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Abstract. The paper addresses the topic of the inconsistency between 

experimental, laboratory results for antiseismic devices and the dynamic 

stiffness, internal damping and dissipation parameters through additional 
devices. The necessary corrections of the stiffness and dissipation 

(damping) parameters will be presented when the antiseismic devices are 

equipped to satisfy the adequate functions in a complex structural system 
(buildings, viaducts, bridges) under the conditions of seismic motions 

characteristic to the Romanian territory. In this context, the kinematic 

excitation method, compared to the dynamic evaluation method of the 
vibration dissipation capacity, produced by a seismic shock is shown. 
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1. Introduction 

In accordance with the European 
Standard EN 15129:2009, the conformity 
assessment and CE marking of the anti-
seismic elastomeric isolators, used as 
components of the base isolation systems, 
are done. Experimental research carried 

out on specialized testing facilities, under 
dynamic regime, is conducted. The 
testing should reproduce the loading 
conditions equivalent to the operation 
specific parameters mainly defined by the 
geometrical and mechanical 
characteristics determining the damping 
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and stiffness parameters (Rivice, 1999; 
Meinovitch, 1990; Bratu, 2011a). 
 
In order to determine the damping capacity, 
the elastomeric isolators are subjected to 
shearing by means of kinematic harmonic 
excitations defined under the 

form tAx 10 sinω= , where A0 is the absolute 

displacement amplitude of the loaded plate 
edge, in respect to the fixed edge and ω1 is 
the kinematic excitation pulsation (Bratu, 
2000; Kelly and Konstantinidis, 2011). In this 
case, considering of the hysteresis loop for 
the instantaneous viscoelastic force 

xckxQ &+= depending on the instantaneous 

deflection x, the loss factor of the internal 
energy η, representing the dissipation effect, 
as well as the equivalent critical damping 

fraction eqζ  are determined (Giuliani, 1993; 

Tyler 1991). 
 
The loading conditions showed that the 
isolator has no attached concentrated 
mass, meaning that 0≡m , and the 
excitation is kinematic exclusively with 
the harmonic displacement externally 
applied (Bratu and Dragan, 1997; Bratu 
and Vasile, 2012). 
 
In this context, the damping expressed by 

the system parameter eqζ , defined by 

max
4 el

eq
W

W

π
ζ ∆

=  (Bratu and Mihalcea, 2011), 

differs as compared with the parameter 
ζ related to a linear viscoelastic system 

having the mass 0≠m , expressed under 

the form of 
km

c

2
=ζ (Viola, 2001). 

 

Thus, the damping parameter eqζ  could 

be determined by laboratory testing only. 
Thus, the actual structural analysis using 
the supporting and the base passive 
isolation system, having appropriate 
configuration, the values of parameter 

eqζ  in correlation with the effective 

parameter ζ for the actual system, should 

be taken into account (Bratu and Vasile, 
2010; Bratu, 2011c). 

 

2. Exterior Harmonic Actions applied on 
the Elastomeric Isolator 

This correlation between eqζ  obtained 

under harmonic elastic deflection actions 

kinematic applied and dζ  under dynamic 

actions could be performed, so that the 
energy dissipated under the kinematic 

regime cW∆ would be equal to the energy 

dissipated under dynamic regime dW∆ . 

 
Figures 1 and 2 illustrate one elastomeric 
isolator consisting of several rubber 
layers separated by steel shims, under 
kinematic excitation of the form 

( ) tAtx 10 sinω=  (Fig. 1) and under 

dynamic excitation governed by the law 

( ) tFtF 20 sinω=  (Fig. 2). Fig. 3 and 4, 

represent a physical system with a 
symmetric excitation system. The linear 
viscoelastic system characteristics are c 
and k, without an added mass. 
 

Under the kinematic excitation, of the 

form ( ) tAtx 10 sinω= , the dynamic 

response related to the viscoelastic 

connection force ( )tQ  is obtained as 
(Dolce et.al., 2010; Faccioli and Paolucci, 

2005): 

( ) )sin( 110 ϕω −≡+= tQxckxtQ &  and further: 

 2
100 1 η+= kAQ    (1) 

1
1

1 ηωϕ ==
k

c
tg    (2) 

The dissipated energy cW∆  can be 

written as: 
2
01AcWc ωπ=∆  

If one introduces 11 ηω kc = , the previous 

relation becomes: 

 2
01AkWc ηπ=∆    (3) 
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Fig. 1. Physical model for anti-seismic elastomeric 

isolator with asymmetrical excitation system: 

Kinematic excitation 

 
Fig. 2. Physical model for anti-seismic elastomeric 

isolator with asymmetrical excitation system: 

Dinamic excitation 

 
Fig. 3. Physical model with a symmetric excitation 

system: Kinematic excitation 

 
Fig. 4. Physical model with a symmetric excitation 

system: Dinamic excitation 

3. Externally Applied Dynamic Force 
with F0 Constant 

Under the dynamic excitation of the form 

( ) tFtF 20 sinω= , where F0 represents the 

amplitude of the action, the displacement 
response ( )tuu =  is obtained using the 

following instantaneous dynamic equilibrium 
equation: 

tFkuuc 20 sinω=+&     (4) 

Equation (4) underlines that one works 
with a Ist order physical system, without 
mass, so its resonance is less. The solution 

( ) ( )22sin ϕω −= tAtu  should verify 

equation (4), leading to the following 
relation (Rivice, 2003): 

 
2
2

0

1

1

η+
=
k

F
A , 2

2
2 ηωϕ ==

k

c
tg  (5) 

Taking into consideration relation (5), the 

dissipated energy dW∆  is given by the 

equation: 

 
2
2

2

2
0

2
1

1

η
ηπ

+
=∆

k

F
kWd   (6) 

Using the condition that dc WW ∆=∆ , results in: 

 012
22

21 =+Ψ− ηηηη   (7) 

with 
0

0

kA

F
=Ψ being the dynamic 

multiplication factor. 
From (7) one obtains 2η  under dynamic 

regime, depending on 1η  under kinematic 

regime, as follows: 

 [ ]2
1

42

1
2 4

2

1 η
η

η −Ψ±Ψ=    (8) 

a) the single solution of equation (8) is 
possible only under the following 
condition: 

04 2
1

4 =−Ψ η     (9) 

and further 

 1
0

0 2η==Ψ
kA

F
   (10) 

In this case, the solution of equation (8) is 
under the form: 

 1
2

2

2 1

1

1

2

2 ==
Ψ

=
η
η

η
η      (11) 
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Thus, the loss factor has a unitary value 

and 5,0
2

1
22 == ηζ . 

5,0max
2 =ζ  represents the maximum value. 

b) the actual and distinct solutions of 
equation (8) are possible only for 

04 2
1

4 >−Ψ η , or 12η>Ψ . In case 

of actual parametric values 

6,12,0 1 ≤≤η , the range for Ψ is 

obtained as 78,163,0 ≤Ψ≤ . 

 
Fig. 5. Dynamic model of the passive isolation 

system under seismic inertia excitation: 

Instantaneous translation motion 

 
Fig. 6. Dynamic model of the passive isolation 

system under seismic inertia excitation: 
Instantaneous acceleration 

 
As an example, an elastomeric isolator 
without additional mass, with 

mNk /105,1 6⋅= , 20,0=eqζ , 40,01 =η  is 

tested in laboratory under harmonic 
cycles having the linear amplitude 

08,00 =A m. Under harmonic dynamic 

regime, characterized by 1200 =F  kN, the 

damping 2η  is obtained as follows: 

89,04,021
108105,1

10
26

5

0

0 =⋅>=
⋅⋅⋅

==Ψ −kA

F

and from relation (8) it results in 0,2'' 2 =η  

leading to 25,0'2 =ζ  and 0,1"2 =ζ , 

respectively, both values being higher 

than 20,0=eqζ . 

 
4. Harmonic Seismic Actions on the 

Elastomeric Isolator 

The dynamic model for the linear 
viscoelastic base isolation system, with m, k 
and c considered as system parameters, is 

represented in Fig. 5 and 6, for two distinct 
positions. In Fig. 5, the system is under 
instantaneous translation motion. In Fig. 6, 
the coordinates ( )tx  related to the mass m 

and ( )tu  for the supporting base, caused by 

the seismic action with the instantaneous 

acceleration tau ωsin0=&&  for the 

fundamental spectral component, having 
the pulsation ω, are illustrated (Carotti and 
Latella, 1999; Bratu, 2008). 

 

The equation of motion for the mass m, 

related to the fixed reference system 
O1X1Y1 is of the form: 

 01 =++ kxxcxm &&&      (12) 

in which xux +=1  represents the 

absolute displacement. 
The relative displacement of the mass m, 

with respect to the moving reference 
system (having the acceleration u&& ) Oxy is 

( )tx . Thus, one has: 

( ) 0=+++ kxxcxum &&&&&     

or umkxxcxm &&&&& −=++     (13) 

If one introduces tau ωsin0=&& , the 

previous relation becomes: 

 tmakxxcxm ωsin0−=++ &&&     (14) 

The final solution is: 

 ( )ϕω −= tAx sin    (15) 

in which A and ϕ  are obtained from the 

condition that verifies equation (14). 
Thus, it results: 

   
( ) 2222

2
0

41

1

Ω+−Ω
=

ζωn

a
A   (16) 

   
21

2

Ω−
Ω

=
ζϕtg     (17) 
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nω
ω

=Ω ;
m

k
n =
2ω      (18) 

The energy dissipated under seismic 
dynamic excitation regime, is (Bratu et. al,  

2011): 

 
( ) 2222

2
02

41
2

Ω+−Ω

Ω
=∆

ζω
πζ a

m
W

n

d (19) 

The condition dc WW ∆=∆ , leads to the 

following relation: 

 
( ) 2222

2

41 Ω+−Ω

Ω
=

ζ

ζαζ eq     (20) 

and further we have the second order 
equation in ζ , of the form: 

 ( ) ζαζζζ Ω=−Ω+Ω 22222 14 eqeq (21) 

having the solution: 

( ) 





−ΩΩ−Ω±Ω

Ω
= 2222242

2
116

8

1
eq

eq

ζαα
ζ

ζ

At resonance, for 1=Ω , one obtains: 

eq
rez ζ

αζ
2

4

1
=       (22) 

 where 
2

0

0

nA

a

ω
α = is the acceleration 

multiplication factor. 
 
As an example, an elastomeric isolator 

having 6105,1 ⋅=k N/m, 2,0=eqζ  is tested 

at 088,00 =A m. For a structural system 

with πω 2=n  subjected to a maximum 

acceleration ga 25,00 = , the result is: 

707,0
4088.0

1025,0
2
=

⋅
⋅

=
π

α  

62,0
2,0

707,0

4

1
2

==ζ  

meaning that ζ for the system is three 

times higher than echζ  determined in the 

laboratory. 
 

6. Conclusions 

The following conclusions can be 
synthesized based on the analysis 
intended to equalize the dissipated 

energy under different excitation 
regimes, kinematic and dynamic: 

a) the testing method with kinematic 
excitation only, with harmonic 
displacement of the form 

( ) tAtx 10 sinω=  allows the 

determination of the equivalent 

damping eqζ . This is specific to the 

isolation system under laboratory 
experimental configuration, only. 

b) the damping evaluation under 
dynamic excitation for systems 
having actual dynamic behavior 
puts into evidence the necessity to 
determine the system parameter 
ζ as a function of the experimental 

parameter eqζ ; 

c) ζ  for the system under actual 

configuration depends both on the 
type of the dynamic excitation as 
well as the existence of the mass 
with inertial effect. 
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