++ Builder 5.0 (Windows)
and GNU g++ 3.3.1 (LINUX) compilers were used to gener-
ate the executable files.

The start-up routine ismain. It runs a computation of ice
properties with the values.

T abs=263.15 K andP abs=10101325 Pa, which pro-
duces upon execution the output in the default DOS window
(Windows environment) or in the default terminal window
(LINUX environment).

The Windows output:
T abs 263.15 K
P abs 10101325 Pa
g −1606.45117448966 J/kg
dgdT 1299.04800566944 J/(kg K)
dgdP 0.00108787119642917 mˆ3/kg
d2gdT2−7.67906117056837 J/(kg Kˆ2)
d2gdTdP 1.66429674881775e-07 mˆ3/(kg K)
d2gdP2−1.25548611251055e-13 mˆ3/(kg Pa)

d3gdT2dP 5.61033076359349e-10 mˆ3/(kg Kˆ2)
d3gdTdP2−2.15950418441554e-16 mˆ3/(kg K Pa)
d3gdP3 8.83364207555687e-23 mˆ3/(kg Paˆ2)
spec. volume 0.00108787119642917 mˆ3/kg
density 919.226470268169 kg/mˆ3
enthalpy−343450.933866404 J/kg
entropy−1299.04800566944 J/(kg K)
free energy−12595.3916877596 J/kg
int. energy−354439.874379674 J/kg
heat capacity 2020.74494703507 J/(kg K)
therm. exp. 0.000152986562589453 1/K
isoth. compr. 1.15407606767378e-10 1/Pa
isent. compr. 1.12091901460767e-10 1/Pa
press. coeff. 0.131232229564815 1/K
d(isent. compr)/dP−5.99025933097888e-20 1/Paˆ2

The LINUX output:
T abs 263.15 K
P abs 10101325 Pa
g −1606.45117448957 J/kg
dgdT 1299.04800566944 J/(kg K)
dgdP 0.00108787119642917 mˆ3/kg
d2gdT2−7.67906117056837 J/(kg Kˆ2)
d2gdTdP 1.66429674881775e-07 mˆ3/(kg K)
d2gdP2−1.25548611251055e-13 mˆ3/(kg Pa)
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Table 7. Freezing temperatures in◦C of seawater with practical salinitiesS from 0 to 40 psu under applied pressurep (relative to normal
pressureP0) from 0 to 100 MPa (0 to 10 000 dbar). Values computed by Eq. (22).

p/MPa 0 psu 5 psu 10 psu 15 psu 20 psu 25 psu 30 psu 35 psu 40 psu

0 +0.003 −0.272 −0.54 −0.809 −1.081 −1.356 −1.636 −1.921 −2.208
10 −0.756 −1.031 −1.3 −1.569 −1.842 −2.118 −2.4 −2.685 −2.974
20 −1.546 −1.822 −2.091 −2.361 −2.634 −2.912 −3.194 −3.481 −3.772
30 −2.367 −2.643 −2.913 −3.184 −3.458 −3.736 −4.02 −4.308 −4.6
40 −3.219 −3.495 −3.766 −4.037 −4.312 −4.592 −4.877 −5.167 −5.46
50 −4.1 −4.377 −4.649 −4.921 −5.197 −5.478 −5.764 −6.055 −6.35
60 −5.012 −5.289 −5.562 −5.835 −6.112 −6.394 −6.682 −6.975 −7.271
70 −5.953 −6.231 −6.505 −6.779 −7.058 −7.341 −7.63 −7.924 −8.223
80 −6.924 −7.203 −7.478 −7.753 −8.033 −8.318 −8.608 −8.904 −9.204
90 −7.924 −8.204 −8.48 −8.757 −9.038 −9.324 −9.617 −9.915 −10.217
100 −8.954 −9.235 −9.512 −9.791 −10.073 −10.361 −10.656 −10.956 −11.26

d3gdT2dP 5.61033076359349e-10 mˆ3/(kg Kˆ2)
d3gdTdP2−2.15950418441554e-16 mˆ3/(kg K Pa)
d3gdP3 8.83364207555687e-23 mˆ3/(kg Paˆ2)
spec. volume 0.00108787119642917 mˆ3/kg
density 919.226470268169 kg/mˆ3
enthalpy−343450.933866404 J/kg
entropy−1299.04800566944 J/(kg K)
free energy−12595.3916877595 J/kg
int. energy−354439.874379674 J/kg
heat capacity 2020.74494703507 J/(kg K)
therm. exp. 0.000152986562589453 1/K
isoth. compr. 1.15407606767378e-10 1/Pa
isent. compr. 1.12091901460767e-10 1/Pa
press. coeff. 0.131232229564815 1/K
d(isent. compr)/dP−5.99025933097889e-20 1/Paˆ2

The values above may serve to check whether the imple-
mentation works properly. Note slight differences in the val-
ues of g, free energy, and d(isent. compr)/dP produced by the
Windows and the LINUX executables.

The thermodynamic functions provided in the module
IceIh FW.cpp contain the functions listed in Table 6. Auxil-
iary (private) functions not intended for public calls are con-
tained in the moduleIceIh FW Aux.cpp. All of the func-
tions listed in the Table 6 are embedded in the namespace
IceIh FW which protects them against possible naming con-
flicts.

4 Aqueous phase equilibria

Equilibria between ice and liquid water or water vapour re-
quire equal chemical potentials of water of the coexisting
phases, which are available from the IAPWS-95 free en-
thalpy of liquid pure water,gW (T , P ), and of water vapour,
gV (T , P ) (Wagner and Pruß, 2002).

Melting point temperature of ice,TM(P ), is implicitly
given by

g(TM , P ) = gW (TM , P ). (20)

Vapour pressure,Pvap (T , P ), over ice at pressureP , is im-
plicitly given by

g (T , P ) = gV
(
T , Pvap

)
. (21)

Equilibria between ice and seawater (i.e. sea ice) require
equal chemical potentials of water of those phases, which are
available from the free enthalpy of seawater,gSW (S, T , P )

(Feistel, 2003, 2004). Here,S is the practical salinity of the
liquid phase (i.e. seawater).

Freezing point temperature of seawater,TF (S, P ), is im-
plicitly given by

g(TF , P ) = gSW (S, TF , P )− S

(
∂gSW

∂S

)
P,T=TF

. (22)

Freezing points of air-free seawater in the oceanic range of
salinities and pressures are listed in Table 7; their accuracy
is estimated as 2 mK at atmospheric pressure and 30 mK at
high pressures (Feistel and Wagner, 2005b). The additional
freezing point lowering due to saturation with air is in the
range of 0–3 mK (Feistel, 2003; Jackett et al., 2005). Precip-
itation of sodium sulfate out of seawater starts at−8.2◦C at
atmospheric pressure, or at brine salinities of about 150 psu
(Schwertfeger, 1963), but perhaps even at−6.3◦C already
(Marion et al., 1999), corresponding to about 115 psu, and
is likely not relevant for the values given in Table 7, even
though its pressure dependence is not known. The low sol-
ubility of calcium carbonate, however, hypothetically caus-
ing precipitation already below−2.2 ◦C (Marion, 2001) or
at about 40 psu, if confirmed may well exhibit some quan-
titative influence, however. Calcium contributes to standard
sea salt with about 1.2 mass percent (Feistel, 2003). Mea-
surements of freezing, high-salinity Mediterranean seawater
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down to−14◦C were reported by Herut et al. (1990). These
data may need to be considered in future extensions to higher
salinities of the Gibbs function of seawater but do not con-
cern the Gibbs function of ice presented in this paper.

For vanishing salinity,S=0, this Eq. (22) can be used in-
stead of Eq. (20).

Brine salinity of sea ice,SB(T , P ), is implicitly given by

g(T , P ) = gSW (SB , T , P )− SB

(
∂gSW

∂S

)
T ,P,S=SB

. (23)

Given the bulk salinitys of sea ice, which equals its practical
salinity after complete melting, the (liquid) mass fraction of
brine, w, is given by,

w (s, T , P ) =
s

SB (T , P )
. (24)

Free enthalpy of sea ice,gSI , as a function of bulk salinity,
temperature and pressure, is obtained as (Feistel and Hagen,
1998)

gSI (s, T , P ) = (1 − w (s, T , P ))

·g (T , P )+ w (s, T , P ) · gSW (SB (T , P ) , T , P ) . (25)

All properties of sea ice with constant bulk salinity can be
computed from this function in analogy to Eqs. (1)–(12) by
substitutingg by gSI . Some important formulae are the fol-
lowing ones (Feistel and Hagen, 1998):

Specific volume,vSI , and density,ρSI=1/vSI , of sea ice
is given by

vSI =

(
∂gSI

∂P

)
s,T

= (1 − w) · v + w · vSW (SB , T , P ) (26)

with vSW (S, T , P )=
(
∂gSW

∂P

)
T ,S

.

Specific enthalpy,hSI , of sea ice is given by

hSI = gSI − T

(
∂gSI

∂T

)
s,P

=

(1 − w) · h+ w · hSW (SB , T , P ) (27)

with

hSW (S, T , P )=gSW (S, T , P )−T

(
∂gSW

∂T

)
P,S

.

Specific heat capacity,cSIP , of sea ice is given by

cSIP =

(
∂hSI

∂T

)
s,P

=

(1−w) · cP+w ·

[
cSWP (SB , T , P )+c

Melt
P (SB , T , P )

]
(28)

with

cSWP (S, T , P )=

(
∂hSW

∂T

)
P,S

and

cMeltP (S, T , P )=

[(
hSW−h

)
/S−

(
∂hSW /∂S

)
T ,P

]2

T ·
(
∂2gSW /∂S2

)
T ,P

.

Isothermal compressibility,KSI , of sea ice is given by

vSIKSI
= −

(
∂vSI

∂P

)
s,T

= (1 − w) · v ·K + w · vSW ·[
KSW (SB , T , P )+KMelt (SB , T , P )

]
(29)

with

KSW (S, T , P ) = −
1

vSW

(
∂vSW

∂P

)
T ,S

and

KMelt (S, T , P )=
1

vSW

[(
vSW−v

)
/S−

(
∂vSW /∂S

)
T ,P

]2

(
∂2gSW /∂S2

)
T ,P

.

Cubic thermal expansion coefficient,αSI , of sea ice is
given by

vSIαSI =

(
∂vSI

∂T

)
s,P

= (1 − w) · v · α + w · vSW ·[
αSW (SB , T , P )+ αMelt (SB , T , P )

]
(30)

with

αSW (S, T , P ) =
1

vSW

(
∂vSW

∂T

)
P,S

.

and

αMelt (S, T , P ) =
1

vSW

[(
vSW−v

)
/S−

(
∂vSW /∂S

)
T ,P

] [(
hSW−h

)
/S−

(
∂hSW /∂S

)
T ,P

]
T ·

(
∂2gSW /∂S2

)
T ,P

.

The “melting” contributions to heat capacity,cMeltP , com-
pressibility,KMelt , and thermal expansion,αMelt , consist of
the latent parts due to the partial transition process between
ice and water, as well as effects due to varying brine salinity,
haline contraction and dilution heat. They are numerically
very important and may even exceed the single contributions
of both “pure” phases, ice and brine.

Edited by: C. D̈oös
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