
92 Informatica Economică vol. 16, no. 2/2012

Modernization Solution for Legacy Banking System
Using an Open Architecture

Constantin Marian MATEI

Faculty of Economic Cybernetics, Statistics and Informatics
Academy of Economic Studies, Bucharest, Romania

constantinmatei81@yahoo.com

Banks are still using legacy systems as the core of their business is comprised within such sys-
tems. Since the technology and client demands are changing rapidly, the banks have to adapt
their systems in order to be competitive. The issue is to identify correctly what are the bank
users preferences in terms of software reliability and how modern is the system For instance,
there are users who enjoy working using the old screen format, and there are users who enjoy
working with newer layouts, Web interfaces, and so on. We need also to know the constraints
generated by the usage of legacy systems, and how these systems can be improved or re-
placed. The scope of the article is to present a solution of modernizing a legacy banking sys-
tem by using a SOA approach. The research is based on the modernization of a legacy system
developed in COBOL/400 under IBM iSeries. The modernization process uses a SOA ap-
proach using JAVA technologies.
Keywords: Legacy Systems, Architecture, Services, Front Office, Back Office, Server, Mes-
sage Queue, SOA

Introduction
One of the big dilemmas of the banking

CIOs is “Are we going to change the existing
systems with more scalable ones?” If yes, are
we able to cover the costs?”
This dilemma it has another constraint relat-
ed to the fact that new players in the banking
world have already new opened platforms
which permits applications for 24 hours
online banking, internet banking, mobile
banking and so on.
The reason why the legacy systems are sur-
viving is that the costs and risks to replace
them are high enough and a system proprie-
tary can run into a bankruptcy if the change
will occur. There is also another reason relat-
ed to the business logic. The applications
were developed started with the 70’s and
were progressively adapted to the business
demand. Thus, the business logic coded into
the systems is very complex and can lead to a
high risk of failure in case of replacement.
In 2008 a TowerGroup analyst said that there
is a pressure coming not only from the tech-
nology itself, but also from the business point
of view. [1] Competitors are using new open
architectures capable to do smart reports, da-
ta mining, and, why not, to integrate with

platforms like tablets, notebooks and smart
phones. This increases the speed of conclud-
ing a business and also offers a better system
for decision making process.
Since these issues were raised by the busi-
ness and technical communities, large com-
panies have developed open architecture
based on services, like SOA. Moreover, these
providers are offering solutions based on
cloud computing.
The question now is if the banks have to cre-
ate from scratch new systems, to buy prod-
ucts from various vendors or to modernize
existing legacy systems.
To be able to respond to this question we
need to know the constraints generated by the
use of the legacy systems [2]:
- legacy systems were designed for the im-
mediate needs and they weren’t planned to be
active for too many years (more than 15
years);
- these systems were built under some con-
straints (for instance low cost, resource
availability, and so on);
- existing systems attributes such as: com-
plexity, commercial components, business
objectives [3].
Rewriting the application is expensive (time

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26865654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Informatica Economică vol. 16, no. 2/2012 93

consuming), and also risky (a lot of defects
may appear during acceptance testing, and
more important, the business might change
during development). The advantage consists
in the fact that the bank can have a software
application built to meet its specific require-
ments. [4]
Second option consists in the acquisition of
commercial off-the-shelf (COTS) systems,
which are ready to use and need to be cus-
tomized for the bank own business. The risks
consist in the maintenance of such products,
as the costs for modification are usually at
higher rates. The advantages consist in the
fact that the software is immediately ready to
be used, SLA’s (Service Level Agreements)
can be established for support services. Usu-
ally SLA’s are response time (the third party
support team is bound to respond in a certain
amount of time to the banks requirement) and
resolution time (the support team has to solve
the incidents or tickets in a fixed period of
time). If SLA’s are not respected then fines
are perceived from the software provider. For
COTS there is a risk of implementing the

software package. In [5] there are identified
two major risks of replacing existing system
with COTS: the maintenance of the new sys-
tem won’t be as familiar as the old system;
there is no guarantee that the new system will
work the same as the old one.
The last approach supposes the migration of
the legacy system to a SOA environment
which is more flexible. Moreover the origi-
nal’s system data and functionality will be
kept. There are multiple choices to do this
migration, out of which we mention the au-
tomatic transformation with tools like IBM
Rational HATS (Host Access Transformation
Services), the usage of Model View Control-
ler (MVC) patterns like SPRING, JSF (Java
Server Faces), or new approaches like Model
View Presenter (MVP) patterns (C#, Vaadin
– open source framework with Apache li-
cense).
The common point of these approaches is
that each time a legacy system is changed the
following actions are taken into considera-
tion: assessment, transformation, refactoring,
web-enablement [6]:

Fig. 1. Legacy system transformation actions

The present article scope is to present a mod-
ernization solution based on an open archi-
tecture, using SOA principles and MVC pat-
terns.

2 Define the problem
In the process used to define the problem we
considered the following working configura-
tion: the legacy system is a core-banking sys-

tem developed on IBM iSeries (in COBOL
language); there is already a middle tier sys-
tem used to connect the core-banking to dif-
ferent front-offices based on specific web
services developed using J2EE technology.
We will use a Cash Deposit creation type of
transaction. This type of transaction supposes
that a bank operator based on specific data
will create a cash deposit for a certain entity

94 Informatica Economică vol. 16, no. 2/2012

(legal person or physical person).
The below picture displays the actual iSeries

screen for the Create Cash Deposit option:

Fig. 2. Create Cash Deposit screen

This is a simple screen, but still it has the
disadvantage of the limited display options.
The middle tier system mentioned before it
has an architecture which permits the con-
nectivity of various extern platforms to the

back-office system. For instance SWIFT
platforms or specific Online Banking appli-
cations are using the middle tier to send
business requests to the back office.

Middle Tier System on Websphere

Application Server 6.1 or 7.0

.

.

.

.

.

.

.

.

.

.

Web Service 1
(example: Cash
Deposit creation)

Web Service n

Back-office system on iSeries

.

.

.

.

.

.

.

.

.

.

COBOL batch
program 1

(example: Cash
Deposit

management)

COBOL batch
program n

PCML
file

PCML
file

COBOL
Interactive
program 1

COBOL
Interactive
program n

Is derived from

Is derived from

External data
received through
MQ Series, JMS ,

SWIFT plug-in

Fig. 3. Existing legacy system architecture

The main disadvantage of this kind of archi-
tecture is that the presentation layer of the
back-office is still a 5250 screen for iSeries
or a 3270 for Mainframe, with the same func-
tionalities and rigid display. This type of dis-
play is no longer attractive for the clients, as

we have to take in account that there is a new
generation of end-users with more technolog-
ical knowledge and abilities.
There are some problems of costs as well. As
described in [7] we can calculate the com-
plexity of a system based on the number of

Informatica Economică vol. 16, no. 2/2012 95

interfaces used in building that system and
the number of transactions processed. The
complexity of this system would be around
166.7%, which is higher comparing to anoth-
er type of architecture based on direct call to
the iSeries DB2 embedded database.
There is also an advantage point of view
which must be considered: the business logic
of the COBOL programs is kept. The cost
will be translated as the amount of time of
converting an existing interactive screen into
a batch one. For instance, for a screen having
six input fields (like the one in Fig.1) the
conversion time is one man-day. This time
comprises activities such as: delete the links
to the screen file; suppress the field indica-
tors and function keys usual behaviors.
Based on above information the issue is that
the system has an old display which is inflex-
ible and is not attractive for new clients.

3 Describe the solution and the results ob-
tained
The solution proposed further is based on a
function by which we measure the perfor-
mance of the system and the marketability
factors.
System performance function: is a derived
function from the complexity indicator [7]

and the number of business transactions pro-
cessed in the same amount of time and for
the same technical architecture. In our case,
the WebSphere 6.1 server was running on a
Windows 2003 Server machine with 2 GB
RAM dedicated for the application server.
We will use the notations: CP for Complexi-
ty, tcreate_transaction for time to complete a trans-
action, Tx for number of transactions and
tload_system

The function is described below as:

 for time to load the application on
the server.

System performance (SP) = CP * Tx *
t
This means that for a system with a high
complexity and a large number of transac-
tions processed in a constant time, the per-
formance is also high.

create_transaction/tload_system

Marketability factors take in account attrib-
utes of the solution such as:
How much flexible is the new screen in
terms of introducing data, field validations
and error message display?
What is the possibility to connect other ap-
plications to the system?
To what extent the new interface is easy to
learn compared with the existing interface?
The solution proposed hereunder is based on
the following schema:

Fig. 4. Solution architecture

Each layer in the picture above has its own
scope in the system:

Front office layer purpose is to collect the da-
ta

96 Informatica Economică vol. 16, no. 2/2012

Application server layer has the services dis-
patcher role
Back office layer has the business logic man-
agement role.
Beside the layers presented above we have 2
message layers. These layers are used for the
exchange of messages between all other
business layers.
From a technical point of view the technolo-
gies involved in this solution varies based on
each layer:
- front office: Java Server Faces (JSF), Ja-

va Server Pages (JSP);
- first message layer: Java Message Ser-

vice architecture managed through Spring
framework;

- application services layer: Java Enter-
prise Edition (JEE), Enterprise Service
Bus (ESB), Web Services;

- second message layer: Program Call
Markup Language (PCML), Program
Call Beans;

- back office layer: COBOL batch pro-
grams derived from interactive screens.

Below there are presented in several images
the results of implementing the solution de-
scribed above. We will present the screens
with the most importance in the application.
The front-office layer is actually a GUI ap-
plication able to load data into the message
layer and to transport them further to the
back-office (via the application services lay-
er). It has usual functionalities like: login
page, authentication, transaction creation and
visualization. The technology used to build
the GUI is mainly based on JSF:

Fig. 5. Login page

For the authentication process it is imple-
mented user group functionality. This means
that the users are pre-defined in the database
system based on the scope of their work. For
instance some users have abilities to approve
transactions for a certain department of the
bank (i.e. Vault, Securities, Coupons and so
on). If the authentication fails an error mes-
sage is thrown back to the user. Also it is vis-
ible in the application server’s log:

Fig. 6a. Login error

Informatica Economică vol. 16, no. 2/2012 97

Fig. 6b. Error management on the server side

After the login succeeds, a welcome page is
loaded. From the menu in the left side we can
choose either to close the session or to go to

the transactions directory. The user who
logged in the system can access only the
transaction he/she owns.

Fig. 7. Welcome page

The transaction directory contains valuable
information, not only related to the business
data (id, accounts, amounts, currency, de-
positors, creation date), but also to the tech-
nical data (status, author). All these data can

be sorted. The Status column is very im-
portant at it is showing the actual processing
of the transaction. For instance “Sent to
JMS” means that the transaction is in the
Message Queue but still not processed.

Fig. 8. Transactions directory

During the creation process the validation is
made only for the fields (GUI validation).
The business validation is made by the

COBOL programs called by the server layer
in a asynchronous mode.

98 Informatica Economică vol. 16, no. 2/2012

Fig. 9. GUI validation

If we introduce the data displayed below, we
will obtain a business error message saying

that the date should be less or equal with the
back-office date:

Fig. 10a. Creation data

Informatica Economică vol. 16, no. 2/2012 99

Fig. 10b. Audit data for the transaction launched in creation process

The server response contains XML messages
which actually will be displayed into the GUI
application. The results of the transaction
creation process are to be found on the
iSeries machine. For the transaction created

above, below there are the correspondence
within the system developed in COBOL on
iSeries. Figure 11 is showing the directory of
all transactions new created or already exist-
ing.

Fig. 11. Transaction directory

The Figures 12 and 13 are displaying the
transaction’s technical details, respectively

the interface details (contains information re-
lated to the data received from Java).

Fig. 13. Transaction data

100 Informatica Economică vol. 16, no. 2/2012

Fig. 14. Interface details

When calculating the System performance
(SP) indicator we took in consideration the
time used to create one transaction (from the
moment the transaction was confirmed and
the status changed from “Sent to JMS” into
“Processed OK”). This lead to around 30 se-
conds duration. For the Cash Deposit product
there will be only one transaction created at a
time. The time to load the system is around
10 minutes for the iSeries session and the ap-
plication server (alone 7 minutes to load). All
these data are leading to an SP off 8,3%. This
poor compared with the same indicator cal-
culated for a system having only the iSeries
display. It takes around 2 minutes to load the
iSeries interface. The time to create a trans-
action is similar when using the JAVA inter-
face. This leads to an SP off 33%. Out of cal-
culation it seems that a wise idea is to keep
the old interface.
Then we have to answer the question: what
are other particularities which will require a
change of the existing interface? The answer
would be the marketability gain. As men-
tioned before we identified three attributes of
a banking system which make it more attrac-
tive for the business: flexibility, connectivity
and learning ability.
The three layers solution compared with the
old interface is more flexible. For instance
we are able to have more fields in one screen,
while on the iSeries interface you are limited
to maximum 27 rows per screen. On the GUI
application we are able to add CSS (Cascad-
ing Style Sheets) in order to improve the vis-

ual effect of the application, while the
COBOL screens have mostly the same for-
mats.
From the connectivity point of view the GUI
application is a Web application. Thus, it can
be accessed from anywhere within the Inter-
net (of course based on credentials managed
within the Login module). The iSeries appli-
cation can be accessed only from the iSeries
server and using specific tools for connectivi-
ty security clearance (like TOX and SOCKS
clients).
Since the Internet developed so rapidly, the
Web applications are used at a large scale.
This makes more easy the job for the solution
we proposed, as it is developed taking in ac-
count the current technological features and
tendencies.

4 Conclusions
Due to the rapid development of software
and hardware technology the banking busi-
ness tries to be in line with the new tenden-
cies. Banks focuses on changing the legacy
applications with newer software products.
But how much will this process cost the
banks?
The present article proposes a solution based
on interconnecting legacy system with new
interfaces through Web Services. Of course,
we have to keep in mind the performance of
the new system and also the marketability
factors. These aspects influence the decision
making process of the banks.

Informatica Economică vol. 16, no. 2/2012 101

As we saw in the article, from the perfor-
mance point of view a modernization solu-
tion can be slower than an old interface. But
how long can we consider this aspect as an
advantage? In banks the end-users are either
people who worked for decades on legacy
platforms, or employees with junior skills
who are more used with new interfaces (like
Web applications, even more with socializa-
tion networks). From this point of view a
modern application has more value added for
the bank business. Moreover, using the mod-
ern technologies we are able to do baking by
Internet, Cloud computing or even more from
a tablet PC or a smart phone. The presenta-
tion layer is such important as it never had
been before the years 2000.
The solution proposed is based on an open
architecture which makes the application to
be scalable, flexible, easy to maintain. The
business logic is maintained within the lega-
cy system and only the presentation layer is
changed. Thinking on a long term basis, the
presented approach is helpful as the mainte-
nance effort is lower due to the fact that the
business logic is separated from the presenta-
tion layer. The presentation layer is enough
flexible, thus, if we want to change the page
style in order to look more attractive, it
would be easier to do it. In this manner we
don’t have to change the business logic. The
reverse is also true, meaning that when we
change the business logic, we don’t have to
change the presentation layer.
The research will continue in the idea of
modernizing legacy systems, by involving
specific tools capable to do transformations
of iSeries screens into Web pages. The result
will be compared with the solution presented
within this article in order to establish if we
can use a combined architecture of these, or
to use a single solution to do a generic mod-
ernization.

References
[1] J. Goldsmith, Bank CIOs face legacy

systems dilemma, June 2007
http://www.silicon.com/management/cio-
insights/2007/06/06/bank-cios-face-
legacy-systems-dilemma-39167376/.

[2] M. W. Chowdhury and M. Z. Iqbal, “In-
tegration of Legacy Systems in Software
Architecture,” SAVCBS 2004 Specifica-
tion and Verification of Component-Based
Systems,
http://www.eecs.ucf.edu/SAVCBS/2004/ .

[3] R. C. Seacord, D. Plakosh and G. A.
Lewis, “Modernizing Legacy Systems:
Software Technologies, Engineering Pro-
cesses, and Business Practices,” Carnegie
Mellon Software Engineering Institute,
ISBN 0-321-11884-7, February 2003.

[4] A. A. Almonaies, J. R. Cordy, T. R.
Dean, Legacy System Evolution towards
Service-Oriented Architecture,
http://research.cs.queensu.ca/home/cordy/
Papers/ACD_MigToSOA_SOAME10.pdf
.

[5] S. C. Dorda, K.C. Wallnau, R.C. Seacord
and J.E. Robert, “A Survey of Black-Box
Modernization Approaches for Infor-
mation Systems,” Proceeding ICSM '00
Proceedings of the International Confer-
ence on Software Maintenance (ICSM'00),
IEEE Computer Society Washington, DC,
USA ©2000, ISBN:0-7695-0753-0

[6] P. Newcomb and R. A. Doblar, “Auto-
mated Transformation of Legacy Sys-
tems,” CrossTalk: The Journal of Defense
Software Engineering, December 2001,
https://www.softwarerevolution.com/v2/fy
les

[7] C. M. Matei, “Services Used to Integrate
Banking Front Office Applications,” Open
Source Science Journal, Vol. 2, No. 3,
2010 http://opensourcejournal.ro/2010-
Volume02/number03/paper002-
fullpaper.pdf

Constantin Marian MATEI has graduated the Faculty of Cybernetics, Sta-
tistics and Economic Informatics in 2005. He holds a Masters degree in IT
Systems for Managing Economy Process (SIMPRE). He held positions as
technical team leader, software configuration controller and software devel-
oper. Currently, he is project manager in banking field and Mainframe Prac-

102 Informatica Economică vol. 16, no. 2/2012

tice Area Leader within IBM Romania. Also, he is PhD student enrolled in a PhD programme
on Computer Science in Economics. His key skills refer to the following: project manage-
ment, leadership, business management, banking, coaching and mentoring, IT&C specialist in
business oriented software development and maintenance.

	Modernization Solution for Legacy Banking System
	Using an Open Architecture

