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Abstract—The concept of Internet of Things (IoT) is rapidly
moving from a vision to being pervasive in our everyday lives.
This can be observed in the integration of connected sensors
from a multitude of devices such as mobile phones, healthcare
equipment, and vehicles. There is a need for the development
of infrastructure support and analytical tools to handle IoT
data, which are naturally big and complex. But, research on
IoT data can be constrained by concerns about the release
of privately owned data. In this paper, we present the design
and implementation results of a synthetic IoT data generation
framework. The framework enables research on synthetic data
that exhibit the complex characteristics of original data without
compromising proprietary information and personal privacy.

I. INTRODUCTION

The arrival of the age of the Internet of Things (IoT) [1]
creates opportunities for industry. Raw data are being collected
at an increasing rate from a multitude of devices and sensors
– sources that include connected homes, smart meters, manu-
facturing, healthcare, fitness trackers, mobile devices, vehicles,
and more. The ingestion and integration of raw data, the
extraction of valuable business information from the raw data,
and planning for infrastructure capacity and analytic capability
for analyzing this data are new challenges in the era of big
data [2]. Unlike structured transactional data that follow pre-
defined schemas and can be stored in two-dimensional tables,
IoT data typically do not have a standard structure, are often
represented in a hierarchical structure using XML or JSON
[3, 4], and are dynamic and self-describing [5].

A combination of business and technical reasons makes
addressing the challenges of IoT data difficult from within an
enterprise computing environment. The current state-of-the-
art is that there is no common, comprehensive solution for
data wrangling problems as each company has its own unique
sets of data with unique attributes. Development of a robust
data infrastructure that will meet production requirements
needs experimental analysis at a realistic scale. However, the
budget for hardware infrastructure is typically just enough to
support production Service Level Agreements and to provide
the stability required to avoid failures in data operations [6].
It is often not feasible from a business perspective to provide
sufficient computing resources for experimental research and
development on big data.

One solution for experimental research on IoT data is
to utilize academic partners or commercial cloud providers
who are equipped with large scale computational resources.
However, much of the data of interest are proprietary or
have privacy constraints and cannot be transferred to locations
outside of company resources without significant risk to the

business. The issue in sharing data lies with the possibility
that sensitive or proprietary data could be leaked.

An alternative approach for experimental research on realis-
tic data sets is to create synthetic data that have characteristics
that are similar to the original data but have values that are
not obtained by direct measurement. This approach allows for
research on enterprise data infrastructure to be performed on
resources that are external to the company while protecting
sensitive information. The challenges in synthetic data gener-
ation include capturing the aggregated structural and statistical
characteristics of the original data that are sufficient to meet
the goals of the experimental research while at the same time
not revealing personally identifying information contained
in combinations of the original data sets. Researchers must
consider the tradeoffs between the level of statistical accuracy
of the generated data, the need to maintain anonymity of
the original data in the generated set, and the computational
complexity and run time of the data generation process.

In this paper, we present our research on the development
and implementation of a synthetic IoT data generation frame-
work that is capable of generating terabytes of structurally
similar synthetic data from a highly complex and nested orig-
inal data source. Our primary motivation for developing the
framework is to enable the design, development, and testing
of large scale data analytic tools and data infrastructures to
support IoT research. We evaluate our approach on a real
world data source that includes data that have been collected
over a period of several months from hundreds of sensors
on millions of electronic objects located at geographically
different locations. We report on the results of our efforts
in two ways. We compare the stuctural characteristics of
the generated data to the original data, and we evaluate the
performance of a data access framework on both the original
and synthetic data.

II. BACKGROUND AND RELATED WORK

As a rapidly developing paradigm, the Internet of
Things (IoT) presents the concept that all of the things
surrounding us can communicate and exchange information
via the Internet, and by doing so, they enable “autonomic
responses to challenging scenarios without human interven-
tion” [4]. However, as IoT data are extremely heterogeneous,
noisy, and large-scale, this presents a major challenge to the
process of cleaning, integrating, and processing the data.

Synthetic data generation is typically accomplished by de-
veloping statistical distributions for a set of samples from data
that were directly measured, and then creating new values in



the same format as the real data from these distributions. To
characterize the related approaches in the problem of large
scale synthetic data generation, we categorize the data as
one of two types: structured data (e. g., tabular format) and
semi/unstructured data (e. g., XML/JSON format).

For structured data, well-known sources of synthetic data
are the two industrial general-purpose database benchmarks,
TPC-C and TPC-H [7]. These benchmarks can generate arbi-
trary amounts of data. The generated data are inserted into flat
tables with a number of predefined columns. Similar general-
purpose benchmarks, which also generate synthetic data at
scale, are BigBench [8] and YCSB [9].

Semi/unstructured data require a more complex approach
for the generation process. The work by Aboulnaga et. al.
[10] utilizes the Markovian structures of all paths from the
root to every possible leaf of the XML tree to generate the
synthetic data. This work does not evaluate how structurally
similar the synthetic data are compared to the original data.
The work by Cohen [11] enables users to generate synthetic
XML documents, but requires users to provide a target DTD
(document type definition) document and detailed global and
local constraints on the output synthetic XML structures.

These approaches require a priori knowledge of the detailed
foundational XML template for the original data. Today’s IoT
data sources exhibit a very large base XML template with
millions of possible XML paths, and prior knowledge of the
XML template is often not available. The goal of this research
is to design and implement a scalable system for creating
synthetic XML that captures the complexity and variety of
presented IoT sources. Our approach is not constrained to
XML data and can also be applied to other hierarchical data
formats.

III. CHARACTERIZATION OF IOT DATA

The IoT synthetic data generation proceeds in two major
phases. The first phase is to perform structure and value extrac-
tion from the original XML, resulting in a data characterization
called the synthesis set. The second phase uses the synthesis
set as input to generate and output synthetic XML data. In
this section we present the steps of phase one, structure and
value extraction.

To begin, we provide a formal definition of attributes (as in
columns of a data table and not the XML attribute construct)
of a data object stored as an XML document. The text contents
of an XML document are the collected measurements of
the sensors on an object. Each of them represents a unique
attribute of that object. The term value is used instead of
attribute in order to distinguish an object’s data attributes
from its XML attribute construct and path to refer to the
list of opening tags and attributes that categorize the value.
The name of an object attribute is determined by the path
from the root tag to the first opening tag before the text
content of that attribute. The path includes all opening tags and
their accompanying XML attribute constructs but excludes the
closing tags. For example, there are four attributes as shown in

the first column of Table II for the object device 0001 stored
in the following XML:

<?xml v e r s i o n =”1.0”?>
<d e v i c e i d =”0001”>

<s e n s o r name=” a”>
<type>module 01</ type>
<weight >4.0</ weight>

</ s e n s o r>
<s e n s o r name=”b”>

<type>module 02</ type>
<t e m p e r a t u r e >60</ t e m p e r a t u r e>

</ dev i ce>

Data characterization is based on a few assumptions. First,
due to the absence of strict schemas, we assume that XML
elements at the same nesting level are unordered since order
is not a requirement for well-formed XML [12]. Secondly, we
assume that tag attributes are an identifying characteristic of
a path in the XML tree and consider paths with variations in
attribute values to be distinct. We also assume that values in
the XML tree can be classified as either numeric or categorical,
as described below.

Data characterization includes: 1) extracting the structure of
the data so that similar documents can be generated, and 2)
characterizing the values that exist within the dataset. Figure
1 outlines the process. First, the values are removed and the
tag/attribute trees are stored along with an MD5 hash and
their frequency of occurrence into the structure data file.
The original XML is examined again, extracting each value
along with an MD5 hash of the identifying path and the
number of occurrences of that path/value combination. Non-
numeric and infrequently occurring values are classified into
the categorical values file. The remaining values are classified
as numeric for distribution fitting. The results are stored in
numeric distributions. The three resulting files make up the
synthesis set. The condensed nature of this set also facilitates
obscuring details of the data through string substitution, as
will be discussed in Section IV. Next, we describe the details
of these steps.

A. Structure

The first step of data characterization is to extract the
structure of the data. We view the XML structure as a tree of
tags along with their associated attributes but which is separate
from the document’s values. We use Hadoop MapReduce [13]
to ingest the XML-based IoT data. The MapReduce framework
processes each XML document individually. The initial map
phase removes all of the node values of an XML document
while leaving the tags and attributes. Also in the map phase,
the MD5 hash of the remaining XML string is calculated. This
hash and the XML structure become the key/value pair output
of the map phase. The reduce phase aggregates these pairs
and emits a list of unique triples whose first value is the MD5
hash, the second value is the frequency of this hash in the
entire document set, and the third value is the stripped XML
structure. Table I is an example of the output from this process,
which we refer to as structure data within the synthesis set.
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TABLE I: Examples of the structure data table.

Structure Hash Freq. Structure

9641ABEF... 1 <device id=“0001”><sensor name=“a”><type></type><weight></weight></sensor></device>

C5D7CA98... 3 <device id=“0001”><sensor name=“b”><type></type><temperature></temperature></sensor></device>

TABLE II: Values and the identifying MD5 hash of their path, along with the frequency of which that pair was encountered.

Tag Path Hash Frequency Value

<device id=“0001”><sensor name=“a”><type> B3EE890F... 1 module 01

<device id=“0001”><sensor name=“a”><weight> 0E742374... 1 4.0

<device id=“0001”><sensor name=“b”><type> 57518DAC... 3 module 02, module 03, module 04

<device id=“0001”><sensor name=“b”><temperature> 15FDF201... 3 60, 65, 69

The entire XML structure is stored, retaining the hierarchical
characteristics of the XML documents.

B. Values

The next step in data characterization is the calculation of
the statistical distributions of the different values of the data.
For a tabular data set, the set of values to be considered would
be the data columns, but there is no predetermined set of values
for hierarchical and schema-less IoT data. The distributions of
the data values must be computed across tens of millions of
IoT data entries, each of which has different combinations of
sensor measurements.

The values of an XML object are encoded within the path
of the object’s XML structure. Hadoop MapReduce is used to
extract the paths into an intermediate form for classification.
A recursive algorithm is used to descend the XML tree,
appending each node’s name and attribute list to a string. If a
text or numeric value is encountered, an MD5 hash of the path
string is generated and emitted with the value. In the reduce
phase of the job the hash-value combinations are counted and
output as the intermediate value data file. For example, the
XML paths and their respective hashes, reduced counts, and
values of the example XML structures in Table I are shown
in Table II.

The value data is the input into the next phase, where the
contents of the values are classified as numeric or categorical.
Any set of contents for which there are 30 or fewer unique
values is classified as categorical. In this initial design and
implementation we make the assumption that the values are
independent of each other for the purpose of calculating the
statistical distributions.

For a categorical path Ai, we are interested in the possible
values that the path might have on different objects. Let the
domain of Ai be 1, 2, ..., dk. Then the categorical path domain
is D = Πk

i=1, which forms a contingency table. The probabil-
ity of a particular categorical path can be approximated as
π̂d = xd

n where xd is the frequency from the contingency

table and n =
D∑

d=1

xd. The path hash, frequency, and value of

categorical data remain in the same format as the value data

Fig. 1: Structure/Value Extraction – Cascading series of steps
to extract the data patterns from complex XML documents.

file, and are output as the categorical values component of
the synthesis set.

Given a numeric path Zj , we use a fitting method to
determine the best distribution to represent the data, and then
calculate n, max, and min. We consider a range of distri-
butions that includes beta, Cauchy, chi-squared, exponential,
F, gamma, geometric, log-normal, negative binomial, normal,
Poisson, t, and Weibull distributions. JDistlib [14] is used to
randomly generate numbers for the synthetic data from the
maximum-likelihood fittings of the distributions.

IV. SYNTHETIC DATA GENERATION

The second major phase of the IoT synthetic data generator
framework is the use of the synthesis set to create synthetic
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XML data. The data generator has a few design require-
ments. First, it must scale to handle millions of structural
representations, millions of unique paths, and many millions
of possible categorical values. Secondly, it must support an
effective method of anonymizing categorical values to provide
an additional level of privacy for industrial and consumer in-
formation. In our approach, we use a simple string substitution
mechanism to map every unique string in the structure data
and categorical values components of the synthesis set to a
randomly generated string of the same length as the original.
A new obfuscated synthesis set is then generated using the
string map which retains the qualities of correlation between
tag names, attribute names, attribute values, and categorical
values. The string map can be retained by the owner of the
data for mapping synthetic results back to original strings.
Note that the string substitution step is optional and could be
replaced with a more sophisticated technique where one is
needed. The synthetic generator performs identically with an
original or anonymized synthesis set.

One design challenge is to manage millions of possible
categorical values associated with a single path. In our test
data some paths have over 5 million possible text values,
each with an associated frequency of occurrence. In order to
randomly select from these sets, we insert the possible values
into unbalanced Huffman trees, implementing the linear time
Huffman construction algorithm described in [15]. This allows
for fast random selection, but it requires that the tree be kept
in memory to avoid being rebuilt for each matching path.

Hadoop MapReduce was used to implement a distributed
synthetic generator. One design goal in this case was to
minimize the movement of the large amounts of categorical
data across the network. Since any single structure could
require loading many of the large value/frequency trees in
the dataset, a design parameter of our approach was to group
data that needed to be computed together. This translated to
a design that performs two joins: one to group the structure
hashes with a list of related path-value combinations, and
another to join the path-value combinations to the structure.
This is accomplished with a technique known as a reduce-side
join (or repartition join), which we implemented in a manner
similar to the Improved Repartition Join described in [16].

In the first phase of the two-part process, shown in Fig-
ure 2, the structure data, numeric distributions, and categor-
ical values are ingested by instances of the same map class.
For structures, hashes for each path are computed as shown
in Table II, and emitted with the frequency of occurrence and
the structure hash in which they were discovered. Numeric and
categorical values are passed through to the reduce phase. The
interphase sort ensures that map outputs are grouped by their
path hashes. Each reduce instance can then construct a single
Huffman tree for the categorical values related to each of its
assigned path hashes, and randomly select enough values to
satisfy every structure. The generated values are keyed by the
requesting structure hash, and emitted with the related path
hash.

The second phase of the process begins with an identity

Fig. 2: XML Synthesis – The workflow of generating synthetic
IoT data. Reduce-side joins are used to combine structure
path hashes with possible values, the results of which are
recombined with the structures to fill empty tags.

mapper that ingests and emits the results of the first phase,
keyed by structure hash, along with the structure data. The
interphase sort groups all values by the structure hash. Finally,
each reduce instance has a set of structures paired with enough
values to fill them, accomplished by recursively generating
path hashes to match to the input values as described above.

V. EVALUATION

Our primary goal in generating synthetic data is to create an
experimental framework that can be used to evaluate the per-
formance tradeoffs of various data infrastructure tools for very
complex data. Our framework creates synthetic data that have
values and a structure that match the statistical characteristics
of the original data. To evaluate our framework we start with
an original data set that was collected from various sensors on
3,193,783 electronic objects over a period of several months.
The total size of the data set is more than 3 terabytes. The data
entries arrive to the data warehouse in XML format containing
6,347,462 individual XML documents. The dataset is pre-
processed using a simple string substitution for anonymization
of identifiers.

The framework is used successfully to extract descriptive
statistics of the original data. Table III shows the descriptive
statistics of the unique XML tags, attributes, and paths of these
structures. While there are a fixed number of XML tags and
XML attributes, there is no pre-determined XML schema or
DTD document. Without a fixed schema, out of 6,347,462

4



XML structures, 5,758,590 are unique. The combination of
different XML tags and attributes generate a total of 8,716,624
unique XML paths within the original data. Because XML
tags, attributes, and paths can appear multiple times in a single
XML structure, the tag seen most often appears more than 140
million times across the dataset and the most frequently seen
attribute occurs more than 150 million times.

After extracting the unique XML structures and paths
and identifying categorical and numeric values, the statistical
distribution of each unique numeric value is also calculated.
Just three distributions provide the best fit for 93% of the
numeric paths: Poisson (58.1%), normal (23.5%), and geo-
metric (11.7%). The geometric distribution used is Pr(Y =
k) = (1 − p)kp, which models the number of failures before
the first success. This level of statistical accuracy of the
values meets our primary goals of synthetic data generation.
The parameters of these distributions are recorded for use in
the data generation phase of the framework. Development of
techniques that provide high statistical accuracy of synthetic
data values to original data is possible within the framework.

0	   100	   200	   300	   400	   500	   600	  
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Fig. 3: Structural validation by performance comparison of
tag-attribute searching, with 95% confidence interval.

We further evaluate the framework by comparing the perfor-
mance of applications that use the IoT data when presented
with the original and generated synthetic data of the same
size. We use this as an additional measure of the structural
similarity between the datasets. We generate data of equal size
to the original IoT data collected in 1, 2, and 4 months, with
sizes of 365, 733, and 1,506 GB, respectively. With each of
these datasets we run a program to descend into each XML
document and record the instances of certain XML tags with a
specific attribute. We verify that the frequency of occurrence
is as expected in the synthetic data, and use the runtime as
a measure of the document complexity. Each test was run to
a 95% confidence interval, as shown in Figure 3. In each of
the test cases, the performance using synthetic data is similar
to using the original data, supporting our assertion that the
synthetic data is structurally similar to the original.

The final aspect of the evaluation of the framework is
measurement of the time to generate synthetic data of various
sizes from the descriptive statistics. To evaluate the distributed
framework we create isolated testing environments for the
generation process using the Clemson high performance com-
puting cluster. In this environment we dynamically allocate
four different Hadoop clusters with 10, 20, 30, and 40 compute

nodes. Each node is configured with two 8-core Intel Xeon
E5-2655 CPUs, 64 GB RAM, 1 Gb/s network link, and a
single 900 GB HDD. The memory requirements of the reduce
phase make it necessary to allocate 4 GB of RAM to each
reducer JVM. To fit within memory requirements, we config-
ure Hadoop to spawn 32 map tasks and 4 reduce tasks on
each node. Synthetic data is generated in 1, 2, 4, and 8 month
chunks, with sizes as described in Table IV.
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Fig. 4: Synthetic generation Phase 1.

500	  

5000	  

1	  month	  
(365	  GB)	  

2	  months	  
(733	  GB)	  

4	  months	  
(1506	  GB)	  

8	  months	  
(3255	  GB)	  

Co
m
pl
e'

on
	  T
im

e	  
(s
),	  
lo
g	  
sc
al
e	  

10	  nodes	  

20	  nodes	  

30	  nodes	  

40	  nodes	  

Fig. 5: Synthetic generation Phase 2.

In both phases of the data generation, we observe roughly
linear scaling of the completion time as the number of compute
nodes and size of the data vary, as shown in Figures 4 and 5.
We note that the speedup from doubling the number of nodes
is approximately 1.5x in Phase 1 and 1.3x in Phase 2. We
hypothesize that this is due to the 1Gb/s network link between
the nodes, which throttles the shuffle phase of map-reduce.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present the design and implementation
of a Hadoop-based synthetic IoT data generation framework.
The main objective of this framework is to support research
of infrastructure and tools for proprietary IoT data sets. The
synthetic data generator enables the creation of large volume
datasets that retain important characteristics of the data. The
framework enables access by researchers to IoT data for the
development and testing of tools and algorithms, and enables
research by organizations that need to ensure the privacy of
their sensitive data.

The modular design of the framework allows for streamlined
extensions of the generator to support inclusion of different
statistical distributions as necessary. In addition, the condensed
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TABLE III: Descriptive statistics of the XML tags, attributes, and paths of the test data

Individual XML Tags Individual XML Attributes Individual XML Paths Individual Objects

Unique Count 110 29 8,716,624 3,193,783

Max Frequency 143,935,646 150,997,555 115,328,502 2,014

Min Frequency 11 1,383 1 1

Avg Frequency 1,966,444 75,34,407 2,582.4 1.99

Median 60,640 353,358 7.0 1.0

TABLE IV: Shuffle and output characteristics of the 2-phase MapReduce synthetic generator.

Input Phase 1 Phase 2

Months Documents Shuffle (gzip) Output Shuffle (gzip) Output

1 1.61 million 371 GB (73 GB) 198 GB 487 GB (69 GB) 365 GB

2 3.09 million 715 GB (141 GB) 394 GB 975 GB (143 GB) 733 GB

4 6.35 million 1,470 GB (290 GB) 810 GB 2,004 GB (294 GB) 1,506 GB

8 13.72 million 3,177 GB (627 GB) 1,750 GB 4,331 GB (635 GB) 3,255 GB

form of structural and categorical data offers an option for
ensuring privacy of confidential data within the synthetic data
set. The preliminary efforts with string substitution have been
successful. The use of Apache Hadoop and MapReduce for
parallel processing makes the framework highly scalable, and
enables a faster turnaround time in research and development.

Future work on the framework is possible. While the
majority of the XML structures are unique in our test case,
we need to support the case where there exists a common
subtree in all of the XML structures. In this situation, pruning
of the common subtree will help to reduce the size of the
structural table and improve performance. The framework will
be further modularized to allow users to specify their own set
of distribution functions, including complex functions such as
inter-dependent and correlated marginal distributions.
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